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SPECTRAL ANALYSIS OF A BLOCK-TRIANGULAR PRECONDITIONER FO R
THE BIDOMAIN SYSTEM IN ELECTROCARDIOLOGY *

LUCA GERARDO-GIORDA! AND LUCIA MIRABELLA ¥

Abstract. In this paper we analyze in detail the spectral propertieth@fblock-triangular preconditioner in-
troduced by Gerardo-Giorda et al. [J. Comput. Phys., 2289R0fp. 3625-3639] for the Bidomain system in
non-symmetric form. We show that the conditioning of the preéimed problem is bounded in the Fourier space
independently of the frequency variable, ensuring qupsirality with respect to the mesh size. We derive an
explicit formula to optimize the preconditioner performangeidentifying a parameter that depends only on the
coefficients of the problem and is easy to compute. We prouitieemical tests in three dimensions that confirm the
optimality of the parameter and the substantial independefites mesh size.
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1. Introduction. The Bidomain model is commonly considered one of the most-com
plete and accurate models to describe the propagation dl¢latrical potential in the my-
ocardium tissue; see, e.gd, [L9, 21, 25]. It consists of a system of nonlinear unsteady partial
differential equations governing the dynamics of intrad amtracellular potentials, coupled
with a system of ODEs that describes the dynamics of membraments. The discretiza-
tion of the Bidomain model is often based on a finite elemepr@damation in space and
on implicit-explicit time advancing schemes, allowing doeskip the expensive solution of
nonlinear systems. The degenerate parabolic nature afyteiem, however, results in a very
ill-conditioned linear system associated with the Bidamdiscretization. Recently, several
scientists have developed effective preconditioningteflias to reduce the high computa-
tional cost of solving this linear syster,[13, 14, 16, 17, 26, 27, 30, 31]. Most of these
strategies are based on a proper decomposition of the catigmal domain in order to set
up parallel preconditioners or suitable multigrid schestdscoupled with parallel architec-
tures. An efficient serial preconditioner was proposedjiased on a suitable adaptation of
the Monodomain model, a simplified model consisting of alsipgrabolic equation for the
transmembrane potential, based on a (quite unrealistigjygotionality assumption between
the intra- and extracellular conductivity tensors. On the band, it is computationally very
cheap, on the other hand, is not able to capture significatérpa of excitation and repo-
larization in both physiological and pathological conalits. However, inT], it was shown
that a suitable extension of the Monodomain model resuleslower block-triangular pre-
conditioner for a nonstandard formulation of the Bidomaiadel. While the initial study
showed that the preconditioner is very effective and rohitst respect to the mesh size both
in iteration counts and CPU time, an accurate theoreticallyars of the preconditioner was
not carried out. In addition, the preconditioner dependa parameteh that was tuned em-
pirically in [7]. This paper is devoted to an accurate spectral analysksedblbck-triangular
preconditioner proposed ifT]. By means of Fourier analysis we show the optimality of the
preconditioner with respect to the mesh size, and we pravidemula to identify an optimal
parameten®.

The paper is organized as follows. In Sectiyrwe introduce the Bidomain model and
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its non-symmetric formulation. Secti@presents the numerical discretization and the block-
triangular preconditioner at the discrete level. In Sectipwe carry out the spectral analysis
of the preconditioner, and we provide a formula for the optiparametei*. In Sectiorb, we
extend our analysis to the symmetric parabolic-ellipticrfalation of the Bidomain system.
Finally, in Sections, we provide some numerical results in three dimensiondustihte our
findings.

2. The Bidomain model. The myocardial tissue is composed of elongated cells, the
cardiac fibers connected to each other by gap junctions and surrounded byteacellular
medium. From a mathematical point of view, this structurelba modeled as a continuum in
which the electrical variables are obtained as the averatfeesingle cell properties after a
homogenization process,[4, 6, 15]. The cardiac tissue can be represented as a superposition
of intra- and extracellular media connected by a cell membrdislocated in the domain. The
Bidomain model should take into account the direction oftfxeliac fibers. Anatomical stud-
ies show that the fiber direction rotates counterclockwieenfepicardium to endocardium
and that the fibers are arranged in sheets running acrossytheandial wall B, 11, 25].
We pose the problem in a bounded regionc R?, and we assume that the cardiac tissue
is characterized at each point by three directiomsalong the fibera, orthogonal to the
fiber direction and in the fiber sheet, aag orthogonal to the sheet. The intra- and extra-
cellular media present different conductivity values icledirection. We denote by!(x)
(resp. ol (x)) the intracellular (resp. extracellular) conductivitydn(z) direction at point
x € Q and similarly byo!(z) (ol(x)) ando?(x) (o7 (x)) the conductivities along,(x)
anda,, (x). We will use throughout the paper the notatidr{zx), o7 (x), ot (z) with 7 = i, e
for indicating intra- and extracellular conductivity in ampact form.

The intra- and extracellular local anisotropic condutyivensors are therefore

D, (z) = op(x)ai(z)a] (x) + 0% (x)ar(@)af (x) + o} (z)an(x)ay (x)

for 7 = i,e. We assume thdD. satisfies a uniform ellipticity condition if2. In this paper,
following [3], we also assume axial isotropy for the myocardium; thatesassume the same
conductivity in both the tangential and normal directiobsder this hypothesis, the tensors
may be written in the simplified form

(2.1) D, (z) = o1+ (0] — ot )ay(z)a] (z)

forr =1,e.

Letu; andu, be the intra- and extracellular potentials, respectivaty letu = u; — u,
be the transmembrane potential. The current density in daofain can be computed as
J. = -D,Vu,, 7 = i,e. The net current flux between the intra- and the extracelbdda
main is assumed to be zero as a consequence of charge coieseitvan arbitrary portion
of tissue. Denoting by, the ingoing membrane current flow and kythe ratio of mem-
brane area per tissue volume, we have (D;Vu;) = xI,, = —V - (D.Vu.), where
I, = Cpowu + Iipn(u,w), Cy, is a capacitance, anl,,, is the ionic current, which de-
pends on the potentialand on suitable ionic variables that we denote withThe complete
Bidomain model reads

XCrnOiu — V - D;Vu,; + Xlion(u, w) = I;ipp

2.2
( ) —XC’matu -V- Devue - XIion(Ua ’UJ) = _Igppv

where Iion(u, w) is @ nonlinear function of the transmembrane potentjadpecified by an
ionic model, and wheré™" are applied external stimuli. In what follows, we do not rety
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a specific choice for the ionic model describing the cell memb currents; thus, from now
on, we simply denote b¥,,(u) the ionic current. In our numerical tests we consider as mod-
els for ventricular cells both the Luo-Rudy Phase 1 mod&] and the Rogers-McCulloch
variant of the FitzHugh-Nagumo modél(]. The problem is completed by initial conditions
ui(x,0) = 0, ue(x,0) = U0, u(x,0) = u; 0 — ue0, and by homogeneous Neumann
boundary conditions 0af2, modeling an insulated myocardium:

n"D;Vu;(x,t) =0 and n’D,Vu.(x,t) =0, ondQ x (0,T),

wheren is the unit normal outward-pointing vector on the surfacs.afconsequence of the
Gauss theorem, the applied external stimuli must fulfillcbmpatibility condition

/ 1P = / T3Pz,
Q ! Q

System 2.2) consists of two parabolic reaction—diffusion equatioos«; and u., where
the vector of time derivatives is multiplied by a singulartma The system is thus said
to bedegenerate The transmembrane potentialis uniquely determined, while the intra-
and extracellular potentials andu,. are determined up to a common function of time whose
value is usually obtained by imposing thathas zero mean dn. For an analysis of the well-
posedeness of the Bidomain problem; s€fitzugh-Nagumo model) an@§] (Luo-Rudy |
model).

In what follows we will rely on a non-symmetric formulation @.2): see, e.g.,q, 10].
For this purpose, we define

I ¢ I ¢
o, O o, o
: € € € €
A, = min T 7 AM = max T i (-
o, 0; o, 0;

K3 K3

Taking linear combinations of the two equations |2 with coefficients(p%, _1%)

with A, < XA < Ay and(1, 1), the Bidomain system can be reformulated in terms of the
transmembrane and the extracellular potentisdsdu. as

ou AD; AD; — D
m 5, : : - . - - e Lion = %P
xC. T \Y L_i_/\Vu] v [ T Vu] + xLion (1)

—V - [D;Vu+ (D; + D,)Vu,] = I?P,

(2.3)

ALPPLIEPP
where we have sd@PP = 1+7+>\ and 2P — [2PP _ [P

3. Numerical approximation and the block-triangular preconditioner. We give a
brief overview of the numerical approximation of the Bidamianodel and the block-triangular
preconditioner. For a more detailed description, $2é,[31] and [7], respectively.

3.1. Finite dimensional formulation. For the sake of presentation, we consider a time
advancing procedure with fixed stép, and we denote with the superscripthe variables
computed at timeé” = nAt. Time adaptive schemes were also consideedd], but on the
one hand their analysis goes beyond the scope of this pamkngrathe other hand, a fixed
time step does not affect the generality of the present aisaly

The Bidomain equation(3) can be advanced in time by a semi-implicit scheme, where
the nonlinear term (the ionic current) is evaluated at tleipus time steps. More precisely,
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moving from time step” to ¢"*!, we solve o2

Un+1 —u” )\D7 n >\D7 — De n n
XCom At -V 1+>\vu +1—i_1—|—7)\vue+l :Iapp_XIion(u )
(3.1) ~V - [D,Vu"*! 4+ (D; + D.)Vultl] = 1%°P
u® () = uo() ug(@) = ue,o()

n"D;(Vu" ' + Vul M |sga =0 "D Vul g =0.

We denotef™ = 12 — x [, (u™) + %u” andg = 12PP, |n the sequel, when the context
is clear, we will drop the time index + 1.

We discretize? with a regular triangulatioff;,, and we consider a finite element spage
in which we will look for the approximate solutions, namely andu”. For the numerical
tests in Sectio®, V}, is the space of piecewise linear continuous functiong;aon

We denote byd = {goj};.vgl a basis forV;, by M the mass matrix with entries
M = 3 er (05, 0i)|x, and by, (1 = i,e) the stiffness matrices with entries
K¥ =Y ker, DrVe;, Voi)lk, @i, ¢; € .

When solving the Bidomain system, the unknowns of the fullscoite problem are
represented by vectorsandu,, which contain the nodal values of andu”, respectively.
We letf™ andg denote the discretization of the forcing terms, and we set

XCm A A 1
Buu: i BuEi: i e

At M+1—|—)\’C 1+)\’C 1+)\,C
Beu :K:i Bee :K:i—f—K:e.

At stept™*!, the discrete Bidomain models solves

(3.2) Bx"* =h",

Buu, Bue _ u _ f
S b B S
Since the Bidomain systen?.Q) is degenerate, the matr® in its discrete formulation is
singular, with a kernel spanned by the block vedtrl]”. We thus solve 3.2) with an

iterative method (GMRES) and we force a zero mean value oextracellular potential by
imposing1” Mu, = 0.

where

3.2. The Block-GS preconditioner and the Monodomain model.The discrete Bido-
main system3.2) is preconditioned by a block-Gauss-Seidel strategy,gugia lower block-
triangular part of the matriB3:

Mo[Be 0 ]

BEU Bee

The derivation of such a preconditioner from a model-bagpdaimation is described i,

and we will not dwell upon it here. We only point out that thetrmaM arises from assuming
D. = AD; in the first equation ofZ.3), and hence it corresponds to the discretization of the
Extended Monodomain system

ou AD;
.| = I — Japp
(3.3) xCh Y v (1 n AVu) s X Lion (u, w)

~V-[D;Vu + (1 + A\)D;Vu,] = I*,
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together with Neumann boundary conditions (sdg [
At the generic time step, we thus solve the preconditionetllpm

M 'Bx"t' = M~'h".
We refer the interested reader #@ for implementation aspects.

4. Spectral analysis of the preconditioner.In this section we analyze the spectral
properties of the proposed preconditioner by means of Eparialysis. For notational con-
venience, we drop the time index hereafter. We consider dounded domaif) = R3,
and we assume the fibers to be parallel (ng.,7 = [,t,n, are independent of). Without
loss of generality, we assume that the first component ofdfezance frame is aligned with
the longitudinal axis of the fibers, so that, owing ®1j, the diffusion tensors are diago-
nal. We assume that the intra- and extracellular media ar@genous (i.eg-*", 7 = i, e,
are independent of). We introduce the continuous operatdts [H!(Q)]?> — [H}(Q)]?
andM : [HY(Q))> — [H~(Q)]?, associated with problems.{) and with the semi-discrete
counterpart of§.3). With these definitions, the asymptotic requirementsterfourier trans-
formability of the extracellular potential automaticafly the arbitrary function of time42].
We denote byk,, k; and ks the dual frequency variables, and the Fourier transform of
w(z,y, z) = u(x,y, 2), u.(x,y, z) reads

Fw(z,y,2) — Wk, ko, k3) = / eTikathoytha)y (0 g o) da dy dz.
R3

The action of and M can now be expressed for anye [H!(©2)]? by means of the inverse
Fourier transform, namely

Bu = F~*(Bu) Mu =F 1 (Ma),

whereB andM are the symbols of the operatd#eind M, respectively. We denote lty, g)*
the right hand side in3(1) and we sek? = k;; + k3 as a consequence of assumptidri).

Considering|k;| < kM and|k| < k™, wherek} and k™ represent the maximal
frequencies supported by the numerical grid (of ordét with i being the mesh size), we
introduce the modulated spatial frequendes o'k? + otk® andn = ol k3 + ot k*, and we
analyze the effectiveness of the preconditioning oper@ter the domain

(4.1) T ={Aué—c1 <0 < Aué A€ < < A€+ 2} \ {(0,0)}

shown in Figure4.1, wherec; andc, are positive constants depending bff, k"', and
on the conductivity values. AsM and k™ tend to infinity (andh — 0), the domainT’
covers the angular sectr= {\,,§ < n < A&} \ {(0,0)}. In the frequency domain, the
preconditioned Bidomain problem then reads:

k]VI

e en [ 5] = nrew [ 2],

where

B(&,n) =
(&n) : tim

XCom + AtE5 € At (1-?/\5_1-&14\77)‘|

and

XCm + At € 0 }

Mgy = [t TS Y
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T €

FIGURE 4.1. The domaing" and S.

For (¢,7) # (0,0) the matrixM (&, n) is invertible. From now on, we setC,,, = 1, as this
is the standard assumption in the applicatidsjs [
With these notations, the preconditioned operator reads

1
(4.2) P(&n) = [M(&m] ™ B = |, 1—?_%5’;7()6 m)’
n ’
where
At AE—1
(4.3) afé,n) = TFA T+ 25 A€

The eigenvalues aP (&, n) are given by its diagonal entries, and we set

1+ At <1
4.4 =1-— - 2"
(4.4) v(&,m) §+na(€7n) AL
A

In [7] it was proved that

1 1

s+1 5+1
45 m(A) = 2 <& < 2 = A
(4.5) Tm(A) %+1_7(£n)_ﬁ+1 T (A)

We letK, = 11283 and obtain from4.5) that for all\,,, < X < Ay

1\ 1

Notice that, though defined as the ratio betwegr(\) and~,, (), K, is actually a constant
that does not depend onbut only on the conductivity coefficients. The spectrum a th
preconditioned operator is then bounded independentlgedthoice\ € [\, Ay]. More-
over, we recall that the maximal frequency supported by aerigal grid is of the order /h.
SinceK, does not depend on the Fourier variables either, the speciithe preconditioned
operator is also bounded independently of the frequenci@éstaus of the mesh size.

Finally, we can observe frond(5) that, if \ = \,,,, all the eigenvalues are bigger than 1
and bounded from above, ¥ = \,;, all the eigenvalues are smaller than 1 and bounded
away from 0, while for\,,, < A < Ay the eigenvalues cluster around 1; sée Using the
values fors! ando proposed in3], we get),, = 0.6667 and\,; = 4.2868, and we have
K., = 2.0259.
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4.1. Conditioning of the preconditioned problem. The matrixP (&, n) of the precon-
ditioned problem is nonsymmetric. For this reasén, is just a rough estimate of its con-
ditioning, and we therefore estimate it here from the anglp$ its singular values given

by

oB(&,n) = ViE(E ),

with ¢* (¢, 1) being the eigenvalues of the matrix

Y (&m) = [P )P n) = [a(gl, ) 7(5777;}2%-’ Z&)(&n)? '

Owing to @.4), we have

aten = (1+7) 1=,

and the eigenvalues &f(&, n) are given by

vE(En) :% (1 +7(&m)* + (1 + g) (1- 7(5#]))2)

4.7)

2

1 2 n ° 2 2
3 (1eaen+ (14 2) a-aen)?) - e

We now focus onp™ (€, 1) andy~ (€, n): both are real positive with <= (£, ) <y (&, 7).
Gathering 4.7) and @.5) and owing to the fact thaX,,,¢ < n < Ap/&, we get an upper bound
for the larger eigenvalue™ (¢, n) given by

HEn) < T+ymN)? 4+ (1+Aw)? (1—(&m)°.

We now turn our attention to the tert — ~(¢,71))?: we have, from 4.3) and ¢@.4), that
v(&,n) < 1forn < A andy(§,n) > 1forn > A and

A
1=9(&n) < (ﬁ - %-‘,—1) 1+At£t5 L M= A8

1
At

_ 11 ) A
(&) 1§<;M+1 §+1) 1+At€$ n> AL

The common term is monotone increasingjithus it can be bounded from above by its limit
as¢ — oo:

Ate , Ate 1

Thus, we obtain from4.5)

11 —~(&n)| <max{ypm(A) —1,1—7,(N)},

and the upper bound fai™ (¢, 7) is given by:

HEm) < T+ + (L dan)? max { (ar(3) = 17, (1= 3m(N)* } =5 65 (V).
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We now turn to estimate the minimum ¢f (¢, 7). Sincedet(P? P) = 42, we have

- _(En)?
vEm = ey

Thus, the minimal eigenvalug— (¢, n) is bounded from below by
_ Ym (A)?
v (&m) = ;
b (N)
where~,, () is defined in 4.5). We can thus conclude that the effective conditioning ef th
continuous preconditioned problem is bounded from above by

ko(P) = X(EmeET op(&n) _ maxeper VG _ k()
min(gm)egp J;(f,n) min(gm)egp wf(f,n) o "Ym()‘),

and eventually we get

(4.8) ka(P) < Ko+ K2+ (1+ Ay)? K, max {(W(A) -1, - q/m()\))Q} = K\,

using againk., = ya/vm. ASs the bound in4.8) depends only on the coefficients of the
problem and the paramet&r we conclude that the conditioning of the preconditionezbpr
lem at the discrete level is independent of the mesh/size

4.2, Convergence of a Krylov method.Since the matrix of the Bidomain problem is
nonsymmetric, we use a Krylov type algorithm to solve itsoagged linear system at the
discrete level. In this section we approach the discreteieerof the preconditioned operator
P(&,m) by GMRES. In the Fourier space, the matrix of the right eigetors forP (¢, n) is

given by
- 1 _la(&(gz)) 1 _EJgrn
— —v(&n e
(&mn) 0 {0 } :

1 1

where the last equality follows from the definitionof¢, ) in (4.4). The matrixiW (&, n) is
invertible, thus the residual norfir,,||» achieved by then-th step of the GMRES algorithm
satisfies

[7mll2 < K2 (W)e™ ||roll2,

where||rg||2 is the initial residual normks (W) is the conditioning of the matrix of eigen-
vectors, and(™) depends on the eigenvalues of the preconditioned probidmAroposi-
tion 6.15].

4.2.1. Conditioning of the eigenvectors matrix.The matrixW (&, ) being nonsym-
metric, we compute its conditioning by means of its singuidues. We have:

1 _&n
n) = r = ‘
X(&n) = [W(&n] W(E,n) {_5? 1+ (5?;)2] :

The matrix X (¢,n) and its eigenvalues have to be evaluated on the doffiajsee Fig-
ure 4.1): we can change variables and express the maftig, ) in terms of (£, A), with
Am < X < Ay. Along the linen = A&, we have

§+n
RS EY
3
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so it suffices to analyze the eigenvalues of

1 —(1+)

X&) = —(14N) 1+1+N?]

Since defX (&, \) = 1 and trX (£, \) = 2 + (1 + )2, the eigenvalues of the matriX (&, \)
solve, for any given\ € [\, A\y], the equation

(4.9) (h—1)% = (1+ ),

and depend on only. Equation 4.9) has always two positive roots (see Figdr&), which
@

(k-1

:
S
anfu

0 u’('AM) o u"mm) e
FIGURE 4.2. Eigenvalues location foX (&, \): slopes modified for visualization purpose.
are given by
() :% (2+(1+/\)2j:(1+>\) (1+/\)2+4),

while the singular values of the matri¥’ (¢, \) areois,(\) = /u=()\). Moreover, since
pt(N)p=(A) = 1 forall A\, andu™(\) > 1 is increasing in\, the conditioning of the
eigenvectors matriX/ (&, n) is given by
- VIEA) _ TN —

KJQ(W) N /\mfgn)?%(/\M w- ()\) B /\mrﬁn/\a%g\M a (A) s ()\A{).
The conditioning of the eigenvectors matrix, being indefsen of the frequency variables
(&,m), is thus independent of the mesh sizeand, with the coefficients of the problem
proposed in3], we getro (W) = 29.8449.

4.2.2. Estimation ofe(™). If the spectrum of the preconditioned matrix is contained in
an ellipse of the complex plane with centerfocal distancel, and major semi axia and
which does not contain the origia{™ is given in terms of Chebyshev polynomials of order
m and can be approximated (s&]) by

m) _ C’m(%) N a+vVa? —d? "
G ()] \evve—a)

We proved in the previous section that the eigenvalues optkeonditioned problem are
real and bounded away from 0. The spectrum is thus containadlegenerate ellipse, the

€l
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interval [y,,, var], Wwherey,, andv,, are defined in4.5): the dependence onis analyzed in
this section. In this situation, we hawe= d = 51, ¢ = W;W and get

RUDIFS

a " B TM — TYm
<C + v C2 - d2> ('7]\4 + Ym + \/(’YM + ’Ym)z - ('}/]VI - 'Ym)2>

_ ( YM — Ym )m _ ( YM — Ym )m _ (\/ TM — +/ ’Y'm)m
YM + Ym + 2\/ YM Vm (\/ Yv + vV ’7m)2

VYM T/ Tm
Sincev,, > 0, we can conclude that

(4.10) (M) VA, -1 ,
VK, +1

where againk’, = vy /vm. Owing to @.6), the above quantity is then bounded indepen-
dently of both the Fourier variables (and thus of the meslarpater) and\, and with the
coefficients of the problem proposed Bj {ve gete ~ 0.1748.

REMARK 4.1. If the preconditioned matrix were symmetric, the qitank’, would be
its condition number, and the estimatel(0 would be the reduction factor of the conjugate
gradient (CG) method. Since all the eigenvalues are redlfasitive), a non-standard inner
product induced by the preconditioned matfbexists,(z, y) , = 27 A(P)y, with respect to
which P itself is symmetric positive definite. A CG method based or) ,, could possibly
be more convenient than the use of the GMRES in terms of menegujirements, provided
A(P) is simple enough. This aspect will be the subject of a susgqmeestigation that will
be carried out directly at the discrete level.

4.3. Optimization of the parameter \. We have proved that the preconditioner is ro-
bust with respect to the mesh size, since, for any choicesop#ttametei € [\, Ays], the
conditioning of the eigenvectors matrix (/) the reduction factoe(™), the conditioning
of the preconditioned problemy, (P), and the parametek’, are bounded independently of
the frequency variable&, n). We are now interested in optimizing the preconditioner per
formances with respect th. To this extent, we notice that,(17) and (™ are estimated
by quantities depending ok, and A, only, while the upper bound fots(P) is a function
of \.

The only possible choice to optimize the preconditionefgrerances is thus by mini-
mizing the upper bound on the condition number of the preitiomeé:d matrixP (£, ). This
amounts to identifying\* as the solution of the minimization problem

K\ = i K(\).
A= i K

First, notice that, owing to the definition &, and @.6), the functionK (\) can be rewritten
as

K(\) = K, + K2 + K, max{¢1(}), 2(\)},

where we have set

om=(1-5) em= (153 (%)
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We have, for all\ € [\, A\,

oo (1 M) Au oy o (LM Am A
¢51()\)_2<1 v ) 5z <0 Pa(A) =2 . 1-= )55 >0

Moreover, since
d1(Am) >0 d1(Am) =0 p2(Am) =0 d2(Aar) >0,

the minimum of K(\) is attained at the intersection of the two curv@g\*) = ¢o(A\*).
Simple algebra yields

Am + An + 22 A
24 A + A

(4.11) A=

In Figure4.3we plot the upper bound on the effective condition number fametion of A:
the coefficients of the problem are the ones proposed|in [

Conditioning of M~ B

FIGURE 4.3. Upper bound on the conditioning of the preconditioned peatK ().
REMARK 4.2. By inserting the parametaf identified in @.117) into (4.5), we get
L= 9m(N) =y (X)) = 1,

namely\* provides an upper and a lower bound to the eigenvalues dhggtaf the precon-
ditioned problem that are symmetric with respect to 1. Whih ¢oefficients proposed i3]}
we get\* = 1.5344, v,,(A*) = 0.661, and~y,; (A*) = 1.339.

5. The case\ — +oo. If we let the coefficient\ go to +oco in (2.3), we recover the
Parabolic-Elliptic (PE) symmetric formulation

onlt

m . Dz - : Di e Iion = [P
5.1) 5 \Y Vu—V Ve + xZion(w)

—~V-D;Vu— V- (D; + D.)Vu, = I*P,

widely used in the bioengineering community. Keeping theeaotations as in Sectid)
the associated matrix at the discrete level is given by

Lo M+K K
K; Ki+Kel”
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The block triangular preconditioner can be defined also is ¢hse, and in the rest of the
section we outline its spectral analysis. An argument sintd the one in Sectiof.1 shows
that the PE-Bidomain problem is represented in the frequdomain by the matrix

XCrm
Blen = |5 8 ).

Notice that, although in this case— +o0, we still analyze the effectiveness of the precon-
ditioner in the frequency domain over the §etlefined in ¢.1). Simple algebra shows that
the matrix P(&, n7) of the lower block-triangular preconditioned problem Haes same form
asin @.2) with

TS
“= 14+ AtE’

where, as usual, we have assumgd,, = 1. Since0 < «a < 1, the eigenvalues of the
preconditioned problem are either 1 or bounded by
1

(5.2)
= +1

<v(&m) < 1.

5.1. Conditioning of the preconditioned problem. The structure of the preconditioned
matrix being the same as in Sectidri, the same procedure an8l.?) entail the following
bound on the singular values of the preconditioned problem:

SHEm) < L4yEn)?+ (1 " i) 1 —AEm)? <2+ (

14 )2
14+ /)

As a consequence, the effective conditioning of the pretiongéd problem is bounded from
above by

(14 Anr)?

(5.3) r2(P) <2 (1 + 1) A )

Am
Also in this case, since the bound i5.8) does not depend on the frequency variable, we
conclude that the conditioning at the discrete level is @ghindependently of the mesh
sizeh. With the coefficients proposed ][ we getkq(P) < 30.1533.

5.2. Convergence for a Krylov method. The formal structure of the preconditioned
matrix P(£,n) as well as the relation betweeri¢, n) and~(€, n) are the same as the ones
in Section4.2. As a consequence, the results obtained in Sedcti@rstill hold when the
block-triangular preconditioner is applied to the PE-Bidon problem $.1).

6. Numerical results. In this section we present some numerical results in 3D tystu
the optimality of the paramete* identified in the previous section that minimizes the upper
bound on the conditioning of the preconditioned problem. té¢ the optimality of\* with
respect to mesh size, time step, and ionic model. We do nopamrhere the preconditioner
performances with respect to other preconditioners aeaila literature, as such a compari-
son, together with an extensive analysis of the preconditiperformances, has already been
the subject of the numerical tests presentedjn [

The computational domain is either a real ventricular geontbat is reconstructed from
SPECT images or the ellipsoid introduced 8 (see Figures.1) with an analytical descrip-
tion of the fiber orientation. As ionic models we use both tlog&s-McCulloch variant of
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FIGURE 6.1. The computational domains. Left: real ventricular geomeéconstructed from SPECT images.
Right: ellipsoidal geometry introduced ir8]. White arrows represent myocardial fiber orientation usadour
numerical simulations.

the FitzHugh-NagumoRM) and the Luo-Rudy Phase LR1) model. The numerical tests
are carried out withLi f eV [12], a finite element library using th&ri | i nos packages
BELOS andl FPACK [28]. The discrete problem is solved with a Flexible GMRES preco
ditioned on the right: this allows us to solve the linear sysin the preconditioning step by
an iterative method with a coarse tolerance (S8ddr implementation details). The stop-
ping criterion is based on the 2-norm of the current residuamalized with respect to the
2-norm of the initial residual, and the tolerance is sei(to®. The preconditioner is expected
to be fairly independent of the mesh size. Moreover, sineesthenvector matrix for the pre-
conditioned problem shows a good conditioning indepengeaftthe parametei, we also
expect reasonably good performances for any choice®f),,,, Ay/]. We consider different
values of\: the two endpoints),,, and\;;, the optimized parametex*, and the midpoints
Amox = (A +A%)/2andA . = (A + Aar)/2. Relying on the coefficients proposed B},
we thus consider the values

Am = 0.6667 Am,« = 1.1006 A" =1.5344 Aevr =291 Ay = 4.2868.

We also considek = 1.3, the value used in7], which was tuned therein in an empirical way.

6.1. Influence of the mesh sizeFor this test we use the realistic ventricular geometry
and different mesh sizes. The ionic model is the Rogers-Mo€u We use a time step of
At = 0.5 ms, and we simulate, for different mesh sizes and differahtes of)\, the first
50ms of the action potential propagation: during this pttheedepolarization front is trav-
eling in the computational domain, making the Bidomain datian computationally more
expensive.

In Table 6.1 we report the average iteration counts for the differenueslof A and
for different mesh sizes. The preconditioner exhibits aif@ensitivity with respect to the
mesh size also for a real geometry in the presence of a confipkers distribution, even
if its derivation was carried out in the special case wheeefthers are aligned with the
Cartesian axes. The performance of the paraméetshows an evident stability as the mesh
size decreases, which can be expected, since it was demnigecointinuous framework.

6.2. Influence of the time step.In the second series of tests, the computational domain
is still the ventricular geometry and the ionic model is thegBrs-McCulloch one. We use
the largest mesh (677,000 nodes) of the previous sectiorarder to assess the behavior
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TABLE 6.1
Ventricular geometriRM ionic model: average iteration counts per time step fored@ht mesh sizes, and for
various values oA.

A A Ams A Aem Am 13
# nodes| iter iter iter iter iter iter
22,470 | 6.06 5.02 5.04 6.02 6.09 5.0
58,943 | 7.23 6.01 6.01 6.46 7 6.01
156,733| 8.04 6.88 6.12 6.08 7.01 6.22
276,578 | 7.26 6.03 6.00 6.07 6.98 6.01
677,000 799 6.08 6.05 7.00 7.06 6.06

of the preconditioner in the three principal phases of theagotential (depolarization,

plateau, repolarization), here we consider longer siraratf 400ms sufficient to include a
whole heartbeat. We test the sensitivity of the paramgtewxith respect to the time step by
choosing three different valuesst = 0.5, 0.25, 0.125. In Table6.2 we report the average
iteration counts per time step and the average CPU time ¢orsls) to solve the linear system
within each time step for the different values)oéind the different time steps.

TABLE 6.2
Ventricular mesh with 677,000 dd®M ionic model: average iteration counts and CPU time (in s) tiere
step over 400ms, for various values)oéind different time steph¢.

A Am A A" At Ans 1.3
At=05 iter | 7.20875 6.02125 6.00625 7  7.09625 6.0075
CPU | 191.377 165.131 172.919 198.332 197.179 165.302
At=025 iter | 6.25312 504625 5.01187 6.005 6.25938 5.04812
CPU | 180.454 147.761 150.268 200.183 196.094 157.449
At=0125 iter | 7.00063 6 597 504437 588969 6
CPU | 199.607 151.44 144588 163.344 193.371 177.434

We observe that the preconditioner shows fair insensjtivith respect to the time step
for all values of\ considered. In addition, the optimality af becomes significantly evident
in terms of computational cost as the time stepgets smaller. Moreover, the CPU time
associated with the parametgt is consistently decreasing with the time step, while the
other values of feature a more erratic behavior.

6.3. Influence of the ionic model.In this last series of tests, the computational domain
is the ellipsoid with analytical fiber description introahtin [3], discretized by a tetrahedral
mesh with 578,442 nodes. For the different values ofve simulate 450ms of propagation
using both the Rogers-McCulloch and the Luo-Rudy PhakR1 ionic models. The time
step isAt = 0.5ms for theRM model, andAt¢ = 0.1 for theLR1 model, as the latter requires
a smaller time step in order to handle the stiffness of thérakes part of the action potential.
The computed averages are thus based on 900 and 4500 tirsersigpectively. We again
report in Table5.3 the average iteration counts per time step and the averageti@® (in
seconds) to solve the linear system within each time steghéodifferent values ok and the
different ionic models.

We can infer from Tablé&.3the robustness of the preconditioner with respect to thie ion
model for the various values of. Moreover, as it can be expected from the tests in the
previous section, the parameter performs better with the Luo-Rudy Phase 1 model, as the
time step for this model is smaller than the time step for tbgd®s-McCulloch one.
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TABLE 6.3
Ellipsoidal mesh with 578,442 dof: average iteration caugaihd CPU time (in s) per time step over 450ms, for
various values of\ and different ionic models.

A Am A A" Aot Anr 1.3
RM  iter | 9.07  7.0256 7 7 7. 7.0011

CPU | 211.409 168.67 184.115 217.687 241374 173.622
LRI iter | 7.33889 6.99667 5.08756 6.0566 6.1089 5.1391

CPU | 126.789 125.959 105.188 151.993 177.203 126.088

7. Conclusions. In this paper we analyzed the spectral properties of the Huaked
block-triangular preconditioner introduced ][ By minimizing an upper bound on the
conditioning of the preconditioned problem, we identifiedo@timal parametex* for which
we provide an explicit formula. Involving only the coeffiots of the problem, this formula
can be easily used in implementations. Although the aralgsd the optimization have
been performed in the very special case where the fibersigredlwith the reference axes,
numerical tests on both a real ventricular geometry recocigtd from SPECT imaging and
an analytical ellipsoidal geometry described3hdre in good agreement with the conclusions
of the analysis itself. In particular, the upper bound ondtweditioning of the preconditioned
problem being dependent only on the coefficients of the prabthe preconditioner turns out
to be fairly insensitive to the mesh size, the time step, haddnic model used for all suitable
choices of the parametar Moreover, the numerical tests show that the performanteso
preconditioner associated with the valieimprove with the reduction of the mesh size and
the time step, confirming the asymptotic optimality of thepgamrsed parameter.
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