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VARIATIONAL ENSEMBLE KALMAN FILTERING
USING LIMITED MEMORY BFGS *

ANTTI SOLONENT', HEIKKI HAARIO ¥, JANNE HAKKARAINENT, HARRI AUVINENY,
IDRISSA AMOUR!, AND TUOMO KAURANNE?

Abstract. The extended Kalman filter (EKF) is one of the most used nonlisiede estimation methods. How-
ever, in large-scale problems, the CPU and memory requiremeBtsFoare prohibitively large. Recently, Auvinen
et al. proposed a promising approximation to EKF called thatianal Kalman filter (VKF). The implementation
of VKF requires the tangent linear and adjoint codes for pgajing error covariances in time. However, the trouble
of building the codes can be circumvented by using ensembgeitfidf techniques, where an ensemble of states is
propagated in time using the full nonlinear model, and thassizdl information needed in EKF formulas is esti-
mated from the ensemble. In this paper, we show how the VKF id@adbe used in the ensemble filtering context.
Following VKF, we obtain the state estimate and its covagamngsolving a minimization problem using the limited
memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) methodchvprovides low-storage approximations to the
state covariances. The resulting hybrid method, the vaniatiensemble Kalman filter (VEnKF), has several attrac-
tive features compared to existing ensemble methods. The modelaad observation error covariances can be
inserted directly into the minimization problem instead afdamly perturbing model states and observations as in
the standard ensemble Kalman filter. New ensembles can belylgecerated from the LBFGS covariance approx-
imation without the need of a square root (Cholesky) matrixodgmosition. The frequent resampling from the full
state space circumvents the problem of ensemble in-breediggently associated with ensemble filters. Numerical
examples are used to show that the proposed approach perfettas than the standard ensemble Kalman filter,
especially when the ensemble size is small.
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1. Introduction. Since the introduction of the Kalman filter (KF) ia] and its nonlin-
ear extension, the extended Kalman filter (EKF), many aptresito overcome the problems
with computational complexity present in KF and EKF haverbpmposed; see, e.96,[9,
13]. In these approaches, the state vector is often projeatéa afixed, low-dimensional
subspace. It is known that a fixed projection operator mightorrectly capture the dynam-
ics of a nonlinear system; se&4]. In particular, such reduced rank Kalman filters tend to
suffer from covariance leakage; sed.

In [2, 3], a low-storage variational approach to approximate KF BK& was proposed
called the variational Kalman filter (VKF). In VKF, the largeatrices in KF formulas are re-
placed with a low-storage approximation provided by thesgiewton optimization method
called limited memory Broyden-Fletcher-Goldfarb-SharthBFGS). The applicability of
VKF is hindered by the requirement of tangent linear and iatljcodes for the evolution
model, which require a considerable development efforaiseply for every model.

In ensemble filtering methods, the problems related to stah&KF (large matrices,
need for tangent linear and adjoint codes) are circumvelyepresenting uncertainty in
the model state as a number of samples instead of covariagice®s. Instead of moving the
covariance in time using the linearized model, uncertasypyopagated simply by moving the
ensemble members in time with the full nonlinear evolutioodel. The simplest version of
this idea is the ensemble Kalman filter (EnKF), first propaseld 1], where the covariance
matrices in the KF formulas are essentially replaced withpda statistics calculated from
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the ensemble. However, EnKF suffers from some problems, sagnpling errors due to
random perturbation of model state and observations amd &osemble in-breeding that
results in a similar covariance leakage as that associatbdreduced rank Kalman filters;
see P3, 26, 29].

In this paper, we show how VKF ideas can be used in the ensdittbteng context to
overcome some problems related to existing ensemble methodur approach, the model
error and observation error covariances are insertedtjireto the minimization problem
instead of randomly perturbing model states and obsen&@s in EnKF. New ensembles
can be efficiently generated directly from the LBFGS covar@approximation without ex-
plicitly constructing the large covariance matrix. We a@alr hybrid approach theariational
ensemble Kalman filter (VEnKRnd show by numerical examples that the hybrid method
performs well compared to the standard EnKF, especiallyvthe ensemble size is small.

The paper is organized as follows. In Sectiynwe recall the basics of Kalman filtering
and ensemble methods. We introduce the VEnKF algorithm @tice3 and demonstrate its
performance with numerical examples in Sectibrin Section5, we discuss some specific
topics related to our approach and the differences to agistnsemble filters. Sectidh
concludes the paper.

2. Filtering methods. In this section, we provide an overview of some existing Katm
filtering methods that are related to our approach. We sya¢alling how the basic Kalman
filter and some of its variants work and continue with an idtrction to ensemble filtering
methods.

2.1. Kalman filtering and variants. The Kalman filter can be used to estimate the state
x, at discrete time from observations/;,, when the model and observation equations are
linear:

X = Mpxp_1 + €£

vi = Kixy +€5.

In the above systenM,, is thed x d evolution model and;, is them x d observation
operator. Thel x 1 vectorx, represents the model state, and the observed data are dlenote
by them x 1 vectory,. The model erroe} and the observation erraf, are assumed to

be normally distributed zero mean random variables witladance matrice@esz andC.o,
respectively. The Kalman filter algorithm for estimatingtss and their error covariances can
be written as follows.

The Kalman filter algorithm

1. Move the state estimate and covariance in time:
(a) Computex) = M,x™,.
(b) ComputeC} = M;C§* M] + C.».

2. Combine the prior with observations:
(a) Compute the Kalman gai;, = C} K (K, C/ K] + C.o)~".
(b) Compute the state estimate® = x? + Gy (yx — Kix}).
(c) Compute the covariance estim&g*® = C} — G, K, C}.

3. Setk — k + 1 and go to step 1.

The extended Kalman filter directly uses the Kalman filtenfalas in the nonlinear case
by replacing the nonlinear model and observation operatilsappropriate linearizations:
My, = ZM(xt)) andKj, = 2 K(x]).
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In the variational formulation of the Kalman filter, the gtaistimation at stepis viewed
as an optimization problem, where a quadratic function

(2.) 1(xdyi) = 5 (x0T (€)™ (x—x) + 3 (e — K0T (Cp) ™ (s~ K0)

is minimized with respect tx. In the VKF method, introduced ir2], the minimization
is done with the LBFGS optimization method, that produceth tloe state estimate and a
low-storage approximation of the covariance (inverseibass the minimizer). In the VKF
algorithm, the inverse of the prior covarian€¥ is also approximated using LBFGS by
setting up an auxiliary optimization problem

1
(2.2) arglrlnin §UT Chu.

Thus, the LBFGS optimization routine provides low-storagproximation for bot{C?) !
and C¢*. All computations with the covariances can be carried ofitieftly using the
implicit low-storage representation without forming thél imatrices. The VKF method is
given as an algorithm below.

The variational Kalman filter algorithm

1. Move the state estimate and covariance in time:
(@) Computex; = M;x™,.
(b) DefineC}, = MyB}_ M] + C.».
(c) Apply LBFGS to @.2) to get an approximatioB;, of (C})~!.

2. Combine the prior with observations:
(@) Minimize expression(1) using LBFGS to get the state estimaig® and co-

variance estimatB? .
3. Setk — k + 1 and go to step 1.

Note that while VKF can solve the storage problem related K& Et requires a way to
evolve the covariance in time (step 1(b) in the algorithmvaoPropagating the covariance
using a direct linearization, as in EKF, is infeasible inthifimensions. In VKF, covariance
propagation is done using tangent linear and adjoint codasimplement differentiation
at the “code level”. This is a standard technique in varialadata assimilation; see, e.g.,
[15, 22]. These codes must be prepared separately for every modéhain construction is
laborious, although automatic code generators have beenthg developed; see, e.g8][In
the ensemble filters that we discuss next, tangent lineaadjoiht codes are not needed.

2.2. Ensemble filtering. In ensemble filtering, the uncertainty in the state estinate
is represented a& samples, here denoted &s = (sj 1,Sk.2,---,Skn~), instead of a co-
variance matrix. The first ensemble filtering method was tieemble Kalman filter (EnKF)
introduced in 1] and implemented in operational numerical weather pregice.g., in [L9].
The ensemble Kalman filter essentially replaces the statriemce matrices in EKF with the
sample covariance calculated from the ensemble. The saropégiance can be written as
Cov(sg) = X, X}, where

1
Xp = ———((sg.1 — %), (Sk2o —5%), ..., (Spe.n —5)) .
k= (ska = 5), (sk2 =8k, (skv — 5%))
The sample mean is denotedday Using our notation, the EnKF algorithm can be formulated
as follows.
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The ensemble Kalman filter algorithm

1. Move the state estimate and covariance in time:

(a) Move ensemble forward and perturb members with modet:err
sp; = M(sGl,) ) tep, i=1,...,N.

(b) Calculate sample meaq and covarianc€? = X, X7 .

2. Combine the prior with observations:
(&) Compute the Kalman gai@,.
(b) Update ensemble membefs; = s} ; + Gi(yr — Kisy; + e ;).

(c) Calculate state estimate as the sample rsgan

In the above algorithm, the vectoe§ ; ande; ; are realizations of the model error and ob-
servation error distributions (Gaussians with covarialﬁgrk andC.., respectively).

The ensemble Kalman filter is very simple to implement anaésinot require tangent
linear and adjoint codes. However, EnKF has various problend numerous variants have
been developed to overcome these issues; see, &.40, [L9, 32]. In Section5, we discuss
these variants in light of the proposed VEnKF algorithm, eithive introduce in the next
section.

3. Variational ensemble Kalman filtering. Here we follow the VKF ideas and show
how they can be implemented in the ensemble filtering contestlting in a filter that we call
the variational ensemble Kalman filter (VEnKF). As in VKFethtate estimation in VEnKF
is based on minimizing the cost function in Equati@nl]. The prior covariance needed in
the cost function is defined here as

(3.1) C} = Cov (M(x") +£}) = Cov (M(x5))) + Cov (eF) ~ X, X} + C.r.

Note that the above formula contains the common assumtainhiie model error and model
response are uncorrelated. The same assumption is made am&KEKF. In VEnKF, we
calculate the sample covariance using the state estimateeelvfrom the previous time as
the expectation instead of the sample mean used in EnKF, Weudefine

1 ,
X}, = NG ((sk,1 = x3), (Sk2 = X3)s -+, (Se,8 — X7))

wherex} = M(x*',) ands;,; = M(s ?St )J). Note that the ensemble members now do
not contain random perturbations; the model error is inetudirectly in Equation3.1).

The inverse of the prior covarian€s] = X, X} + C.», needed when evaluating the
cost function 2.1), can be obtained in two ways. Followmg the VKF derivatiove can
approximate the inverse by applying LBFGS to the artificfatirnization problem

(3.2) argminu’ (X; X} + C.r)u.

The sample covariance matrix in the above expression nigtdigzes not have to be handled
as a full matrix — in order to evaluate the cost function, we et keep the covariance in
“ensemble form”X,, X T and evaluate the cost function in the formh X, X u + uTngu-
For the computation to remain efficient, we assume (as in &) the model error covari-
anceCEi can be efficiently multiplied with a vector, which is the ca® instance, if the
covariance is assumed to be diagonal. As a result of the afqymmization, we obtain an
LBFGS representation of the inverse of the prior covarigii€®) —*. We can use the LBFGS
representation to evaluate the first term when optimiziegethst functionZ.1). For comput-
ing the matrix-vector product when the matrix is in the LBFf8&8n, there exists an efficient
recursive algorithm; see Appendixand 7] for details.
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An attractive alternative way to proceed is to calculatekierse of the prior covariance
using the Sherman-Morrison-Woodbury (SMW) matrix invensformula; see, e.g.,1B].
The inverse of the prior covariance can be written as

(CH) = (Xp X} +Cp) !

(3.3) = C;;l — Cs_’;lek(I + ch%lxk)*lec;zl.

This representation of the inverse can be directly insendEquation 2.1) when it it min-
imized. The computation of the quadratic expressign- x} )T (C?)~!(x — x}) can be
organized so that we do not have to store full matrices of éized. With this formulation,
the first LBFGS approximation can be avoided and the prioreaimcluded 'exactly’ in the
second optimization. The application of the formula reggithat the inverses of the model
error covariancesjgi are available. If the model error is assumed to be constanmé&dor
all k), this matrix inversion needs to be computed only once. [iitash, the inversion of
I+ XTC 1Xk needs to be computed at every step. However, this matrixlisafrsize

N x N, whereN is the ensemble size, which is always very small comparedeaimen-
sion of the state space in large-scale applications. Inxbmples of this paper, we use the
SMW formula for inverting the prior covariance.

When the LBFGS optimization is applied to minimize the fuoot{2.1), we get a low-
storage approximation for the covariar©g*. After that, we sample a new ensemble of state
vectors fromN(x§%t, C$5*). Samples can be drawn efficiently, since the LBFGS reptasen
tion for C¢* can be written in the form

Cit =BoBj + > bb],

i=1

whereBy is ad x d matrix andb; ared x 1 vectors. From this representation one can produce
a zero mean random vector~ N (0, C¢*) simply by calculating

r = BOZ + Xn:wbb“

i=1

wherez ~ N(0,I) andw; ~ N(0,1). The matrixB, does not have to be stored explicitly,
since the producByz can be computed implicitly using the stored LBFGS vectorse S
AppendixA for details about constructinB, andb;.

Finally, we are ready to present owariational ensemble Kalman filtd&/EnKF) as an
algorithm. After setting the initial guesses for the statd @s covariance tx&** and C§,
respectively, and setting= 1, we write our algorithm as follows:

The VEnKF algorithm
1. Move the ensemble forward and build the prior:
(a) Compute prior center poisf, = M (x3,
(b) Compute prior ensembﬁ = M(s e;t 1))2),1': 1,...,N.
(c) Define(C¥)~! using SMW formula 8.3)
(Alternatively: apply LBFGS to 8.2) to get(C?)™1).
2. Calculate the posterior estimate and generate the nesmihes:
(@) Apply LBFGS to minimizeZ.1) to getx$** andC§®.
(b) Sample new ensemhdg® ~ N (x$t, C$5); see AppendiA for details.
3. Setk — k + 1 and go to step 1.
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Since the optimization tasks are both quadratic, only a @i&dversion of the LBFGS
method is needed. The LBFGS algorithm is given in AppenfdiXor a detailed analysis
we refer to, e.g.,q7].

The proposed VEnKF algorithm has several attractive featuFirst of all, it does not
suffer from ensemble in-breeding that is often encountevitd many ensemble filtering
methods, since the new ensemble is re-generated at each ®tepensembles are gener-
ated from dynamically changing covariances that are naticesd to any fixed subspace as
in reduced rank methods. The ensemble generation is pegtbdinectly by the low stor-
age LBFGS construction without the need of any further mgtiholesky) decomposition.
Moreover, the model error covariance term can be addedattkplio the optimization prob-
lem in step 1(c) of the algorithm, whereas in EnKF it is hadddg randomly perturbing the
prior ensemble with the model error. In addition, VEnKF ufes state estimate given by
the optimizer as the expectation in the sample covarianiceletions instead of the sample
mean. Mainly due to these reasons, VEnKF has a better paafaethan EnKF in our exam-
ples, when the ensemble size is small (see Sed)ioNote that VEnKF especially applies to
high dimensional problems, since all calculations areqaréd using the LBFGS covariance
representations without handling full covariance matrice

It is worth noting that the covariance matrices produced B#GS (with a diagonal ini-
tial inverse Hessian) are full rank and VEnKF is thereforeatseduced rank” method. Thus,
the new ensemble members generated in VEnKF perturb alstirétions of small eigen-
values. This is not the case for many other covariance appation/optimization methods
that could be used instead of LBFGS. For example, Lanczos@amdgate gradient methods
operate on a low-dimensional subspace.

4. Numerical experiments. In this section, we demonstrate the performance of VEnKF
with two synthetic examples, adopted frof).[The first example is the well-known Lorenz 95
benchmark problem (a low-order nonlinear chaotic ODE sy$that shares some character-
istics with weather models. The second example is a linestesy, where the dimension of
the problem can be controlled by changing the discretinatio

For comparing methods, we use the root mean square ey, (written as

1
sl = /3 et el

wherex$®t is the filter estimate ans}"" is the truth used in the data generation at iteration

4.1. Lorenz 95. In this example, we consider the well-known nonlinear andotic
Lorenz 95 model introduced ir2fl] and analyzed ing5]. The model shares many charac-
teristics with realistic atmospheric models and it is oftesed as a low-order test case for
weather forecasting schemes. We use a 40-dimensionabres§ithe model, given as an
ODE system

dx;
i (Tig1 — @i—2)ximy — 2 + 8, i=1,2,...,40.
dt
The state variables are periodic: | = x39, o = 240, andz4; = x1. Out of the 40 model
states, measurements are obtained from 24 states. We defiobgervation operator (fol-
lowing [2]) asK(x) = Kx, where

K], - L (r,p) €{(3j+4,5j +i+2)}

s 0, otherwise ’
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wherei = 1,2,3andj = 0,1,...,7. Thus, we observe the last three states in every set of
five. To generate data, we add Gaussian noise to the modé&bsolith zero mean and co-
variance(0.150 i )21, whereo i, = 3.641 (‘climatological’ standard deviation computed
from long model simulations). In the filtering methods, we (Bseg = (0.050¢im )1 as the
model error covariance arﬂsz = (0.150.;m )T as the observation error covariance. As
initial guesses in the filtering, we usg*® = 1 and C§** = 1. For more details about the
example, we refer ta?].

We run experiments with varying ensemble si¥eand varying number of LBFGS it-
erations. In Figuret.1l, we compare the performance of EKF, EnKF, and VEnKF with
N = (10, 15, 20, 40) in terms of the rms error. Since EnKF and VEnKF are stochastith-
ods, we display rms errors averaged over 10 repetitions.BnKF, the number of LBFGS
iterations and the number of LBFGS vectors stored was the sathe ensemble size. From
the results it is clear that VEnKF works better when the erdersize is small. When the
ensemble size gets large, the performances of VEnKF and EpiFoach each other.

In Figure4.2, we compare the forecast skills given by different methadsgithe same
ensemble sizes as above. The forecast skill is here defindtk asean squared difference
between the “truth” and the forecast made with the modelescalith o.;;,,; see P] for
details. Again, VEnKF performs better, especially wh€rs small. For instance, VEnKF
with N = 10 performs equally well as EnKF withv = 20. Even with largerN, VEnKF is
better on average.

4.5
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Fic. 4.1. Comparison of EnKF (red), VEnKF (black), and EKF (green) hwiensemble sizes
N = (10,15, 20, 40) in the Lorenz 95 example. Increasing ensemble size leadenotonically decreasing er-
ror levels for both EnKF and VEnKF.

To further demonstrate the behavior of VEnKF, in Figdréwe compare the rms errors
(averaged over time) with varying ensemble sizes and vamyinmber of the LBFGS itera-
tions used. As a reference, we also plot the EnKF performaDoe can see that 30 LBFGS
iterations practically give an as good performance as 4@0iiterations, and EnKF starts to
produce acceptable results wh&n> 30.



ETNA
Kent State University
http://etna.math.kent.edu

278 A. SOLONEN ET AL.

forecast skill
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FIG. 4.2. Forecast skill comparison of EnKF (red), VEnKF (black), aBHF (green) with ensemble sizes

N = (10, 15, 20, 40) in the Lorenz 95 example. Increasing ensemble size leadsrtotonically increasing forecast
skill for both EnKF and VEnKF.

4.2. Heat equation. The purpose of this example, adopted frath s to demonstrate
the behavior of VEnNKF when the dimension is large. The exanwplinear, so we can di-
rectly compare the results with KF. However, as the dimensicthe problem is increased,
KF cannot be run anymore due to memory issues. Note that wh#eexample does illus-
trate some computational aspects related to the methasisygtem is well-behaved and we
cannot conclude much about how the methods work in a higleaional chaotic case such
as numerical weather prediction, for example.

The model describes heat propagation on a two-dimensioitehgd is written as a PDE

ox 9%z 0%z ( (u—2/9)2+(v—2/9)2>

— — +t aexp s

ot o

wherez is the temperature at coordinateandv over the domaif2 = {(u, v)|u,v € [0, 1]}.
The last term in the equation is an external heat source, evimagnitude can be controlled
with the parametes. > 0.

We discretize the model using a unifo$nx S grid. This leads to a linear forward model
xrp+1 = Mx;, + £, whereM corresponds to the heat diffusion afitb the external forcing;
see P] for details. The dimension of the problem can be controbgdchangingS. The
observation operatd is defined as in7]: the measured temperature is a weighted average
of temperatures at neighboring pointsS&t/64 evenly spaced locations.

The data are generated by adding normally distributed mandaise to the model state
and the corresponding response:

Xpi1 = Mxy, + f + N(0, (0.50.,)°T)
Yi+1 = KXkJrl + N(O, (0.80’0173)21).

In the data generation we use= (0.75 and choose., ando,;,s SO that the signal to noise
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FiG. 4.3. Rms error averaged over time for EnKF and for VEnKF with vagyensemble sizes and LBFGS
iterations in the Lorenz 95 example.

ratios at the initial condition defined Hglm and ”K’;’” are both 50. The initial condition
obs
for the data generation is

[x0)i; = exp (—(ui — 1/2)* = (v; — 1/2)?) .

For the filtering we use a biased model, where the forcing ierdnopped by setting: = 0.
The error covariances used for model and observationsZifeandc?, 1, respectively. We
start all filters from the initial guess, = 0. For ensemble filters, all members are initialized
to the same value and for KF we set the initial covarianceresé toC§** = 0.

In our first test, we takes = 27 and choosg = 5, which is the largest integer so
that KF can still be computed on a standard desktop computars, the dimension of the
initial test wasd = S? = 1024. In Figure4.4, we compare KF, VEnKF, and EnKF using
ensemble sized” = (5, 10, 20, 50, 100) for VEnKF and EnKF. In VEnKF, we always take 20
LBFGS iterations and store 20 LBFGS vectors. The performaf®EnKF approaches that
of KF as the ensemble size increases, but EnKF performsypamly with larger ensemble
sizes we get acceptable results. We think that such a draulifférence between VEnKF
and EnKF is related to the handling of the measurement aenrtitd method. In this case,
we have a simple linear dynamic and a rather good guess dmumadel error, and just a
plain “3D-Var” method, where the prior covariance is kephst@ant, performs rather well.
This is the lower limit of the performance of VEnKF upon whieie can improve by adding
ensemble members. In EnKF, the model error can be added gnpetturbing the (few)
samples randomly, which can lead to large errors. In addiiio EnKF the state estimate
is calculated as the sample mean, whereas VENnKF uses the BtARage. In this case this
might produce the large errors in EnKF.

Next, we compared VEnKF to EnKF in a case, where the dimensianuch higher
(j = 7,d = S? = 16384) using the same ensemble sizes and the same LBFGS settings. |
this case, KF cannot be used anymore due to memory issuesc#tsle seen in Figure5,
the difference between EnKF and VENnKF is even more dramatithis case: the EnKF
performance is poor, whereas VEnKF is able to improve th@l&iBD-Var results.
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FIG. 4.4. Performance comparison of KF (solid green), VEnKF (blaek)] EnKF (red) with different ensem-
ble sizes in the case whefe= 1024. The dashed green line is 3D-Var, where only the fixed modai eovariance
is used. Increasing ensemble size leads to monotonicaihgasing error levels for both EnKF and VEnKF.

5. Discussion.In the past decade, a wide literature about ensemble filfbids emerged.
We start this section by reviewing some of it and discuss fietirg approaches in light of
our VEnKF method. Later, we discuss some specific topicsael VEnKF.

The standard EnKF is criticized in many papers because adddéional sampling er-
rors brought in by randomly perturbing the observationssdrcalled square root ensemble
filters (SRFs) this is not needed; see, e.f?] fnd the review of SRF methods given 26].
Similar approaches include the ensemble adjustment Kalittem(EAKF) and the ensemble
transform Kalman filter (ETKF) given inl] and [5], respectively. In SRF methods, the prior
ensemble is deterministically transformed so that thegumststatistics match with the theory
in the linear case (Kalman filter equations). This is donédadlyg by writing the Kalman for-
mulas for matrix “square roots” (symmetric decompositjonstead of covariance matrices
in a manner that avoids forming full covariance matricesis Ttansformation is non-unique
leading to various SRF formulations; s&8]for a comparison. One difficulty in SRF meth-
ods, as pointed out irRp)], is the handling of the model error. A simple way is to inautl
by perturbing the ensemble (as in EnKF), but this potemtiethds to sampling errors much
in the same way as with perturbed observations in the stdriiaKF. Dropping the model
error altogether leads to underestimation of errors andiplesdivergence issues, and differ-
ent “covariance inflation” mechanisms need to be developethfs purpose. In our VEnKF
algorithm, both the model error and the observation erreacances are explicitly present in
the minimized cost functions, and these problems do notappere. Moreover, the square
root filters operate, as for the standard EnKF, only in thesgabe spanned by the ensemble
vectors, whereas the VEnKF samples from the full state space

Hybrid EnKF methods that incorporate features from both Emid variational meth-
ods (as VEnKF) have been found appealing in many studiesldn & hybrid approach is
adopted, which combines elements of ensemble filtering &r¥e&8. However, the hybrid
method uses perturbed observations and makes the perfelet mssumption; model error
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FiG. 4.5. Performance comparison of VEnKF (black) and EnKF (red) wlifferent ensemble sizes in the case
whered = 16384. The dashed green line is 3D-Var, where only the fixed modei eovariance is used. Increasing
ensemble size leads to monotonically decreasing errotddégeboth EnKF and VEnKF.

covariance cannot be easily incorporated. The prior canag is defined as a linear combi-
nation of the sample covariance and the static model erm@r@mce used in 3D-Var, which
is rather ad-hoc and introduces a tuning parameter (thehivgigen for the sample covari-
ance). Similar approaches are introducedlifi fand [30]. In [31], the hybrid approach is
extended so that it can be used with the 4D-Var method, bigéatree problems remain.

Probably the closest method to our VEnKF approach is the maxi likelihood ensem-
ble Filter (MLEF) proposed in32]. In MLEF, an iterative optimization method is used to
optimize a 3D-Var type of cost function, and the found optimis used as the state estimate
instead of the sample mean. However, the model error ternegteated and the method
operates only in the ensemble subspace.

One criticism that is faced by all Kalman filter based methasthe Gaussian approx-
imations: in all of the methods discussed so far in this papésaussian form is used for
the prior. The ensemble methods are more nonlinear than EKteisense that the covari-
ance information is propagated using the nonlinear modstead of the linearized model.
Purely nonlinear filtering methods exist as well; see, §@for a recent introduction to par-
ticle filters. Their benefit over the linear methods can béyakown in small-dimensional
cases, but they become infeasible in large systems. Sonieeenity in the prior formu-
lation can be induced, e.g., by representing the prior asxéunaei of Gaussians or a kernel
density estimate fitted to the ensemble; see, €lg4][for some discussion. We note that
different, nonlinear prior and likelihood formulationsrnche rather easily incorporated into
the cost functions used in the proposed VEnKF method. The amhplication is that the
cost function is no longer quadratic and one has to use thé.BHGS algorithm instead
of the quadratic version used in this paper and to worry abaut the Wolfe conditions in
the optimization. Extending VEnKEF to this type of nonlindétering is a topic for further
research.

In the VENnKF algorithm, we sample new ensemble members &tiesration. Tradition-
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ally, sampling from a multivariate Gaussian distributisrdbone by performing a symmetric
decomposition on the covariance matr®, = LLT, for example using the Cholesky de-
composition, and then producing random vectord.as wherez ~ N(0,I). The work
in [17] comes close to our approach as it employs the BFGS covariapgroximation for
the proposal distribution in the Metropolis MCMC algorithbut using again the Cholesky
decomposition. In high dimensions, performing these deumitions is infeasible, since
we cannot even store the full covariance matrix. Howeveshasvn in this paper, random
sampling can be done directly using the LBFGS vectors. Thjmientially useful in other
contexts as well, where high dimensional random samplingésled, for example in the field
of inverse problems.

Although we have shown that VEnKF performs well, the apphhdaeas its downsides. In
particular, the LBFGS optimization is sensitive to certgarameters” and therefore VEnKF
requires some case specific tuning. One tuning paramete [géconditioner for the inverse
Hessian used in the LBFGS optimization. In this paper, weaibeuristic given inZ%7]
that eliminates this tuning parameter (see Apperdior details). Other tuning parameters
remain, such as the choice of the initial guess, the numbeBBfSS vectors that we store,
and the number of LBFGS iterations that we take. At preseathave not found any general
way to define these parameters other than “trial and error”.

Naturally, the performance of VEnKF depends on the accucddie LBFGS covari-
ance approximations. Ir2], the quality of LBFGS covariances was found to be good in
low-dimensional numerical examples. However, the LBFGSgomance in approximating
covariance in high dimensions and realistic data assiimiigtroblems remains a topic of
future research.

6. Conclusions. In this paper, we propose a hybrid method called the variatien-
semble Kalman filter (VEnKF) for high-dimensional data askition that combines ele-
ments from ensemble filtering and variational methods. VEmKbased on the variational
Kalman filter (VKF) method 2], where the memory issues related to EKF are solved by
low-storage approximations of the state covariances o@thising the LBFGS optimization
method. The proposed approach can solve some problemsesitenintered with ensemble
methods, such as sampling errors due to random perturbaftigtates and observations and
ensemble in-breeding. All of the calculations in VEnKF,ingtespecially the generation of
new ensembles, can be made using the LBFGS covariance eafasn without handling
full covariance matrices. Since VEnKF is an ensemble metialbes not need tangent lin-
ear and adjoint codes. We show with synthetic examples lieatnethod can perform better
than the standard ensemble Kalman filter. Testing the agdplity of the method on real data
assimilation problems remains a topic of future research.

Acknowledgements. The work was supported by the Centre of Excellence in Inverse
Problems of the Academy of Finland.

Appendix A. In this appendix, we give details of some computationalésso VEnKF.
First, we recall how the LBFGS optimization algorithm foragluatic minimization problems
works. Then, we shown how random samples can be producedifi@irBFGS covariance
representation.

The LBFGS algorithm for minimizing a quadratic functigfu) = %uTAu, given an
initial guessuy, reads as

LBFGS algorithm for quadratic problems
1. Choose an inverse Hessian approximaiih
2. Compute the gradieg, = Vg(u) = Auy.
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3. Compute a search directipn = Hyg;, whereH,, is the LBFGS approximation of
the inverse Hessian (details below).

4. Compute step sizey. = (g} px)/(pi Apk).

5. Setuy;1 = ux — axpr andk — k + 1 and go to step 1.

The LBFGS algorithm uses the BFGS formula for approximalihyg which is recursively
defined as

Hy 1 = VIHLV + prsest,
where
pr =1/(ygsk)
Vi =1- pryesy
Sk = Up+1 — Ug
Yk = 8k+1 — 8k-
In LBFGS only a certain number of the vectorss;, andy; are used in the above formula.

Writing out the recursive formula and storing omlynost recent vectors leads to the following
formula for the LBFGS inverse Hessian approximation:

H,= (Vi ..V YHY Vi ... V1)
"‘pkfn(Vg—l e Vg—nJrl)skfns;cr—n(VkﬂHl oo V1)
Apk-nt1(Vict - Vicpg2)Sk-nt185—pi1(Vini2 - Vio1)
+...

T
+Pk—1Sk—18j_1-

Note that in the LBFGS formulation, the initial inverse HessapproximatiorH! can vary
from one iteration to another. One can choose, e.g., a fixagbdal covariancél? = 11,
but then the issue of tuningemerges. We use a heuristic fro&v] in which H = ~,I and
Ve = (st yr-1)/(¥yi_,yk—1), Which attempts to estimate the size of the covariance along
the last search direction; se&7].

In our applications, we never want to calculate and stordutéverse Hessian, but to
keep it in the above “vector form”. There exists an efficiéatative algorithm for computing
matrix-vector products with the inverse Hessian needagl, ehen calculating the search
direction in the LBFGS algorithm; see, e.q2/] for detalils.

Assuming that the initial inverse Hessian can be decompogedH? = LoLg, the
above LBFGS inverse Hessian formula can be written in the for

H, =B(Bj + Y bb/,
=1
where
By = (Vi1 Vieu)Lo
by = /pr—18k-1
b, = Vi (Vi1 Vi )sk—i, i=2,...,m.

Note that the square rootgp; can always be calculated, since in the LBFGS algorithm we
choose the step length so that> 0 for all 4; see 7] for details. Thus, we can sample zero
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mean random variables from the covariali€g by calculating

n
r = B()Z + Zwibi,

i=1

wherez ~ N(0,I) andw; ~ N(0,1). Itis simple to verify thaCCov(r) = Hj. The needed
products can be calculated efficiently without storing fmétrices of sizel x d. For the first
productq = Bz, we can use the iteration
e Setq — Lyz.
e Fori=1...n
L opr=1/(yisk):
2. Setq — q — (pry} q)sk-
e Returnqg.
For the other products;b; we can first calculate the vectoks explicitly using a similar
loop as above and then take sums of the vectors, weightechdgmanumbers;.

REFERENCES

[1] J. L. ANDERSON An ensemble adjustment Kalman filter for data assimilatidaon. Wea. Rev., 129 (2001),
pp. 2884-2903.

[2] H. AUVINEN, J. M. BARDSLEY, H. HAARIO, AND T. KAURANNE, The variational Kalman filter and an
efficient implementation using limited memory BE@G®ernat. J. Numer. Methods Fluids, 64 (2009),
pp. 314-335.

, Large-scale Kalman filtering using the limited memory BFGShad Electron. Trans. Numer. Anal.,
35 (2009), pp. 217-233.
http://etna. math. kent. edu/ vol . 35. 2009/ pp217- 233. di r

[4] T. BENGTSSON C. SNYDER, AND D. NYCHKA, Toward a nonlinear ensemble filter for high-dimensional

systemsJ. Geophys. Res., 108 (2003), 8775 (10 pages).

[5] C. H. BisHOR B. J. ETHERTON, AND S. J. MAJUMDAR, Adaptive sampling with the ensemble transform

Kalman filter. Part I: theoretical aspectdon. Wea. Rev, 129 (2001), pp. 420-436.
[6] M.A.CANE, R. N. MILLER, B. TANG, E. C. HACKERT, AND A. J. BUSALACCHI, Mapping tropical Pacific
sea level: data assimilation via reduced state Kalman filleiGeophys. Res., 101 (1996), pp. 22599—
22617.
[7] O. CaPPE, S. GoDsILL, AND E. MOULINES, An overview of existing methods and recent advances in
sequential Monte CarldProc. IEEE, 95 (2007), pp. 899-924.
. CHENG, J. Ca0, B. WANG, AND H. ZHANG, Adjoint code generatorSci. China Ser. F, 52 (2009),
pp. 926-941.
. P. Deg, Simplification of the Kalman filter for meteorological datssamilation Q. J. R. Meteorol. Soc.,
117 (1990), pp. 365-384.

[10] B.J. ETHERTON AND C. H. BiISHOP, Resilience of hybrid ensemble/3DVAR analysis schemesdel miwor
and ensemble covariance errdvMon. Wea. Rev., 132 (2004), pp. 1065-1080.

[11] G. EVENSEN, Sequential data assimilation with a non-linear quasi-demghic model using Monte Carlo
methods to forecast error statistick Geophys. Res., 99 (1994), pp. 10143-10162.

, Sampling strategies and square root analysis schemes &EKFE Ocean Dynam., 54 (2004),
pp. 539-560.

[13] M. FISHER, Development of a simplified Kalman filldECMWF Technical Memorandum n. 260 (1998),
European Centre for Medium-Range Weather Forecasts, SHiRfek, Reading RG2-9AX, UK.

[14] M. FISHER AND E. ANDERSSON Developments in 4D-var and Kalman filteritlgCMWF Technical Mem-
orandum n. 347 (2001), European Centre for Medium-Rangeh&e&brecasts, Shinfield Park, Read-
ing RG2-9AX, UK.

[15] R. GIERING AND T. KAMINSKI, Recipes for adjoint code constructioACM Trans. Math. Software, 24
(1998), pp. 437-474.

[16] T. M. HAMILL AND C. SNYDER, A hybrid ensemble Kalman filter-3D variational analysis ecte Mon.
Wea. Rev., 128 (2000), pp. 2905-2919.

[17] K. M. HANSON AND G. CUNNINGHAM, Posterior sampling with improved efficienag Medical Imaging
1998: Image Processing, K. M. Hanson, ed., Proceedings &, SBB8, SPIE, Bellingham WA, 1998,
pp. 371-382.

[18] N. HiGHAM, Accuracy and Stability of Numerical Algorithn2nd ed., SIAM, Philadelphia, 2002.

(3]

(8]
El

lio)

w)

(12]



http://etna.math.kent.edu/vol.35.2009/pp217-233.dir

[19]

[20]

[21]
[22]
(23]
[24]
(25]
[26]

[27]
(28]

[29]

(30]

(31]

(32]

ETNA
Kent State University
http://etna.math.kent.edu

VARIATIONAL ENSEMBLE KALMAN FILTER 285

P. HOUTEKAMER AND H. L. MITCHELL, Data assimilation using an ensemble Kalman filter technique
Mon. Wea. Rev., 126 (1998), pp. 796-811.

L. ISAKSEN, M. FISHER, E. ANDERSSON AND J. BARKMEIJER, The structure and realism of sensitivity
perturbations and their interpretation as 'Key Analysisrés’, Q. J. R. Meteorol. Soc., 131 (2005),
pp. 3053-3078.

R. E. KALMAN, A new approach to linear filtering and prediction problemsans. ASME Ser. D J. Bas.
Engrg., 82 (1960), pp. 35-45.

F. X. LE DIMET AND O. TALAGRAND, Variational algorithms for analysis and assimilation of teerologi-
cal observations: theoretical aspecillus Ser. A., 38 (1986), pp. 97-110.

H. LI, E. KALNAY, AND T. MIYOSHI, Simultaneous estimation of covariance inflation and oletéya
errors within an ensemble Kalman filte®. J. R. Meteorol. Soc., 135 (2009), pp. 523-533.

E. N. LORENZ Predictability: a problem partly solvedn Proceedings of the Seminar on Predictability,
Vol. 1, T. Palmer, ed., ECMWF, Reading, UK, (1996), pp. 1-18.

E. N. LORENZ AND K. A. EMANUEL, Optimal sites for supplementary weather observations:ukiton
with a small modelJ. Atmospheric Sci., 55 (1998), pp. 399-414.

Z. MENG AND F. ZHANG, Tests of an ensemble Kalman filter for mesoscale and regenadé data assimi-
lation. Part Il: imperfect model experimentglon. Wea. Rev., 135 (2007), pp. 1403-1423.

J. NOCEDAL AND S. WRIGHT, Numerical OptimizationSpringer, Berlin, 1999.

W. SACHER AND P. BARTELLO, Sampling errors in ensemble Kalman filtering. Part |: theoon. Wea.
Rev., 136 (2008), pp. 3035-3049.

M. K. TIPPETT, J. L. ANDERSON C. H. BISHOR, T. M. HAMILL , AND J. S. WHITAKER, Ensemble square
root filters Mon. Wea. Rev., 131 (2003), pp. 1485-1490.

X. WANG, D. M. BARKER, C. SNYDER, AND T. M. HAMILL , A hybrid ETKF-3DVAR data assimilation
scheme for the WRF model. Part I: observing system simualatiperimentMon. Wea. Rev., 136 (2008),
pp. 5116-5131.

F. ZHANG, M. ZHANG, AND J. A. HANSEN, Coupling ensemble Kalman filter with four-dimensional data
assimilation Adv. Atmospher. Sci., 26 (2009), pp. 1-8.

M. Zupanski, Maximum likelihood ensemble filter: theoretical aspeleton. Wea. Rev., 133 (2005),
pp. 1710-1726.



