
Electronic Transactions on Numerical Analysis.
Volume 39, pp. 437-463, 2012.
Copyright  2012, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University 

http://etna.math.kent.edu

GRADIENT DESCENT FOR TIKHONOV FUNCTIONALS WITH SPARSITY
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Abstract. In this paper, we analyze gradient methods for minimization problems arising in the regularization
of nonlinear inverse problems with sparsity constraints. Inparticular, we study a gradient method based on the
subsequent minimization of quadratic approximations in Hilbert spaces, which is motivated by a recently proposed
equivalent method in a finite-dimensional setting. We prove convergence of this method employing assumptions
on the operator which are different compared to other approaches. We also discuss accelerated gradient methods
with step size control and present a numerical comparison of different step size selection criteria for a parameter
identification problem for an elliptic partial differential equation.
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1. Introduction. We consider operator equations

(1.1) K(u) = f,

whereK : H1 → H2 is a nonlinear operator between Hilbert spacesH1 andH2. The related
inverse problem involves the computation of an approximation to the solution of this operator
equation from given noisy datafδ with

(1.2) ‖f − fδ‖H2
6 δ.

We are particularly interested in the case of ill-posed equations, which need a stabilization by
regularization methods for computing stable approximations.

In this paper, we focus on inverse problems where the solution u has a sparse series
expansionu =

∑

k∈Λ ukϕk with respect to an orthonormal basis{ϕk}k∈Λ ⊂ H1, i.e., the
series expansion ofu has only a small number of non-vanishing coefficientsuk. Exploiting
this sparsity property for a stabilization of the inverse problem, (1.1)–(1.2) leads us to consider
the following minimization problem (Tikhonov regularization with sparsity constraint): for
a positive regularization parameterα, weightsωk ≥ ωmin > 0, and an exponentp ∈ [1, 2],
consider

(1.3) min
u∈H1

1

2
‖K(u) − fδ‖2

H2
+ α

∑

k∈Λ

ωk|〈u, ϕk〉|p.

Such an approach yields sparse minimizers of (1.3) for p = 1. For1 < p < 2, this approach
is said to promote sparsity [12]. For most of the paper it is convenient to consider the more
general class of minimization problems

(1.4) min
u∈H1

F (u) + Φ(u),
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whereF (u) := S(K(u), fδ) is a discrepancy functional that measures the difference be-
tweenK(u) andfδ, andΦ(u) is some regularizing penalty term. Obviously, (1.3) and (1.4)
coincide forF (u) = 1

2‖K(u) − fδ‖2
H2

andΦ(u) = αΦp(u) with

(1.5) Φp(u) =
∑

k∈Λ

ωk|〈u, ϕk〉|p.

The problem whether such functionals yield regularizations of the underlying inverse
problem (i.e., whether minimizers of (1.3) converge to a solution of (1.1) asα, δ → 0) has
been analyzed intensively for linear and nonlinear settings over the last years; see, e.g., [12,
20, 24, 32, 37]. Recent research has concentrated on developing algorithms for computing
minimizers of (1.3). Starting with the pioneering paper [12], where convergence of the iter-
ated soft shrinkage algorithm was proven for linear operator equations, several extensions and
generalizations to the case of nonlinear operators have been considered; see, e.g., [6, 7, 38].
Most of these algorithms are known to have a linear convergence rate in theory and are quite
slow in practice. The present paper aims at proving convergence results for accelerated gra-
dient methods for nonlinear and ill-posed operator equations as well as at comparing numer-
ically different step size selection criteria.

The motivation for the present paper originates in the results of Bredies et al. [6, 8],
Beck and Teboulle [5], and Nesterov [35]. In [5, 35], an efficient scheme for computing a
minimizer of the problem (1.4) in the case of a general convexF and specific “simple”Φ is
proposed. Although those papers consider the problem in finite-dimensional spacesRd, the
proofs carry over to the Hilbert space setting. Nesterov [35] and Beck and Teboulle [5] also
introduced accelerated versions of the gradient method andproved that the objective func-
tional decreases with rateO( 1

n2 ) wheren is the iteration counter. These gradient methods
are closely related to the generalized conditional gradient method [8] and the generalized
projected gradient method [7]. Convergence of this method was proved under fairly gen-
eral assumptions onF andΦ and a linear convergence rate was obtained in [7] for the case
of F (u) = 1

2‖K(u) − fδ‖2
H2

with a linear operatorK.
In this paper, we combine the algorithmic approach of [35] with the analytic tools devel-

oped in [8]. We consider the problem (1.4) whereF can be non-convex, i.e., the problem (1.4)
includes regularization of nonlinear, ill-posed problems. The gradient method as introduced
in [5, 35] as well as some accelerated versions are investigated in a Hilbert space setting.
We prove strong convergence of the minimizing sequence generated by the gradient method
for the special case ofΦ = αΦp with Φp defined by (1.5). We want to emphasize that the
assumptions onF needed in the proof of convergence are different from those employed
in [8].

The remaining part of this paper is organized as follows: in Section2, we survey dif-
ferent approaches for deriving first order methods for minimizing functionals of type (1.4).
Section3 is devoted to the convergence analysis of a gradient method derived from successive
minimization of quadratic approximations, and Section4 contains a discussion of the choice
of step sizes. In Section5, we analyze two accelerated versions for the case of convexF .
Finally, the algorithms are implemented and analyzed for a parameter identification problem
for an elliptic partial differential equation in Section6.

2. The basic motivations for gradient descent methods.In this section we summarize
several well known approaches for introducing gradient descent methods for the minimization
of (1.3) or its generalized version (1.4), respectively. We start by introducing some basic
notation.

2.1. Proximal mappings and shrinkage operators.We will frequently need the no-
tion of the proximal mapping, which is a generalization of the orthogonal projectionPC onto



ETNA
Kent State University 

http://etna.math.kent.edu

GRADIENT DESCENT WITH SPARSITY CONSTRAINTS 439

closed convex setsC ⊂ H: orthogonal projections are defined as solutions of the minimiza-
tion problem

PC(v) = argmin
u∈C

‖u − v‖2

2
.

Using the indicator functionIC , which takes zero values foru ∈ C and infinity otherwise,
one can rephrase the projection operator as an unconstrained minimization problem(λ > 0)

PC(v) = argmin
u∈H

(‖u − v‖2

2
+ λIC(u)

)

.

We now replaceIC by a general convex, coercive, and lower semi-continuous penalty func-
tionalΦ and define the generalized projection operator, which is called the proximal mapping
of Φ, by

PλΦ(v) = argmin
u∈H

(‖u − v‖2

2
+ λΦ(u)

)

.

This minimizeru can be characterized using the subdifferential ofΦ; it has to satisfy

0 ∈ u − v + λ∂Φ(u) or v ∈ (I + λ∂Φ)(u).

Hence, we obtain a well studied equivalence, see [11],

PλΦ(v) = (I + λ∂Φ)−1(v).

The proximal mapping has an explicit expression in terms of shrinkage operators for
penalty functionals of the typeΦp from (1.5). For 1 ≤ p < ∞ andτ > 0, define the real
valued shrinkage functionSτ,p : R → R by

(2.1) Sτ,p(x) =

{

sgn(x)max(|x| − τ, 0) for p = 1

G−1
τ,p(x) for p ∈ (1, 2]

,

where

(2.2) Gτ,p(x) = x + τp sgn(x)|x|p−1 for 1 < p 6 2.

DEFINITION 2.1. Denoteω = {ωk}k∈Λ, with ωk > ωmin > 0 for all k, and assume
that {ϕk}k∈Λ is an orthonormal basis ofH. Let Sωk,p denote the shrinkage functions as
given in (2.1). The soft shrinkage operatorSω,p : H → H is then defined as

Sω,p(v) =
∑

k∈Λ

Sωk,p(〈v, ϕk〉)ϕk.

For penalty functionals of type (1.5), we obtain the well known equivalence, see, e.g., [11],

(2.3) PαΦp
(v) = Sαω,p(v).

We now state different motivations for gradient type methods for the minimization of (1.3)
and (1.4).
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2.2. First order optimality conditions and gradient descent methods. The classical
approach for designing gradient descent methods is based onthe first order optimality condi-
tions. Let

Θ(u) :=
1

2
‖K(u) − fδ‖2 + αΦp(u)

with Φp as in (1.5). The first order optimality condition for a minimizeru is given by

0 ∈ ∂Θ(u) = K ′(u)∗(K(u) − fδ) + α∂Φp(u).

Multiplying by λ and addingu on both sides yields a fixed point relation which has to be
satisfied for a minimizeru and for allλ ∈ R

u ∈ u + λK ′(u)∗
(

K(u) − fδ
)

+ λα∂Φp(u).

Turning this into an iteration and choosings = −λ yields the classical gradient descent
method. However, the convergence analysis of this method relies on higher order smoothness
properties forK andΦ, which are not met for sparsity constraints. Hence, in our case it is
more appropriate to study iteration methods which are obtained in a slightly different way.
Reordering the fixed point relation yields

u − λK ′(u)∗
(

K(u) − fδ
)

∈ u + λα∂Φp(u) = (I + λα∂Φp) (u).

We can turn this into an iteration by demanding that

uk − λK ′(uk)∗
(

K(uk) − fδ
)

∈ uk+1 + λα∂Φp(u
k+1) = (I + λα∂Φp) (uk+1).

The expression on the right-hand side is inverted by the proximal mapping forΦp, and
hence (2.3) yields the iteration

(2.4) uk+1 = Sλαω,p

(

uk − λK ′(uk)∗
(

K(uk) − fδ
))

.

This iteration is the most widely used iterated soft shrinkage algorithm as analyzed in [12]
for linear operators and, e.g., in [6, 8] for nonlinear operators. This procedure can be inter-
preted as first taking a gradient descent step with respect to1

2‖K(u) − fδ‖2, i.e., comput-
ing vk = uk − λK ′(uk)∗

(

K(xk) − fδ
)

, and then taking care of the penalty term by deter-
mining the shrinkage

uk+1 = Sλαω,p(v
k).

We could combine some of the parametersω, α, andλ in order to reduce notation. However,
these parameters have different meanings:ω allows to model weightedℓp-spaces and is cho-
sen a priorily,α is a regularization parameter, which has to be chosen carefully, and λ is a
step size parameter.

2.3. The generalized gradient projection method.We follow the approach described
in [7]. Constrained optimization procedures for solving

min
u∈C

F (u),

whereC ⊂ H denotes a convex set, are well established; see, e.g., [13, 14, 15, 16, 19, 36].
Projected gradient methods for solving such a problem generate a sequence{uk} by first
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performing a gradient descent step with respect toF followed by a projectionPC onto the
setC, i.e.,

zk = uk − skF ′(uk) and uk+1 = PC(zk)

with some suitable step sizesk.
We can rephrase the constrained optimization problem as an unconstrained problem by

choosing an arbitraryλ > 0 and using the indicator functionIC as before. Replacing the
indicator function by a general convex penalty functionalΦ and replacingPC by the proximal
mappingPλΦ yields the following algorithm:

ALGORITHM 2.2 (Generalized gradient projection method).
Chooseu0 and iterate fork > 0

1. determine a valueλk, e.g.,λk = λ constant for allk
2. determinezk = uk − λkF ′(uk)

3. determineuk+1 = PλkΦ(zk) = argminu∈H

(

‖u−zk‖2

2 + λkΦ(x)
)

.

We observe that for the special caseΦ = αΦp, the proximal mapping coincides with the
shrinkage operator, and hence by insertingF (u) = ‖K(u) − fδ‖2/2, we obtain the familiar
iterated soft shrinkage algorithm

uk+1 = Sλkαω,p

(

uk − λkK ′(uk)∗(K(uk) − fδ)
)

.

The convergence properties of the generalized projected gradient method has been analyzed
in [7] for convexF . In particular, a linear convergence rate was shown for linear operatorsK
under additional assumptions.

2.4. The quadratic approximation. Another approach rests on constructing a quadratic
approximation ofΘ = F + Φ atuk and determining the next iterate as the minimizer of this
quadratic approximation. This approach, including some clever step size selection criteria
and several generalizations, has been studied in [35] in the finite-dimensional case. We will
now formulate this approach in a Hilbert space setting.

In this approach, one chooses aλk > 0 and defines the quadratic approximation by

Θλ(u, uk) = F (uk) + 〈F ′(uk), u − uk〉H +
λk

2
‖u − uk‖2 + Φ(u).

By completing squares we obtain

(2.5) Θλ(u, uk) = c(uk) +
λk

2
‖u − uk +

1

λk
F ′(uk)‖2 + Φ(u)

with a constantc(uk) not depending onu. The minimizeru of this quadratic approximation
is again obtained from the first order optimality condition,which states

0 ∈ 1

λk
F ′(uk) + (u − uk) +

1

λk
∂Φ(u).

Choosing this minimizer as the next iterate yields, again byusing the proximal mapping ofΦ
and (2.5), the following algorithm:

ALGORITHM 2.3 (Quadratic approximation).
Chooseu0 and iterate fork > 0

1. determine a valueλk, e.g.,λk = λ constant for allk
2. determinezk = uk − 1

λk
F ′(uk)

3. determineuk+1 =P 1
λk

Φ(zk) =argminu∈H

(

1
2‖u − uk+ 1

λk
F ′(uk)‖2+ 1

λk
Φ(u)

)

.
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We directly see that this iteration coincides with the generalized gradient projection
method ifλ is identified with 1

λ . We want to emphasize that the main achievement of [5, 35]
is the introduction of a clever rule for choosingλk, which on the one hand guarantees aλ as
small as possible (thus allowing for large gradient steps inStep 2 of the algorithm). On the
other hand it is ensured thatλk ≥ L, whereL is the Lipschitz constant ofF ′, i.e., this ensures
that the quadratic approximation always satisfies

Θλ(u, uk) ≥ Θ(u).

Also, several accelerated versions of this basic scheme arepresented there, e.g., one variant
constructs two sequences{uk} and{zk} which are related as follows

1. uk = zk + tk(zk − zk−1) is a convex combination ofzk andzk−1

2. zk+1 = P 1
λ

Φ

(

uk − 1
λF ′(uk)

)

,

andzk is shown to approximate the minimizer of the functional.

2.5. The generalized conditional gradient method.The starting point for motivating
this iteration is a generalized version of a first order optimality condition; see [8]. This
characterizes a minimizeru for Θ = F + Φ by

min
z∈H

〈F ′(u), z〉H + Φ(z) = 〈F ′(u), u〉H + Φ(u).

In other words, ifuk is not a stationary point ofΘ, then

〈F ′(uk), uk〉 + Φ(uk) > min
z∈H

〈F ′(uk), z〉 + Φ(z).

This characterization motivates the following gradient method, which is called generalized
conditional gradient method.

ALGORITHM 2.4 (Generalized conditional gradient method).
Chooseu0 with F (u0) + Φ(u0) < ∞.
Compute{uk|k > 0} by

1. determinezk = argminz∈H 〈F ′(uk), z〉H + Φ(z)
2. determinesk = argmins∈[0,1] Θ(uk + s(zk − uk)) or setsk = s̄ constant for allk
3. uk+1 = uk + sk(zk − uk).

Again, we can specify the above algorithm for the case definedin (1.1) and obtain a
familiar expression by splitting the Tikhonov functional as follows

Θα(u) =

(

1

2
‖K(u) − fδ‖2 − λ

2
‖u‖2

)

+

(

λ

2
‖u‖2 + αΦp(u)

)

.

In this case we have

F (u) =
1

2
‖K(u) − fδ‖2 − λ

2
‖u‖2 and Φ(u) =

λ

2
‖u‖2 + αΦp(u).

The minimizer in the first step of the algorithm can now be obtained by considering the first
order optimality condition

K ′(uk)∗(K(uk) − fδ) − λuk + (λz + α∂Φp(z)) = 0.

Hence, the minimizerz is given by

z = S(α/λ)ω,p

(

uk − 1

λ
K ′(uk)∗(K(uk) − fδ)

)
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and

uk+1 = uk + sk

(

S(α/λ)ω,p

(

uk − 1

λ
K ′(uk)∗(K(uk) − fδ)

)

− uk

)

,

which reduces to the iterated soft shrinkage algorithm as in(2.4) for sk = 1.
The convergence properties of the generalized conditionalgradient method applied to

nonlinear operator equations was studied in detail in [6]. In particular, convergence for a
fixed value ofs = 1 was shown ifλ is chosen large enough. However, the assumptions
imposed in that paper are different from the ones we are usingin the next section.

2.6. Surrogate functional approach. For motivating this approach, we start with the
Tikhonov functional

Θα(u) =
1

2
‖K(u) − yδ‖2 + αΦp(u).

The pioneering paper [12], which introduced sparsity constrained regularization techniques to
the field of inverse problems, suggested to define a surrogatefunctional in order to decouple
the analytic difficulties stemming from the operator and from the non-standard penalty term.
This approach has be extended to nonlinear inverse problemsby [38]. The main idea is to
introduce

Θs
α(u, a) =

1

2
‖K(u) − fδ‖2 +

λ

2
‖u − a‖2 − 1

2
‖K(u) − K(a)‖2 + αΦp(u).

This reduces to the original Tikhonov functional fora = u. The minimization ofΘs
α(x, a)

with respect tou for a fixeda is assumed to be much easier, since—as can be seen after
expanding the norms into scalar products—the quadratic terminvolving K(u) cancels. The
iteration based on this idea suggests the following algorithm:

ALGORITHM 2.5 (Surrogate functional).
Chooseu0 with 1

2‖K(u0) − fδ‖2 + Φp(u
0) < ∞ andλ sufficiently large.

For k > 0 determine

uk+1 = argmin
u∈H

Θs
α(u, uk).

For linear operators, the minimization step can be performed explicitly and leads to a soft
shrinkage iteration. For nonlinear operators, the minimizer cannot be computed explicitly
in general, and the authors of [38] suggest to use a fixed point iteration based on the first
order optimality condition of the surrogate functional. For fixeduk, the first order optimality
condition ofΘs

α(z, uk) with respect toz reads as

0 ∈ K ′(z)∗(K ′(z) − fδ) + λ(z − uk) − K ′(z)∗(K(z) − K(uk)) + α∂Φp(z).

The termK ′(z)∗K(z) cancels and we obtain the more familiar expression after reordering

uk − λ−1K ′(z)∗(K(uk) − yδ) ∈ (I +
α

λ
∂Φp)(z).

Hence, the inner iteration, where we need to find the fixed point defined by the minimization
step in the algorithm, is a modified soft shrinkage iteration:

1. choosez0 = uk

2. iteratezℓ+1 = S(α/λ)ω,p

(

uk − λ−1K ′(zℓ)∗(K(uk) − fδ)
)

until convergence
3. putuk+1 equal to the last iterate of{zℓ}.
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The authors prove convergence of a subsequence to a stationary point for

λ ≥ 2max

{

( sup
u∈M

‖K ′(x)‖)2, L
√

‖K(u0) − fδ‖2 + 2αΦp(u0)

}

,

whereM = {u ∈ H : Φp(u) ≤ Φp(u
0)} andL is a Lipschitz constant forK ′.

Let us note that the inner iterations also need an evaluationof K ′, hence their numerical
costs is of the same order as an iteration step of the conditional gradient projection method.
However, the condition onλ can be checked more easily. For a numerical comparison of
these methods; see [6].

2.7. A comparison of the different gradient descent methods. As we have seen, all
previous motivations for introducing an iteration method for minimizing Tikhonov function-
als have been—up to different strategies for the selection ofthe step sizesλ ands—identical
(except for the surrogate approach, which has some kind of implicit gradient step and hence
has to use an additional inner fixed point iteration). They all reduce to a version of the iterated
soft shrinkage algorithm when applied to functionals of typeΘα with anℓp-penalty term.

However, they have merits on their own. For instance, the approach via the generalized
gradient projection method paves the way to incorporating additional constraints, i.e.,

min
u∈C

1

2
‖K(u) − fδ‖2 + αΦ(u) = min

u∈H
Θα(u) + tIC(u).

For first steps in this direction; see [33].
The quadratic approximation method instead allows to analyze accelerated versions by

considering convex combinations and step size selection criteria. Several approaches for
linear operator equations have been analyzed so far; see, e.g., [5]. For a comparison of
different minimization schemes for linear operator equations; see [34]. However, a thorough
analysis of such accelerated versions of the iterated soft shrinkage algorithm for nonlinear
operator equations is still missing.

Also, it is not surprising that the respective convergence analysis for these different al-
gorithms use different analytic assumptions. In the following section we will extend the
convergence results for the quadratic approximation method.

3. The quadratic approximation method for nonlinear operator equations in Hil-
bert spaces.The starting point for our investigation is a quadratic approximation method as
proposed in [5, 35] for convex optimization problems (1.4) in R

n. In this section, we analyze
the convergence properties of this method in a general Hilbert space setting, moreover we
discuss different step size selection criteria in the next section.

We examine the following general minimization problem

(3.1) min
u∈H

{

Θ(u) := F (u) + Φ(u)
}

,

with F : H → R andΦ : H → R under the following assumptions:
ASSUMPTION1 (Assumptions onH andΦ).
1. H is a Hilbert space.
2. Φ : H → R is proper, convex, weakly lower semi-continuous, and weakly coercive.

We assume that Assumption1 holds throughout the paper. Most of the following analysis
considers the general problem as stated in (3.1). However, we want to emphasize that we
are especially interested in the caseΦ = αΦp with Φp from (1.5). Accordingly, we will
specialize and extend our general results to this particular choice of a penalty functional, e.g.,
in Lemma3.2and3.8.
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ASSUMPTION2 (Assumptions onF andΘ).
1. Problem (3.1) has at least one minimizer.
2. F is bounded from below. We may assumeF (u) ≥ 0, ∀u ∈ H, without loss of gen-

erality.
3. F has a Lipschitz continuous Fréchet derivative, i.e., there exists a constantL such

that

‖F ′(u) − F ′(u′)‖ 6 L‖u − u′‖, ∀u, u′ ∈ H.

4. If un converges weakly tou such thatΘ(un) is monotonically decreasing, then there
exists a subsequence{unj} such that

F ′(unj ) → F ′(u).

As discussed in the previous section, several methods have been proposed and investi-
gated recently for minimizing functionals of this type (3.1) or more specifically for dealing
with Tikhonov regularization for linear and nonlinear inverse problems such as (1.3); see,
e.g., [8]. Each of these methods requires particular assumptions for proving its convergence.

REMARK 3.1. We discuss the role of the different parts of Assumption2.
1. Condition1 of Assumption2 can be guaranteed ifF is bounded below and weakly

lower semi-continuous. Another sufficient condition for Condition 1 is given in [8,
Lemma 3].

2. Condition2 of Assumption2 together with the weak coercivity ofΦ implies the
weak coercivity ofF + Φ, i.e., F (u) + Φ(u) → ∞ as ‖u‖ → ∞. It is used
to obtain the boundedness of the sequence generated by the gradient method; see
Lemma3.6. Note that this condition is weaker than the coercivity required in [8],
i.e.,(F (u) + Φ(u))/‖u‖ → ∞ as‖u‖ → ∞.

3. Condition3 of Assumption2 is used to obtain Lemma3.4and the existence of step
sizes in the gradient method and its accelerated versions; see Lemma3.6. From this
condition, we have

|F (v) − F (u) − 〈F ′(u), v − u〉| 6
L

2
‖v − u‖2, ∀v, u ∈ H.

4. Condition4 of Assumption2 is needed to obtain the strong convergence of the gra-
dient method; see Theorem3.10. It is satisfied ifEt := {u ∈ H : Φ(u) 6 t} is
compact for everyt ∈ R andF ′ is continuous. Indeed, ifun converges weakly
to u and Θ(un) is monotonically decreasing, then{Φ(un)}n∈N is bounded and
thus{un} ⊂ Et for somet > 0. SinceEt is compact, there is a subsequence{unj}
such thatunj → u. By continuity ofF ′, we haveF ′(unj ) → F ′(u).

3.1. The quadratic approximation methods in Hilbert spaces. As discussed in the
previous section, the main idea of this gradient method is toreplace the minimization prob-
lem (3.1) by a sequence of minimization problems,minv∈H Θsn(v, un), in whichΘsn(·, un)
are strictly convex and the minimization problems are easy to solve. Furthermore, the se-
quence of minimizersun+1 = argminv∈H Θsn(v, un) should converge to a minimizer of
problem (3.1). For a fixed value ofs > 0, we define the following quadratic approximation
of Θ(v) = F (v) + Φ(v) at a given pointu,

Θs(v, u) := F (u) + 〈F ′(u), v − u〉 +
s

2
‖v − u‖2 + Φ(v).
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This functional admits a unique minimizer. The operator, which mapsu ∈ H to the mini-
mizer ofΘs(·, u) is denoted byJs : H → H. By completing the square we obtain a second
characterization

Js(u) := argmin
v∈H

{Θs(v, u)}

= argmin
v∈H

{1

2

∥

∥v −
(

u − 1

s
F ′(u)

)
∥

∥

2
+

1

s
Φ(v)

}

= P 1
s Φ

(u − 1

s
F ′(u)).(3.2)

−5 −4 −3 −2 −1 0 1 2 3
0

50

100

150

200

250

Θ(v)

Θs(v, u)

Js(u) u

FIG. 3.1.Sketch of the functionalsΘ(v), Θs(v, u) and of the operatorJs(u).

The sequence of minimizers of these approximations is givenby un+1 = Js(u
n). Fig-

ure3.1provides a sketch of the functionalsΘ(v),Θs(v, u) as well asJs(u). An explicit ex-
pression for the minimizer ofΘs in the case ofΦ = αΦp can be obtained by the soft shrinkage
operatorSτ,p. The following lemma has been obtained in a similar setting in [6, 8, 21].

LEMMA 3.2. LetF be Fŕechet differentiable and letΦ = αΦp with Φp given in(1.5).
1) The unique solution of (3.2) is given by

Js(u) = S αω
s

,p(u − 1

s
F ′(u)).

2) If u∗ ∈ H is a minimizer ofΘ defined in (3.1), then the necessary condition foru∗

is

u∗ = Sβαw,p

(

u∗ − βF ′(u∗)
)

for any fixedβ > 0.

Additionally, ifF is convex, then this necessary condition is also sufficient.
We use this characterization ofJs(u), which leads to the following gradient-type iteration

for problem (3.1) with Φ = αΦp

(3.3) un+1 = Jsn(un) = S αω
sn ,p(u

n − 1

sn
F ′(un)).

The choice of the approximate step sizes1
sn affects the convergence properties of the iteration.

This will be discussed in Section4.
REMARK 3.3. We want to emphasize once more that this iteration coincides with several

other gradient descent approaches for minimizingΘ. However, the proofs of convergence
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use somewhat different assumptions and the quadratic approximation approach allows us to
introduce different step size controls in the next section.

Next, we consider necessary conditions forsn and then examine some convergence prop-
erties of this method.

3.2. Some convergence properties.In this section we follow the outline of [5, 35],
where equivalent results but in finite-dimensional spaces were proved. The analytic tech-
niques used for the proofs are similar to those of [5, 12].

For the analysis of the gradient method, we need the following result. This is based
on the assumption thatΘs is an approximation toΘ with stronger local convexity atu; see
Figure3.1.

LEMMA 3.4. Assume thatF is Fréchet differentiable with Lipschitz continuous deriva-
tiveF ′. Letu ∈ H ands > 0 be such that

(3.4) Θ(Js(u)) 6 Θs(Js(u), u).

Then for anyv ∈ H,

Θ(v) − Θ(Js(u)) >
s

2
‖Js(u) − u‖2 + s〈u − v, Js(u) − u〉 − L

2
‖v − u‖2,

whereL is the Lipschitz constant ofF ′.
Proof. From (3.4), we have

Θ(v) − Θ(Js(u)) > Θ(v) − Θs(Js(u), u).

On the other hand, sincez = Js(u) is the minimizer ofΘs(., u), there exists aγ ∈ ∂Φ(z)
such that

F ′(u) + s(z − u) + γ = 0.

Now sinceF ′ is Lipschitz (see Remark3.1) andΦ is convex, we have

F (v) > F (u) + 〈F ′(u), v − u〉 − L

2
‖v − u‖2,(3.5)

Φ(v) > Φ(z) + 〈γ, v − z〉.

Summing the above inequalities yields

Θ(v) > F (u) + 〈F ′(u), v − u〉 + Φ(z) + 〈γ, v − z〉 − L

2
‖v − u‖2.

Furthermore, by definition ofz = Js(u), one has

Θs(z, u) = F (u) + 〈F ′(u), z − u〉 +
s

2
‖z − u‖2 + Φ(z).

From the previous inequality and equality, usingγ = −F ′(u) − s(z − u), it follows that

Θ(v) − Θ(z) > −s

2
‖z − u‖2 + 〈F ′(u) + γ, v − z〉 − L

2
‖v − u‖2

= −s

2
‖z − u‖2 + s〈u − z, v − z〉 − L

2
‖v − u‖2

=
s

2
‖z − u‖2 + s〈z − u, u − v〉 − L

2
‖v − u‖2.
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REMARK 3.5.
1. By Remark3.1, it is easy to show that (3.4) is satisfied ifs > L.
2. Additionally, if F is convex, thenF (v) > F (u) + 〈F ′(u), v − u〉. Thus, following

the proof above and inserting this stronger inequality into(3.5), we obtain

Θ(v) − Θ(Js(u)) >
s

2
‖Js(u) − u‖2 + s〈Js(u) − u, u − v〉.

This inequality is exactly the one in [5, Lemma 2.3].
We are now in a position to investigate some convergence properties of the gradient

method for the problem (3.1), i.e., the convergence properties of the sequence defined by (3.3).
LEMMA 3.6. Let F satisfy Conditions2, 3 of Assumption2. Assume that the se-

quence{un} is defined by (3.3), where the sequence of step sizes{sn} satisfiessn ∈ [s, s]
with (0 < s ≤ L ≤ s) and

Θ(un+1) 6 Θsn(un+1, un).

Then the sequenceΘ(un) is monotonically decreasing,limn→∞ ‖un+1 − un‖ = 0, and the
sequence{un} is bounded.

Proof. The proof follows the idea of Beck and Teboulle [5]. By the hypothesis, we have

Θ(un+1) 6 Θsn(un+1, un) 6 Θsn(un, un) = Θ(un).

Thus, the sequenceΘ(un) is monotonically decreasing as long as the hypothesis holds.
For eachk = 0, 1, . . . , n, applying Lemma3.4with v = u = uk ands = sk, we obtain

2

sk

(

Θ(uk) − Θ(uk+1)
)

> ‖uk − uk+1‖2,

2

s

(

Θ(uk) − Θ(uk+1)
)

> ‖uk − uk+1‖2.

Summing the last inequality overk = 0, . . . , n gives

2

s

(

Θ(u0) − Θ(un+1)
)

>

n
∑

k=0

‖uk − uk+1‖2, ∀n.

This implies that the series
∑∞

k=0 ‖uk − uk+1‖2 converges. As a consequence, we have

lim
n→∞

‖un+1 − un‖ = 0.

The boundedness of{un} is a consequence of the decrease of{Θ(un)}, the weak coer-
civity of Θ, i.e.,Θ(u) → ∞ as‖u‖ → ∞, and Condition2 of Assumption2.

The previous lemma implies that the sequence{un} is bounded. Hence, it must have
a weak accumulation point. We now aim at proving that each weak accumulation point is a
stationary point ofΘ, i.e., it satisfies the necessary condition for a minimizer ofΘ. To this
end, we only consider the caseΦ = αΦp.

First, we need the following technical lemma.
LEMMA 3.7. Assume that

un = Sβnαw,p

(

vn − βnF ′(vn)
)

.

If both un andvn converge weakly tou∗, F ′(vn) converges weakly toF ′(u∗), andβn > 0,
with limn→∞ βn = β∗ > 0, then

u∗ = Sβ∗αw,p

(

u∗ − β∗F ′(u∗)
)

.
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Proof. We first prove the lemma forp > 1. Using the notationuk = 〈u, ϕk〉, we have
thatun

k andvn
k converge tou∗

k andF ′(un)k converges toF ′(u∗)k for all k ∈ Λ whenn → ∞.
By assumption it holds that

un = Sβnαw,p

(

vn − βnF ′(vn)
)

,

which is equivalent to

un
k = Sβnαwk,p

(

vn
k − βnF ′(vn)k

)

, ∀k ∈ Λ.

By (2.1) and (2.2), these equations are equivalent to

un
k + pβnαωk sgn(un

k )|un
k |p−1 = vn

k − βnF ′(vn)k, ∀k ∈ Λ.

Takingn → ∞, we get

u∗
k + pβ∗αωk sgn(u∗

k)|u∗
k|p−1 = u∗

k − β∗F ′(u∗)k, ∀k ∈ Λ.

Therefore we have

u∗ = Sβ∗αw,p

(

u∗ − β∗F ′(u∗)
)

.

We now prove the lemma forp = 1. By the hypothesis we have that

un = Sβnαw,1

(

vn − βnF ′(vn)
)

,

which is equivalent to

(3.6) un
k = sgn(vn

k − βnF ′(vn)k)max
(

|vn
k − βnF ′(vn)k| − βnαwk, 0

)

, ∀k ∈ Λ.

We denote

Γ1 := {k ∈ Λ : |u∗
k − β∗F ′(u∗)k| > β∗αwk},

Γ2 := {k ∈ Λ : |u∗
k − β∗F ′(u∗)k| < β∗αwk},

Γ3 := {k ∈ Λ : |u∗
k − β∗F ′(u∗)k| = β∗αwk}.

We treat each of these three cases separately. Sincevn
k − βnF ′(vn)k → u∗

k − β∗F ′(u∗)k

and |vn
k − βnF ′(vn)k| − βnαwk → |u∗

k − β∗F ′(u∗)k| − β∗αwk asn → ∞ (with k being
fixed), we obtain the following:

• If k ∈ Γ1, thenvn
k − βnF ′(vn)k and u∗

k − β∗F ′(u∗)k have the same sign and
|vn

k − βnF ′(vn)k| − βnαwk > 0 whenn is large enough, and thus the limit of two
sides of (3.6) exists and

u∗
k = sgn(u∗

k − β∗F ′(u∗)k)max
(

|u∗
k − β∗F ′(u∗)k| − β∗αwk, 0

)

, ∀k ∈ Γ1,

or

u∗
k = Sβ∗αw,1

(

u∗
k − β∗F ′(u∗)k

)

, ∀k ∈ Γ1.

• If k ∈ Γ2, then|vn
k −βnF ′(vn)k|−βnαwk < 0 whenn is large enough. Thus, (3.6)

becomesun
k = 0. It follows thatu∗

k = 0 and then

u∗
k = Sβ∗αw,1

(

u∗
k − β∗F ′(u∗)k

)

, ∀k ∈ Γ2.
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• If k ∈ Γ3, thenvn
k − βnF ′(vn)k andu∗

k − β∗F ′(u∗)k have the same sign and are

nonzero whenn is large enough. Thus, un
k

sgn(vn
k
−βnF ′(vn)k) → u∗

k

sgn(u∗

k
−β∗F ′(u∗)k)

asn → ∞. From (3.6), we deduce thatmax
(

|vn
k − βnF ′(vn)k| − βnαwk, 0

)

also
converges and its limit is equal to zero. This implies thatu∗

k = 0 and thus

u∗
k = Sβ∗αw,1

(

u∗
k − β∗F ′(u∗)k

)

, ∀k ∈ Γ3.

Summarizing the above results, we have that

u∗
k = Sβ∗αw,1

(

u∗
k − β∗F ′(u∗)k

)

, ∀k ∈ Γ1 ∪ Γ2 ∪ Γ3 = Λ,

and

u∗ = Sβ∗αw,p

(

u∗ − β∗F ′(u∗)
)

.

LEMMA 3.8. LetF satisfy Assumption2, Φ = αΦp, and{un} be defined in Lemma3.6.
If u∗ is a weak accumulation point of{un}, thenu∗ is a stationary point ofΘ.

Proof. Let {unj}j∈N be a subsequence converging weakly tou∗. By sn ∈ [s, s] and
Assumption2, there exists a subsequence of this subsequence (again denoted by{unj}) such
that w-limj→∞ unj = u∗, F ′(unj ) → F ′(u∗), and limj→∞ snj = s∗ ∈ [s, s]. Due to
Lemma3.6, {unj+1} also converges weakly tou∗. By (3.3), we have

unj+1 = S αω

s
nj

,p

(

unj − 1

snj
F ′(unj )

)

.

By Lemma3.7, we obtain

u∗ = S αω
s∗

,p

(

u∗ − 1

s∗
F ′(u∗)

)

.

By Lemma3.2, u∗ is a stationary point ofΘ.

Next, we shall prove that the sequence{un}n∈N has a strongly convergent subsequence.
To this end, we need the following generalization of the result in [12, Lemma 3.18].

LEMMA 3.9. Let {hn} ⊂ H be uniformly bounded and{dn} ⊂ H converge weakly to
zero. Ifsn ∈ [s, s] and limn→∞ ‖S αw

sn ,p(h
n + dn) − S αw

sn ,p(h
n) − dn‖ = 0, then‖dn‖ → 0

for n → ∞.

Proof. This lemma can be proven similar to [12, Lemma 3.18].

THEOREM 3.10. Let F satisfy Assumption2, Φ = αΦp, and let{un} be defined as
in Lemma3.6. Then the sequence{un} has a subsequence that converges strongly to a
stationary pointu∗ of Θ.

Proof. Let {unj}j∈N be the subsequence of{un} defined in the proof of Lemma3.8.
Hence,u∗ is a stationary point ofΘ, and by Lemma3.2we have

u∗ = Sαωβ,p

(

u∗ − βF ′(u∗)
)

for any fixedβ > 0. We denotednj = unj − u∗ and hnj = u∗ − 1
snj F ′(u∗). Due to

Lemma3.6, we have thatlimj→∞ ‖dnj+1 − dnj‖ = 0. Using the previous equation foru∗
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with β = 1
snj , we get

dnj − dnj+1 = dnj + u∗ − S αω

s
nj

,p

(

unj − 1

snj
F ′(unj )

)

= dnj + S αω

s
nj

,p

(

u∗ − 1

snj
F ′(u∗)

)

− S αω

s
nj

,p

(

unj − 1

snj
F ′(unj )

)

= dnj + S αω

s
nj

,p

(

hnj
)

− S αω

s
nj

,p

(

u∗ − 1

snj
F ′(unj ) + dnj

)

(3.7)

+ S αω

s
nj

,p

(

u∗ − 1

snj
F ′(u∗) + dnj

)

(3.8)

− S αω

s
nj

,p

(

u∗ − 1

snj
F ′(u∗) + dnj

)

.

We consider now the sum of (3.7) and (3.8). By Assumption2, the nonexpansiveness ofS

(see, for example [12]) andsnj → s∗, we have

‖S αω

s
nj

,p

(

u∗ − 1

snj
F ′(unj ) + dnj

)

− S αω

s
nj

,p

(

u∗ − 1

snj
F ′(u∗) + dnj

)

‖

6
1

snj
‖F ′(unj ) − F ′(u∗)‖ → 0 (j → ∞).

Consequently, combining‖dnj − dnj+1‖ → 0 asj → ∞ and the last inequality, we observe
that

lim
j→∞

‖S αw

s
nj

,p(h
nj + dnj ) − S αw

s
nj

,p(h
nj ) − dnj‖ = 0.

Applying Lemma3.9 where the sequences{hn, dn} are replaced by{hnj , dnj}, we
obtain the desired result.

REMARK 3.11.
• A similar result as in Theorem3.10has been obtained in [6, 8] for constant step-

sizes (1/sn = s) under different assumptions onF andΦ; see [8, Theorem 1].
• For finite-dimensional spacesH, the above results have been obtained implicitly

in [35, Theorem 5] under the strong convexity condition forΘ. In that case, even a
linear convergence rate of{un} can be proved.

• A linear convergence rate of{un} has also been obtained in [7] under the following
conditions: Θ = F + Φ is coercive,F is convex, and the sequence{un} satis-
fies‖un − u∗‖ 6 crn, whereu∗ is a minimizer ofΘ andrn := Θ(un) − Θ(u∗).

In our setting, we do not impose the condition‖un−u∗‖ 6 crn for proving convergence
rates for{un} in this paper. Instead, we are aiming at weaker results concerning the decay
rate of the functional valuesΘ(uk).

THEOREM 3.12. Let F be convex and satisfy the Conditions1–3 of Assumption2, and
let {un} be defined as in Lemma3.6. Then for anyn > 1

Θ(un) − Θ(u∗) 6
s‖u0 − u∗‖2

2n
,

whereu∗ is a minimizer ofΘ.

Proof. SinceF is convex, we obtain the same inequality as in [5, Lemma 2.3] by Re-
mark3.5. Thus, the proof is obtained as in [5, Lemma 3.1].
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4. A step size selection criterion.As analyzed in the previous section, the quadratic
approximation method converges when the parameterssn satisfy the conditions stated in
Lemma3.6. We note that Remark3.1 implies thats > L yields

|F (v) − F (u) − 〈F ′(u), v − u〉| 6
s

2
‖v − u‖2.

Hence, withs > L we obtain

Θ(v) = F (v) + Φ(v) 6 F (u) + 〈F ′(u), v − u〉 +
s

2
‖v − u‖2 + Φ(v) = Θs(v, u),

and thus the conditions in Lemma3.6are always satisfied ifsn > L for all n.
It is well known that the choice of step sizessn affects the convergence of the gradient

method; see, for example, [6]. Some strategies for choosing these parameters in the context
of quadratic approximations in finite-dimensional spaces were proposed in [5, 35]. However,
we follow a different approach. Let us have a closer look at the iteration (3.3). It is easy to
see that — neglecting the soft shrinkage operatorS — the parameters1sn are the step sizes
of the classical gradient method for the minimization problemminu∈H F (u). Therefore, we
suggest to first compute an intermediate step sizetn by

(4.1) tn := argmin
t>0

F (un − tF ′(un)).

Imposing a lower and upper bound on the step sizesn then yields a first guess for the step
size

1

sn
= P[s−1,s−1](t

n) := max(min(tn, s−1), s̄−1).

We then check whether the condition in Lemma3.6, i.e., Θ(un+1) 6 Θsn(un+1, un), is
satisfied. We retainsn if the condition is satisfied, otherwise we repeatedly reduce 1/sn by
a factorq < 1. Note that the problem (4.1) does not need to be solved exactly. We only
need an efficient strategy for approximating this minimizer. For this purpose, we use the
Barzilai-Borwein rule proposed in [4]

(4.2)
1

sn
= P[s−1,s−1]

( 〈un − un−1, F ′(un) − F ′(un−1)〉
〈F ′(un) − F ′(un−1), F ′(un) − F ′(un−1)〉

)

.

By this strategy, we summarize the quadratic approximationmethod with step size control in
the following algorithm:

Algorithm 1
Initiation: Initial guessu0 such thatΘ(u0) < ∞, s0 ∈ [s, s] (0 < s ≤ L/q ≤ s),

andq < 1.
Iteration: for n = 0, 1, 2, . . .

1. un+1 = Jsn(un).
2. If Θ(un+1) > Θsn(un+1, un) andsn ∈ [s, s]

then 1
sn = 1

sn q; go toStep 1.
3. 1

sn+1 given by (4.2).
end

Output: the output of the algorithm isu = ulim.
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REMARK 4.1.
1. Together with Remark3.1, the assumption in the initialization,s > L/q, guar-

antees thatΘ(un+1) ≤ Θsn(un+1, un) is always satisfied after a finite number of
updates 1

sn = 1
sn q. Hence, we do not need the conditionsn ∈ [s, s] in the algo-

rithm. It is included in case thatL is not known. This remark is also relevant for the
next accelerated versions.

2. If F : R
d → R is convex then Algorithm 1 for (3.1) is similar to the gradient method

in [35] and to ISTA in [5]. The only difference is the criterion for choosingsn.
3. For a fixed step sizesn = s, the proposed algorithm is also identical to the general-

ized conditional gradient method withλ = 1; see Remark3.3.

5. Some accelerated versions.In this section, we aim at presenting two accelerated
schemes of the quadratic approximation method, which, however, require stronger assump-
tions. Hence, in this section we assume thatF in (3.1) is convex. This assumption has also
been analyzed in [5, 35] for finite-dimensional spaces. There the authors proposedtwo ac-
celerated versions and proved a convergence rate for the values of the objective functional of
orderO( 1

n2 ). This convergence rate is known to be optimal for algorithms that are based on
first order schemes, i.e., for algorithms using only the values of the objective functionalΘ and
its gradient [2, 5, 35, 40]. Similarly, we present accelerated versions for the problem (3.1) in
a general Hilbert space setting.

The first accelerated algorithm of the gradient method for the problem (3.1) is motivated
by [5] and is presented in Algorithm 2.

Algorithm 2
Initiation: Initial guessy0 ∈ dom(Φ), s0 ∈ [s, s] (0 < s ≤ L/q ≤ s),

andt0 = 1, q < 1.
Iteration: for n = 0, 1, 2, . . .

1. un = Jsn(yn)
2. If Θ(un) > Θsn(un, yn) andsn ∈ [s, s]

then 1
sn = 1

sn .q; go toStep 1.

3. tn+1 =
1+

√
1+4t2n
2

4. yn+1 = un +
(

tn−1
tn+1

)

(un − un−1)

5. sn+1 = sn

end
Output: the output of the algorithm isu = ulim.

The convergence rate for the values of the objective functional Θ for this algorithm is
given in the following theorem.

THEOREM 5.1. Let F be convex and satisfy the Conditions1–3 of Assumption2.
Let {un} be generated by Algorithm 2 andu∗ be a minimizer of problem (3.1). Then for
anyn > 1

Θ(un) − Θ(u∗) 6
C‖u0 − u∗‖2

(n + 1)2
(C = 2L/q).

Proof. By Remark3.5, we obtain the same inequality as in [5, Lemma 2.3] and we
proceed as in the proof of [5, Theorem 4.3].

The second accelerated algorithm presented in Algorithm 3 is motivated by [35]. Note
that in [35], the author proposed this algorithm for a general functionalΦ in finite-dimensional
spaces. Here we apply it for a specific functionalΦ = αΦp, but we extend it to the Hilbert
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space setting. In the context of problem (3.1) with Φ = αΦp, the solutionvn in Step 6 of
Algorithm 3 is given explicitly in the following lemma.

LEMMA 5.2. Let ψn(u) be as in Step 6 of Algorithm 3. Then,vn = argminu∈H ψn(u)
is given by

vn = SαAn,p

(

u0 −
n

∑

k=1

akF ′(uk)
)

(n > 0).

Proof. The initial quadratic approximation is defined asψ0(u) = 1
2‖u − u0‖2. The

following iterates satisfy

ψn(u) =
1

2
‖u − u0‖2 +

n
∑

k=1

akΦ(u) +

n
∑

k=1

ak

(

F (uk) + 〈F ′(uk), u − uk〉
)

.

Now, the proof is similar to that of Lemma3.2.
REMARK 5.3. From the formula ofvn, it seems that Algorithm 3 is a method with “infi-

nite memory”. In fact, it is not since we can define a variablezn with the initial valuez0 := u0

and Step 6 of Algorithm 3 is replaced by

zn+1 := zn − an+1F
′(un+1), vn+1 = SαAn+1,p

(

zn+1
)

.

Algorithm 3
Initialization: Initial guessu0 ∈ dom(Φ), A0 = 0, v0 = u0,

s0 ∈ [s, s] (0 < s ≤ L/q ≤ s), andψ0(u) = 1
2‖u − u0‖2.

Iteration: for n = 0, 1, 2, . . .

1. an+1 = 1+
√

1+2Ansn

sn

2. yn = Anun+an+1vn

An+an+1

3. un+1 = Jsn(yn)
4. If ‖F ′(un+1) − F ′(yn)‖2 > sn〈F ′(yn) − F ′(un+1), yn − un+1〉

andsn ∈ [s, s] then 1
sn = 1

sn .q; go toStep 1

5. 1
sn+1 = P[s−1,s−1]

〈un+1−yn,F ′(un+1)−F ′(yn)〉
〈F ′(un+1)−F ′(yn),F ′(un+1)−F ′(yn)〉

An+1 = An + an+1

6. vn+1 = argminu∈H ψn+1(u) with
ψn+1(u) = ψn(u)

+an+1(F (un+1) + 〈F ′(un+1), u − un+1〉 + Φ(u))
end

Output: the output of the algorithm isu = ulim.

Finally, the convergence rate for the values of the objective functionalΘ in Algorithm 3
is obtained similarly as in [35, Theorem 6].

THEOREM 5.4. Let F be convex and satisfy the Conditions1–3 of Assumption2.
Let {un} be generated by Algorithm 3, andu∗ be a minimizer of problem (3.1). Then for
anyn > 1

Θ(un) − Θ(u∗) 6
C‖u0 − u∗‖2

n2
(C = L/q).

Proof. Note that ifsn satisfies the condition in Step 4 of Algorithm 3, then it also satisfies
the condition (**) of the accelerated method in [35]; see [35, Lemma 4]. Thus, the theorem’s
proof is done similarly as that in [35, Theorem 6].
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6. Numerical examples.In this section, we implement the algorithms described above
for a parameter identification problem for an elliptic partial differential equation. We will use
the notation which is customary in this field, i.e., the quantity searched for is now denoted
bya andu denotes the solution of the elliptic equation, which is alsothe data for this problem.
To be precise, we aim at estimating the coefficienta in the elliptic boundary problem

−div(a∇u) = y in Ω ⊂ R
2,(6.1)

u = 0 on∂Ω,

with a fixedy ∈ L2(Ω). Let a∗ denote the parameter to be recovered and letu∗ denote the
solution of (6.1) with parametera∗ and right-hand sidey. As data we assume thatuδ is given,
whereuδ is the solution of the elliptic equation with parametera∗ but perturbed right-hand
sideyδ with ‖y − yδ‖L2

≤ δ. Hence, the available data satisfy‖u∗ − uδ‖H1(Ω) ≤ Cδ with a
certain positive constant. Our task is to determine an approximation ofa∗ from uδ.

A number of papers, such as [1, 9, 10, 18, 23, 26, 29, 30, 31, 39, 41, 42], have examined
this problem or variations of it; see also [3].

We let

A = {a ∈ L∞(Ω) : 0 < a 6 a 6 a, supp(a − a0) ⊂⊂ Ω}

and defineK : A ⊂ L∞(Ω) → H1
0 (Ω), a 7→ u, the solution operator of (6.1) with fixed y.

The parameter identification problem regularized by sparsity constraints leads us to the fol-
lowing constrained minimization problem

min
a∈A

Θ(a) =

∫

Ω

a|∇K(a) −∇uδ|2dx + αΦp(a − a0).

We setΘ(a) = +∞ if a /∈ A ∩ dom(Φ). Then this problem is equivalent to

min
a∈L2(Ω)

Θ(a) =

∫

Ω

a|∇K(a) −∇uδ|2dx + αΦp(a − a0).

It is known thatF (a) =
∫

Ω
a|∇K(a) − ∇uδ|2dx is convex and Lipschitz differentiable

with respect to theL∞-norm [23], but the Lipschitz differentiability of it with respect to
the L2-norm is, to the best of our knowledge, unknown. However, we will see that the
algorithms work well for this problem. This fact also concerns Remark4.1.

F ′(a)h = −
∫

Ω

h(|∇K(a)|2 − |∇uδ|2)dx.

For illustrating our algorithms, we assume thatΩ is the unit disk and

a∗(x1, x2) =

{

4 (x1, x2) ∈ B0.4(0, 0.3)

1 otherwise
, y(x1, x2) = 4a∗,

whereBr(x1, x2) is the disk with center at(x1, x2) and radiusr. Here, we takea0 = 1 and
thusa∗ ∈ A sincesupp(a∗ − a0) ⊂⊂ Ω.

We discretized the problems (forward and inverse) by the finite element method [42] and
set

Φp(ϑ) =
N

∑

k=1

∣

∣〈ϑ, ϕk〉L2(Ω)

∣

∣

p
,
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where{ϕk}k=1,...,N is the basis consisting of piecewise linear finite elements in the dis-
cretized space. Since we assume thatsupp(a∗ − a0) ⊂⊂ Ω is small, many coefficients of the
unknown parameter〈a∗ − a0, ϕk〉L2(Ω) are equal to zero, i.e.,a∗−a0 has a sparse expansion
in the basis of the finite element method.

To obtainu∗ anduδ, we solve (6.1) by the finite element method on a mesh with 1272 tri-
angles. The solution of (6.1) as well as the parametera are represented by piecewise linear
finite elements. The algorithms described in the previous section will compute a sequencean

for approximatinga∗. In order to maintain the ellipticity of the operator, we addas usual
an additional truncation step in the numerical procedure, which, however, is not covered by
our theoretical investigation, i.e., we cut off values ofan which are belowa0 = 1 in each
iteration.

In the remainder of this section we describe the following experiments: at first, we com-
pare the effect of our choice of parameters in the gradient method with other choices proposed
in [5, 35], i.e., we compare

• Algorithm 1: method of quadratic approximations with step sizes chosen according
to Algorithm 1 andq = 0.5, [s, s] := [10−2, 102], α := 5 · 10−5.

• Algorithm 1N: gradient method of [35] with γu = γd = 2.
• Algorithm 1B: gradient method of [5] with η = 2, i.e., this is ISTA with backtrack-

ing.
Secondly, we compare the gradient method with its accelerated versions Algorithm 2 and

Algorithm 3. For Algorithm 1, Algorithm 2, and Algorithm 3 wesetq = 0.5, α := 5 · 10−5,
and [s, s] := [10−2, 102]. We measure the convergence of the computed minimizers to the
true parametera∗ by considering the mean square error sequence

MSE(an) =

∫

Ω

(an − a∗)2dx.

6.1. Numerical experiments withδ = 0. We first discuss numerical results without
noise, i.e.,uδ = u∗. Figure6.1 displays the resulting step sizes1sn in Algorithm 1, Algo-
rithm 1B, and Algorithm 1N for the first300 iterations. Large but controlled step sizes are
preferable for fast convergence. Towards the end of the iteration, the step sizes in Algorithm 1
are typically larger than those of the others. The step sizesin Algorithm 1B are the small-
est. Furthermore, we observe that the initial guesses for the step sizes in Algorithm 1 and
Algorithm 1B always satisfy the conditions in Lemma3.6, but Algorithm 1N needs some
iterations to establish them. Therefore, Algorithm 1N takes more time than Algorithm 1 and
Algorithm 1B; see Figure6.2. Figure6.1shows that{MSE(an)} in Algorithm 1B decreases
most slowly. In the first iterations,{MSE(an)} in Algorithm 1N decreases faster than that
in Algorithm 1, but after that it decreases more slowly.

The decrease of the objective functionals is illustrated inFigure6.2. In this example,
Algorithm 1 exhibits the best convergence rate.

Figure6.3 displaysa∗ andan with n = 300 for all three algorithms. It shows that the
algorithms recovera∗ very well and Algorithm 1 gives the best approximation ofa∗ with a
fixed number of iterations.

From this analysis, we conclude that the step sizes computedby (4.2) are preferable;
they are typically larger than those chosen by the other algorithms and they always satisfy the
conditions in Lemma3.6.

Now we compare Algorithm 1 with its accelerated versions (Algorithm 2 and Algo-
rithm 3). Figure6.4displays the values of the step sizes1

sn in Algorithm 1, Algorithm 2, and
Algorithm 3. We observe that the initial guesses for the stepsizes in Algorithm 1 and Algo-
rithm 2 always satisfy the conditions in Step 2, but the initial guess in Algorithm 3 often needs
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FIG. 6.1.The values of1
sn andMSE(an) in Algorithm 1, Algorithm 1B, and Algorithm 1N.
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FIG. 6.2.The decrease rate ofΘ(an) in Algorithm 1, Algorithm 1B, and Algorithm 1N.

one refinement iteration in order to satisfy the condition inStep 4 of Algorithm 3. Moreover,
we observe that the convergence order isO(1/n2) for Algorithm 2 and Algorithm 3 as pre-
dicted by the analytic results of the previous section. Hence, these algorithms converge faster
than Algorithm 1. This is confirmed in Figure6.5.

The convergence rate of the objective functional with respect to the number of itera-
tions and the computational time is illustrated in Figure6.5. During the first iterations, the
convergence rate of Algorithm 3 is faster than that of Algorithm 2. The convergence rate is
the slowest for Algorithm 1. This agrees with the theory; seeTheorem3.12, Theorem5.1,
and Theorem5.4. However, this is slightly misleading since each iterationof the acceler-
ated algorithms needs more time than the original algorithm. Overall, the convergence of the
functional values with respect to the computational time isequivalent for all versions.

Figure6.6 illustratesa∗ andan with n = 300 computed by all three algorithms. The
accelerated algorithms reconstruct the parametera∗ better than Algorithm 1. The reconstruc-
tions ofa∗ in Algorithm 2 and Algorithm 3 are almost exact.

6.2. Numerical experiments with noisy data.This section deals with noisy data. To
obtainuδ ∈ H1

0 (Ω), we first chooseyδ = y + 5 R
‖R‖

L2(Ω)
, whereR is computed with the

MATLAB routine randn(size(y)) with settingrandn(′state′, 0). uδ is then obtained by
solving (6.1) with y replaced byyδ. We obtain

‖uδ − u∗‖H1(Ω) = 0.0928 ≈ 0.1,
‖uδ − u∗‖H1(Ω)

‖u∗‖H1(Ω)
= 0.0044.

Figure6.7displays the step sizes1sn of Algorithm 1, Algorithm 1B, and Algorithm 1N.
Similar to the case of exact data, Algorithm 1 tends to chooselarger step sizes and Al-
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FIG. 6.3.3D-plots and contour plots: a) exacta∗; b)–d)an with n = 300 in Algorithm 1, Algorithm 1B and
Algorithm 1N, respectively.
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FIG. 6.4.The values of1
sn andMSE(an) in Algorithm 1, Algorithm 2, and Algorithm 3.

gorithm 1B chooses the smallest step sizes. In this case, theinterval [s, s] is needed for
Algorithm 1 at some iterations otherwise the step sizes computed by the Barzilai-Borwein
rule without using the projectionP[s−1,s−1] are out of the interval[s, s], e.g., at some it-
erations in the blue ellipses in the figure. The figure also shows that{MSE(an)} in Al-
gorithm 1B decreases most slowly. During the first iterations, {MSE(an)} in both Algo-
rithm 1 and Algorithm 1N decrease fast, but the error increases again after a few iterations.
This might have several reasons. We suspect that the regularization parameters were chosen
too small (α = 5 · 10−5), i.e., the resulting ill-conditioned system shows the typical semi-
convergent behavior of iteration methods for inverse problems. If we change the value ofα,
then the shape and values of the sequencesMSE(an) in the algorithms are changed too,
but the semi-convergent behavior will be observed after a certain number of iterations. As a
remedy, a suitable stopping criterion could be incorporated. Such a criterion could be that the
algorithms is stopped when|Θ(an) − Θ(an−1)| ≤ ǫ for someǫ small enough. Alternatively
the discrepancy principle [17] could be used, or one of theǫ-free stopping criteria described,
e.g., in [22, 25, 27, 28] could be adapted to the present nonlinear situation. However, we do
not consider these problems in this paper and such a criterion is not used here.

Figure6.8shows that the decay rate ofΘ(an) in Algorithm 1 is the fastest with respect
to the iteration counter and time. Similar to the noise free case, the computational time of
Algorithm 1N is higher than that of Algorithm 1, and Algorithm 1B spent the least time.

In both two cases, exact data and noisy data, the initial guesses of the step sizes computed
by (4.2) are efficient in practice. They are adaptive and large enough; only occasionally
further iterations are needed for reducing the step sizes inorder to satisfy the respective
criteria.

Figure6.9 displaysa∗ andan, wheren is taken with respect to the minimum values
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FIG. 6.5.The decrease rate ofΘ(an) in Algorithm 1, Algorithm 2, and Algorithm 3.
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FIG. 6.6. 3D-plots and contour plots: a) exacta∗; b)–d) an with n = 300 in Algorithm 1, Algorithm 2, and
Algorithm 3, respectively.
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FIG. 6.7.The values of1
sn andMSE(an) in Algorithm 1, Algorithm 1B, and Algorithm 1N.
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FIG. 6.10.The values of1
sn andMSE(an) in Algorithm 1, Algorithm 2 and Algorithm 3.

of MSE(an) in Algorithm 1, Algorithm 1B, and Algorithm 1N, respectively. It shows that
the algorithms still recovera∗ quite well and have the same accuracy.

Now we consider Algorithm 1 and its accelerated versions (Algorithm 2 and Algo-
rithm 3). Figure6.10 shows that the minimum values ofMSE(an) in Algorithm 2 and
Algorithm 3 are smaller than that of Algorithm 1. Therefore,with a suitable stopping crite-
rion, the accelerated algorithms can obtain good approximations ofa∗.

In Figure6.11, the convergence rate ofΘ(an) in Algorithm 1 is the slowest. They seem
to be the same in Algorithm 2 and Algorithm 3, and the two accelerated algorithms still take
more time than the original algorithm.

Figure6.12illustratesa∗ andan, wheren is taken with respect to the minimum values
of MSE(an) in Algorithm 1, Algorithm 2, and Algorithm 3, respectively.Here,MSE(an)
in Algorithm 2 and Algorithm 3 are smaller than that in Algorithm 1.

7. Conclusion. We have proposed an algorithm based on quadratic approximations as
well as two accelerated versions for the minimization problem

min
u∈H

Θ(u) := F (u) + Φ(u),

whereH is a Hilbert space,F : H → R is a smooth but not necessarily convex map-
ping andΦ : H → R is defined byΦ(u) = α

∑

k∈Λ ωk|〈u, ϕk〉|p, wherep ∈ [1, 2],
ωk > ωmin > 0,∀k, and{ϕk} is an orthonormal basis ofH.

Under Assumption2, Algorithm 1 is proved to converge. We have also analyzed different
strategies for improving the step size selection. In addition, if F is convex then Algorithm 2
and Algorithm 3 are proved to converge. The convergence rateof the objective functionalΘ
in Algorithm 1 isO(1/n), two accelerated algorithms (Algorithm 2 and Algorithm 3) are of
orderO(1/n2). This rate is known to be optimal for general gradient methods. The numerical
examples demonstrate the efficiency of the algorithms.
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FIG. 6.11.The decrease rate ofΘ(an) in Algorithm 1, Algorithm 2 and Algorithm 3.

−1
0

1

−1
0

1

2

4

6

a*

−0.5 0 0.5
−0.5

0

0.5

1

−1
0

1

−1
0

1

2

4

6

an in Alg.1;n=123,MSE=0.173

−0.5 0 0.5
−0.5

0

0.5

1

−1
0

1

−1
0

1

2

4

6

an in Alg.2;n=62,MSE=0.166

−0.5 0 0.5
−0.5

0

0.5

1

−1
0

1

−1
0

1

2

4

6

an in Alg.3;n=54,MSE=0.171

−0.5 0 0.5
−0.5

0

0.5

1

FIG. 6.12.3D-plots and contour plots of exacta∗ andan in Algorithm 1, Algorithm 2 and Algorithm 3.

Acknowledgments. The authors would like to thank Prof. Dr. Dinh Nho Hao, who
introduced and suggested to investigate Nesterov’s algorithm. The third author was supported
by a scholarship of the graduate program ”Scientific Computing in Engineering (SCiE)” for
supporting the Ph.D scholarship. The second author gratefully acknowledges the financial
support by Deutsche Forschungsgemeinschaft (DFG) for Subproject C2 within the SFB 747
’Mikrokaltumformen’.

REFERENCES

[1] R. ACAR AND C. R. VOGEL, Analysis of bounded variation penalty methods for ill-posed problems, Inverse
Problems, 10 (1994), pp. 1217–1229.

[2] J. AUJOL, Some first-order algorithms for total variation based imagerestoration, J. Math. Imaging Vision,
34 (2009), pp. 307–327.

[3] H. T. BANKS AND K. K UNISCH, Estimation Techniques for Distributed Parameter Systems, Birkhäuser,
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