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OPTIMIZING RUNGE-KUTTA SMOOTHERS FOR UNSTEADY FLOW
PROBLEMS*

PHILIPP BIRKENf

Abstract. We consider the solution of unsteady viscous flow problemsbligrid methods employing Runge-
Kutta smoothers. Optimal coefficients for the smoothersfanad by considering the unsteady linear advection
equation and performing a Fourier analysis, respectilebking at the spectral radius of the multigrid iteration
matrix. The new schemes are compared to using a classicitheabktepping approach, where the scheme for the
steady state equation is reused, meaning that the smoatsificents are obtained by an optimization based on the
steady state equations, showing significant improvements.
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1. Introduction. During the last decade, numerical methods for unsteady flawe
garnered increasing attention. In a way, this can be at&ibto a certain maturity reached
by methods for steady flows. As was shown by Caughey and Janjélsdghe solution of
steady Euler flows is possible in three to five multigrid stepisus, steady two dimensional
flows around airfoils can be solved on a PC in a matter of sexoftuke solution of the steady
Reynolds-averaged Navier-Stokes equations (RANS eqstis more difficult and takes
between 50 and 200 steps with a fast sol&,| which means that adequate methods for
steady flows exist.

In this article, we will consider the unsteady case. Usingldime stepping, the above
mentioned multigrid method can be used for unsteady flowénadst no additional imple-
mentation costq]. However, it turns out that the convergence rate deteesraignificantly.
Nevertheless, we still obtain a reasonably fast methodristaady Euler flows. If we devi-
ate further from steady Euler flows and consider the unst&dyer-Stokes equations, the
dual time stepping multigrid method was observed to be Viery,sn particular for turbulent
flows on high aspect ratio grid3][ Note that this has been demonstrated in the context of
discontinuous Galerkin methods as wéll].

As mentioned, the multigrid method was fine tuned for thedstdzuler equations. We
believe that this is the reason for the deterioration of thevergence rate for unsteady flows:
the method was designed for a different problem and muitiglknown to be sensitive to this.
To redesign the method, it is possible to change restrietimhprolongation or the smoother.
The latter is easier to do in an existing code and therefoeayill taylor the smoother in the
multigrid method to unsteady flow problems to see if convecgespeed can be improved.

The specific class of smoothers considered here are exlicige-Kutta methods (RK
methods), which have low storage demands and scale wellrallgla Several parameters
can be tuned to obtain a good smoother. This was first corgldsrJameson for the slightly
more general class of additive RK method [Thereby, a steady fourth order equation was
used as a design equation with the goal of obtaining lardgpdisgaegions and fast damping of
fine grid modes. These schemes are widely used, also fothéysEuler equations. Van Leer
et. al. considered the steady linear advection equaifiGhgnd came up with coefficients,
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which also turned out to work well for the steady Euler equai Their methodology was

to consider the eigenvalues and eigenvectors of the désaered continuous design system,
giving rise to the notion of smooth and nonsmooth error comepds in this context. Then,

the coefficients of the RK method and the CFL number are opéithisuch that the smooth

error components are damped the fastest.

Here, we use the unsteady linear advection equation as al expaigtion and discretize
this with a finite volume scheme and the implicit Euler methdtiis leads to a linear sys-
tem, which is scaled and shifted compared to the one for gtetade computations. The
aggregation multigrid scheme is applied in a dual time stepmanner. To obtain optimal
coefficients, we pursue two strategies. First of all, we pip technique of van Leer et. al.,
but to the scaled and shifted system, leading to differesulte than for the non dual time
stepping case. However, this does not take the interadtietvgeen the different components
of the multigrid method into account. Therefore, we sug@ssa second method to opti-
mize the spectral radius of the multigrid iteration matfikis has the potential of leading to
truly optimal schemes, but is significantly more costly tiiaa first approach. To make the
results easily reproducible, the code can be downloaded fritp://www.mathematik.uni-
kassel.de/"birken/mglinadvgl.zip.

The resulting schemes are compared to the methods of vaneteel., showing an
increase in convergence speed of about 50 percent, justdangoiy the coefficients of the
RK scheme. Thus, it does pay off to redesign the multigriceeud for the unsteady case,
instead of simply reusing the scheme for the steady case.

The relevance of this approach regarding unsteady flow phena stems from the fact
that for a lot of applications, the interesting featuresraoton the scale of the fast acoustic
eigenvalues, but on the scale of the convective eigenvallibss makes A-stable implicit
schemes for time integration much more interesting thati@xgchemes, which are severely
restrained by stability conditions. In this context, theplimit Euler method is a prototype
that gives important insight for BDF or DIRK methods as wé&lhe applicability of implicit
schemes in turn is determined by the availability of fasterd for the arising large nonlinear
equation systems.

If we consider as target application three dimensionalaadyt compressible viscous
flows, it becomes apparent that a fast solver must have spardjlel scalability and that
memory requirements must be low. The above mentioned midltigethod scales reasonably
well and has low storage requirements.

The alternative to multigrid is to use Newton’s method, whiequires the solution of
large sparse linear equation systems, usually by precondi Krylov subspace methods like
GMRES or BiCGSTAB. In particular Jacobian-free methodg ticumvent computation
and storage of the Jacobian are an attractive opfi6jn However, the preconditioner should
be chosen appropriately Jacobian-free as well. Now, a lehethods that work well on
sequential machines like ILU or SGS do not scale well in pelatesulting in multigrid
appearing as an attractive preconditioner. This leads tiset@ame conundrum in that we
cannot expect multigrid to be a good preconditioner, if & slow method.

To improve the steady Euler multigrid method when applytrtg different equations or
discretizations in the dual time stepping approach, a fgwa@aches have been tried. Jameson
and Hsu suggest to use one step of the ADI method, followed feyanultigrid steps for
the dual time problemd], which is similar to using one Newton step, followed by dtiale
stepping. Bijl and Carpenter on the other hand use seveitigmd steps up front, followed
by several steps of Newton’s method§.[ Both report an improvement in comparison to
the base pure dual time stepping scheme. Recently, Birkerdameson proved that using
multigrid as a nonlinear left preconditioner leads to a gtaNewton convergence].
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Finally for steady flows, in the case of a discontinuous GéefDG) method, Bassi et.
al. [1] used the same technique as van Leer et. al. to come up withalptoefficients for
that discretization, again for the steady linear advedatipmation and demonstrated that these
work reasonably well for the steady Euler equations. Kararath Wang used the specific
class of SSP RK methods as smoothers in a muttiethod in a spectral volume solver and
determined the maximal possible time step for the heat eqquf]. Finally, Klaij et. al.
analyzed the convergence of a multigrid method for a spateG method with specific
explicit Runge-Kutta smoothers for the convection-diifunsequation 9.

2. Governing equations and discretization.We consider the linear advection equation
(2.1) U + augy = 0.

with a > 0 on the interval: € [0, 2] with periodic boundary conditions.
An equidistant FV discretization fo2(1) with mesh widthAxz leads to the evolution
equation for the cell averagg in one celli:

L(Uz —u;—1) = 0.

Ui + Az

Using the vecton = (uy, ..., u,,)" and

1 -1
-1 1
B— -1 1 ’
-1 1
we obtain the system of ODEs
a
(22) u; + A—xBu(t) =0.

Here, we discretize this using implicit Euler with time stpe At¢, which is also a building
block for the more general diagonally implicit Runge-KuttdRK) methods. Thus, in each
time step, a linear system has to be solved. Using the notafiox u(t,,), this can be written
as

u"tt —u" a—AtBu”+1 =0
Az
(2.3) su—Au"t =0
where
v
2.4 A=1+—B
2.4) + B,

with v = aAt. Here,CFL := aAt/Ax corresponds to the CFL number in the implicit Euler
method. If we consider nonperiodic boundary conditions,ghtry in the upper right corner
of B becomes zero. Otherwise, additional terms appear on thetrand side, but this does
not affect multigrid convergence.
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3. Basic multigrid method. To solve equationd.3), an agglomeration multigrid method
is used, which corresponds best to finite volume discrébizat Thus, the restriction and pro-
longation correspond to joining and dividing neighborimfi€and are given by

1
1

andP = 2R = 1

Note that this implicitely restricts us to cases with an enember of cells.

The coarse grid matrix is obtained by discretizing the peoblon that grid. On the
coarsest level, the smoother is applied instead of the wditedt solver, since this better
corresponds to the Full Approximation Scheme used for th@imear equations. We use a
V-cycle and presmoothing only. Thus we obtain the scheme:

Function MGx;, b, 1)
e x; =S (x4, b;) (Presmoothing)

o if (l > 0)
- r_1 = Rl—l,l(bl — Ale) (Restriction)
-vi-1=0

— Call MG(vi-1,1r;-1,1 — 1) (Computation of the coarse grid correction)
- x; =x; + P;;_1v,—; (Correction via Prolongation)
e end if
As smoothers, we considerstage low-storage explicit Runge-Kutta schemes. Thesoap
imate the solution of an initial value problem

u; =f(u), u,=u(t,),
and are of the form

Up = up
u; =u, + a; At f(u;q), j=1,...,s—1
U, i1 = u, + At*f(us—1),

where thea; and At* are free parameters and we make the consistency requirénaent
€ [0, 1]. The differential equation resulting from a dual time stegmpproach to4.3) is
a hyperbolic equation with source terms in pseudo titne

(3.1) w =u” — Au(t’), u(ty) =u".

One step of the RK smoother thus consists of performing aedaftthe RK scheme for the
solution of equationd.1).

Note that if we were interested in the computation of steadies and wanted to use
time marching to compute these, the relevant equation woel@®.2). Here, for unsteady
problems, we have to look at the systednlf instead. The difference is an identity shift and
a factor of At in front of the matrixB.
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For a linear problem witli(u) = Au, one step of an explicit-stage RK smoother can
be described by its stability polynomi&) of degrees as

U,y = P (At*A)u'm

with At* the time step in pseudotime. For example, an explicit 2esRil§ scheme is repre-
sented by

(3.2 Py(z) = 14z + a122,

whereas for a 3-stage scheme we have two free parangtersda. and the polynomial
(3.3) P3(2) =1+ 2 + az2® + ajaz2®.

Finally, we also consider 4-stage schemes with parameters, andas with polynomial
(3.4) Pyz) =142z + 322 + azaez® + agasas 2t

4. Optimizing the smoother. We will consider two different ways of finding good
smoothers, both involving an optimization process. Fifstlh we can try to optimize the
smoother alone, such that it removes nonsmooth error coemgeifast. This approach was
followed in [13] and later in [l]. Additionally, we suggest to compute the iteration matrix
the multigrid scheme and minimize its spectral radius insgmite way.

The difference between the two approaches is that the latteris theoretically able
to provide truly optimal schemes, whereas the first one doeshowever, the second ap-
proach is much more costly, meaning that we are not able tgpuatathe global optimum in
a reasonable time. Therefore, both approaches are disichisse

4.1. Optimizing the smoothing properties. For the first approach, the eigenvectors
of the matrixA from (2.4) are discrete forms of the function&*® for various© and the
eigenvalues are given by

v —i0
AO) =-1 Aa:(l e 7).
If nonperiodic boundary conditions are used, the matrixobees lower triangular and all
eigenvalues are equal tel — <= In the steady case, the eigenvalues would be scaled and
shifted, resulting iIM\(0) = —z=(1 — e~'©). Now, on the coarse grid, we can represent
functions with® € [—n/2,7/2]. Thus, the smoother has to take care of error components
with |©] € [r/2, 7).
Due to the linearity, it is sufficient to look d@ (At*A(©)) with

vAt*

1
Ax (
Possible parameters of the smoother are the pseudo timsizeefdt* and the coefficients
of the RK method. Nowy = aAt is fixed during the multigrid iteration, bukz not. Fur-

thermore, the pseudo time step is restricted by a CFL camditased ow. Thus, instead of
optimizing for At*, we define the pseudo time step on each grid level as

A \O) = —At* — —e719),

At; = cAx; /v
and optimize for := vAt; /Ax;. Now we have

(4.2) 2(0,¢;v, Axy) = AP AN(O) = —cAz; /v — ¢+ ce O,
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where we see thatdoes not depend anandAx; separately, but only oAz; /v = 1/CFL.
Thus, withe ™ = cos(©) — isin(0) we obtain

2(0,¢;CFL) = —¢/CFL — ¢+ ccos(©) — icsin(O).

In the end, givenC'F'L, we have to solve an optimization problem where we look at the
modulus of the maximal value of the smoother f& € [x/2, 7] and then minimize that
over the parameters; andc. Using symmetry ofP; and equivalenty looking at the square
of the modulus, we obtain

4.2 min  max |Py(2(0,c;CFL))2.
(4.2) iy |®\e[vr/2m]| s (2( )|

Due to the dependence of the optimal coefficientsCofL, there is no unique optimal
smoother for all problems.
For the 2-stage schem®.p), we have:

1P(2) = |1 + 2z + aq %%,
= (1 + Rez + a;Rez? — a1Im2?)? + (2a;RezImz + Imz)?.

Similar computations for the 3-stage scher@é&)lead to

|P3(z)|2 =(1+Rez + asRez? — aslmz? + ajasRer® — 3041042Rez|mz2)2
+(Imz + 2a3RezImz — ajaslmz® + 3oz1a2Rez2lmz)2

and for the 4-stage scheme we obtain

|Py(2)]? = (1 + Rez + ayRez? — a1lmz? + ajasRez® — 3aqasRezlmz?
+ a1a2a3R62'4 — 6a1a2a3R622|m22 + a1a2a3|m24)2

+ (Imz + 2a1RezImz + 3a1asRez?Imz — ajaslmz®

. o 2
+ daqasasRez’lmz — 4a1a2a3Rezlmzd)

01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09
a a

Fic. 4.1. Contourplots  of  functions logyq max|g|e(r/2,x] [P2(2(0, ¢; 3))|2 (lefty and
log g max|e|efr/2,x [P2(2(©, ¢; 24))|? (right).

It turns out that for these functions, the final form 4f3) is too difficult to solve exactly,
in particular due to the min-max-formulation. Therefore discretize the parameter space
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TABLE 4.1
Results of optimization of smoothing properties for 2-stacheme.

CFL | « c Opt-value
1 0.275 0.745 0.01923
3 0.3 0.93 0.05888
6 0.315 0.96 0.08011
9 0.32 0.975 0.08954
12 0.325 0.97 0.09453
24 0.33 0.98 0.10257

TABLE 4.2
Results of optimization of smoothing properties for 3-stacheme.

CFL | oy Qs c Opt-value
1 0.12 035 1.14 0.001615
3 0.135 0.375 1.37 0.007773
6 0.14 0.385 1.445 0.01233
9 0.14 0.39 1.45 0.01486
12 0.145 0.395 1.44 0.01588
24 0.145 0.395 1.495 0.01772

and compute an approximate solution. This requires a bauredgon, which is already the
case for© and thex;, which are between 0 and 1. As forwe know that any explicit RK
scheme has a bounded stability region, therefore we chaseper bound for, such that the
optimal value forc is not on the boundary. As an example, the function

fla,c) :=logy, max |Py(2(0,c;CFL))?

|Ol€(n/2,7]

is shown in Figuret.1for CFL = 3 andCFL = 24. Note that the optimat is not on the
boundary, meaning that the choice [0, 1] here is reasonable. Furthermore, we can see that
for ¢ = 0, we obtain a method with a value of 1. This is correct, sinégitha method with
time step zero, meaning that the resulting smoother is #tity. Forae = 0, we obtain the
explicit Euler method. This is also a possible smootheralsiutan be seen it is less powerful.
Furthermore, we can see the finite stability regions of ththods.

We now compute the optimal value fotfF'L = 1, 3,6, 9, 12, 24, for all schemes using a
MATLAB/C++ code. For the 2-stage scheme, we choose a grithofx 200 x 200 for the
parameter space; x ¢ x t. The optimization gives results presented in Table As can
be seenC' FL = 1 is a special case, otherwise the paramatedoes not depend o F'L,
whereas there is a slight increase-afith CF'L.

Table4.2shows the results for the 3-stage scheme. There we have ditioaadl param-
eter, leading to the parameter spagex as x ¢ x t and the grid200 x 200 x (2 - 200) x 200.
As a restriction forc, we pute € [0,2]. Again, CFL = 1 is a special case in that a sig-
nificantly smaller value for comes out. Otherwise, the coefficients andas, have only a
weak dependence @niF' L. However, the optimal value is decreased by a factor of aboit
suggesting that these schemes are significantly bettethieaystage methods.

Table 4.3 shows the results for the 4-stage scheme, where we chosd afghie size
150 x 150 x 150 x (2 - 150) x 100 with ¢ € [0,2]. A finer grid was not possible due to
storage restrictions. As for the 3-stage case, a significantaller value forc is obtained
for CFL = 1, otherwise there is only a weak dependence of the paranteie€rd’L. The
optimal value is decreased by a factor of four compared t@tkage schemes.
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TABLE 4.3
Results of optimization of smoothing properties for 4-stagheme.

CFL | on 1o o3 c Opt-value

1 0.0733 0.1867 0.4 1.3267 0.0005302
3 0.0733 0.1867 0.4 1.96 0.002118
6 0.08 0.2 0.4133 1.907 0.00297

9 0.08 0.2 0.4133 1.98 0.003372
12 0.08 0.2 0.42 1.907 0.003972
24 0.0867 0.2133 0.433 1.84 0.004313

An important difference between the schemes obtained isiigeofc, which is about
0.9 for the 2-stage case, 1.4 for the 3-stage case and 119efdr$tage case, which suggests
that one effect of allowing more freedom in the design of tather is that the stability
region is increased. The stability regions of the optimathuds obtained fo€ 'L = 3 and
CFL = 24 are shown in Figurd.2, emphasizing this point.

: // -
N

-6 -4 -2 0

FIG. 4.2. Stability regions of optimally smoothing methods 6F' L. = 3 (left) andC' F'L = 24 (right). The
larger the stability region, the higher the number of stages

4.2. Optimizing the spectral radius. The optimization just considered aims at improv-
ing the smoother on its own, without taking into account titeriaction with the coarse grid
correction or the multigrid structure. This has the benkét the optimization is fast, even for
the 4-stage case, where we run into memory problems. Amalige approach is obtained
by remembering that a linear multigrid scheme can be writea linear iterative scheme

u*+t) = Mu® + Nb.

The optimal scheme is then obtained by optimizing the spbdius of the iteration matrix
M as a function of the smoother, which in turn is a functiormaéind ¢, with ¢ defined as

above:

(4.3) min p(M(a, ¢; v, Ax)).

Regarding the iteration matrix, it is important to note tkia smoother is furthermore a
function of a right hand side and an approximate solution.

Thus, when applying the-stage Runge-Kutta smoother on levéb an ODE with right
hand sidef;(u) = b — A,u, there is an additional term on top of the stability polynahni
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depending on the vectar.
Ssu(b,u) =S¥ u+8’ b.

Here,S¢, = Ps(—At"A,) is the matrix coming out of the stability polynomial, whesehe
second matrix corresponds to a different polynomial. Fer2h 3- and 4-stage smoother, we
have

(4.4) SY, = AtL + o APA,
(4.5) S5, = At + a1 AP Ay + a0 AP AT,
(46) Slﬁi,l = Atl; + Oqu,QAl + OqOégAf,gAlQ + ClekQCkgAtAA?.

When first calling the multigrid function, this is done withet actual right hand side
b and the current approximatiant®). However, on lower levels the right hand side is the
restricted residudR,;_; ;r; and the current approximation is the zero vector. For a thees
scheme, we have
ultbt =8 ut®) + 8% b+ Py 1 MG(0,r1,1)

S

(4.7) =8",u® + 8% b+ Py (8% 11 + P1oSY gro),
where

(4.8) ro = Ro1 (I — AyS% ) )ry,

and

r; = RLQ(b — AQ(SZsz + S;ﬂgu(k)))
(49) = RLQ(IQ — AQS?72)b — R172Agsg72u(k).

Inserting @.8) and @.9) into (4.7), we obtain

ulb ) =88 u® + 8% b+ Py (S + P1oSE Roi (I — A1SE )
= (S5 +P21(SY, +P1,0S, gRo1 (I — A1S%,))Rio(I — A2SY,))b
+(S¥, —P21(Sh, + P1oSE gRo1(T1 — A1S)))R12A,8% ) )ul®).

Thus, the iteration matrix of the three level scheme is glwen
M = Ssug — P271(Sg71 + P170827OR071(11 — A18271))R172AQS'§72.

To solve the optimization problerd (3), we again compute a discrete optimum, this time
using a MATLAB code and the eig function to obtain the spdctrdius. Two alternatives
were considered, firstly using eigs(M,1), which was slovmteig, probably because the
matrices considered are so small and secondly the functibtiee optimization tool box.
To this end, problen¥(.3) was solved using the functions fminsearch and fminuncs Was
significantly faster, but the solutions found had largerction values than the discrete search,
in particular for the larger parameter spaces.

For the 2-stage case, we use a grid of 9i@@ x (2 - 200) with ¢ € [0,2]. Here, both
v and Az have to be varied, where we chaseaccording to the same CFL numbers as for
the last strategy andx = 1/24,1/12,1/6. The results are shown in Tabled. The contour
lines of the functionp(M(«, ¢; v, Ax)) are illustrated in Figure4(3). As can be seen, the
results are qualitatively similar to the ones from the o#teategy.
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FiG. 4.3. 2-stage method: Contourplots tfg(p(M (e, ¢))) for Az = 1/24 andv = 0.125 (left) and
v = 1.0 (right).

TABLE 4.4
Results of optimization @f(IM) for 2-stage scheme.

Az =1/24 Az =1/12
CFL | v a c p(M) | v ! c p(M)
1 1/24 0.25 0545 0.06891/12 0.25 0.56 0.0681
3 0.125 0.21 0.615 0.20720.25 0.21 0.615 0.2072
6 0.25 0.305 0.94 0.300f0.5 0.315 0.96 0.2954
9 0.375 0.295 1.145 0.38240.75 0.3 1.145 0.3819

12 0.5 0.295 1.255 0.45841.0 0.3 1.26  0.4575
24 1.0 0.295 146 0.64252.0 0.29 1485 0.6371
Axr=1/6

1 1/6 0.245 0.555 0.0673
3 0.5 0.27 0.77 0.185]1
6 1.0 0.295 1.0 0.2734
9 15 0.29 1.175 0.3694
12 2.0 0.29 1.29 0.4473
24 4.0 0.28 151 0.6315%

Tables4.5and4.6 show the results for the 3-stage and 4-stage case, reggigctiere
we used grids of the sizd90 x 100 x (2-100) and50 x 50 x 50 x (2-50). The decrease in
mesh width is due to the polynomially growing computatiocdt. One optimization on the
fine grid in the 2-stage case takes a couple of minutes, whénead-stage case needs more
than ten hours, despite the coarser grid.

Comparing the results for the different stages, we see lilea¢ is no dependence of the
optimal solution onAx in the sense that for a fixed CFL number and accordingly chosen
the results are almostidentical. In this sense, the midtigethod obtained has a convergence
speed which is independent of the mesh width. Otherwisey@ease in CFL number leads
to an increase in the spectral radius and thus a decrease abtivergence speed of the
methods. Regarding the coefficients, there is a weak depead#« on the CFL number,
butc increases significantly with' /' L. Regarding the size of the spectral radius, going from
two to three stages leads to a huge decrease of the optimalfealsmall and moderate CFL
number, but not for large CFL numbers. As for adding a foutdlys, this actually leads to
a decrease in spectral radius. This can be explained by tlel coarser grid used for the
optimization of the 4-stage method. Consequently, thetisoldound is too far away from
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TABLE 4.5
Results of optimization ¢f(IM) for 3-stage scheme.

Az =1/24 Az =1/12
CFL | v o Qg c pM) | v % Qo c p(M)
1 1/24 0.11 0.33 0.69 0.040p1/12 0.11 0.33 0.69 0.0402
3 0.125 0.14 0.39 142 0.08190.25 0.14 0.39 1.43 0.0799
6 025 0.14 04 158 0.144405 0.14 04 16 0.1397
9 0.375 0.12 0.37 1.75 0.23170.75 0.12 0.36 1.77 0.2237

12 0.5 0.13 0.39 191 0.31241.0 0.12 0.36 195 0.2954
24 1.0 0.12 0.38 2.14 0.525p2.0 0.10 0.31 242 0.4720
Axr=1/6
1/6 0.11 0.33 0.68 0.038
0.5 0.14 0.39 143 0.079
1.0 0.13 0.38 1.67 0.137
15 0.12 0.36 1.78 0.223
2 2.0 0.11 0.34 193 0.294
4 4.0 0.09 0.28 2.59 0.442

~N 00 O Or ©F

TABLE 4.6
Results of optimization ¢f(IM) for 4-stage scheme.

Az =1/24 Az =1/12
CFL | v (e %1 s a3 c p(M) v (e %1 Qs as c p(M)
1 1/24 0.02 0.08 0.3 0.62 0.05251/12 0.02 0.08 0.3 0.62 0.0525
3 0.125 0.02 0.14 0.38 1.42 0.11380.25 0.02 0.14 0.38 1.42 0.1138
6 0.25 0.02 0.14 0.38 152 0.17830.5 0.02 0.14 0.38 152 0.1783
9 0.375 0.02 0.14 0.4 1.7 0.25010.75 0.02 0.12 0.36 1.78 0.2365

12 |05 002 012 036 1.9 030581.0 002 012 034 1.88 0.3040
24 10 002 012 034 216 051782.0 002 01 030 218 0.5094
Az =1/6

1 1/6 0.02 0.08 0.3 0.62 0.049p
3 0.5 0.02 0.14 0.38 142 0.1138
6 1.0 0.02 0.14 0.38 152 0.1783
9 15 0.02 0.12 036 178 0.2236
12 2.0 0.02 0.12 0.34 188 0.3040
24 4.0 0.02 0.10 0.32 234 0.4858

the actual optimum to beat the 3-stage method.

In Figure4.4, the stability region of the optimal methods far: = 1/24 andv = 0.125,
as well asr = 1.0 are shown. Again, an increase in the number of stages leatatger
stability region.

Comparing the optimal solutions found with the schemesinétkby the previous method,
we see that the coefficients are similar, as is the valueanid the same goes for the stability
regions.

4.3. Comparison of costs.We now compare the costs of the two approaches. Denot-
ing by n., n, andne the number of points used for the respective parameter sfyecérst
approach needs.n,ne evaluations of the functiohP;(z(©,c; CFL))[?. On top of that
max|e|efx/2,q |Ps(2(0, ¢; CFL))?> has to be computed,.n,, times, followed by a mini-
mum ovem.n, values. The second approach neegds, computations of(M(«, ¢; v, Ax)),
followed by one mininum ovet.n, values. Since in MATLAB, the computation of the spec-
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e

FIG. 4.4. Stability region of optimal 2-, 3- and 4-stage method fox = 1/24 andv = 0.125 (left) and
v = 1.0 (right). The larger the number of stages, the larger the #itsitregion.

tral radius is about a factor of 1,000 more expensive thatuatiag the above function, the
second approach is more costly.

A speedup could be obtained by implementing the method in, @ts avoiding MAT-
LABs problems with loops.

5. Numerical results. We test the smoothers on two problems with = 1/24 on the
finest level andr = 2.0. As initial conditions, we use a step function with valuendl 4, as
well as the functiosin(7z). We then perform one time step witkt = 1/16, respectively
At = 0.5, meaning that = 0.125 andC'F'L = 3 (a problem with a medium CFL number),
respectivelyy = 1.0 andCF'L = 24 (a problem with a large CFL number). The resulting
linear equation system is solved with 80 steps of the diffeneultigrid methods. As a ref-
erence, the optimal 2- and 3-stage methods derived by vandteal. [L3] for steady state
problems are used. The 2-stage method is givem by1/3 and ac = 1, whereas the 3-stage
method does not actually fall into the framework considdrerk. It consists of one step of
the explicit Euler method with = 0.5, followed by a step of a 2-stage method with= 0.4
andc = 1. All computations are performed using MATLAB.

°e-1
®®®®® O Sl att=0 o o o sol attn
ast o ©  Exactsol. att=0.1 08 ° L2280, O Exactsol attl
® ® ¥ Discr, sol. att=01 © @ o ¥ Discr. sol. attl

FiG. 5.1. Initial solution and discrete and numerical solution aftame time step for step function (left) and
sine initial data (right).

In Figure5.1, the computed solutions for the linear advection equatiershown. The
initial data is always shown in blue, whereas the exact gwius in red, as well as the
numerical one. Since the space discretization is of firstioadd the time integration method
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is implicit Euler, the results are very diffusive. Howevilre multigrid method computes the

correct solution.
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F1G. 5.2.Convergence plots for different methods ané’' . = 3: step function (left) and sine initial data (right).
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FiG. 5.3.Convergence plots for different methods ané’L = 24: step function (left) and sine initial data (right).
Regarding computational effort, the main work of the muiltignethod consists of ma-
trix vector multiplications in the smoother. Thus, the 8g& schemes are conservatively
50% more costly than the 2-stage schemes, whereas the 4-stegjaes are less than twice
as expensive as the RK-2 smoother.

We now look at the convergence speed of the different methuausre we call the meth-
ods obtained by the second optimizatigoptimized schemes. In Figute2 and5.3, log;,
of the error in the 2-norm is plotted over multigrid iterat& where the first shows the results
for CF L = 3 for both test cases and the latter the resultsférl. = 24 for both test cases.
The 3-stage method of van Leer divergesdth' L = 24 and is only shown in the first figure,
where it is barely faster than the 2-stage method of van l@#rerwise we can see, that the
p-optimized schemes behave as expected in that the 3-sthgmeds the fastest, then the
4-stage scheme and then the 2-stage scheme with the 3-stegresbeing roughly twice as
fast as the 2-stage scheme. For the schemes coming out ofghepfimization, there the
4-stage scheme is faster than the 3-stage scheme, whicstés fhan the 2-stage scheme.
Furthermore, the-optimized schemes are able to beat their counterpartstirdtiexception
of the 4-stage scheme. Thus, the more costly optimizatigenrally worthwhile.

Generally, the 3-stageoptimized scheme is the fastest, in particular it is alnhwite as
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fast as the 2-stageoptimized scheme, making it more efficient. Compared taéfierence
method of van Leer, it is between two and four times fastekinugit betweerv0% and270%
more efficient. Thus, just by changing the coefficients ofRikesmoother, we can expect to
gain more than a factor of two in multigrid efficiency.

Finally, we consider the step function case with nonpedadiundary, to see if the dif-
ferent eigenvalues respectively different matrices legurbblems. As can be seen in Figure
5.4, this is not the case fo€' 'L = 3, as the convergence rate for all methods is almost
unchanged, but not so fa¥ 'L = 24, where the new methods have the same convergence
speed, but van Leers 2-stage method becomes as fastastienized 2-stage method.

RKZ-WL
REZ-opt
RE2-rho-opt
RK3-opt
RK3-rho-opt
RE4-opt
RE4-tho-opt

RKZ-VL
T RKS-VL 0
v RKZ-opt
RK2-rho-opt 2
RK3-opt
RK3-rho-opt 4
Ricd-opt
RK4-rho-opt

. q
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¥ 2 0o 4
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"
w
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FiG. 5.4. Convergence plots for different methods for step functistial data with nonperiodic boundary
conditions: CFL 3 (left) and CFL 24 (right).

6. Conclusions and outlook.We developed optimal explicit 2-, 3- and 4-stage Runge-
Kutta smoothers for the unsteady linear advection equatiimese were demonstrated to
improve convergence speed by a factor of two or more, cordgarnesing a method designed
for steady state. This shows that it does pay to optimizeristeady flows instead of reusing
the method for steady flows. The optimal smoother does depetige problem parameters,
but only weakly. The optimization was done in two differerays, one considering the effect
of the smoother on fine grid modes only, whereas the othamiged the spectral radius of the
complete 3-level iteration matrix, being more accuraténbore costly. The best method was
the 3-stage method from the second approach, showing thahdine costly approach pays
off. To find methods that perform well for unsteady Euler oemWavier-Stokes equations,
we will pursue the use of more complex model equations fartutesearch.
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