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GRADIENT DESCENT FOR TIKHONOV FUNCTIONALS WITH SPARSITY
CONSTRAINTS: THEORY AND NUMERICAL COMPARISON OF
STEP SIZE RULES*
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Abstract. In this paper, we analyze gradient methods for minimizatiorbleras arising in the regularization
of nonlinear inverse problems with sparsity constraints.panticular, we study a gradient method based on the
subsequent minimization of quadratic approximations in Hiilepaces, which is motivated by a recently proposed
equivalent method in a finite-dimensional setting. We provevergence of this method employing assumptions
on the operator which are different compared to other appesacWe also discuss accelerated gradient methods
with step size control and present a numerical comparisonfigreint step size selection criteria for a parameter
identification problem for an elliptic partial differentiaquation.
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1. Introduction. We consider operator equations
(1.1) K(u) = f,

whereK : 'H; — Ho is a nonlinear operator between Hilbert spakigsandH-. The related
inverse problem involves the computation of an approxiometd the solution of this operator
equation from given noisy datg with

(1.2) If = £llre <O

We are particularly interested in the case of ill-posed &qog, which need a stabilization by
regularization methods for computing stable approxinmeio

In this paper, we focus on inverse problems where the solutibas a sparse series
expansionu = ), -, uxr@x With respect to an orthonormal badigy frea C Hi, i.e., the
series expansion af has only a small number of non-vanishing coefficients Exploiting
this sparsity property for a stabilization of the inversetpem, (L.1)—(1.2) leads us to consider
the following minimization problem (Tikhonov regularizat with sparsity constraint): for
a positive regularization parameter weightswy, > wmin > 0, and an exponent € [1, 2],
consider

1
(13) min S () = £, +a Y el o).
keA

Such an approach yields sparse minimizerslad)(for p = 1. For1 < p < 2, this approach
is said to promote sparsityL?]. For most of the paper it is convenient to consider the more
general class of minimization problems

(1.4) min F(u) + $(u),
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where F(u) := S(K(u), f°) is a discrepancy functional that measures the differenee be
tweenk (u) and f°, and®(u) is some regularizing penalty term. Obviously,3) and (L.4)
coincide forF(u) = || K (u) — f°||3,, and®(u) = a®,(u) with
(1.5) Op(u) =Y wil(u, p)l.

keA

The problem whether such functionals yield regularizatioh the underlying inverse
problem (i.e., whether minimizers of () converge to a solution ofl(1) asa,é — 0) has
been analyzed intensively for linear and nonlinear sedtiver the last years; see, e.4.2[
20, 24, 32, 37]. Recent research has concentrated on developing algaritbr computing
minimizers of (L.3). Starting with the pioneering papetd], where convergence of the iter-
ated soft shrinkage algorithm was proven for linear opegoations, several extensions and
generalizations to the case of nonlinear operators have dmesidered; see, e.gq,[7, 39].
Most of these algorithms are known to have a linear convexgeaite in theory and are quite
slow in practice. The present paper aims at proving convesyeesults for accelerated gra-
dient methods for nonlinear and ill-posed operator equoatas well as at comparing numer-
ically different step size selection criteria.

The motivation for the present paper originates in the tesufl Bredies et al.q, 8],
Beck and Teboulleq], and Nesterov3d5]. In [5, 35], an efficient scheme for computing a
minimizer of the problem(.4) in the case of a general convéxand specific “simple™® is
proposed. Although those papers consider the problem te4ifimensional spacé®?, the
proofs carry over to the Hilbert space setting. NesteB®} §nd Beck and Teboulle] also
introduced accelerated versions of the gradient methodbamebd that the objective func-
tional decreases with ra@(n%) wheren is the iteration counter. These gradient methods
are closely related to the generalized conditional gradieethod B] and the generalized
projected gradient method][ Convergence of this method was proved under fairly gen-
eral assumptions of and® and a linear convergence rate was obtainedjridr the case
of F(u) = || K (u) — f°||3,, with a linear operato¥.

In this paper, we combine the algorithmic approach3sf fvith the analytic tools devel-
oped in B]. We consider the probleni (4) whereF' can be non-convex, i.e., the problein)
includes regularization of nonlinear, ill-posed problenike gradient method as introduced
in [5, 35] as well as some accelerated versions are investigated iitbartispace setting.
We prove strong convergence of the minimizing sequencergtateby the gradient method
for the special case @b = a®, with ¢, defined by {.5. We want to emphasize that the
assumptions orf’ needed in the proof of convergence are different from thospl@yed
in [8].

The remaining part of this paper is organized as follows: éat®n 2, we survey dif-
ferent approaches for deriving first order methods for miming functionals of type 1.4).
Section3is devoted to the convergence analysis of a gradient metiidebd from successive
minimization of quadratic approximations, and Secticzontains a discussion of the choice
of step sizes. In Sectioh, we analyze two accelerated versions for the case of coAvex
Finally, the algorithms are implemented and analyzed faaraimeter identification problem
for an elliptic partial differential equation in Sectién

2. The basic motivations for gradient descent methodsln this section we summarize
several well known approaches for introducing gradientelesmethods for the minimization
of (1.3) or its generalized versiorl(4), respectively. We start by introducing some basic
notation.

2.1. Proximal mappings and shrinkage operators.We will frequently need the no-
tion of the proximal mapping, which is a generalization af tithogonal projectioi’- onto
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closed convex setS' C H: orthogonal projections are defined as solutions of themiza-
tion problem

12
P (v) = argmin v — vl
ueC 2

Using the indicator functiord, which takes zero values far € C and infinity otherwise,
one can rephrase the projection operator as an unconstrainémization problen{A > 0)

a2
Pc(v) = argmin (qu' + )\Ic(u)) .
ueH 2

We now replacd by a general convex, coercive, and lower semi-continuonsalpefunc-
tional ® and define the generalized projection operator, which lsgd#éihe proximal mapping
of @, by

)2
Pyg(v) = argmin <HUUH + )@(u)) .
ueH 2

This minimizeru can be characterized using the subdifferentiabpit has to satisfy
0cu—v+AP(u) or v e (I+XP)(u).
Hence, we obtain a well studied equivalence, 46 [
Pyo(v) = (I +20®) ' (v).
The proximal mapping has an explicit expression in termshoinkage operators for

penalty functionals of the type, from (1.5. Forl < p < oo andr > 0, define the real
valued shrinkage functiofi , : R — R by

sgn(z) max(|z| —7,0) forp=1
@) ol = {G_f Jmedel =0 forp =4
(%) orp e (1,2]
where
(2.2) G, p(r) =2+ mpsgn(z)|z[P~  for1 < p < 2.

DEFINITION 2.1. Denotew = {wi }rea, Withwr > wmin > 0 for all k, and assume
that {¢x }rea is an orthonormal basis of{. LetS,, , denote the shrinkage functions as
given in @.1). The soft shrinkage operat@y, , : H — H is then defined as

Suwp(v) = Z Snp((V 98)) Pk

keA
For penalty functionals of typel.(5), we obtain the well known equivalence, see, ef],[
(2.3) Puo, (V) = Sawp(v).

We now state different motivations for gradient type meth@m the minimization of 1.3)
and (L.4).
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2.2. First order optimality conditions and gradient descemh methods. The classical
approach for designing gradient descent methods is bastket dinst order optimality condi-
tions. Let

1
Ou) = 5K (u) = fI* + a®y(u)
with @, as in (L.5). The first order optimality condition for a minimizaris given by
0 € 00(u) = K'(u)* (K (u) — f°) + add,(u).

Multiplying by A and addingu on both sides yields a fixed point relation which has to be
satisfied for a minimizet and for all\ € R

u € u+ MK (u)* (K(u) — f°) + Aad®, (u).

Turning this into an iteration and choosisg= —)\ yields the classical gradient descent
method. However, the convergence analysis of this metHiss$ @n higher order smoothness
properties forK” and®, which are not met for sparsity constraints. Hence, in ogedhis
more appropriate to study iteration methods which are pbthin a slightly different way.
Reordering the fixed point relation yields

u— MK (u)* (K (u) = %) € u+ Aad®,(u) = (I + Aadd,) (u).
We can turn this into an iteration by demanding that
ub — MK (uF)* (K (u®) = f°) € " 4+ Xad®, (uF ) = (I + Aad®,) (uF ).

The expression on the right-hand side is inverted by theipralxmapping for®,, and
hence 2.3) yields the iteration

(2.4) U = Shawp (UF — MK (WF)* (K (u¥) - f9)).

This iteration is the most widely used iterated soft shrggkalgorithm as analyzed ii%]

for linear operators and, e.qg., if,[8] for nonlinear operators. This procedure can be inter-
preted as first taking a gradient descent step with respegf&6(u) — f°||?, i.e., comput-
ing v* = ukF — AK'(u*)* (K (2*) — f?), and then taking care of the penalty term by deter-
mining the shrinkage

uFtl = S)\awﬁp(vk).

We could combine some of the parametersy, and\ in order to reduce notation. However,
these parameters have different meaningallows to model weighted,-spaces and is cho-
sen a priorily,« is a regularization parameter, which has to be chosen drednd )\ is a
step size parameter.

2.3. The generalized gradient projection method.We follow the approach described
in [7]. Constrained optimization procedures for solving

in F
iy F(u)

whereC' C 'H denotes a convex set, are well established; see, £3).14, 15, 16, 19, 36).
Projected gradient methods for solving such a problem gemexr sequencéu”} by first
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performing a gradient descent step with respedt ttollowed by a projectionP- onto the
setC, i.e.,

2P = b — 5, F'(uF) and uf T = Po(2F)

with some suitable step sizg.

We can rephrase the constrained optimization problem asieonstrained problem by
choosing an arbitrary. > 0 and using the indicator functiof> as before. Replacing the
indicator function by a general convex penalty functiobalnd replacing’- by the proximal
mappingPy¢ Yyields the following algorithm:

ALGORITHM 2.2 (Generalized gradient projection method).

Chooseu” and iterate fork > 0

1. determine a valugy, e.g.,A\x = X constant for allk
2. determine® = ukF — A\, F'(u¥)
3. determine/* ! = Py, 4(2*) = argmin, ¢, (M + )\kfb(a:)) .

We observe that for the special cabe= a®,,, the proximal mapping coincides with the
shrinkage operator, and hence by insertit@) = || K (u) — f°||?/2, we obtain the familiar
iterated soft shrinkage algorithm

Pt = Sy, awp (uk — MK (uF) (K (uF) — fé)) )

The convergence properties of the generalized projecidiegt method has been analyzed
in [7] for convexF'. In particular, a linear convergence rate was shown foalimperatords
under additional assumptions.

2.4. The quadratic approximation. Another approach rests on constructing a quadratic
approximation o® = F + ® atu* and determining the next iterate as the minimizer of this
quadratic approximation. This approach, including sonevesl step size selection criteria
and several generalizations, has been studie@5hif the finite-dimensional case. We will
now formulate this approach in a Hilbert space setting.

In this approach, one choosega> 0 and defines the quadratic approximation by

@)\(u,uk) = F(uk) + (F’(uk),u — uk>H + %Hu — uk||2 + ®(u).

By completing squares we obtain

1

AkF’(u’“)II2 + @(u)

Ak
(2.5) O (u, u®) = c(uf) + %Hu —uP 4
with a constant(u*) not depending om. The minimizeru of this quadratic approximation
is again obtained from the first order optimality conditiamich states

0¢ iF'(uk) + (u—u®) + iaq>(u).
Ak Ak
Choosing this minimizer as the next iterate yields, againdigig the proximal mapping df
and @.5), the following algorithm:
ALGORITHM 2.3 (Quadratic approximation).
Chooseu” and iterate fork > 0
1. determine a valugy, e.g.,A\x = A constant for allk
2. determine* = u* — - F'(u")

3. determina/f*! :Piq)(zk) =argmin, .y (%Hu - uk-l-%kF’(uk)\\z—i-ﬁ(I)(u)) .
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We directly see that this iteration coincides with the gatieed gradient projection
method ifA is identified with%. We want to emphasize that the main achievemen®,dgif)
is the introduction of a clever rule for choosing, which on the one hand guarantees as
small as possible (thus allowing for large gradient stepStep 2 of the algorithm). On the
other hand itis ensured th&t > L, whereL is the Lipschitz constant df”, i.e., this ensures
that the quadratic approximation always satisfies

O (u,u*) > O(u).

Also, several accelerated versions of this basic schemprasented there, e.g., one variant
constructs two sequencés®} and{z*} which are related as follows

1. uF = 2F 4+ 4 (2*F — 2F~1) is a convex combination of* andz*~!

2. M1 = Py (uh = JF (),
andz* is shown to approximate the minimizer of the functional.

2.5. The generalized conditional gradient method.The starting point for motivating
this iteration is a generalized version of a first order optity condition; see §]. This
characterizes a minimizerfor © = F' + ® by

I;éiﬁ(F’(u), 2)n + ®(2) = (F'(u),u)n + ®(u).

In other words, ifu* is not a stationary point @, then

(F'(u®),u*) + ®(uF) > géi}_{l(F’(uk),z) + ®(2).

This characterization motivates the following gradienttimoel, which is called generalized
conditional gradient method.
ALGORITHM 2.4 (Generalized conditional gradient method).
Chooseu? with F(u°) + ®(u°) < oco.
Compute{u*|k > 0} by
1. determine* = argmin,,, (F'(u¥), 2)3 + ®(2)
: k

3wkt =k o5 (2F — k).

Again, we can specify the above algorithm for the case defindd.1l) and obtain a
familiar expression by splitting the Tikhonov functional f@llows

1 A A
Ou(w) = (3100 = 12 = Sl ) + (Sl + 2w
In this case we have
Flu) = MK @)= 212 = 2ul? and () = 2[jul? + ad
() = S ) 2 = Sl and o) = 2 ul? + o, (w).

The minimizer in the first step of the algorithm can now be bt&td by considering the first
order optimality condition

K'(uF)* (K (u®) — £2) = b + (A2 + 2d®,(2)) = 0.

Hence, the minimizet is given by

5 =Sy (1 = @ () - )
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and

1 .
uPt =0k + s (S(Q/A)w,p <uk — XK’(uk)*(K(uk) — f5)> — uk> ,

which reduces to the iterated soft shrinkage algorithm #8.#) for s, = 1.

The convergence properties of the generalized conditigreadient method applied to
nonlinear operator equations was studied in detailéin [n particular, convergence for a
fixed value ofs = 1 was shown if\ is chosen large enough. However, the assumptions
imposed in that paper are different from the ones we are uitige next section.

2.6. Surrogate functional approach. For motivating this approach, we start with the
Tikhonov functional

Oulu) = 2K ()~ 1*|> + oy (u)

The pioneering papefP], which introduced sparsity constrained regularizatezhnhiques to
the field of inverse problems, suggested to define a surrdgattional in order to decouple
the analytic difficulties stemming from the operator andrfrihe non-standard penalty term.
This approach has be extended to nonlinear inverse prolidgrfiz3]. The main idea is to
introduce

A
04 (,0) = 1K) — I+ Sllu—all? — LK () ~ K@) + oy (u).

This reduces to the original Tikhonov functional fer= «. The minimization of©? (x, a)
with respect tou for a fixeda is assumed to be much easier, since—as can be seen after
expanding the norms into scalar products—the quadratic ir@rafving K (u) cancels. The
iteration based on this idea suggests the following allyorit

ALGORITHM 2.5 (Surrogate functional).

Chooseu® with 1| K (u®) — f°||2 + @, (u®) < oo and\ sufficiently large.

For k& > 0 determine

uFT! = argmin ©2 (u,u").

ueH
For linear operators, the minimization step can be perfdrexlicitly and leads to a soft
shrinkage iteration. For nonlinear operators, the minemizannot be computed explicitly
in general, and the authors d3§] suggest to use a fixed point iteration based on the first
order optimality condition of the surrogate functionalr Fized «*, the first order optimality
condition of©@? (2, u*) with respect to: reads as

0€ K'(2)"(K'(2) = fO) + Mz — uF) = K'(2)*(K(2) — K(u")) + ad®,(2).
The termK’(z)* K (z) cancels and we obtain the more familiar expression aftedesimg
uF = AT () (K (uF) — o) e (I + %acbp)(z).

Hence, the inner iteration, where we need to find the fixedtmtgfined by the minimization
step in the algorithm, is a modified soft shrinkage iteration

1. choose’ = ¥

2. iteratez"™ = S(o/n)w,p (UF — ATEK(2%)* (K (u*) — f°)) until convergence

3. putu**! equal to the last iterate ¢t*}.
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The authors prove convergence of a subsequence to a stgtpmiat for

32 2 (sup /)2 2y~ 1917 + 20,0
ueM

whereM = {u € H: ®,(u) < ®,(u’)} andL is a Lipschitz constant fok”.

Let us note that the inner iterations also need an evaluafidfl, hence their numerical
costs is of the same order as an iteration step of the conditgradient projection method.
However, the condition o\ can be checked more easily. For a numerical comparison of
these methods; seé][

2.7. A comparison of the different gradient descent methodsAs we have seen, all
previous motivations for introducing an iteration methodrinimizing Tikhonov function-
als have been—up to different strategies for the selectidtheo$tep sizes ands—identical
(except for the surrogate approach, which has some kind giféingradient step and hence
has to use an additional inner fixed point iteration). Théyealuce to a version of the iterated
soft shrinkage algorithm when applied to functionals ofety#p, with an/,-penalty term.

However, they have merits on their own. For instance, theaguh via the generalized
gradient projection method paves the way to incorporat@djteonal constraints, i.e.,

1
min 2| K (u) — 7|7 + a®(u) = min O (u) + to(w).
For first steps in this direction; se&d.

The quadratic approximation method instead allows to aaficcelerated versions by
considering convex combinations and step size selectiberiar Several approaches for
linear operator equations have been analyzed so far; spe,[d. For a comparison of
different minimization schemes for linear operator equaj see34]. However, a thorough
analysis of such accelerated versions of the iterated hdftkage algorithm for nonlinear
operator equations is still missing.

Also, it is not surprising that the respective convergentaysis for these different al-
gorithms use different analytic assumptions. In the foltmyvsection we will extend the
convergence results for the quadratic approximation neetho

3. The quadratic approximation method for nonlinear operator equations in Hil-
bert spaces. The starting point for our investigation is a quadratic apgpmation method as
proposed in%, 35] for convex optimization problemd.(4) in R™. In this section, we analyze
the convergence properties of this method in a general Hillpace setting, moreover we
discuss different step size selection criteria in the negtisn.

We examine the following general minimization problem

(3.1) min {O(u) == F(u) + ®(u)},
with F': H — R and® : H — R under the following assumptions:
ASSUMPTIONL (Assumptions o and®).
1. H is a Hilbert space.
2. & : 'H — R is proper, convex, weakly lower semi-continuous, and vezdércive.
We assume that Assumptidrholds throughout the paper. Most of the following analysis
considers the general problem as stated3ii)( However, we want to emphasize that we
are especially interested in the caBe= a®, with ¢, from (1.5. Accordingly, we will
specialize and extend our general results to this partichigice of a penalty functional, e.g.,
in Lemma3.2and3.8.
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ASSUMPTION2 (Assumptions o’ and®©).
1. Problem 8.1) has at least one minimizer.
2. Fis bounded from below. We may assufi{&) > 0, Yu € H, without loss of gen-
erality.
3. F has a Lipschitz continuous &chet derivative, i.e., there exists a constarguch
that

|F'(u) — F'(u")|| < Liju — '], Yu,u" € H.

4. Ifu™ converges weakly to such tha©(u™) is monotonically decreasing, then there
exists a subsequenée™ } such that

F'(u") — F'(u).

As discussed in the previous section, several methods hesm ffroposed and investi-
gated recently for minimizing functionals of this typ@& 1) or more specifically for dealing
with Tikhonov regularization for linear and nonlinear inse problems such a4.Q); see,
e.g., Bl. Each of these methods requires particular assumptionedeing its convergence.

REMARK 3.1. We discuss the role of the different parts of Assump#ion

1. Condition1 of Assumption2 can be guaranteed i is bounded below and weakly
lower semi-continuous. Another sufficient condition forr@aion 1 is given in B,
Lemma 3].

2. Condition2 of Assumption2 together with the weak coercivity ab implies the
weak coercivity of ' + @, i.e., F'(u) + ®(u) — oo as|jul] — oo. It is used
to obtain the boundedness of the sequence generated byattiergrmethod; see
Lemma3.6. Note that this condition is weaker than the coercivity iegghin [8],
i.e., (F(u) + ®(u))/||ul]] — oo as||u|| — oo.

3. Condition3 of Assumption2 is used to obtain Lemma.4 and the existence of step
sizes in the gradient method and its accelerated versiead;ammé3.6. From this
condition, we have

[F(v) — F(u) — (F'(w), v — u)| < gnu —ull?, Vo,u € H.

4. Condition4 of Assumption? is needed to obtain the strong convergence of the gra-
dient method; see TheoretlQ It is satisfied ifE; := {u € H : ®(u) < t}is
compact for every € R and F’ is continuous. Indeed, i&"™ converges weakly
to «w and ©(u™) is monotonically decreasing, thef®(u")},cn is bounded and
thus{u"} C E; for somet > 0. SinceE, is compact, there is a subsequefieéi }
such thats — u. By continuity of F, we haveF”’ (u™) — F'(u).

3.1. The quadratic approximation methods in Hilbert spaces As discussed in the
previous section, the main idea of this gradient method reptace the minimization prob-
lem (3.1) by a sequence of minimization problemsin, cy; Os» (v, u™), in which© . (-, u™)
are strictly convex and the minimization problems are easgolve. Furthermore, the se-
quence of minimizers™" ! = argmin, 4 O, (v,u™) should converge to a minimizer of
problem B.1). For a fixed value of > 0, we define the following quadratic approximation
of O(v) = F(v) + ®(v) at a given point,

O5(v,u) := F(u) + (F'(u),v — u) + %”U —u® + @(v).
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This functional admits a unique minimizer. The operatorjchhmapsu € H to the mini-
mizer of O4(+, u) is denoted by/, : H — H. By completing the square we obtain a second
characterization

Js(u) := argmin{O (v, u)}

veEH
1 1 1 1
(3.2) = arvgergin {iuv —(u— ;F'(u)) H2 + E(I)(U)} = P%(p(u - EF/(U))

FiG. 3.1. Sketch of the functionaf®(v), © (v, u) and of the operator (u).

The sequence of minimizers of these approximations is gen" ! = J,(u"). Fig-
ure 3.1 provides a sketch of the functionatgv), ©,(v, u) as well asjs(u). An explicit ex-
pression for the minimizer @, in the case o = a®, can be obtained by the soft shrinkage
operatotS. ,. The following lemma has been obtained in a similar settmi@;j 8, 21].

LEMMA 3.2.Let F' be Fréechet differentiable and l&é = a®,, with ¢, given in(1.5).

1) The unique solution oB(2) is given by

s

Js(u) = Saw ,(u— éF’(u))

2) If u* € H is a minimizer of© defined in 8.1), then the necessary condition fot
is

u* = Sgaw,p(u* — BF'(u*)) for any fixeds > 0.

Additionally, if F' is convex, then this necessary condition is also sufficient.
We use this characterization f(«), which leads to the following gradient-type iteration
for problem @.1) with & = a®,,

1
(3.3 u = Jn(u") = Seg p(u" — S—nF’(u”))

The choice of the approximate step sig{esaffects the convergence properties of the iteration.
This will be discussed in Sectich

REMARK 3.3. We want to emphasize once more that this iteration a#savith several
other gradient descent approaches for minimizthgHowever, the proofs of convergence
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use somewhat different assumptions and the quadratic ¥pption approach allows us to
introduce different step size controls in the next section.

Next, we consider necessary conditionsddand then examine some convergence prop-
erties of this method.

3.2. Some convergence propertiesln this section we follow the outline of5[ 35],
where equivalent results but in finite-dimensional spacesewproved. The analytic tech-
niques used for the proofs are similar to those=flLp)].

For the analysis of the gradient method, we need the follgwésult. This is based
on the assumption th&, is an approximation t® with stronger local convexity at; see
Figure3.1

LEMMA 3.4. Assume that’ is Fréchet differentiable with Lipschitz continuous deriva-
tive F’. Letu € H ands > 0 be such that

(3.4) O(Js(u) < Os(Js(u), u).
Then for anyw € H,
Ow) ~ O(Ja(u)) > 31Js(u) — ul + s — v, ) ) — & o — ul],

whereL is the Lipschitz constant df’'.
Proof. From (3.4), we have

O(v) = O(Js(u)) = O(v) = O5(Js(u), u).

On the other hand, since= J,(u) is the minimizer ofO,(., u), there exists & € 0®(z)
such that

F'(u) +s(z—u)+~v=0.

Now sinceF” is Lipschitz (see Remark.1) and® is convex, we have
(3.5) F(v) > F(u) + (F'(u),v —u) — £ Jo ],
O(v) = P(2) + (v,v — 2).
Summing the above inequalities yields
Ow) > Flu) + (F'(u),v — u) + B(z) + (3,0~ 2) — 5 o — ull”.
Furthermore, by definition of = J,(u), one has
O4(z,u) = F(u) + (F'(u), 2 = u) + 5|12 = ul]* + ©(2).
From the previous inequality and equality, using —F’(u) — s(z — u), it follows that
Ow) = 8(z) > ~3 12 — ull” + (F(u) + 7,0~ 2) — £ lo — ul?
= 2o~ ulP + s{u— 2,0~ 2) — 2o~ uf?

s L
:§||z—u||2+s<z—u,u—v)—§||v—u||2. d
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REMARK 3.5.
1. By Remark3.1, it is easy to show thaB(4) is satisfied ifs > L.
2. Additionally, if F' is convex, ther¥'(v) > F(u) + (F'(u),v — u). Thus, following
the proof above and inserting this stronger inequality {8t6), we obtain

O(v) - 0(Js(u)) = gHJS(U) —ull* + s(Js(u) = u,u —v).

This inequality is exactly the one iB[Lemma 2.3].
We are now in a position to investigate some convergenceeptiep of the gradient
method for the problen8(1), i.e., the convergence properties of the sequence defingd3).
LEMMA 3.6. Let F' satisfy Conditions2, 3 of Assumptior2. Assume that the se-
quence{u"} is defined byJ.3), where the sequence of step si#e%} satisfiess” € s, 3]
with (0 < s < L <73) and

@(un—H) < 95“ (un-i—l, un)

Then the sequend@(u™) is monotonically decreasingim,, .. [|[u"* — u™|| = 0, and the
sequencdw”} is bounded.
Proof. The proof follows the idea of Beck and Teboultg.[By the hypothesis, we have

O(u"™) < Qg (u" T u") < Ogn (u™,u™) = O(u™).

Thus, the sequenc@(u™) is monotonically decreasing as long as the hypothesis holds

For eachk = 0,1,...,n, applying Lemma.4with v = v = u* ands = s*, we obtain
2 ) X X
S (O@Wh) =0+ > fluf — 2,
2
~(0(u") = Ot > flub — w2
Summing the last inequality ovér= 0, ..., n gives
2 n
~(0(u) —O(u™h) = Y luk —ut 2, vn.
= k=0

This implies that the seri€s. ;- , [|u* — u**1||? converges. As a consequence, we have
lim |ju"* — ™| = 0.
n—oo

The boundedness ¢} is a consequence of the decreasé®fu")}, the weak coer-
civity of ©, i.e.,O(u) — oo aslju|| — oo, and Conditior? of Assumptior?. |

The previous lemma implies that the sequefigé} is bounded. Hence, it must have
a weak accumulation point. We now aim at proving that eachkveeaumulation point is a
stationary point 0P, i.e., it satisfies the necessary condition for a minimize®ofTo this
end, we only consider the cage= a®,,.

First, we need the following technical lemma.

LEMMA 3.7.Assume that

u" = Sgnawp (V" — BMF (0")).

If both w™ andv™ converge weakly ta*, F’(v™) converges weakly t6” (u*), and3,, > 0,
with lim,, . 6™ = 5* > 0, then

u* = Sgrawp (U’ — BFF (u")).
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Proof. We first prove the lemma fgr > 1. Using the notationy, = (u, ¢ ), we have
thatu} andv}’ converge ta:; andF”’(u");, converges td” (u*), forall k € A whenn — oo.
By assumption it holds that

u" = Sgnawp (V" — BMF (v")),
which is equivalent to
up = Sgrauw,p (Vi — B F' (v")), Vke€A.
By (2.1) and @.2), these equations are equivalent to
uf + pBrawy sgn(up)|up Pt = vp — B"F (v™)g, Yk € A.
Takingn — oo, we get
up + pBrawy sgn(up)up Pt = uf — B*F'(u*),, Yk €A.
Therefore we have
u* = Sgraw,p (U’ — BFF (u")).
We now prove the lemma fgr = 1. By the hypothesis we have that
u" = Sgraw,1 (v = B F'(v")),
which is equivalent to
(3.6) up =sgn(vy — B"F'(v")i) max (Jog — B"F'(v")i| — B"aws,0), Vk € A.
We denote

[y ={keA:|u,—BF (u*)| > B awg},
[y :={keA:|u,—BF (u")| < B awg},
Ls3:={ke€N:|u;—BF(u")] = aw}.
We treat each of these three cases separately. 8jhees" F'(v"), — uj — B F'(u*)
and v} — B"F'(v")g| — B aw, — |uj — B*F'(u*)g]| — B*awy, asn — oo (with k& being
fixed), we obtain the following:
o If k € I'y, thenvy — 5"F'(v™), anduj, — B*F'(u*), have the same sign and

[op — B"F'(v™)g| — " awi, > 0 whenn is large enough, and thus the limit of two
sides of 8.6) exists and

uj, = sgn(uy — B°F' (u*)) max (|uj, — B*F'(u*)i| — 8% awy,0), Vk €Ty,
or
uy = S’g*aw,l(uz — B*F’(u*)k), Vk eTy.

o If k € T'y, thenjuy — 8" F'(v™)| — " awi, < 0 whenn is large enough. Thus3(6)
becomes:}! = 0. It follows thatu;, = 0 and then

Wy = Spraw (4 — B°F'(u)y), Vk €.
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o If k € T's, thenv} — 8" F'(v™) anduj — B*F’'(u*); have the same sign and are

nonzero whem is large enough. Thuss,gn(vgfﬁgF,(vn)k) — sgn(uzfﬂfF'(u*)k)
asn — co. From (3.6), we deduce thahax (|v} — 8" F'(v")x| — f"awy, 0) also
converges and its limit is equal to zero. This implies tiat= 0 and thus

uj = Sgraw,1 (up — B F'(u)), VkeTs.
Summarizing the above results, we have that
u,’; :S,g*aw’l(uz —ﬁ*F’(u*)k), VEkeT W UTbUl's = A,

and
u* = Sgrauwp(u’ — BF (u). O

LEMMA 3.8. Let F' satisfy AssumptioB, ® = a®,,, and{u"} be defined in Lemm&6.
If u* is @a weak accumulation point §i.” }, thenu* is a stationary point 0©.

Proof. Let {u™ },cn be a subsequence converging weaklyto By s” € [s, 5| and
Assumption2, there exists a subsequence of this subsequence (agatedeydw™ }) such
that w-lim,; oo u™ = u*, F'(u™) — F'(u*), andlim;_ s" = s* € [s,5]. Due to
Lemma3.6, {u™i*1} also converges weakly to*. By (3.3), we have

LF/(U"LJ')) .

unj-‘rl = S aw (unJ —
g P ™

By Lemma3.7, we obtain

* * 1 !/ *
u* =Saw ,(u" — S—*F (u)).
By Lemma3.2, u* is a stationary point o®. a

Next, we shall prove that the sequereé' },,cy has a strongly convergent subsequence.
To this end, we need the following generalization of the lteay 12, Lemma 3.18].

LEMMA 3.9. Let{h"} C H be uniformly bounded anfti"} C H converge weakly to
zero. Ifs™ € [s,5] andlim,, o [|Saw (A" +d") — Saw ,(h") — d"| = 0, then||d"|| — 0
forn — co.

Proof. This lemma can be proven similar tbJ, Lemma 3.18]. |

THEOREM 3.10. Let F' satisfy Assumptio, & = a®,, and let{u"} be defined as
in Lemma3.6. Then the sequencg:"} has a subsequence that converges strongly to a
stationary point.* of ©.

Proof. Let {u" };cn be the subsequence 6"} defined in the proof of Lemma.8.
Henceu* is a stationary point o®, and by Lemma&.2we have

u* = Sawg,p(u* — BF' (u*))

for any fixed > 0. We denoted”’ = u" — u* andh™ = u* — = F’'(u*). Due to
Lemma3.6, we have thatim;_., [|[d" ! — d"|| = 0. Using the previous equation far*
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with g = , we get
d" —d"t = d" oyt — Sae (u™ — S%J "(u™))

=d" + S pu = —F’ (u*)) — Sse p p(u — S%F’(u’”))

= d" + S ,(h")
3.7) ~Sam, (u* _ %F’(u”j) +dm)
(3.8) +8Ss52 (u* — 571” F'(u*) +d™)

— S p(u” — S%F'(u*) +d").

We consider now the sum 08(7) and 3.8). By Assumption2, the nonexpansiveness ®f
(see, for examplel?]) ands™ — s*, we have

1
F'(u™) +dv |

Snj

1 , , *
IS 56 p (w — EF/(UTL’) +d") = Sge p(u” —
1
Sy 1 (@) = Fi(u?)| = 0 (j — o0).

Consequently, combiningd™ — d"*!|| — 0 asj — oo and the last inequality, we observe
that

hm ||S p(hJ—i—d J)—S%@(hﬂ')—d i =0.

Applying Lemma3.9 where the sequencds:™,d"} are replaced byh™i, d"}, we
obtain the desired result. O

REMARK 3.11.

e A similar result as in Theoreri.10 has been obtained ir6,[ 8] for constant step-
sizes (/s™ = s) under different assumptions dnand®; see B, Theorem 1].

e For finite-dimensional spacéeg, the above results have been obtained implicitly
in [35, Theorem 5] under the strong convexity condition @rln that case, even a
linear convergence rate §f,"} can be proved.

e Alinear convergence rate ¢, } has also been obtained if] junder the following
conditions: © = F + @ is coercive,F' is convex, and the sequenée™} satis-
fies||u™ — u*|| < er™, whereu* is @ minimizer of© andr™ := O(u") — O(u*).

In our setting, we do not impose the conditipul® — v*|| < ¢r™ for proving convergence
rates for{u"} in this paper. Instead, we are aiming at weaker results coimzethe decay
rate of the functional valued (u*).

THEOREM 3.12. Let F' be convex and satisfy the Conditiohs3 of Assumptior2, and
let {u"} be defined as in Lemn%6. Then for anyr > 1
n * EHUO —u” H2
O(u") —O(u") < 5
whereu* is a minimizer 0©.

Proof. SinceF is convex, we obtain the same inequality asinllemma 2.3] by Re-
mark3.5. Thus, the proof is obtained as i, Lemma 3.1]. |
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4. A step size selection criterion.As analyzed in the previous section, the quadratic
approximation method converges when the parametersatisfy the conditions stated in
Lemma3.6. We note that Remar®.1implies thats > L yields

|F(v) = F(u) = (F'(u),v —u)| < %Hv — ul®.
Hence, withs > L we obtain
O(v) = F(v) + @(v) < F(u) + (F'(u),v — u) + gllv —ul® + @(v) = B,(v,u),

and thus the conditions in Lemn3a6 are always satisfied §* > L for all n.

It is well known that the choice of step siz&’s affects the convergence of the gradient
method; see, for example&g][ Some strategies for choosing these parameters in thextont
of quadratic approximations in finite-dimensional spacesayproposed inf, 35]. However,
we follow a different approach. Let us have a closer look atitbration 8.3). It is easy to
see that — neglecting the soft shrinkage oper&te+ the parameter% are the step sizes

of the classical gradient method for the minimization peoivinin, < F'(u). Therefore, we
suggest to first compute an intermediate step ©izey

(4.1) t" := argmin F(u" — tF’ (u™)).

t>0

Imposing a lower and upper bound on the step siz¢hen yields a first guess for the step
size

si” = Pz-1,5-1(t") = max(min(t",s71),571).
We then check whether the condition in Lem®&, i.e., ©(u"™!) < Ogn(u™l u™), is
satisfied. We retair” if the condition is satisfied, otherwise we repeatedly redys™ by

a factorq < 1. Note that the problem4(1) does not need to be solved exactly. We only
need an efficient strategy for approximating this minimizEor this purpose, we use the
Barzilai-Borwein rule proposed iri]

(u™ —um L F'(u™) — F'(u"™1)) )
) — D), B — B

1
(4.2) = P
By this strategy, we summarize the quadratic approximatiethod with step size control in
the following algorithm:
Algorithm 1
Initiation: | Initial guessu® such tha® (u°) < oo, s € [5,5] (0 < s < L/q < 3)
andqg < 1.
Iteration: | forn=10,1,2,...
1.u™tt = Jen(u™).
2.1f O(u"™) > Ogn (un T u™) ands™ € [s, 3]
then; = 1-¢; go toStep 1.
3. -1+ given by ¢.2).
end
Output: the output of the algorithm i8 = wg;;,.

)
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REMARK 4.1.

1. Together with Remarl.1, the assumption in the initializatiors, > L/q, guar-
antees tha®(u"*!) < O, (v, u") is always satisfied after a finite number of
updatest = Z-g. Hence, we do not need the conditish € [s,3] in the algo-
rithm. Itis included in case thdt is not known. This remark is also relevant for the
next accelerated versions.

2. If F: RY — Ris convex then Algorithm 1 ford.1) is similar to the gradient method
in [35] and to ISTA in []. The only difference is the criterion for choosirb.

3. For afixed step siz€' = s, the proposed algorithm is also identical to the general-
ized conditional gradient method with= 1; see Remark.3.

5. Some accelerated versionsln this section, we aim at presenting two accelerated
schemes of the quadratic approximation method, which, ekeequire stronger assump-
tions. Hence, in this section we assume thanh (3.1) is convex. This assumption has also
been analyzed in5| 35] for finite-dimensional spaces. There the authors proptsedac-
celerated versions and proved a convergence rate for thes/aef the objective functional of
orderO(n%). This convergence rate is known to be optimal for algorithined tire based on
first order schemes, i.e., for algorithms using only the @slof the objective function& and
its gradient 2, 5, 35, 40]. Similarly, we present accelerated versions for the @wb.1) in
a general Hilbert space setting.

The first accelerated algorithm of the gradient method fertoblem 8.1) is motivated
by [5] and is presented in Algorithm 2.

Algorithm 2
Initiation: | Initial guessy® € dom(®), s° € [s,5] (0 < s < L/q <3),
andtg = 1,9 < 1.
Iteration: | for n =0,1,2,...
1l.u™ = an (y”)
2.1f O(u™) > O4n(u™, y™) ands™ € [s, 3]
thenZ- = L .¢; go toStep 1.

S’Vl
144/1+482

3. tn+1 = D) .
n tn— n n—
4 Yni1 =" + () (W —u )
5, "t = gn
end
Output: the output of the algorithm ig = u;;,,.

The convergence rate for the values of the objective funati® for this algorithm is
given in the following theorem.

THEOREM 5.1. Let F' be convex and satisfy the Conditioftis3 of Assumptior?.
Let {u™} be generated by Algorithm 2 and be a minimizer of problem3(1). Then for
anyn > 1

Cllu® —u*|?
Proof. By Remark3.5 we obtain the same inequality as i, [Lemma 2.3] and we
proceed as in the proof 05] Theorem 4.3]. 0
The second accelerated algorithm presented in AlgoritherBativated by 35]. Note
that in [35], the author proposed this algorithm for a general funetidnin finite-dimensional
spaces. Here we apply it for a specific functiofial= a®,, but we extend it to the Hilbert
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space setting. In the context of problefl) with & = «®,, the solutionv™ in Step 6 of
Algorithm 3 is given explicitly in the following lemma.

LEMMA 5.2. Lety, (u) be as in Step 6 of Algorithm 3. Therf, = argmin,, 7 ¥, (u)
is given by

0" = Saa, p(u’ — ZakF’(uk)) (n>0).
k=1

Proof. The initial quadratic approximation is defined @s(u) = i|ju — u°||%. The
following iterates satisfy

1 n
Unu) = 5llu— e + 3 ard(u +Zak (P (k)0 — ).
k=1

Now, the proof is similar to that of Lemna2 a

REMARK 5.3. From the formula of™, it seems that Algorithm 3 is a method with “infi-
nite memory”. In fact, itis not since we can define a variatilevith the initial valuez® := u°
and Step 6 of Algorithm 3 is replaced by

n+1

z

= 2" = p e F' ("), o™t

= Saa, . p(z" ).

Algorithm 3
Initialization: | Initial guessu® € dom(®), Ay = 0,v° = uY,
sV € [s5,5] (0 < s < L/q <3),andyy(u) = %Hu — P2
Iteration: forn=0,1,2,...
1. anit = 1+\/m
A u +an ™
2 y An+anii
3.u"t = Jew(y")
4.1f IIF’( Y = F(ym)[? > 8 (F'(y") = F'(u"*),y" —u™*)
ands € [s,5 thend = L .¢;gotoStep 1
<un+1 yn F (un+1) F/( n)>
5 527 = Pyt st | Gty 57 ym) PG - F ()
AnJrl A +an+1
6. v = argmin, ¢4 ¥p+1(u) With
wn+1(u) = %(U)
Fan1 (F (™) + (F' (w1, u — a1 + @(u))

end
Output: the output of the algorithm ig = u;;,,.

Finally, the convergence rate for the values of the objediimctional® in Algorithm 3
is obtained similarly as in3b, Theorem 6].

THEOREM 5.4. Let I’ be convex and satisfy the Conditiofis3 of Assumptior?.
Let {u"} be generated by Algorithm 3, and be a minimizer of problem3(1). Then for
anyn > 1

0 * (|2
*) < M (C=L/q).

n

Proof. Note that ifs™ satisfies the condition in Step 4 of Algorithm 3, then it alatifies
the condition (**) of the accelerated method BH]; see B5, Lemma 4]. Thus, the theorem'’s
proof is done similarly as that ir8p, Theorem 6€]. 0
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6. Numerical examples.In this section, we implement the algorithms described abov
for a parameter identification problem for an elliptic palrtifferential equation. We will use
the notation which is customary in this field, i.e., the qitsgrgearched for is now denoted
by a andu denotes the solution of the elliptic equation, which is dfeodata for this problem.
To be precise, we aim at estimating the coefficieit the elliptic boundary problem

(6.1) —div(aVu) =y in Q C R?,
u = 00ono,

with a fixedy € L?(2). Let a* denote the parameter to be recovered andledenote the
solution of 6.1) with parameter* and right-hand sidg. As data we assume that is given,
whereu? is the solution of the elliptic equation with parametérbut perturbed right-hand
sidey® with ||y — °||, < 4. Hence, the available data satigfy* — u°|| 1 () < C with a
certain positive constant. Our task is to determine an aqumation ofa* from u°.

A number of papers, such ak P, 10, 18, 23, 26, 29, 30, 31, 39, 41, 42], have examined
this problem or variations of it; see als@] [

We let

A={a € L®(Q):0<a<a<a, supp(a — a’) CC Q}

and definek : A C L*>°(Q) — H(Q),a — u, the solution operator of(1) with fixed y.
The parameter identification problem regularized by spacsinstraints leads us to the fol-
lowing constrained minimization problem

min O(a) = / a|lVK (a) — Vul [*dz + a®,(a — a°).
acA Q

We setO(a) = 400 if a ¢ AN dom(®). Then this problem is equivalent to

i = K(a) — Vu’|*d ®,(a —a°).
aergy(lm@(a) /Qa|V (a) — Vu°|*dx + a®y(a —a”)
It is known thatF(a) = [, a|VK(a) — Vu’|?dz is convex and Lipschitz differentiable
with respect to theLOC-norm [23], but the Lipschitz differentiability of it with respect to
the L2-norm is, to the best of our knowledge, unknown. However, vile see that the
algorithms work well for this problem. This fact also conteRemark!.1

F'(a)h = — /Q h(|VEK (a)|? — |Vul |} dz

For illustrating our algorithms, we assume thiis the unit disk and
4 ($1,$2) € By 4(0,0.3)

a*(z1,20) = i ' , T1,29) = 4a”,

(w1, 2) {1 otherwise y(@,e2)

whereB, (r1, z2) is the disk with center atr,, z,) and radius'. Here, we take:” = 1 and
thusa* € A sincesupp(a* — a®) CC Q.

We discretized the problems (forward and inverse) by th&efelement methodip] and
set

)

N
=Y [0 en) 2@
k=1
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where {¢ }x=1,....n IS the basis consisting of piecewise linear finite elememtthée dis-
cretized space. Since we assume thap(a* — a®) CC Q is small, many coefficients of the
unknown parameten* — a°, vr)12(0) are equal to zero, i.e," — a’ has a sparse expansion
in the basis of the finite element method.

To obtainu* andu?®, we solve 6.1) by the finite element method on a mesh with 1272 tri-
angles. The solution of(1) as well as the parameterare represented by piecewise linear
finite elements. The algorithms described in the previouaewill compute a sequencé’
for approximatinga®. In order to maintain the ellipticity of the operator, we aafl usual
an additional truncation step in the numerical procedutgcky however, is not covered by
our theoretical investigation, i.e., we cut off valuesatfwhich are belows = 1 in each
iteration.

In the remainder of this section we describe the followingezkments: at first, we com-
pare the effect of our choice of parameters in the gradiettiodenith other choices proposed
in [5, 35], i.e., we compare

e Algorithm 1: method of quadratic approximations with stegges chosen according
to Algorithm 1 andg = 0.5, [s, 5] := [1072,10%],a := 5 - 1077

e Algorithm 1N: gradient method of3b] with ~,, = v4 = 2.

e Algorithm 1B: gradient method o] with n = 2, i.e., this is ISTA with backtrack-
ing.

Secondly, we compare the gradient method with its accelérarsions Algorithm 2 and
Algorithm 3. For Algorithm 1, Algorithm 2, and Algorithm 3 weetq = 0.5, a := 5 - 1075,
and s, 3] := [1072,10%]. We measure the convergence of the computed minimizers to the
true parameted* by considering the mean square error sequence

MSE(a") = /(a" —a*)%dz.
Q

6.1. Numerical experiments witho = 0. We first discuss numerical results without
noise, i.e.u’ = u*. Figure6.1 displays the resulting step S|zé§ in Algorithm 1, Algo-
rithm 1B, and Algorlthm 1N for the firs800 iterations. Large but controlled step sizes are
preferable for fast convergence. Towards the end of thatiter, the step sizes in Algorithm 1
are typically larger than those of the others. The step sizédgorithm 1B are the small-
est. Furthermore, we observe that the initial guesses ®sti#p sizes in Algorithm 1 and
Algorithm 1B always satisfy the conditions in Lemr8z5, but Algorithm 1N needs some
iterations to establish them. Therefore, Algorithm 1N takeore time than Algorithm 1 and
Algorithm 1B; see Figuré.2. Figure6.1shows tha{ M SE(a™)} in Algorithm 1B decreases
most slowly. In the first iteration,A/SE(a™)} in Algorithm 1N decreases faster than that
in Algorithm 1, but after that it decreases more slowly.

The decrease of the objective functionals is illustrate&igure 6.2. In this example,
Algorithm 1 exhibits the best convergence rate.

Figure6.3displaysa™ anda™ with n = 300 for all three algorithms. It shows that the
algorithms recovet* very well and Algorithm 1 gives the best approximationatfwith a
fixed number of iterations.

From this analysis, we conclude that the step sizes comptdd.?2) are preferable;
they are typically larger than those chosen by the otherilgos and they always satisfy the
conditions in Lemma.6.

Now we compare Algorithm 1 with its accelerated versionsg@kithm 2 and Algo-
rithm 3). Figure6.4 displays the values of the step suzésm Algorithm 1, Algorithm 2, and
Algorithm 3. We observe that the initial guesses for the sieps in Algorithm 1 and Algo-
rithm 2 always satisfy the conditions in Step 2, but theahgjuess in Algorithm 3 often needs
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FIG. 6.1.The values of}n and M SE(a™) in Algorithm 1, Algorithm 1B, and Algorithm 1N.
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FIG. 6.2.The decrease rate @ (a™) in Algorithm 1, Algorithm 1B, and Algorithm 1N.

one refinement iteration in order to satisfy the conditioSiap 4 of Algorithm 3. Moreover,
we observe that the convergence orde®{d /n?) for Algorithm 2 and Algorithm 3 as pre-
dicted by the analytic results of the previous section. téetteese algorithms converge faster
than Algorithm 1. This is confirmed in Figu5.

The convergence rate of the objective functional with respe the number of itera-
tions and the computational time is illustrated in Figar& During the first iterations, the
convergence rate of Algorithm 3 is faster than that of Algori 2. The convergence rate is
the slowest for Algorithm 1. This agrees with the theory; $eeorem3.12 Theorem5.1,
and Theorenb.4. However, this is slightly misleading since each iteratadrthe acceler-
ated algorithms needs more time than the original algorit@rerall, the convergence of the
functional values with respect to the computational timegaivalent for all versions.

Figure 6.6 illustratesa™ anda™ with n = 300 computed by all three algorithms. The
accelerated algorithms reconstruct the paramgtéetter than Algorithm 1. The reconstruc-
tions ofa* in Algorithm 2 and Algorithm 3 are almost exact.

6.2. Numerical experiments with noisy data.This section deals with noisy data. To

obtainu’ € H(Q), we first choose’ = y + 5%, where R is computed with the
L2(Q

MATLAB routine randn(size(y)) with settingrandn('state’,0). u9 is then obtained by
solving (6.1) with y replaced byy’. We obtain

e = wllr @

" = 0.0044.
[|lu ||H1(Q)

[’ — u* || 1) = 0.0928 ~ 0.1,

Figure6.7 displays the step :sizesér of Algorithm 1, Algorithm 1B, and Algorithm 1N.
Similar to the case of exact data, Algorithm 1 tends to chdasger step sizes and Al-
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FIG. 6.4.The values ofs% and M SE(a™) in Algorithm 1, Algorithm 2, and Algorithm 3.

gorithm 1B chooses the smallest step sizes. In this casdntéeal s, 5] is needed for
Algorithm 1 at some iterations otherwise the step sizes etetpby the Barzilai-Borwein
rule without using the projectio®’;-: ;17 are out of the intervals, 5], e.g., at some it-
erations in the blue ellipses in the figure. The figure alsavshihat{ A/ SFE(a™)} in Al-
gorithm 1B decreases most slowly. During the first iteratjd/ SE(a™)} in both Algo-
rithm 1 and Algorithm 1N decrease fast, but the error ineeagain after a few iterations.
This might have several reasons. We suspect that the regian parameters were chosen
too small ¢ = 5-107°), i.e., the resulting ill-conditioned system shows thei¢gbsemi-
convergent behavior of iteration methods for inverse mots. If we change the value of
then the shape and values of the sequerddeétF (™) in the algorithms are changed too,
but the semi-convergent behavior will be observed after@icenumber of iterations. As a
remedy, a suitable stopping criterion could be incorpatafich a criterion could be that the
algorithms is stopped whe®(a") — ©(a"")| < ¢ for somee small enough. Alternatively
the discrepancy principlel[] could be used, or one of thefree stopping criteria described,
e.g., in R2, 25, 27, 28] could be adapted to the present nonlinear situation. Heweve do
not consider these problems in this paper and such a criterioot used here.

Figure6.8 shows that the decay rate ®fa™) in Algorithm 1 is the fastest with respect
to the iteration counter and time. Similar to the noise fraseg the computational time of
Algorithm 1N is higher than that of Algorithm 1, and Algonith1B spent the least time.

In both two cases, exact data and noisy data, the initialspsssf the step sizes computed
by (4.2) are efficient in practice. They are adaptive and large eimpogly occasionally
further iterations are needed for reducing the step sizewder to satisfy the respective
criteria.

Figure 6.9 displaysa™* and a™, wheren is taken with respect to the minimum values
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a d"in Alg.1;n=123, MSE=0.173

SRS

o
o &
FN s oo
a o
o &

0 0 o5 o —_— so5lb— —
-1 -1 035 0 05 -1 -05 0 05

a'in Alg.1B;n=300,MSE=0.178 1 d'in Alg.1N;n=255,MSE=0.173

PN A O

Values of 1/s”

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Iteration number Iteration number

FIG. 6.10.The values ofslT and M SE(a™) in Algorithm 1, Algorithm 2 and Algorithm 3.

of MSE(a™) in Algorithm 1, Algorithm 1B, and Algorithm 1N, respectiyellt shows that
the algorithms still recovei* quite well and have the same accuracy.

Now we consider Algorithm 1 and its accelerated versiong@Athm 2 and Algo-
rithm 3). Figure6.10 shows that the minimum values @f SE(a™) in Algorithm 2 and
Algorithm 3 are smaller than that of Algorithm 1. Therefongth a suitable stopping crite-
rion, the accelerated algorithms can obtain good apprdiomsofa*.

In Figure6.11, the convergence rate 6f(a™) in Algorithm 1 is the slowest. They seem
to be the same in Algorithm 2 and Algorithm 3, and the two am@ged algorithms still take
more time than the original algorithm.

Figure6.12illustratesa* anda™, wheren is taken with respect to the minimum values
of MSE(a™) in Algorithm 1, Algorithm 2, and Algorithm 3, respectivelidere, M SE(a™)
in Algorithm 2 and Algorithm 3 are smaller than that in Algbrin 1.

7. Conclusion. We have proposed an algorithm based on quadratic appragimsads
well as two accelerated versions for the minimization peabl
min O(u) :== F(u) + ®(u),
whereH is a Hilbert spacef’ : H — R is a smooth but not necessarily convex map-
ping and® : H — R is defined by®(u) = o, wel{u, r)?, wherep € [1,2],
Wk = wmin > 0, Vk, and{ ¢} is an orthonormal basis 6.

Under Assumptior2, Algorithm 1 is proved to converge. We have also analyzdemdint
strategies for improving the step size selection. In addijtif 7' is convex then Algorithm 2
and Algorithm 3 are proved to converge. The convergenceofdtee objective functionab
in Algorithm 1isO(1/n), two accelerated algorithms (Algorithm 2 and Algorithm 8} af
orderO(1/n?). This rate is known to be optimal for general gradient meth@ti® numerical
examples demonstrate the efficiency of the algorithms.



ETNA
Kent State University
http://etna.math.kent.edu

GRADIENT DESCENT WITH SPARSITY CONSTRAINTS 461
10! 10'
Alg.1 Alg.1
- === Alg2 = = == Alg.2
------- Alg3 cmi=i=Alg3

Values of ©(a")
Values of ©(@")

2 Bl e = ; e e -
0 50 100 150 200 250 300 0 200 400 600 800 1000 1200

Iteration number Computational time (s)

FIG. 6.11.The decrease rate @(a™) in Algorithm 1, Algorithm 2 and Algorithm 3.

a a'in Alg.1;n=123,MSE=0.173
1 1
6 6
4 05 T ‘ 05
2 0 : 2 0
: — 1 1 1
o 0 05— o 0 05—
11 -0.5 0 05 -1o-1 -05 0 0.5
d'in Alg.2;n=62,MSE=0.166 d'in Alg.3;n=54,MSE=0.171
1 1
6 . . 6
4 Pl < 4 .
2 2
L 05— 1 »\// 05— —
0 0 -0.5 0 0.5 0 0 -0.5 0 05

a0 -1 -1

FIG. 6.12.3D-plots and contour plots of exaet anda™ in Algorithm 1, Algorithm 2 and Algorithm 3.

Acknowledgments. The authors would like to thank Prof. Dr. Dinh Nho Hao, who
introduced and suggested to investigate Nesterov’s aéhgoriThe third author was supported
by a scholarship of the graduate program "Scientific Conmgpith Engineering (SCIE)” for
supporting the Ph.D scholarship. The second author gibtefcknowledges the financial
support by Deutsche Forschungsgemeinschaft (DFG) fori®jdm C2 within the SFB 747
'Mikrokaltumformen’.

REFERENCES

[1] R. AcAR AND C. R. VOGEL, Analysis of bounded variation penalty methods for ill-gbpesblemsInverse
Problems, 10 (1994), pp. 1217-1229.

[2] J. Ausol, Some first-order algorithms for total variation based imagstoration J. Math. Imaging Vision,
34 (2009), pp. 307-327.

[3] H. T. BANKS AND K. KuUNISCH, Estimation Techniques for Distributed Parameter SystdBikhauser,
Boston, 1989.

[4] J. BARZILAI AND J. M. BORWEIN, Two-point step size gradient methot/dA J. Numer. Anal., 8 (1988),
pp. 141-148.

[5] A.BECK AND M. TEBOULLE, A fast iterative shrinkage-thresholding algorithm forder inverse problems
SIAM J. Imaging Sci., 2 (2009), pp. 183-202.

[6] T.BONESKY, K. BREDIES, D. A. LORENZ, AND P. MAASS, A generalized conditional gradient method for
nonlinear operator equations with sparsity constrajitserse Problems, 23 (2007), pp. 2041-2058.

[7] K. BREDIES ANDD. A. LORENZ Linear convergence of iterative soft-thresholdidgFourier Anal. Appl.,
14 (2008), pp. 813-837.

[8] K.BREDIES, D. A. LORENZ AND P. MAASS, A generalized conditional gradient method and its conmecti
to an iterative shrinkage methp@omput. Optim. Appl., 42 (2009), pp. 173-193.

[9] T. F. CHAN AND X. TAI, Level set and total variation regularization for elliptioverse problems with dis-
continuous coefficients. Comput. Phys., 193 (2004), pp. 40—66.

[10] Z. CHEN AND J. Zou, An augmented Lagrangian method for identifying discorttiruparameters in elliptic

systemsSIAM J. Control Optim., 37 (1999), pp. 892-910.



462

(11]
(12]
(23]
(14]
(15]
(16]
(17]
(18]
(19]
(20]
(21]
[22]
(23]
(24]
(25]
(26]

(27]

(28]
[29]
(30]
(31]
(32]
(33]
(34]

(35]

(36]

(37]

(38]

(39]

ETNA
Kent State University
http://etna.math.kent.edu

D. A. LORENZ, P. MAASS, AND P. Q. MUOI

P. L. COMBETTES AND V. R. WAJS, Signal recovery by proximal forward-backward splittifgultiscale
Model. Simul., 4 (2005), pp. 1168-1200.

|. DAUBECHIES, M. DEFRISE AND C. DE MoL, An iterative thresholding algorithm for linear inverse
problems with a sparsity constrajffomm. Pure Appl. Math, 57 (2004), pp. 1413-1457.

V. F. DEMYANOV AND A. M. RuBINOV, Approximate Methods in Optimization ProblgmAsnerican Else-
vier, New York, 1970.

J. C. DUNN, Rates of convergence for conditional gradient algorithmamsingular and nonsingular ex-
tremals SIAM J. Control Optim., 17 (1979), pp. 187-211.

, Convergence rates for conditional gradient sequencesrgéga by implicit step length ruleSIAM

J. Control Optim., 18 (1980), pp. 473-487.

, Global and asymptotic convergence rate estimates for a@aprojected gradient process&AM
J. Control Optim., 19 (1981), pp. 368-400.

H. W. ENGL, M. HANKE, AND A. NEUBAUER, Regularization of Inverse ProblemKluwer, Dordrecht,
1996.

R. FaLK, Error estimates for the numerical identification of a varfiealcoefficientMath. Comp., 40 (1983),
pp. 537-546.

M. FRANK AND P. WOLFE, An algorithm for quadratic programmindNaval Res. Logist. Quart., 3 (1956),
pp. 95-110.

M. GRASMAIR, M. HALTMEIER, AND O. SCHERZER Sparse regularization witif penalty term Inverse
Problems, 24 (2008), 055020 (13 pages).

R. GRIESSE ANDD. A. LORENZ A semismooth Newton method for Tikhonov functionals wigtisity
constraints Inverse Problems, 24 (2008), 035007 (19 pages).

U. HAMARIK,, R. PaLM, AND T. RAUS, Comparison of parameter choices in regularization algumis in
case of different information about noise lev@hlcolo, 48 (2011), pp. 47-59.

D. N. HAo AND T. N. T. QUYEN, Convergence rates for Tikhonov regularization of coefficidentification
problems in Laplace-type equatioimverse Problems, 26 (2010), 125014 (23 pages).

B. HOFMANN, B. KALTENBACHER, C. POSCHL, AND SCHERZER A convergence rates result for Tikhonov
regularization in Banach spaces with non-smooth operatorgerse Problems, 23 (2007), pp. 987-1010.

B. JN AND D. A. LORENZ Heuristic parameter-choice rules for convex variationegularization based on
error estimatesSIAM J. Numer. Anal., 48 (2010), pp. 1208-1229.

B. JIN AND P. MAAss, An analysis of electrical impedance tomography with agpilans to Tikhonov regu-
larization, ESAIM Control Optim. Calc. Var., in press, 2012.

S. KINDERMANN, Convergence analysis of minimization-based noise legelgarameter choice rules for
linear ill-posed problemsElectron. Trans. Numer. Anal., 38 (2011), pp. 233-257.
http://etna. math. kent. edu/ vol . 38. 2011/ pp233- 257. di r

S. KINDERMANN AND A. NEUBAUER, On the convergence of the quasioptimality criterion foer@ted)
Tikhonov regularizationinverse Probl. Imaging, 2 (2008), pp. 291-299.

I. KNOWLES, Parameter identification for elliptic problemd. Comput. Appl. Math., 131 (2001), pp. 175—
194.

R. V. KOHN AND B. LOWE, A variational method for parameter identificatioRAIRO Model. Math. Anal.
Numér., 22 (1988), pp. 119-158.

C. KRAVARIS AND J. H. SEINFELD, Identification of parameters in distributed parameter sys$ by regu-
larization, SIAM J. Control Optim., 23 (1985), pp. 217-241.

D. A. LORENZ Convergence rates and source conditions for Tikhonov segation with sparsity con-
straints J. Inverse lll-Posed Probl., 16 (2008), pp. 463-478.

D. A. LORENZ AND A. ROSCH, Error estimates for joint Tikhonov and Lavrentiev regufaiion of con-
strained control problemsAppl. Anal., 89 (2010), pp. 1679-1691.

I. LORIs, On the performance of algorithms for the minimizatior/ pfpenalized functionaldnverse Prob-
lems, 25 (2009), 035008 (16 pages).

Y. NESTEROV, Gradient methods for minimizing composite objective fionctCORE Discussion Papers
2007/76, Universé catholique de Louvain, Center for Operations Researcttandometrics (CORE),
Sept. 2007

E. POLAK, An historical survey of computational methods in optimaiteal, SIAM Rev., 15 (1973), pp. 553—
584.

R. RAMLAU AND E. RESMERITA, Convergence rates for regularization with sparsity coastts Electon.
Trans. Numer. Anal., 37 (2010), pp. 87-104.
http://etna.nts. kent. edu/ vol . 37. 2010/ pp87- 104. di r

R. RaMLAU AND G. TESCHKE A Tikhonov-based projection iteration for nonlinear ilbged problems with
sparsity constraintsNumer. Math., 104 (2006), pp. 177-203.

G. R. RCHTER, Numerical identification of a spatially varying diffusionefficient Math. Comp., 36 (1981),
pp. 375-386.


http://etna.math.kent.edu/vol.38.2011/pp233-257.dir
http://etna.mcs.kent.edu/vol.37.2010/pp87-104.dir

ETNA
Kent State University
http://etna.math.kent.edu

GRADIENT DESCENT WITH SPARSITY CONSTRAINTS 463

[40] P.WEIss, L. FERAUD, AND G. AUBERT, Efficient schemes for total variation minimization undenstaints
in image processingSIAM J. Sci. Comput., 31 (2009), pp. 2047—-2080.

[41] L. W. WHITE AND J. ZHou, Continuity and uniqueness of regularized output least szgiaptimal estima-
tors, J. Math. Anal. Appl., 196 (1995), pp. 53-83.

[42] J. Zou, Numerical methods for elliptic inverse problengt. J. Comput. Math., 70 (1998), pp. 211-232.



