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Abstract. We consider the solution of unsteady viscous flow problems bymultigrid methods employing Runge-
Kutta smoothers. Optimal coefficients for the smoothers arefound by considering the unsteady linear advection
equation and performing a Fourier analysis, respectively,looking at the spectral radius of the multigrid iteration
matrix. The new schemes are compared to using a classic dual time stepping approach, where the scheme for the
steady state equation is reused, meaning that the smoother coefficients are obtained by an optimization based on the
steady state equations, showing significant improvements.
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1. Introduction. During the last decade, numerical methods for unsteady flowshave
garnered increasing attention. In a way, this can be attributed to a certain maturity reached
by methods for steady flows. As was shown by Caughey and Jameson [4], the solution of
steady Euler flows is possible in three to five multigrid steps. Thus, steady two dimensional
flows around airfoils can be solved on a PC in a matter of seconds. The solution of the steady
Reynolds-averaged Navier-Stokes equations (RANS equations) is more difficult and takes
between 50 and 200 steps with a fast solver [12], which means that adequate methods for
steady flows exist.

In this article, we will consider the unsteady case. Using dual time stepping, the above
mentioned multigrid method can be used for unsteady flows at almost no additional imple-
mentation cost [6]. However, it turns out that the convergence rate deteriorates significantly.
Nevertheless, we still obtain a reasonably fast method for unsteady Euler flows. If we devi-
ate further from steady Euler flows and consider the unsteadyNavier-Stokes equations, the
dual time stepping multigrid method was observed to be very slow, in particular for turbulent
flows on high aspect ratio grids [7]. Note that this has been demonstrated in the context of
discontinuous Galerkin methods as well [11].

As mentioned, the multigrid method was fine tuned for the steady Euler equations. We
believe that this is the reason for the deterioration of the convergence rate for unsteady flows:
the method was designed for a different problem and multigrid is known to be sensitive to this.
To redesign the method, it is possible to change restrictionand prolongation or the smoother.
The latter is easier to do in an existing code and therefore, we will taylor the smoother in the
multigrid method to unsteady flow problems to see if convergence speed can be improved.

The specific class of smoothers considered here are explicitRunge-Kutta methods (RK
methods), which have low storage demands and scale well in parallel. Several parameters
can be tuned to obtain a good smoother. This was first considered by Jameson for the slightly
more general class of additive RK methods [7]. Thereby, a steady fourth order equation was
used as a design equation with the goal of obtaining large stability regions and fast damping of
fine grid modes. These schemes are widely used, also for the steady Euler equations. Van Leer
et. al. considered the steady linear advection equation [13] and came up with coefficients,
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which also turned out to work well for the steady Euler equations. Their methodology was
to consider the eigenvalues and eigenvectors of the discrete and continuous design system,
giving rise to the notion of smooth and nonsmooth error components in this context. Then,
the coefficients of the RK method and the CFL number are optimized, such that the smooth
error components are damped the fastest.

Here, we use the unsteady linear advection equation as a model equation and discretize
this with a finite volume scheme and the implicit Euler method. This leads to a linear sys-
tem, which is scaled and shifted compared to the one for steady state computations. The
aggregation multigrid scheme is applied in a dual time stepping manner. To obtain optimal
coefficients, we pursue two strategies. First of all, we apply the technique of van Leer et. al.,
but to the scaled and shifted system, leading to different results than for the non dual time
stepping case. However, this does not take the interactionsbetween the different components
of the multigrid method into account. Therefore, we suggestas a second method to opti-
mize the spectral radius of the multigrid iteration matrix.This has the potential of leading to
truly optimal schemes, but is significantly more costly thanthe first approach. To make the
results easily reproducible, the code can be downloaded from http://www.mathematik.uni-
kassel.de/˜birken/mglinadvgl.zip.

The resulting schemes are compared to the methods of van Leeret. al., showing an
increase in convergence speed of about 50 percent, just by changing the coefficients of the
RK scheme. Thus, it does pay off to redesign the multigrid scheme for the unsteady case,
instead of simply reusing the scheme for the steady case.

The relevance of this approach regarding unsteady flow phenomema stems from the fact
that for a lot of applications, the interesting features arenot on the scale of the fast acoustic
eigenvalues, but on the scale of the convective eigenvalues. This makes A-stable implicit
schemes for time integration much more interesting than explicit schemes, which are severely
restrained by stability conditions. In this context, the implicit Euler method is a prototype
that gives important insight for BDF or DIRK methods as well.The applicability of implicit
schemes in turn is determined by the availability of fast solvers for the arising large nonlinear
equation systems.

If we consider as target application three dimensional unsteady compressible viscous
flows, it becomes apparent that a fast solver must have strongparallel scalability and that
memory requirements must be low. The above mentioned multigrid method scales reasonably
well and has low storage requirements.

The alternative to multigrid is to use Newton’s method, which requires the solution of
large sparse linear equation systems, usually by preconditioned Krylov subspace methods like
GMRES or BiCGSTAB. In particular Jacobian-free methods that circumvent computation
and storage of the Jacobian are an attractive option [10]. However, the preconditioner should
be chosen appropriately Jacobian-free as well. Now, a lot ofmethods that work well on
sequential machines like ILU or SGS do not scale well in parallel, resulting in multigrid
appearing as an attractive preconditioner. This leads us tothe same conundrum in that we
cannot expect multigrid to be a good preconditioner, if it isa slow method.

To improve the steady Euler multigrid method when applying it to different equations or
discretizations in the dual time stepping approach, a few approaches have been tried. Jameson
and Hsu suggest to use one step of the ADI method, followed by afew multigrid steps for
the dual time problem [5], which is similar to using one Newton step, followed by dualtime
stepping. Bijl and Carpenter on the other hand use several multigrid steps up front, followed
by several steps of Newton’s methods [2]. Both report an improvement in comparison to
the base pure dual time stepping scheme. Recently, Birken and Jameson proved that using
multigrid as a nonlinear left preconditioner leads to a stall in Newton convergence [3].
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Finally for steady flows, in the case of a discontinuous Galerkin (DG) method, Bassi et.
al. [1] used the same technique as van Leer et. al. to come up with optimal coefficients for
that discretization, again for the steady linear advectionequation and demonstrated that these
work reasonably well for the steady Euler equations. Kannanand Wang used the specific
class of SSP RK methods as smoothers in a multi-p method in a spectral volume solver and
determined the maximal possible time step for the heat equation [8]. Finally, Klaij et. al.
analyzed the convergence of a multigrid method for a space-time DG method with specific
explicit Runge-Kutta smoothers for the convection-diffusion equation [9].

2. Governing equations and discretization.We consider the linear advection equation

ut + aux = 0.(2.1)

with a > 0 on the intervalx ∈ [0, 2] with periodic boundary conditions.
An equidistant FV discretization for (2.1) with mesh width∆x leads to the evolution

equation for the cell averageui in one celli:

uit +
a

∆x
(ui − ui−1) = 0.

Using the vectoru = (u1, ..., um)T and
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we obtain the system of ODEs

ut +
a

∆x
Bu(t) = 0.(2.2)

Here, we discretize this using implicit Euler with time stepsize∆t, which is also a building
block for the more general diagonally implicit Runge-Kutta(DIRK) methods. Thus, in each
time step, a linear system has to be solved. Using the notationun ≈ u(tn), this can be written
as

u
n+1 − u

n +
a∆t

∆x
Bu

n+1 = 0

⇔ u
n −Au

n+1 = 0(2.3)

where

A = I+
ν

∆x
B,(2.4)

with ν = a∆t. Here,CFL := a∆t/∆x corresponds to the CFL number in the implicit Euler
method. If we consider nonperiodic boundary conditions, the entry in the upper right corner
of B becomes zero. Otherwise, additional terms appear on the right hand side, but this does
not affect multigrid convergence.
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3. Basic multigrid method. To solve equation (2.3), an agglomeration multigrid method
is used, which corresponds best to finite volume discretizations. Thus, the restriction and pro-
longation correspond to joining and dividing neighboring cells and are given by

R =
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Note that this implicitely restricts us to cases with an evennumber of cells.
The coarse grid matrix is obtained by discretizing the problem on that grid. On the

coarsest level, the smoother is applied instead of the usualdirect solver, since this better
corresponds to the Full Approximation Scheme used for the nonlinear equations. We use a
V-cycle and presmoothing only. Thus we obtain the scheme:

Function MG(xl,bl, l)

• xl = S
ν1
l (xl,bl) (Presmoothing)

• if (l > 0)
– rl−1 = Rl−1,l(bl −Alxl) (Restriction)
– vl−1 = 0
– Call MG(vl−1, rl−1, l − 1) (Computation of the coarse grid correction)
– xl = xl +Pl,l−1vl−1 (Correction via Prolongation)

• end if
As smoothers, we considers-stage low-storage explicit Runge-Kutta schemes. These approx-
imate the solution of an initial value problem

ut = f(u), un = u(tn),

and are of the form

u0 = un

uj = un + αj∆t∗f(uj−1), j = 1, ..., s− 1

un+1 = un +∆t∗f(us−1),

where theαj and∆t∗ are free parameters and we make the consistency requirementthat
αj ∈ [0, 1]. The differential equation resulting from a dual time stepping approach to (2.3) is
a hyperbolic equation with source terms in pseudo timet∗:

ut∗ = u
n −Au(t∗), u(t∗0) = u

n.(3.1)

One step of the RK smoother thus consists of performing one step of the RK scheme for the
solution of equation (3.1).

Note that if we were interested in the computation of steady states and wanted to use
time marching to compute these, the relevant equation wouldbe (2.2). Here, for unsteady
problems, we have to look at the system (3.1) instead. The difference is an identity shift and
a factor of∆t in front of the matrixB.
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For a linear problem withf(u) = Au, one step of an explicits-stage RK smoother can
be described by its stability polynomialPs of degrees as

un+1 = Ps(∆t∗A)un,

with ∆t∗ the time step in pseudotime. For example, an explicit 2-stage RK scheme is repre-
sented by

P2(z) = 1 + z + α1z
2,(3.2)

whereas for a 3-stage scheme we have two free parametersα1 andα2 and the polynomial

P3(z) = 1 + z + α2z
2 + α1α2z

3.(3.3)

Finally, we also consider 4-stage schemes with parametersα1, α2 andα3 with polynomial

P4(z) = 1 + z + α3z
2 + α3α2z

3 + α1α2α3z
4.(3.4)

4. Optimizing the smoother. We will consider two different ways of finding good
smoothers, both involving an optimization process. First of all, we can try to optimize the
smoother alone, such that it removes nonsmooth error components fast. This approach was
followed in [13] and later in [1]. Additionally, we suggest to compute the iteration matrixof
the multigrid scheme and minimize its spectral radius in a discrete way.

The difference between the two approaches is that the latterone is theoretically able
to provide truly optimal schemes, whereas the first one does not. However, the second ap-
proach is much more costly, meaning that we are not able to compute the global optimum in
a reasonable time. Therefore, both approaches are discussed here.

4.1. Optimizing the smoothing properties. For the first approach, the eigenvectors
of the matrixA from (2.4) are discrete forms of the functionseixΘ for variousΘ and the
eigenvalues are given by

λ(Θ) = −1−
ν

∆x
(1− e−iΘ).

If nonperiodic boundary conditions are used, the matrix becomes lower triangular and all
eigenvalues are equal to−1 − ν

∆x . In the steady case, the eigenvalues would be scaled and
shifted, resulting inλ(Θ) = − a

∆x(1 − e−iΘ). Now, on the coarse grid, we can represent
functions withΘ ∈ [−π/2, π/2]. Thus, the smoother has to take care of error components
with |Θ| ∈ [π/2, π].

Due to the linearity, it is sufficient to look atPs(∆t∗λ(Θ)) with

∆t∗λ(Θ) = −∆t∗ −
ν∆t∗

∆x
(1− e−iΘ).

Possible parameters of the smoother are the pseudo time stepsize∆t∗ and the coefficients
of the RK method. Now,ν = a∆t is fixed during the multigrid iteration, but∆x not. Fur-
thermore, the pseudo time step is restricted by a CFL condition based onν. Thus, instead of
optimizing for∆t∗, we define the pseudo time step on each grid level as

∆t∗l = c∆xl/ν

and optimize forc := ν∆t∗l /∆xl. Now we have

z(Θ, c; ν,∆xl) := ∆t∗λ(Θ) = −c∆xl/ν − c+ ce−iΘ,(4.1)
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where we see thatz does not depend onν and∆xl separately, but only on∆xl/ν = 1/CFL.
Thus, withe−iΘ = cos(Θ)− i sin(Θ) we obtain

z(Θ, c;CFL) = −c/CFL− c+ c cos(Θ)− ic sin(Θ).

In the end, givenCFL, we have to solve an optimization problem where we look at the
modulus of the maximal value of the smoother for|Θ| ∈ [π/2, π] and then minimize that
over the parametersαj andc. Using symmetry ofPs and equivalenty looking at the square
of the modulus, we obtain

min
c,Ps

max
|Θ|∈[π/2,π]

|Ps(z(Θ, c;CFL))|2.(4.2)

Due to the dependence of the optimal coefficients onCFL, there is no unique optimal
smoother for all problems.

For the 2-stage scheme (3.2), we have:

|P2(z)|
2 = |1 + z + α1z

2|2,

= (1 + Rez + α1Rez2 − α1Imz2)2 + (2α1RezImz + Imz)2.

Similar computations for the 3-stage scheme (3.3) lead to

|P3(z)|
2 = (1 + Rez + α2Rez2 − α2Imz2 + α1α2Rez3 − 3α1α2RezImz2)2

+(Imz + 2α2RezImz − α1α2Imz3 + 3α1α2Rez2Imz)2

and for the 4-stage scheme we obtain

|P4(z)|
2 =

(

1 + Rez + α1Rez2 − α1Imz2 + α1α2Rez3 − 3α1α2RezImz2

+ α1α2α3Rez4 − 6α1α2α3Rez2Imz2 + α1α2α3Imz4
)2

+
(

Imz + 2α1RezImz + 3α1α2Rez2Imz − α1α2Imz3

+ 4α1α2α3Rez3Imz − 4α1α2α3RezImz3
)2

.

−
2

−2

−1

−1

−1

−1

−1
−1

0

0

0

0

1

1

2

α

c

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 −2−1

−1

−1

−1

−1

0

0

1

1

2

α

c

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIG. 4.1. Contourplots of functions log10 max|Θ|∈[π/2,π] |P2(z(Θ, c; 3))|2 (left) and
log10 max|Θ|∈[π/2,π] |P2(z(Θ, c; 24))|2 (right).

It turns out that for these functions, the final form of (4.2) is too difficult to solve exactly,
in particular due to the min-max-formulation. Therefore, we discretize the parameter space
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TABLE 4.1
Results of optimization of smoothing properties for 2-stage scheme.

CFL α c Opt-value
1 0.275 0.745 0.01923
3 0.3 0.93 0.05888
6 0.315 0.96 0.08011
9 0.32 0.975 0.08954
12 0.325 0.97 0.09453
24 0.33 0.98 0.10257

TABLE 4.2
Results of optimization of smoothing properties for 3-stage scheme.

CFL α1 α2 c Opt-value
1 0.12 0.35 1.14 0.001615
3 0.135 0.375 1.37 0.007773
6 0.14 0.385 1.445 0.01233
9 0.14 0.39 1.45 0.01486
12 0.145 0.395 1.44 0.01588
24 0.145 0.395 1.495 0.01772

and compute an approximate solution. This requires a bounded region, which is already the
case forΘ and theαj , which are between 0 and 1. As forc, we know that any explicit RK
scheme has a bounded stability region, therefore we chose anupper bound forc, such that the
optimal value forc is not on the boundary. As an example, the function

f(α, c) := log10 max
|Θ|∈[π/2,π]

|P2(z(Θ, c;CFL))|2

is shown in Figure4.1 for CFL = 3 andCFL = 24. Note that the optimalc is not on the
boundary, meaning that the choicec ∈ [0, 1] here is reasonable. Furthermore, we can see that
for c = 0, we obtain a method with a value of 1. This is correct, since this is a method with
time step zero, meaning that the resulting smoother is the identity. Forα = 0, we obtain the
explicit Euler method. This is also a possible smoother, butas can be seen it is less powerful.
Furthermore, we can see the finite stability regions of the methods.

We now compute the optimal value forCFL = 1, 3, 6, 9, 12, 24, for all schemes using a
MATLAB/C++ code. For the 2-stage scheme, we choose a grid of200 × 200× 200 for the
parameter spaceα1 × c × t. The optimization gives results presented in Table4.1. As can
be seen,CFL = 1 is a special case, otherwise the parameterα1 does not depend onCFL,
whereas there is a slight increase ofc with CFL.

Table4.2shows the results for the 3-stage scheme. There we have one additional param-
eter, leading to the parameter spaceα1×α2× c× t and the grid200× 200× (2 · 200)× 200.
As a restriction forc, we putc ∈ [0, 2]. Again,CFL = 1 is a special case in that a sig-
nificantly smaller value forc comes out. Otherwise, the coefficientsα1 andα2 have only a
weak dependence onCFL. However, the optimal value is decreased by a factor of about500,
suggesting that these schemes are significantly better thanthe 2-stage methods.

Table4.3 shows the results for the 4-stage scheme, where we chose a grid of the size
150 × 150 × 150 × (2 · 150) × 100 with c ∈ [0, 2]. A finer grid was not possible due to
storage restrictions. As for the 3-stage case, a significantly smaller value forc is obtained
for CFL = 1, otherwise there is only a weak dependence of the parametersonCFL. The
optimal value is decreased by a factor of four compared to the3-stage schemes.
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TABLE 4.3
Results of optimization of smoothing properties for 4-stage scheme.

CFL α1 α2 α3 c Opt-value
1 0.0733 0.1867 0.4 1.3267 0.0005302
3 0.0733 0.1867 0.4 1.96 0.002118
6 0.08 0.2 0.4133 1.907 0.00297
9 0.08 0.2 0.4133 1.98 0.003372
12 0.08 0.2 0.42 1.907 0.003972
24 0.0867 0.2133 0.433 1.84 0.004313

An important difference between the schemes obtained is thesize ofc, which is about
0.9 for the 2-stage case, 1.4 for the 3-stage case and 1.9 for the 4-stage case, which suggests
that one effect of allowing more freedom in the design of the smoother is that the stability
region is increased. The stability regions of the optimal methods obtained forCFL = 3 and
CFL = 24 are shown in Figure4.2, emphasizing this point.
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FIG. 4.2. Stability regions of optimally smoothing methods forCFL = 3 (left) andCFL = 24 (right). The
larger the stability region, the higher the number of stages.

4.2. Optimizing the spectral radius. The optimization just considered aims at improv-
ing the smoother on its own, without taking into account the interaction with the coarse grid
correction or the multigrid structure. This has the benefit that the optimization is fast, even for
the 4-stage case, where we run into memory problems. An alternative approach is obtained
by remembering that a linear multigrid scheme can be writtenas a linear iterative scheme

u
(k+1) = Mu

(k) +Nb.

The optimal scheme is then obtained by optimizing the spectral radius of the iteration matrix
M as a function of the smoother, which in turn is a function ofα andc, with c defined as
above:

min
α,c

ρ(M(α, c; ν,∆x)).(4.3)

Regarding the iteration matrix, it is important to note thatthe smoother is furthermore a
function of a right hand side and an approximate solution.

Thus, when applying thes-stage Runge-Kutta smoother on levell to an ODE with right
hand sidefl(u) = b − Alu, there is an additional term on top of the stability polynomial,
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depending on the vectorb:

Ss,l(b,u) = S
u
s,lu+ S

b
s,lb.

Here,Su
s,l = Ps(−∆t∗Al) is the matrix coming out of the stability polynomial, whereas the

second matrix corresponds to a different polynomial. For the 2-, 3- and 4-stage smoother, we
have

S
b
s,l = ∆tIl + α1∆t2Al,(4.4)

S
b
3,l = ∆tIl + α1∆t2Al + α1α2∆t3A2

l ,(4.5)

S
b
4,l = ∆tIl + α1∆t2Al + α1α2∆t3A2

l + α1α2α3∆t4A3
l .(4.6)

When first calling the multigrid function, this is done with the actual right hand side
b and the current approximationu(k). However, on lower levels the right hand side is the
restricted residualRl−1,lrl and the current approximation is the zero vector. For a three-level
scheme, we have

u
(k+1) = S

u
s,2u

(k) + S
b
s,2b+P2,1MG(0, r1, 1)

= S
u
s,2u

(k) + S
b
s,2b+P2,1(S

b
s,1r1 +P1,0S

b
s,0r0),(4.7)

where

r0 = R0,1(I1 −A1S
b
s,1)r1,(4.8)

and

r1 = R1,2(b−A2(S
b
s,2b+ S

u
s,2u

(k)))

= R1,2(I2 −A2S
b
s,2)b−R1,2A2S

u
s,2u

(k).(4.9)

Inserting (4.8) and (4.9) into (4.7), we obtain

u
(k+1) = S

u
s,2u

(k) + S
b
s,2b+P2,1(S

b
s,1 +P1,0S

b
s,0R0,1(I1 −A1S

b
s,1))r1

= (Sb
s,2 +P2,1(S

b
s,1 +P1,0S

b
s,0R0,1(I1 −A1S

b
s,1))R1,2(I2 −A2S

b
s,2))b

+(Su
s,2 −P2,1(S

b
s,1 +P1,0S

b
s,0R0,1(I1 −A1S

b
s,1))R1,2A2S

u
s,2)u

(k).

Thus, the iteration matrix of the three level scheme is givenby

M = S
u
s,2 −P2,1(S

b
s,1 +P1,0S

b
s,0R0,1(I1 −A1S

b
s,1))R1,2A2S

u
s,2.

To solve the optimization problem (4.3), we again compute a discrete optimum, this time
using a MATLAB code and the eig function to obtain the spectral radius. Two alternatives
were considered, firstly using eigs(M,1), which was slower than eig, probably because the
matrices considered are so small and secondly the functionsof the optimization tool box.
To this end, problem (4.3) was solved using the functions fminsearch and fminunc. This was
significantly faster, but the solutions found had larger function values than the discrete search,
in particular for the larger parameter spaces.

For the 2-stage case, we use a grid of size200 × (2 · 200) with c ∈ [0, 2]. Here, both
ν and∆x have to be varied, where we choseν according to the same CFL numbers as for
the last strategy and∆x = 1/24, 1/12, 1/6. The results are shown in Table4.4. The contour
lines of the functionρ(M(α, c; ν,∆x)) are illustrated in Figure (4.3). As can be seen, the
results are qualitatively similar to the ones from the otherstrategy.
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FIG. 4.3. 2-stage method: Contourplots oflog(ρ(M(α, c))) for ∆x = 1/24 and ν = 0.125 (left) and
ν = 1.0 (right).

TABLE 4.4
Results of optimization ofρ(M) for 2-stage scheme.

∆x = 1/24 ∆x = 1/12
CFL ν α c ρ(M) ν α c ρ(M)
1 1/24 0.25 0.545 0.0689 1/12 0.25 0.56 0.0681
3 0.125 0.21 0.615 0.2072 0.25 0.21 0.615 0.2072
6 0.25 0.305 0.94 0.3007 0.5 0.315 0.96 0.2954
9 0.375 0.295 1.145 0.38240.75 0.3 1.145 0.3819
12 0.5 0.295 1.255 0.4584 1.0 0.3 1.26 0.4575
24 1.0 0.295 1.46 0.6425 2.0 0.29 1.485 0.6371

∆x = 1/6
1 1/6 0.245 0.555 0.0673
3 0.5 0.27 0.77 0.1851
6 1.0 0.295 1.0 0.2734
9 1.5 0.29 1.175 0.3694
12 2.0 0.29 1.29 0.4473
24 4.0 0.28 1.51 0.6315

Tables4.5and4.6show the results for the 3-stage and 4-stage case, respectively, where
we used grids of the sizes100× 100× (2 · 100) and50× 50× 50× (2 · 50). The decrease in
mesh width is due to the polynomially growing computationalcost. One optimization on the
fine grid in the 2-stage case takes a couple of minutes, whereas the 4-stage case needs more
than ten hours, despite the coarser grid.

Comparing the results for the different stages, we see that there is no dependence of the
optimal solution on∆x in the sense that for a fixed CFL number and accordingly chosenν,
the results are almost identical. In this sense, the multigrid method obtained has a convergence
speed which is independent of the mesh width. Otherwise, an increase in CFL number leads
to an increase in the spectral radius and thus a decrease of the convergence speed of the
methods. Regarding the coefficients, there is a weak dependence ofα on the CFL number,
butc increases significantly withCFL. Regarding the size of the spectral radius, going from
two to three stages leads to a huge decrease of the optimal value for small and moderate CFL
number, but not for large CFL numbers. As for adding a fourth stage, this actually leads to
a decrease in spectral radius. This can be explained by the much coarser grid used for the
optimization of the 4-stage method. Consequently, the solution found is too far away from
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TABLE 4.5
Results of optimization ofρ(M) for 3-stage scheme.

∆x = 1/24 ∆x = 1/12
CFL ν α1 α2 c ρ(M) ν α1 α2 c ρ(M)
1 1/24 0.11 0.33 0.69 0.04021/12 0.11 0.33 0.69 0.0402
3 0.125 0.14 0.39 1.42 0.08190.25 0.14 0.39 1.43 0.0799
6 0.25 0.14 0.4 1.58 0.14440.5 0.14 0.4 1.6 0.1397
9 0.375 0.12 0.37 1.75 0.23170.75 0.12 0.36 1.77 0.2237
12 0.5 0.13 0.39 1.91 0.31241.0 0.12 0.36 1.95 0.2954
24 1.0 0.12 0.38 2.14 0.52522.0 0.10 0.31 2.42 0.4720

∆x = 1/6
1 1/6 0.11 0.33 0.68 0.0381
3 0.5 0.14 0.39 1.43 0.0799
6 1.0 0.13 0.38 1.67 0.1375
9 1.5 0.12 0.36 1.78 0.2230
12 2.0 0.11 0.34 1.93 0.2948
24 4.0 0.09 0.28 2.59 0.4427

TABLE 4.6
Results of optimization ofρ(M) for 4-stage scheme.

∆x = 1/24 ∆x = 1/12
CFL ν α1 α2 α3 c ρ(M) ν α1 α2 α3 c ρ(M)

1 1/24 0.02 0.08 0.3 0.62 0.0525 1/12 0.02 0.08 0.3 0.62 0.0525
3 0.125 0.02 0.14 0.38 1.42 0.11380.25 0.02 0.14 0.38 1.42 0.1138
6 0.25 0.02 0.14 0.38 1.52 0.17830.5 0.02 0.14 0.38 1.52 0.1783
9 0.375 0.02 0.14 0.4 1.7 0.25010.75 0.02 0.12 0.36 1.78 0.2365
12 0.5 0.02 0.12 0.36 1.9 0.3053 1.0 0.02 0.12 0.34 1.88 0.3040
24 1.0 0.02 0.12 0.34 2.16 0.51732.0 0.02 0.1 0.30 2.18 0.5094

∆x = 1/6

1 1/6 0.02 0.08 0.3 0.62 0.0492
3 0.5 0.02 0.14 0.38 1.42 0.1138
6 1.0 0.02 0.14 0.38 1.52 0.1783
9 1.5 0.02 0.12 0.36 1.78 0.2236
12 2.0 0.02 0.12 0.34 1.88 0.3040
24 4.0 0.02 0.10 0.32 2.34 0.4858

the actual optimum to beat the 3-stage method.
In Figure4.4, the stability region of the optimal methods for∆x = 1/24 andν = 0.125,

as well asν = 1.0 are shown. Again, an increase in the number of stages leads toa larger
stability region.

Comparing the optimal solutions found with the schemes obtained by the previous method,
we see that the coefficients are similar, as is the value ofc and the same goes for the stability
regions.

4.3. Comparison of costs.We now compare the costs of the two approaches. Denot-
ing bync, nα andnΘ the number of points used for the respective parameter space, the first
approach needsncnαnΘ evaluations of the function|Ps(z(Θ, c;CFL))|2. On top of that
max|Θ|∈[π/2,π] |Ps(z(Θ, c;CFL))|2 has to be computedncnα times, followed by a mini-
mum overncnα values. The second approach needsncnα computations ofρ(M(α, c; ν,∆x)),
followed by one mininum overncnα values. Since in MATLAB, the computation of the spec-
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FIG. 4.4. Stability region of optimal 2-, 3- and 4-stage method for∆x = 1/24 and ν = 0.125 (left) and
ν = 1.0 (right). The larger the number of stages, the larger the stability region.

tral radius is about a factor of 1,000 more expensive than evaluating the above function, the
second approach is more costly.

A speedup could be obtained by implementing the method in C++, thus avoiding MAT-
LABs problems with loops.

5. Numerical results. We test the smoothers on two problems with∆x = 1/24 on the
finest level anda = 2.0. As initial conditions, we use a step function with values 5 and 1, as
well as the functionsin(πx). We then perform one time step with∆t = 1/16, respectively
∆t = 0.5, meaning thatν = 0.125 andCFL = 3 (a problem with a medium CFL number),
respectivelyν = 1.0 andCFL = 24 (a problem with a large CFL number). The resulting
linear equation system is solved with 80 steps of the different multigrid methods. As a ref-
erence, the optimal 2- and 3-stage methods derived by van Leer et. al. [13] for steady state
problems are used. The 2-stage method is given byα = 1/3 and ac = 1, whereas the 3-stage
method does not actually fall into the framework consideredhere. It consists of one step of
the explicit Euler method withc = 0.5, followed by a step of a 2-stage method withα = 0.4
andc = 1. All computations are performed using MATLAB.

FIG. 5.1. Initial solution and discrete and numerical solution afterone time step for step function (left) and
sine initial data (right).

In Figure5.1, the computed solutions for the linear advection equation are shown. The
initial data is always shown in blue, whereas the exact solution is in red, as well as the
numerical one. Since the space discretization is of first order and the time integration method
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is implicit Euler, the results are very diffusive. However,the multigrid method computes the
correct solution.

FIG. 5.2.Convergence plots for different methods andCFL = 3: step function (left) and sine initial data (right).

FIG. 5.3.Convergence plots for different methods andCFL = 24: step function (left) and sine initial data (right).

Regarding computational effort, the main work of the multigrid method consists of ma-
trix vector multiplications in the smoother. Thus, the 3-stage schemes are conservatively
50% more costly than the 2-stage schemes, whereas the 4-stage schemes are less than twice
as expensive as the RK-2 smoother.

We now look at the convergence speed of the different methods, where we call the meth-
ods obtained by the second optimizationρ-optimized schemes. In Figure5.2and5.3, log10
of the error in the 2-norm is plotted over multigrid iterations, where the first shows the results
for CFL = 3 for both test cases and the latter the results forCFL = 24 for both test cases.
The 3-stage method of van Leer diverges forCFL = 24 and is only shown in the first figure,
where it is barely faster than the 2-stage method of van Leer.Otherwise we can see, that the
ρ-optimized schemes behave as expected in that the 3-stage scheme is the fastest, then the
4-stage scheme and then the 2-stage scheme with the 3-stage scheme being roughly twice as
fast as the 2-stage scheme. For the schemes coming out of the first optimization, there the
4-stage scheme is faster than the 3-stage scheme, which is faster than the 2-stage scheme.
Furthermore, theρ-optimized schemes are able to beat their counterparts withthe exception
of the 4-stage scheme. Thus, the more costly optimization isgenerally worthwhile.

Generally, the 3-stageρ-optimized scheme is the fastest, in particular it is almosttwice as
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fast as the 2-stageρ-optimized scheme, making it more efficient. Compared to thereference
method of van Leer, it is between two and four times faster, making it between70% and270%
more efficient. Thus, just by changing the coefficients of theRK smoother, we can expect to
gain more than a factor of two in multigrid efficiency.

Finally, we consider the step function case with nonperiodic boundary, to see if the dif-
ferent eigenvalues respectively different matrices lead to problems. As can be seen in Figure
5.4, this is not the case forCFL = 3, as the convergence rate for all methods is almost
unchanged, but not so forCFL = 24, where the new methods have the same convergence
speed, but van Leers 2-stage method becomes as fast as theρ-optimized 2-stage method.

FIG. 5.4. Convergence plots for different methods for step function initial data with nonperiodic boundary
conditions: CFL 3 (left) and CFL 24 (right).

6. Conclusions and outlook.We developed optimal explicit 2-, 3- and 4-stage Runge-
Kutta smoothers for the unsteady linear advection equation. These were demonstrated to
improve convergence speed by a factor of two or more, compared to using a method designed
for steady state. This shows that it does pay to optimize for unsteady flows instead of reusing
the method for steady flows. The optimal smoother does dependon the problem parameters,
but only weakly. The optimization was done in two different ways, one considering the effect
of the smoother on fine grid modes only, whereas the other optimized the spectral radius of the
complete 3-level iteration matrix, being more accurate, but more costly. The best method was
the 3-stage method from the second approach, showing that the more costly approach pays
off. To find methods that perform well for unsteady Euler or even Navier-Stokes equations,
we will pursue the use of more complex model equations for future research.
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