
Electronic Transactions on Numerical Analysis.
Volume 39, pp. 186-201, 2012.
Copyright  2012, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University 

http://etna.math.kent.edu

SPECTRAL ANALYSIS OF A BLOCK-TRIANGULAR PRECONDITIONER FO R
THE BIDOMAIN SYSTEM IN ELECTROCARDIOLOGY ∗

LUCA GERARDO-GIORDA† AND LUCIA MIRABELLA ‡

Abstract. In this paper we analyze in detail the spectral properties ofthe block-triangular preconditioner in-
troduced by Gerardo-Giorda et al. [J. Comput. Phys., 228 (2009), pp. 3625-3639] for the Bidomain system in
non-symmetric form. We show that the conditioning of the preconditioned problem is bounded in the Fourier space
independently of the frequency variable, ensuring quasi-optimality with respect to the mesh size. We derive an
explicit formula to optimize the preconditioner performance by identifying a parameter that depends only on the
coefficients of the problem and is easy to compute. We provide numerical tests in three dimensions that confirm the
optimality of the parameter and the substantial independenceof the mesh size.
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1. Introduction. The Bidomain model is commonly considered one of the most com-
plete and accurate models to describe the propagation of theelectrical potential in the my-
ocardium tissue; see, e.g., [9, 19, 21, 25]. It consists of a system of nonlinear unsteady partial
differential equations governing the dynamics of intra- and extracellular potentials, coupled
with a system of ODEs that describes the dynamics of membranecurrents. The discretiza-
tion of the Bidomain model is often based on a finite element approximation in space and
on implicit-explicit time advancing schemes, allowing oneto skip the expensive solution of
nonlinear systems. The degenerate parabolic nature of thissystem, however, results in a very
ill-conditioned linear system associated with the Bidomain discretization. Recently, several
scientists have developed effective preconditioning strategies to reduce the high computa-
tional cost of solving this linear system [3, 13, 14, 16, 17, 26, 27, 30, 31]. Most of these
strategies are based on a proper decomposition of the computational domain in order to set
up parallel preconditioners or suitable multigrid schemesstill coupled with parallel architec-
tures. An efficient serial preconditioner was proposed in [7] based on a suitable adaptation of
the Monodomain model, a simplified model consisting of a single parabolic equation for the
transmembrane potential, based on a (quite unrealistic) proportionality assumption between
the intra- and extracellular conductivity tensors. On the one hand, it is computationally very
cheap, on the other hand, is not able to capture significant patterns of excitation and repo-
larization in both physiological and pathological conditions. However, in [7], it was shown
that a suitable extension of the Monodomain model results ina lower block-triangular pre-
conditioner for a nonstandard formulation of the Bidomain model. While the initial study
showed that the preconditioner is very effective and robustwith respect to the mesh size both
in iteration counts and CPU time, an accurate theoretical analysis of the preconditioner was
not carried out. In addition, the preconditioner depends ona parameterλ that was tuned em-
pirically in [7]. This paper is devoted to an accurate spectral analysis of the block-triangular
preconditioner proposed in [7]. By means of Fourier analysis we show the optimality of the
preconditioner with respect to the mesh size, and we providea formula to identify an optimal
parameterλ∗.

The paper is organized as follows. In Section2, we introduce the Bidomain model and
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its non-symmetric formulation. Section3 presents the numerical discretization and the block-
triangular preconditioner at the discrete level. In Section 4, we carry out the spectral analysis
of the preconditioner, and we provide a formula for the optimal parameterλ∗. In Section5, we
extend our analysis to the symmetric parabolic-elliptic formulation of the Bidomain system.
Finally, in Section6, we provide some numerical results in three dimensions to illustrate our
findings.

2. The Bidomain model. The myocardial tissue is composed of elongated cells, the
cardiac fibers, connected to each other by gap junctions and surrounded by an extracellular
medium. From a mathematical point of view, this structure can be modeled as a continuum in
which the electrical variables are obtained as the average of the single cell properties after a
homogenization process [1, 4, 6, 15]. The cardiac tissue can be represented as a superposition
of intra- and extracellular media connected by a cell membrane dislocated in the domain. The
Bidomain model should take into account the direction of thecardiac fibers. Anatomical stud-
ies show that the fiber direction rotates counterclockwise from epicardium to endocardium
and that the fibers are arranged in sheets running across the myocardial wall [8, 11, 25].
We pose the problem in a bounded regionΩ ⊂ R

3, and we assume that the cardiac tissue
is characterized at each point by three directions:al along the fiber,at orthogonal to the
fiber direction and in the fiber sheet, andan orthogonal to the sheet. The intra- and extra-
cellular media present different conductivity values in each direction. We denote byσl

i(x)
(resp. σl

e(x)) the intracellular (resp. extracellular) conductivity inal(x) direction at point
x ∈ Ω and similarly byσt

i(x) (σt
e(x)) andσn

i (x) (σn
e (x)) the conductivities alongat(x)

andan(x). We will use throughout the paper the notationσl
τ (x), σn

τ (x), σt
τ (x) with τ = i, e

for indicating intra- and extracellular conductivity in a compact form.
The intra- and extracellular local anisotropic conductivity tensors are therefore

Dτ (x) = σl
τ (x)al(x)aT

l (x) + σt
τ (x)at(x)aT

t (x) + σn
τ (x)an(x)aT

n (x)

for τ = i, e. We assume thatDτ satisfies a uniform ellipticity condition inΩ. In this paper,
following [3], we also assume axial isotropy for the myocardium; that is,we assume the same
conductivity in both the tangential and normal directions.Under this hypothesis, the tensors
may be written in the simplified form

(2.1) Dτ (x) = σt
τI + (σl

τ − σt
τ )al(x)aT

l (x)

for τ = i, e.
Let ui andue be the intra- and extracellular potentials, respectively,and letu = ui − ue

be the transmembrane potential. The current density in eachdomain can be computed as
Jτ = −Dτ∇uτ , τ = i, e. The net current flux between the intra- and the extracellular do-
main is assumed to be zero as a consequence of charge conservation in an arbitrary portion
of tissue. Denoting byIm the ingoing membrane current flow and byχ the ratio of mem-
brane area per tissue volume, we have∇ · (Di∇ui) = χIm = −∇ · (De∇ue), where
Im = Cm∂tu + Iion(u,w), Cm is a capacitance, andIion is the ionic current, which de-
pends on the potentialu and on suitable ionic variables that we denote withw. The complete
Bidomain model reads

χCm∂tu −∇ · Di∇ui + χIion(u,w) = Iapp
i

−χCm∂tu −∇ · De∇ue − χIion(u,w) = −Iapp
e ,

(2.2)

whereIion(u,w) is a nonlinear function of the transmembrane potentialu, specified by an
ionic model, and whereIapp

i,e are applied external stimuli. In what follows, we do not relyon
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a specific choice for the ionic model describing the cell membrane currents; thus, from now
on, we simply denote byIion(u) the ionic current. In our numerical tests we consider as mod-
els for ventricular cells both the Luo-Rudy Phase 1 model [23] and the Rogers-McCulloch
variant of the FitzHugh-Nagumo model [20]. The problem is completed by initial conditions
ui(x, 0) = ui,0, ue(x, 0) = ue,0, u(x, 0) = ui,0 − ue,0, and by homogeneous Neumann
boundary conditions on∂Ω, modeling an insulated myocardium:

nT Di∇ui(x, t) = 0 and nT De∇ue(x, t) = 0, on ∂Ω × (0, T ),

wheren is the unit normal outward-pointing vector on the surface. As a consequence of the
Gauss theorem, the applied external stimuli must fulfill thecompatibility condition

∫

Ω

Iapp
i dx =

∫

Ω

Iapp
e dx.

System (2.2) consists of two parabolic reaction–diffusion equations for ui and ue, where
the vector of time derivatives is multiplied by a singular matrix. The system is thus said
to bedegenerate. The transmembrane potentialu is uniquely determined, while the intra-
and extracellular potentialsui andue are determined up to a common function of time whose
value is usually obtained by imposing thatue has zero mean onΩ. For an analysis of the well-
posedeness of the Bidomain problem; see [6] (Fitzugh-Nagumo model) and [29] (Luo-Rudy I
model).

In what follows we will rely on a non-symmetric formulation of (2.2): see, e.g., [7, 10].
For this purpose, we define

λm = min

{
σl

e

σl
i

,
σt

e

σt
i

}
λM = max

{
σl

e

σl
i

,
σt

e

σt
i

}
.

Taking linear combinations of the two equations in (2.2) with coefficients
(

λ
1+λ

,− 1
1+λ

)

with λm ≤ λ ≤ λM and(1, 1), the Bidomain system can be reformulated in terms of the
transmembrane and the extracellular potentialsu andue as

χCm

∂u

∂t
−∇ ·

[
λDi

1 + λ
∇u

]
−∇ ·

[
λDi − De

1 + λ
∇ue

]
+ χIion(u) = Iapp

−∇ · [Di∇u + (Di + De)∇ue] = Ĩapp,

(2.3)

where we have setIapp =
λI

app
i +Iapp

e

1+λ
andĨapp = Iapp

i − Iapp
e .

3. Numerical approximation and the block-triangular preconditioner. We give a
brief overview of the numerical approximation of the Bidomain model and the block-triangular
preconditioner. For a more detailed description, see [3, 4, 31] and [7], respectively.

3.1. Finite dimensional formulation. For the sake of presentation, we consider a time
advancing procedure with fixed step∆t, and we denote with the superscriptn the variables
computed at timetn = n∆t. Time adaptive schemes were also considered [2, 18], but on the
one hand their analysis goes beyond the scope of this paper, and on the other hand, a fixed
time step does not affect the generality of the present analysis.

The Bidomain equations (2.3) can be advanced in time by a semi-implicit scheme, where
the nonlinear term (the ionic current) is evaluated at the previous time steps. More precisely,
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moving from time steptn to tn+1, we solve onΩ

χCm

un+1 − un

∆t
−∇ ·

[
λDi

1 + λ
∇un+1 +

λDi − De

1 + λ
∇un+1

e

]
= Iapp− χIion(un)

−∇ ·
[
Di∇un+1 + (Di + De)∇un+1

e

]
= Ĩapp

u0(x) = u0(x) u0
e(x) = ue,0(x)

nT Di(∇un+1 + ∇un+1
e )|∂Ω = 0 nT De∇un+1

e |∂Ω = 0.

(3.1)

We denotefn = Iapp− χIion(un) + χCm

∆t
un andg = Ĩapp. In the sequel, when the context

is clear, we will drop the time indexn + 1.
We discretizeΩ with a regular triangulationTh, and we consider a finite element spaceVh

in which we will look for the approximate solutions, namelyuh anduh
e . For the numerical

tests in Section6, Vh is the space of piecewise linear continuous functions onTh.
We denote byΦ = {ϕj}Nh

j=1 a basis forVh, by M the mass matrix with entries
Mij =

∑
K∈Th

(ϕj , ϕi)|K , and byKτ (τ = i, e) the stiffness matrices with entries
Kij

τ =
∑

K∈Th
(Dτ∇ϕj ,∇ϕi)|K , ϕi, ϕj ∈ Φ.

When solving the Bidomain system, the unknowns of the fully discrete problem are
represented by vectorsu andue, which contain the nodal values ofuh anduh

e , respectively.
We letfn andg denote the discretization of the forcing terms, and we set

Buu =
χCm

∆t
M +

λ

1 + λ
Ki Bue =

λ

1 + λ
Ki −

1

1 + λ
Ke

Beu = Ki Bee = Ki + Ke.

At steptn+1, the discrete Bidomain models solves

(3.2) Bxn+1 = hn,

where

B =

[
Buu Bue

Beu Bee

]
, x =

[
u

ue

]
, h =

[
f

g

]
.

Since the Bidomain system (2.2) is degenerate, the matrixB in its discrete formulation is
singular, with a kernel spanned by the block vector[0,1]T . We thus solve (3.2) with an
iterative method (GMRES) and we force a zero mean value on theextracellular potential by
imposing1TMue = 0.

3.2. The Block-GS preconditioner and the Monodomain model.The discrete Bido-
main system (3.2) is preconditioned by a block-Gauss-Seidel strategy, using the lower block-
triangular part of the matrixB:

M =

[
Buu 0

Beu Bee

]
.

The derivation of such a preconditioner from a model-based approximation is described in [7],
and we will not dwell upon it here. We only point out that the matrix M arises from assuming
De = λDi in the first equation of (2.3), and hence it corresponds to the discretization of the
Extended Monodomain system

χCm

∂u

∂t
−∇ ·

(
λDi

1 + λ
∇u

)
,+χIion(u,w) = Iapp

−∇ · [Di∇u + (1 + λ)Di∇ue] = Ĩapp,

(3.3)
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together with Neumann boundary conditions (see [7]).
At the generic time step, we thus solve the preconditioned problem

M−1Bxn+1 = M−1hn.

We refer the interested reader to [7] for implementation aspects.

4. Spectral analysis of the preconditioner. In this section we analyze the spectral
properties of the proposed preconditioner by means of Fourier analysis. For notational con-
venience, we drop the time index hereafter. We consider an unbounded domainΩ ≡ R

3,
and we assume the fibers to be parallel (i.e.,aτ , τ = l, t, n, are independent ofx). Without
loss of generality, we assume that the first component of the reference frame is aligned with
the longitudinal axis of the fibers, so that, owing to (2.1), the diffusion tensors are diago-
nal. We assume that the intra- and extracellular media are homogenous (i.e.,σl,t,n

τ , τ = i, e,
are independent ofx). We introduce the continuous operatorsB : [H1(Ω)]2 → [H−1(Ω)]2

andM : [H1(Ω)]2 → [H−1(Ω)]2, associated with problems (3.1) and with the semi-discrete
counterpart of (3.3). With these definitions, the asymptotic requirements for the Fourier trans-
formability of the extracellular potential automaticallyfix the arbitrary function of time [22].
We denote byk1, k2 and k3 the dual frequency variables, and the Fourier transform of
w(x, y, z) = u(x, y, z), ue(x, y, z) reads

F : w(x, y, z) 7→ ŵ(k1, k2, k3) =

∫

R3

e−i(k1x+k2y+k3z)w(x, y, z) dx dy dz.

The action ofB andM can now be expressed for anyu ∈ [H1(Ω)]2 by means of the inverse
Fourier transform, namely

Bu = F−1 (Bû) Mu = F−1 (Mû) ,

whereB andM are the symbols of the operatorsB andM, respectively. We denote by(f, g)T

the right hand side in (3.1) and we setk2 = k2
2 + k2

3 as a consequence of assumption (2.1).
Considering|k1| < kM

1 and |k| < k
M , wherekM

1 and k
M represent the maximal

frequencies supported by the numerical grid (of orderπ/h with h being the mesh size), we
introduce the modulated spatial frequenciesξ = σl

ik
2
1 + σt

ik
2 andη = σl

ek
2
1 + σt

ek
2, and we

analyze the effectiveness of the preconditioning operatorover the domain

(4.1) T = {λMξ − c1 ≤ η ≤ λMξ, λmξ ≤ η ≤ λmξ + c2} \ {(0, 0)}

shown in Figure4.1, wherec1 and c2 are positive constants depending onkM
1 ,kM , and

on the conductivity values. AskM
1 andk

M tend to infinity (andh → 0), the domainT
covers the angular sectorS = {λmξ ≤ η ≤ λMξ} \ {(0, 0)}. In the frequency domain, the
preconditioned Bidomain problem then reads:

[M(ξ, η)]−1B(ξ, η)

[
û
ûe

]
= [M(ξ, η)]−1

[
∆tf̂
ĝ

]
,

where

B(ξ, η) =

[
χCm + ∆t λ

1+λ
ξ ∆t

(
λ

1+λ
ξ − 1

1+λ
η
)

ξ ξ + η

]

and

M(ξ, η) =

[
χCm + ∆t λ

1+λ
ξ 0

ξ ξ + η

]
.
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FIGURE 4.1. The domainsT andS.

For (ξ, η) 6= (0, 0) the matrixM(ξ, η) is invertible. From now on, we setχCm = 1, as this
is the standard assumption in the applications [5].

With these notations, the preconditioned operator reads

(4.2) P (ξ, η) = [M(ξ, η)]−1 B(ξ, η) =

[
1 α(ξ, η)

0 1 − ξ
ξ+η

α(ξ, η)

]
,

where

(4.3) α(ξ, η) =
∆t

1 + λ

λ ξ − η

1 + λ
1+λ

∆t ξ
.

The eigenvalues ofP (ξ, η) are given by its diagonal entries, and we set

(4.4) γ(ξ, η) = 1 − ξ

ξ + η
α(ξ, η) =

1 + ∆tξ 1
ξ
η
+1

1 + ∆tξ 1
1
λ

+1

.

In [7] it was proved that

(4.5) γm(λ) =
1
λ

+ 1
1

λm
+ 1

≤ γ(ξ, η) ≤
1
λ

+ 1
1

λM
+ 1

= γM (λ).

We letKγ = γM (λ)
γm(λ) and obtain from (4.5) that for allλm ≤ λ ≤ λM

(4.6) 1 < Kγ =

(
1 +

1

λM

)−1 (
1 +

1

λm

)
.

Notice that, though defined as the ratio betweenγM (λ) andγm(λ), Kγ is actually a constant
that does not depend onλ but only on the conductivity coefficients. The spectrum of the
preconditioned operator is then bounded independently of the choiceλ ∈ [λm, λM ]. More-
over, we recall that the maximal frequency supported by a numerical grid is of the orderπ/h.
SinceKγ does not depend on the Fourier variables either, the spectrum of the preconditioned
operator is also bounded independently of the frequencies and thus of the mesh size.

Finally, we can observe from (4.5) that, if λ = λm, all the eigenvalues are bigger than 1
and bounded from above, ifλ = λM , all the eigenvalues are smaller than 1 and bounded
away from 0, while forλm < λ < λM the eigenvalues cluster around 1; see [7]. Using the
values forσl

τ andσt
τ proposed in [3], we getλm = 0.6667 andλM = 4.2868, and we have

Kγ = 2.0259.
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4.1. Conditioning of the preconditioned problem. The matrixP (ξ, η) of the precon-
ditioned problem is nonsymmetric. For this reason,Kγ is just a rough estimate of its con-
ditioning, and we therefore estimate it here from the analysis of its singular values given
by

σ±
P (ξ, η) =

√
ψ±(ξ, η),

with ψ±(ξ, η) being the eigenvalues of the matrix

Y (ξ, η) = [P (ξ, η)]T P (ξ, η) =

[
1 α(ξ, η)

α(ξ, η) γ(ξ, η)2 + α(ξ, η)2

]
.

Owing to (4.4), we have

α(ξ, η) =

(
1 +

η

ξ

)
(1 − γ(ξ, η)) ,

and the eigenvalues ofY (ξ, η) are given by

(4.7)

ψ±(ξ, η) =
1

2

(
1 + γ(ξ, η)2 +

(
1 +

η

ξ

)2

(1 − γ(ξ, η))
2

)

± 1

2

√√√√
(

1 + γ(ξ, η)2 +

(
1 +

η

ξ

)2

(1 − γ(ξ, η))
2

)2

− 4γ(ξ, η)2.

We now focus onψ+(ξ, η) andψ−(ξ, η): both are real positive with0<ψ−(ξ, η)<ψ+(ξ, η).
Gathering (4.7) and (4.5) and owing to the fact thatλmξ ≤ η ≤ λMξ, we get an upper bound
for the larger eigenvalueψ+(ξ, η) given by

ψ+(ξ, η) < 1 + γM (λ)2 + (1 + λM )
2

(1 − γ(ξ, η))
2
.

We now turn our attention to the term(1 − γ(ξ, η))2: we have, from (4.3) and (4.4), that
γ(ξ, η) < 1 for η < λξ andγ(ξ, η) > 1 for η > λξ and

|1 − γ(ξ, η)| =





1 − γ(ξ, η) ≤
(

1
1
λ

+1
− 1

1
λm

+1

)
∆tξ

1+∆tξ 1
1
λ

+1

η ≤ λξ

γ(ξ, η) − 1 ≤
(

1
1

λM
+1

− 1
1
λ

+1

)
∆tξ

1+∆tξ 1
1
λ

+1

η > λξ.

The common term is monotone increasing inξ, thus it can be bounded from above by its limit
asξ → ∞:

∆tξ

1 + ∆tξ 1
1
λ

+1

≤ lim
ξ→∞

∆tξ

1 + ∆tξ 1
1
λ

+1

=
1

λ
+ 1.

Thus, we obtain from (4.5)

|1 − γ(ξ, η)| ≤ max {γM (λ) − 1 , 1 − γm(λ)} ,

and the upper bound forψ+(ξ, η) is given by:

ψ+(ξ, η) < 1 + γM (λ)2 + (1 + λM )
2
max

{
(γM (λ) − 1)

2
, (1 − γm(λ))

2
}

=: ψ+
∗ (λ).
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We now turn to estimate the minimum ofψ−(ξ, η). Sincedet(PT P ) = γ2, we have

ψ−(ξ, η) =
γ(ξ, η)2

ψ+(ξ, η)
.

Thus, the minimal eigenvalueψ−(ξ, η) is bounded from below by

ψ−(ξ, η) ≥ γm(λ)2

ψ+
∗ (λ)

,

whereγm(λ) is defined in (4.5). We can thus conclude that the effective conditioning of the
continuous preconditioned problem is bounded from above by

κ2(P ) =
max(ξ,η)∈T σ+

P (ξ, η)

min(ξ,η)∈T σ−
P (ξ, η)

=
max(ξ,η)∈T

√
ψ+(ξ, η)

min(ξ,η)∈T

√
ψ−(ξ, η)

≤ ψ+
∗ (λ)

γm(λ)
,

and eventually we get

(4.8) κ2(P ) ≤ Kγ+K2
γ + (1 + λM )

2
Kγ max

{
(γM (λ) − 1)

2
, (1 − γm(λ))

2
}

=: K(λ),

using againKγ = γM/γm. As the bound in (4.8) depends only on the coefficients of the
problem and the parameterλ, we conclude that the conditioning of the preconditioned prob-
lem at the discrete level is independent of the mesh sizeh.

4.2. Convergence of a Krylov method.Since the matrix of the Bidomain problem is
nonsymmetric, we use a Krylov type algorithm to solve its associated linear system at the
discrete level. In this section we approach the discrete version of the preconditioned operator
P (ξ, η) by GMRES. In the Fourier space, the matrix of the right eigenvectors forP (ξ, η) is
given by

W (ξ, η) =

[
1 − α(ξ,η)

1−γ(ξ,η)

0 1

]
=

[
1 − ξ+η

ξ

0 1

]
,

where the last equality follows from the definition ofγ(ξ, η) in (4.4). The matrixW (ξ, η) is
invertible, thus the residual norm‖rm‖2 achieved by them-th step of the GMRES algorithm
satisfies

‖rm‖2 ≤ κ2(W )ǫ(m)‖r0‖2,

where‖r0‖2 is the initial residual norm,κ2(W ) is the conditioning of the matrix of eigen-
vectors, andǫ(m) depends on the eigenvalues of the preconditioned problem [24, Proposi-
tion 6.15].

4.2.1. Conditioning of the eigenvectors matrix.The matrixW (ξ, η) being nonsym-
metric, we compute its conditioning by means of its singularvalues. We have:

X(ξ, η) = [W (ξ, η)]T W (ξ, η) =




1 − ξ+η
ξ

− ξ+η
ξ

1 +
(

ξ+η
ξ

)2


 .

The matrixX(ξ, η) and its eigenvalues have to be evaluated on the domainT (see Fig-
ure 4.1): we can change variables and express the matrixX(ξ, η) in terms of(ξ, λ), with
λm ≤ λ ≤ λM . Along the lineη = λξ , we have

ξ + η

ξ
= 1 + λ,
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so it suffices to analyze the eigenvalues of

X(ξ, λ) =

[
1 −(1 + λ)

−(1 + λ) 1 + (1 + λ)
2

]
.

Since detX(ξ, λ) = 1 and trX(ξ, λ) = 2 + (1 + λ)2, the eigenvalues of the matrixX(ξ, λ)
solve, for any givenλ ∈ [λm, λM ], the equation

(4.9) (µ − 1)
2

= (1 + λ)2µ,

and depend onλ only. Equation (4.9) has always two positive roots (see Figure4.2), which

0 1

1
(µ−1)2

µ+(λ
m

) µ+(λ
M

)

(1+λ
M

)2µ

(1+λ
m

)2µ

µ−(λ
m

)µ−(λ
M

)

FIGURE 4.2. Eigenvalues location forX(ξ, λ): slopes modified for visualization purpose.

are given by

µ±(λ) =
1

2

(
2 + (1 + λ)2 ± (1 + λ)

√
(1 + λ)2 + 4

)
,

while the singular values of the matrixW (ξ, λ) areσ±
W (λ) =

√
µ±(λ). Moreover, since

µ+(λ)µ−(λ) = 1 for all λ, andµ+(λ) > 1 is increasing inλ, the conditioning of the
eigenvectors matrixW (ξ, η) is given by

κ2(W ) = max
λm≤λ≤λM

√
µ+(λ)√
µ−(λ)

= max
λm≤λ≤λM

µ+(λ) = µ+(λM ).

The conditioning of the eigenvectors matrix, being independent of the frequency variables
(ξ, η), is thus independent of the mesh sizeh, and, with the coefficients of the problem
proposed in [3], we getκ2(W ) = 29.8449.

4.2.2. Estimation ofǫ(m). If the spectrum of the preconditioned matrix is contained in
an ellipse of the complex plane with centerc, focal distanced, and major semi axisa and
which does not contain the origin,ǫ(m) is given in terms of Chebyshev polynomials of order
m and can be approximated (see [24]) by

ǫ(m) =
Cm

(
a
d

)
∣∣Cm

(
c
d

)∣∣ ≈
(

a +
√

a2 − d2

c +
√

c2 − d2

)m

.

We proved in the previous section that the eigenvalues of thepreconditioned problem are
real and bounded away from 0. The spectrum is thus contained in a degenerate ellipse, the
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interval[γm, γM ], whereγm andγM are defined in (4.5): the dependence onλ is analyzed in
this section. In this situation, we havea = d = γM−γm

2 , c = γM+γm

2 and get

ǫ(m) ≈
(

a

c +
√

c2 − d2

)m

=

(
γM − γm

γM + γm +
√

(γM + γm)2 − (γM − γm)2

)m

=

(
γM − γm

γM + γm + 2
√

γMγm

)m

=

(
γM − γm

(
√

γM +
√

γm)2

)m

=

(√
γM −√

γm√
γM +

√
γm

)m

.

Sinceγm > 0, we can conclude that

(4.10) ǫ(m) ≈
(√

Kγ − 1√
Kγ + 1

)m

,

where againKγ = γM/γm. Owing to (4.6), the above quantity is then bounded indepen-
dently of both the Fourier variables (and thus of the mesh parameter) andλ, and with the
coefficients of the problem proposed in [3] we getǫ ≈ 0.1748.

REMARK 4.1. If the preconditioned matrix were symmetric, the quantity Kγ would be
its condition number, and the estimate (4.10) would be the reduction factor of the conjugate
gradient (CG) method. Since all the eigenvalues are real (and positive), a non-standard inner
product induced by the preconditioned matrixP exists,〈x, y〉P = xT A(P )y, with respect to
which P itself is symmetric positive definite. A CG method based on〈·, ·〉P could possibly
be more convenient than the use of the GMRES in terms of memoryrequirements, provided
A(P ) is simple enough. This aspect will be the subject of a susequent investigation that will
be carried out directly at the discrete level.

4.3. Optimization of the parameterλ. We have proved that the preconditioner is ro-
bust with respect to the mesh size, since, for any choice of the parameterλ ∈ [λm, λM ], the
conditioning of the eigenvectors matrixκ2(W ), the reduction factorǫ(m), the conditioning
of the preconditioned problemκ2(P ), and the parameterKγ are bounded independently of
the frequency variables(ξ, η). We are now interested in optimizing the preconditioner per-
formances with respect toλ. To this extent, we notice thatκ2(W ) andǫ(m) are estimated
by quantities depending onλm andλM only, while the upper bound forκ2(P ) is a function
of λ.

The only possible choice to optimize the preconditioner performances is thus by mini-
mizing the upper bound on the condition number of the preconditioned matrixP (ξ, η). This
amounts to identifyingλ∗ as the solution of the minimization problem

K(λ∗) = min
λ∈[λm,λM ]

K(λ).

First, notice that, owing to the definition ofKγ and (4.6), the functionK(λ) can be rewritten
as

K(λ) = Kγ + K2
γ + Kγ max{φ1(λ), φ2(λ)},

where we have set

φ1(λ) =

(
1 − λM

λ

)2

φ2(λ) =

(
1 + λM

1 + λm

)2 (
1 − λm

λ

)2

.
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We have, for allλ ∈ [λm, λM ],

φ′
1(λ) = 2

(
1 − λM

λ

)
λM

λ2
< 0 φ′

2(λ) = 2

(
1 + λM

1 + λm

)2 (
1 − λm

λ

)
λm

λ2
> 0.

Moreover, since

φ1(λm) > 0 φ1(λM ) = 0 φ2(λm) = 0 φ2(λM ) > 0,

the minimum ofK(λ) is attained at the intersection of the two curvesφ1(λ
∗) = φ2(λ

∗).
Simple algebra yields

(4.11) λ∗ =
λm + λM + 2λmλM

2 + λm + λM

.

In Figure4.3 we plot the upper bound on the effective condition number as afunction ofλ:
the coefficients of the problem are the ones proposed in [3].

FIGURE 4.3. Upper bound on the conditioning of the preconditioned problemK(λ).

REMARK 4.2. By inserting the parameterλ∗ identified in (4.11) into (4.5), we get

1 − γm(λ∗) = γM (λ∗) − 1,

namelyλ∗ provides an upper and a lower bound to the eigenvalues clustering of the precon-
ditioned problem that are symmetric with respect to 1. With the coefficients proposed in [3],
we getλ∗ = 1.5344, γm(λ∗) = 0.661, andγM (λ∗) = 1.339.

5. The caseλ → +∞. If we let the coefficientλ go to +∞ in (2.3), we recover the
Parabolic-Elliptic (PE) symmetric formulation

χCm

∂u

∂t
−∇ · Di∇u −∇ · Di∇ue + χIion(u) = Iapp

−∇ · Di∇u −∇ · (Di + De)∇ue = Ĩapp,

(5.1)

widely used in the bioengineering community. Keeping the same notations as in Section3,
the associated matrix at the discrete level is given by

[
χCm

∆t
M + Ki Ki

Ki Ki + Ke

]
.
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The block triangular preconditioner can be defined also in this case, and in the rest of the
section we outline its spectral analysis. An argument similar to the one in Section4.1shows
that the PE-Bidomain problem is represented in the frequency domain by the matrix

B(ξ, η) =

[
χCm

∆t
+ ξ ξ

ξ ξ + η

]
.

Notice that, although in this caseλ → +∞, we still analyze the effectiveness of the precon-
ditioner in the frequency domain over the setT defined in (4.1). Simple algebra shows that
the matrixP (ξ, η) of the lower block-triangular preconditioned problem has the same form
as in (4.2) with

α =
∆t ξ

1 + ∆t ξ
,

where, as usual, we have assumedχCm = 1. Since0 ≤ α < 1, the eigenvalues of the
preconditioned problem are either 1 or bounded by

(5.2)
1

1
λm

+ 1
≤ γ(ξ, η) < 1.

5.1. Conditioning of the preconditioned problem. The structure of the preconditioned
matrix being the same as in Section4.1, the same procedure and (5.2) entail the following
bound on the singular values of the preconditioned problem:

ψ+(ξ, η) < 1 + γ(ξ, η)2 +

(
1 +

ξ

η

)
(1 − γ(ξ, η))

2
< 2 +

(
1 + λM

1 + λm

)2

.

As a consequence, the effective conditioning of the preconditioned problem is bounded from
above by

(5.3) κ2(P ) ≤ 2

(
1 +

1

λm

)
+

(1 + λM )2

λm(1 + λm)
.

Also in this case, since the bound in (5.3) does not depend on the frequency variable, we
conclude that the conditioning at the discrete level is bounded independently of the mesh
sizeh. With the coefficients proposed in [3], we getκ2(P ) ≤ 30.1533.

5.2. Convergence for a Krylov method. The formal structure of the preconditioned
matrix P (ξ, η) as well as the relation betweenα(ξ, η) andγ(ξ, η) are the same as the ones
in Section4.2. As a consequence, the results obtained in Section4.2 still hold when the
block-triangular preconditioner is applied to the PE-Bidomain problem (5.1).

6. Numerical results. In this section we present some numerical results in 3D to study
the optimality of the parameterλ∗ identified in the previous section that minimizes the upper
bound on the conditioning of the preconditioned problem. Wetest the optimality ofλ∗ with
respect to mesh size, time step, and ionic model. We do not compare here the preconditioner
performances with respect to other preconditioners available in literature, as such a compari-
son, together with an extensive analysis of the preconditioner performances, has already been
the subject of the numerical tests presented in [7].

The computational domain is either a real ventricular geometry that is reconstructed from
SPECT images or the ellipsoid introduced in [3] (see Figure6.1) with an analytical descrip-
tion of the fiber orientation. As ionic models we use both the Rogers-McCulloch variant of
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FIGURE 6.1. The computational domains. Left: real ventricular geometry reconstructed from SPECT images.
Right: ellipsoidal geometry introduced in [3]. White arrows represent myocardial fiber orientation usedin our
numerical simulations.

the FitzHugh-Nagumo (RM ) and the Luo-Rudy Phase 1 (LR1) model. The numerical tests
are carried out withLifeV [12], a finite element library using theTrilinos packages
BELOS andIFPACK [28]. The discrete problem is solved with a Flexible GMRES precon-
ditioned on the right: this allows us to solve the linear system in the preconditioning step by
an iterative method with a coarse tolerance (see [7] for implementation details). The stop-
ping criterion is based on the 2-norm of the current residual, normalized with respect to the
2-norm of the initial residual, and the tolerance is set to10−5. The preconditioner is expected
to be fairly independent of the mesh size. Moreover, since the eigenvector matrix for the pre-
conditioned problem shows a good conditioning independently of the parameterλ, we also
expect reasonably good performances for any choice ofλ ∈ [λm, λM ]. We consider different
values ofλ: the two endpoints,λm andλM , the optimized parameterλ∗, and the midpoints
λm,∗ = (λm +λ∗)/2 andλM,∗ = (λ∗ +λM )/2. Relying on the coefficients proposed in [3],
we thus consider the values

λm = 0.6667 λm,∗ = 1.1006 λ∗ = 1.5344 λ∗,M = 2.91 λM = 4.2868.

We also considerλ = 1.3, the value used in [7], which was tuned therein in an empirical way.

6.1. Influence of the mesh size.For this test we use the realistic ventricular geometry
and different mesh sizes. The ionic model is the Rogers-McCulloch. We use a time step of
∆t = 0.5 ms, and we simulate, for different mesh sizes and different values ofλ, the first
50ms of the action potential propagation: during this phasethe depolarization front is trav-
eling in the computational domain, making the Bidomain simulation computationally more
expensive.

In Table 6.1 we report the average iteration counts for the different values ofλ and
for different mesh sizes. The preconditioner exhibits a fair insensitivity with respect to the
mesh size also for a real geometry in the presence of a complexfibers distribution, even
if its derivation was carried out in the special case where the fibers are aligned with the
Cartesian axes. The performance of the parameterλ∗ shows an evident stability as the mesh
size decreases, which can be expected, since it was derived in a continuous framework.

6.2. Influence of the time step.In the second series of tests, the computational domain
is still the ventricular geometry and the ionic model is the Rogers-McCulloch one. We use
the largest mesh (677,000 nodes) of the previous section. Inorder to assess the behavior
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TABLE 6.1
Ventricular geometryRM ionic model: average iteration counts per time step for different mesh sizes, and for

various values ofλ.

λ λm λm,∗ λ∗ λ∗,M λM 1.3
# nodes iter iter iter iter iter iter
22,470 6.06 5.02 5.04 6.02 6.09 5.0
58,943 7.23 6.01 6.01 6.46 7 6.01
156,733 8.04 6.88 6.12 6.08 7.01 6.22
276,578 7.26 6.03 6.00 6.07 6.98 6.01
677,000 7.99 6.08 6.05 7.00 7.06 6.06

of the preconditioner in the three principal phases of the action potential (depolarization,
plateau, repolarization), here we consider longer simulation of 400ms sufficient to include a
whole heartbeat. We test the sensitivity of the parameterλ∗ with respect to the time step by
choosing three different values:∆t = 0.5, 0.25, 0.125. In Table6.2 we report the average
iteration counts per time step and the average CPU time (in seconds) to solve the linear system
within each time step for the different values ofλ and the different time steps.

TABLE 6.2
Ventricular mesh with 677,000 dof,RM ionic model: average iteration counts and CPU time (in s) pertime

step over 400ms, for various values ofλ and different time step∆t.

λ λm λm,∗ λ∗ λ∗,M λM 1.3
∆t = 0.5 iter 7.20875 6.02125 6.00625 7 7.09625 6.0075

CPU 191.377 165.131 172.919 198.332 197.179 165.302
∆t = 0.25 iter 6.25312 5.04625 5.01187 6.005 6.25938 5.04812

CPU 180.454 147.761 150.268 200.183 196.094 157.449
∆t = 0.125 iter 7.00063 6 5.97 5.04437 5.88969 6

CPU 199.607 151.44 144.588 163.344 193.371 177.434

We observe that the preconditioner shows fair insensitivity with respect to the time step
for all values ofλ considered. In addition, the optimality ofλ∗ becomes significantly evident
in terms of computational cost as the time step∆t gets smaller. Moreover, the CPU time
associated with the parameterλ∗ is consistently decreasing with the time step, while the
other values ofλ feature a more erratic behavior.

6.3. Influence of the ionic model.In this last series of tests, the computational domain
is the ellipsoid with analytical fiber description introduced in [3], discretized by a tetrahedral
mesh with 578,442 nodes. For the different values ofλ, we simulate 450ms of propagation
using both the Rogers-McCulloch and the Luo-Rudy Phase 1LR1 ionic models. The time
step is∆t = 0.5ms for theRM model, and∆t = 0.1 for theLR1 model, as the latter requires
a smaller time step in order to handle the stiffness of the upstroke part of the action potential.
The computed averages are thus based on 900 and 4500 time steps, respectively. We again
report in Table6.3 the average iteration counts per time step and the average CPU time (in
seconds) to solve the linear system within each time step forthe different values ofλ and the
different ionic models.

We can infer from Table6.3the robustness of the preconditioner with respect to the ionic
model for the various values ofλ. Moreover, as it can be expected from the tests in the
previous section, the parameterλ∗ performs better with the Luo-Rudy Phase 1 model, as the
time step for this model is smaller than the time step for the Rogers-McCulloch one.
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TABLE 6.3
Ellipsoidal mesh with 578,442 dof: average iteration counts and CPU time (in s) per time step over 450ms, for

various values ofλ and different ionic models.

λ λm λm,∗ λ∗ λ∗,M λM 1.3
RM iter 9.07 7.0256 7 7 7. 7.0011

CPU 211.409 168.67 184.115 217.687 241.374 173.622
LR1 iter 7.33889 6.99667 5.08756 6.0566 6.1089 5.1391

CPU 126.789 125.959 105.188 151.993 177.203 126.088

7. Conclusions. In this paper we analyzed the spectral properties of the model-based
block-triangular preconditioner introduced in [7]. By minimizing an upper bound on the
conditioning of the preconditioned problem, we identified an optimal parameterλ∗ for which
we provide an explicit formula. Involving only the coefficients of the problem, this formula
can be easily used in implementations. Although the analysis and the optimization have
been performed in the very special case where the fibers are aligned with the reference axes,
numerical tests on both a real ventricular geometry reconstructed from SPECT imaging and
an analytical ellipsoidal geometry described in [3] are in good agreement with the conclusions
of the analysis itself. In particular, the upper bound on theconditioning of the preconditioned
problem being dependent only on the coefficients of the problem, the preconditioner turns out
to be fairly insensitive to the mesh size, the time step, and the ionic model used for all suitable
choices of the parameterλ. Moreover, the numerical tests show that the performances of the
preconditioner associated with the valueλ∗ improve with the reduction of the mesh size and
the time step, confirming the asymptotic optimality of the proposed parameter.
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