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THE MR ?-GK ALGORITHM FOR THE BIDIAGONAL SVD  *

PAUL R. WILLEMST AND BRUNO LANG*

Abstract. Determining the singular value decomposition of a bidiagomatrix is a frequent subtask in numer-
ical computations. We shed new light on a long-known way tbzetithe algorithm of multiple relatively robust
representations, MR for this task by casting the singular value problem in terfrssuitable tridiagonal symmetric
eigenproblem (via the Golub—Kahan matrix). Just running®V is” on the tridiagonal problem does not work,
as has been observed before (e.g., by B. GroRer and B. LamggLAlgebra Appl., 358 (2003), pp. 45-70]). In this
paper we give more detailed explanations for the problems nvithing MR as a black box solver on the Golub—
Kahan matrix. We show that, in contrast to standing opinioR3Man be run safely on the Golub—Kahan matrix,
with just a minor modification. A proof including error boundsgiven for this claim.
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1. Introduction. The singular value decomposition (SVD) is one of the mostéin
mental and powerful decompositions in numerical lineaekbtg. This is partly due to gener-
ality, since every complex rectangular matrix has a SVDalsa to versatility, because many
problems can be cast in terms of the SVD of a certain relatedmaApplications range from
pure theory to image processing.

The principal algorithm for computing the SVD of an arbiyralense complex rectan-
gular matrix is reduction to real bidiagonal form using anjt similarity transformations,
followed by computing the SVD of the obtained bidiagonal nixafThe method to do the re-
duction was pioneered by Golub and Kahaf]{ later improvements include reorganization
to do most of the work within BAs3 calls [L, 2, 27].

We call the problem to compute the singular value decomipastdf a bidiagonal ma-
trix BSVD. There is a long tradition of solving singular value probsey casting them into
related symmetric eigenproblems. Es8VD this leads to a variety of tridiagonal symmetric
eigenproblemsT(SERs). Several methods are available for solving tis&p, including QR
iteration [L5, 16], bisection and inverse iteration (Bl), divide and congi&r22], and, most
recently, the algorithm afultiple relatively robust representatiofs, 7, 8], in short MRRR
or MR3. The latter offers to computeeigenpairg\;, q;), ||q;|| = 1, of a symmetric tridiag-
onal matrixT € R™*"™ in (optimal) timeO(kn), and thus it is an order of magnitude faster
than BI. In addition, MR requires no communication for Gram—Schmidt reorthoganali
tion, which opens better possibilities for parallelizatidt is therefore natural and tempting
to solve thessvD problem using the MRalgorithm, to benefit from its many desirable fea-
tures. How to do so stably and efficiently is the focus of tlzper.

The remainder of the paper is organized as follows. In SeQiove briefly review
the MR algorithm for the tridiagonal symmetric eigenproblem ahne tequirements for its
correctness. The reader will need some familiarity withabiee MR algorithm, as described
in Algorithm 2.1 and Figure2.1, to follow the arguments in the subsequent sections. In
Section3 we turn to thessvD. We specify the problem to be solved formally, introduce the
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associated tridiagonal problems, and set up some nothtiongentions. Invoking MR on
symmetric tridiagonal matrices of even dimension that lzexero diagonal, so-callésolub—
Kahan matriceswill be investigated in Sectiod. Finally, Section5 contains numerical
experiments to evaluate our implementation.

The idea of using the MRalgorithm for thessvD by considering suitablesers is not
new. A previous approacHh, 20, 21, 39] “couples” the threersers involving the normal
equations and the Golub—Kahan matrix in a way that ensured gdghogonality of the sin-
gular vectoraindsmall residuals; see also Secti®id.1 For a long time the standing opinion
was that using MR (or any otherrsepsolver) on the Golub—Kahan matrix alone is funda-
mentally flawed. In this paper we refute that notion, at legigh regard to MR. Indeed
we provide a complete proof, including error bounds, shgwitmt just a minor modifica-
tion makes using MRon the Golub—Kahan matrix a valid solution strategygevD. This
method is much simpler to implement and analyze than thelemipased approach:; in par-
ticular, all levels in the MR representation tree (Figugel) can be handled in a uniform way.

Before proceeding we want to mention that an alternativeraglly competitive solu-
tion strategy for the SVD was only recently discovered by Bimand Vesek [10, 11]. Their
method first reduces a general mathixo non-singular triangular form via rank-revealing
QR factorizations, and then an optimized version of Jasatatation is applied to the trian-
gular matrix, making heavy use of the structure to save omabipes and memory accesses.
Compared to methods involving bidiagonal reduction, tiet approach can attain better ac-
curacy for certain classes of matrices (e.gAif= AD with a diagonal “scaling” matriD,
then the achievable precision for the tiny singular valgegeitermined by the condition num-
ber@(f&) instead ofx5(A), which may be considerably worse). Numerical experimemts i
[10, 11] also indicate that the new method tends to be somewhat taste bidiagonal reduc-
tion followed by QR iteration on the bidiagonal matrix, bligbtly slower than bidiagonal
reduction and bidiagonal divide and conquer, in partictdatarger matrices. As multi-step
bidiagonalization (similarly to]]) and replacing divide and conquer with the R&gorithm
may further speed up the bidiagonalization-based methbdsncreased accuracy currently
seems to come with a penalty in performance.

2. The MR? algorithm for the tridiagonal symmetric eigenproblem. The present
paper relies heavily on the MRalgorithm forTsepand on its properties. A generic version
of the algorithm has been presented38,[37], together with a proof that the eigensystems
computed by MR feature small residuals and sufficient orthogonality if feg requirements
are fulfilled. In order to make the following exposition setintained we briefly repeat some
of the discussion on M&from [37]; for details and proofs the reader is referred to that paper
Along the way we also introduce notation that will be usechim $ubsequent sections.

2.1. The algorithm. The “core” of the MR method is summarized in Algorithm. 1.
In each pass of the main loop, the algorithm considers a syrimmigdiagonal matrix, which
is represented by some déta and tries to compute specified eigenpéits q;), ¢ € 1. First,
the eigenvalues of the matrix are determined to such pogctbiat they can be classified as
singletons(with sufficientrelative distance to the other eigenvalues, e.g., agreement to at
most three leading decimal digitsgfiptol ~ 10~3) andclusters For singletons\;, a vari-
ant of a Rayleigh quotient iteration (RQI) and inverse itierayields an accurate eigenpair.
Clusters\; ~ ... =~ \; ;s cannot be handled directly. Instead, for each cluster onesg#s
a shift 7 = \; very close to (or even inside) the cluster and considers tagixnl — 1.
The eigenvalues; — 7, ..., \;+s — 7 of that matrix will then feature much larger relative
distances than,;, ..., \;+s did, and therefore they may be singletons Tor- 71, meaning
that now eigenvectors can be computed in a reliable way. nfesof these eigenvalues are
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Fic. 2.1. Example for a representation tree. The leaves correspgndithe computation of eigenvectors are
not considered to be nodes. Thus the tree contains only fades) and the eigenpafis, §3) is computed at node
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still clustered, then the shifting is repeated. (To avoidcsgl treatment, the original matrix
T is also considered to be shifted with= 0.) Proceeding this way amounts to traversing
a so-calledepresentation treavith the original matrixT at the root, and children of a node
standing for shifted matrices due to clusters; see Figuréor an example. The computation
of eigenvectors corresponds to the leaves of the tree.

2.2. Representations of tridiagonal symmetric matrices The name MR comes from
the fact that the transition from a node to its chldl,- = =: M™, must not change the invari-
ant subspace of a cluster—and at least some of its eigenvaluetoo much (see Require-
ment RRR in SectioR.5). In general, this robustness cannot be achieved if thiagahal
matrices are represented by th®ir — 1 entries because those do not necessarily determine
small eigenvalues to high relative precision. Therefoteeptepresentations are used, e.g.,
lower (upper) bidiagonal factorizatiods= LDL* (T = URU*, resp.) with

D = diag(dy,...,d,) diagonal

L = diag(1,...,1)+diag_,(¢y,...,¢,,_,) lower bidiagonal
R = diag(ry,...,7,) diagonal and

U = diag(l,...,1) +diag (uy,...,u,)  upper bidiagonal

Note that we write’ for the transpose of a matrix. The so-caltedstedfactorizations
T = N,G.N;

with

1 dy

RS di—1
(2.1) Nk = fk-,l 1uk+1 5 Gk = Yk
. . Tk+1

1 u,
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Input: Symmetric tridiagonal’ € R™*", index setlo C {1,...,n}
Output: Eigenpairs(\;, ;),¢ € Io

Parameter: gaptol, the gap tolerance

1. Find a suitable representatibdy, for T, preferably definite, possibly by shiftirig.
2. S = {(Mo,lo,7=0)}

3. whileS #0do

4 Remove one nod@M, I, 7) from S

5

Approximate eigenvaluga°°], i € I, of M such that they can be classified into
singletons and clusters accordingg@tol; this gives a partitiod = I1 U - - - U I,.

6. forr=1tomdo

7. if I, = {4} then Il singleton

8. Refine eigenvalue approximatipk}°°] and use it to computa;.
If necessary iterate until the residual@fbecomes small enough,
using a Rayleigh quotient iteration (RQI).

9. Xi o= N7

10. else /I cluster

11. Refine the eigenvalue approximations at the borders of (and/oe)ribiel
cluster if desired for more accurate selection of shift.

12. Choose a suitable shiftnear the cluster and compute a representation
of M =M — 7.

13. Add new nodéM™, I, 7 + 7) t0 S.

14. endif

15. endfor

16. endwhile

Algorithm 2.1: MR for TSER Compute selected eigenpairs of a symmetric tridiagdnal

generalize the bidiagonal factorizations. They are buyilcbmbining the upper part of an
LDL* factorization and the lower part ofléRU* factorization, together with thigvist element
Ve = dj, + 1, — T(k, k) attwist indexk.

Twisted factorizations are preferred because, in addttioyielding better relative sen-
sitivity, they also allow to compute highly accurate eigectors p]. qd algorithms are used
for shifting the factorizations, e.d.DL* — 7l =: L*D*(L*)*, possibly converting between
them as inURU* — 71 =: L*D*(L*)*.

The bidiagonal and twisted factorizations can rely on diffe data items being stored.
To give an example, the matrik = LDL* with unit lower bidiagonal and diagonaD is de-
fined by fixing the diagonal entrieg, . .., d,, of D and the subdiagonal entriés ..., ¢, _;
of L. We might as well use the offdiagonal entri€gl, 2),..., T(n — 1,n), together with
dy,...,d,, to describe the tridiagonal matrix and the factorizatiesduse thé, can be re-
covered from the relatiof (i, + 1) = ¢,d,. The question of which data one should actually
use to define a matrix leads to the concept of representations

DEFINITION 2.1. ArepresentatioM of a symmetric tridiagonal matriX € R"*" is a
setofm < 2n—1 scalars, called th@rimary datatogether with a mapping : R — R?"~!
that generates the entries of
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A general symmetric tridiagonal matrixhasm = 2n — 1 degrees of freedom; however,
m < 2n — 1 is possible if the entries of obey additional constraints (e.g., a zero main
diagonal).

2.3. Perturbations and floating-point arithmetic. In the following we often will have
to consider the effect of perturbations on the eigenvalaesifgular values) and vectors.

Suppose a representatidh of the matrixT is given by data);. Then anelementwise
relative perturbation(erp) of M to M is defined by perturbing eadhto §; = 8;(1 + &;) with
“small” |¢;] < €. To express this more compactly we will just wrie= erp(M, €), 8; ~ 6;,
and although it must always be kept in mind that the pertioshaipplies to the data of the
representation and not to the entriesTofive will sometimes writerp(T) for brevity.

A (partial) relatively robust representation (RRBf)a matrixT is one where small erps,
bounded by some constaftin the data of the representation will cause only relativenges
proportional tc€ in (some of) the eigenvalues and eigenvectors.

The need to consider perturbations comes from the rounditigcied by computing in
floating-point arithmetic. Throughout the paper we assumestandard model for floating-
point arithmetic, namely that, barring underflow or overflthhe exact and computed results
x andz of an arithmetic operatiort, —, %, / and \/) applied to floating-point numbers can
be related as

r=z(1+7)=z/(1+6), 0| <e,

with machine epsilore,. For IEEEdoubl e preci si on with 53-bit significands and
eleven-bit exponents we have = 2753 ~ 1.1 - 10~'6. For more information on binary
floating-point arithmetic and the IEEE standard we referdagler to 17, 23, 24, 26].

2.4. Eigenvalues and invariant subspacesThe eigenvalues of a symmetric matAx
are real, and therefore they can be ordered ascendihgly] < ... < \,[A], where the
matrix will only be indicated if it is not clear from the comte The associated (orthonormal)
eigenvectors are denoted hy[A], and the invariant subspace spanned by a subset of the
eigenvectors i [A] := span{q;[A] : i € I}.

The sensitivity of the eigenvectors depends on the eigeawittribution—on the overall
spread, measured WA || = max{|A1], |\, |} or thespectral diametespdiam[A] = A, — A1,
as well as on the distance of an eigenvalyérom the remainder of the spectrum. In a slightly
more general form, the latter aspect is quantified by theonaif gaps either in an absolute
or a relative sense,

gapa(L;p) = min{|A\; —p| : j &I},
relgapa(I) = min {|\; = X;|/|\;| : i€ 1,5 & 1};

see B7, Sect. 1]. Note that. may, but need not, be an eigenvalue.

The following Gap Theorenm[7, Thm. 2.1] is applied mostly in situations whefeor-
responds to a singletof/{ = 1) or to a cluster of very close eigenvalues. The theoremsstate
that if we have a “suspected eigenpa(fl, x) with small residual, thew is indeed close to
an eigenvector (or to the invariant subspace associatddthgt cluster) provided that is
sufficiently far away from the remaining eigenvalues. Foomrfal definition of the (acute)
angle seed7, Sect. 1].

THEOREM 2.2 (Gap Theorem for an invariant subspacByr every symmetric matrix
A € R™*™, unit vectorx, scalary, and index sef, such thaigap, (I; ) # 0,
|Ax — x|

: |
Slné(x, Q[[A]) S m
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For singletons, the Rayleigh quotient also providdeveer bound for the angle to an
eigenvector.

THEOREM 2.3 (Gap Theorem with Rayleigh’s quotien80[ Thm. 11.7.1]). For sym-
metricA € R™*™ and unit vectox with § = p, (x) := x*Ax, let A = A;[A] be an eigenvalue
of A such that no other eigenvalue lies between (or equalshd 8, andq = q;[A] the
corresponding normalized eigenvector. Then we will heage, ({i};6) > 0 and

|Ax — 0x|| [|AX — 6x|| |Ax — 6x]|?

spdiamA] = S4009) < o 0 s (1)

and |0-)] <

2.5. Correctness of the MR algorithm and requirements for proving it. In the anal-
ysis of the MR algorithm in [37] the following five requirements have been identified, which
together guarantee the correctness of Algorithfin

REQUIREMENTRRR (relatively robust representationhere is a constant’,..s such
that for any perturbatiorM = erp(M, o) at a node(M, T), the effect on the eigenvectors can
be controlled as

Sinl(QJ[ML QJ['\A]I]) S C(Vecs na/relgapM(‘])’

forall J € {I,I1,...,I.} with|J| < n.
This requirement also implies that singleton eigenvaluesthe boundary eigenvalues
of clusters cannot change by more tRa(C....sna|A|) and therefore are relatively robust.
REQUIREMENT ELG (conditional element growth).There is a constanC, such

that for any perturbationVl = erp(M, ) at a node(M, I), the incurred element growth
is bounded by

IM — M|
I(M —M)g,|

< spdiam[My],
< Celgna spdiam[Mg] for eachi € I.

This requirement concerns tladsolutechanges to matrix entries that result froeta-
tive changeso the representation data. For decomposition-basedsemiaions this is called
element growth (elg) Thus the requirement is fulfilled automatically if the niais repre-
sented by its entries directly. The two conditions convet #ven large element growth is
permissible (first condition), but only in those entries wehtihe local eigenvectors of interest
have tiny entries (second condition).

REQUIREMENT RELGAPS (relative gaps). For each node(M, I), the classification
of I into child index sets in step 5 of Algorithénl is done such that for = 1,...,m,
relgapy (1) > gaptol (if |I,.| < n).

The parametegaptol is used to decide which eigenvalues are to be consideretbsing
tons and which ones are clustered. Typical valuesgaggol ~ 0.001...0.01. Besides
step 5, where fulfillment of the requirement should not besaneé if the eigenvalues are ap-
proximated accurately enough and the classification is densibly, this requirement also
touches on theuter relative gaps of the whole local subset at the node. The meaeint
cannot be fulfilled ifrelgapy, (1) < gaptol. This fact has to be kept in mind when the node is
created, in particular during evaluation of shifts for a rehild in step 12.

REQUIREMENT SHIFTREL (shift relation). There exist constants, , oy such that for
every node with matrii that was computed using shiftas child ofM, there are perturba-
tions

M =erp(M, ;) and I:|:erp(H,aT)
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with which the exact shift relatiol — r = H is attained.

This requirement connects the nodes in the tree. It staggghh computations of the
shifted representations have to be done in a mixed relgtstable way. This is for example
fulfilled when using twisted factorizations combined witl-tjansformations as described
in [8]. Improved variants of these techniques and a completelyapproach based on block
decompositions are presented 8536, 38]. Note that the perturbatiol = erp(M, ) at
the parent will in general be different for each of its chilnbles, but each child node has just
one perturbation governed ly to establish the link to its parent node.

REQUIREMENT GETVEC (computation of eigenvectors).here exist constants;, 5+
and R, with the following property: Let\!**f, §) with § = §; be computed at nod@v, ),
where)'*® is the final local eigenvalue approximation. Then we can fiethentwise per-
turbations to the matrix and the vector,

M=erp(M,ay),  d(j) =q(i)(1 + 5;) with |5;| < By,

for which the residual norm is bounded as

[F=t] = ([ (M = X=Dd]|/]]a]] < Ravneo gapg ({is A1)

This final requirement captures that the vectors computesteip 8 must have residual
norms that are small, even when compared to the eigenvaheskdys to fulfill this require-
ment are qd-type transformations to compute twisted faionsM — A =: N, G,N;
with mixed relative stability and then solving one of theteyssN, G, N;q = ~yxe, for the
eigenvector§, 12, 31].

In practice, we expect the constaiits.. andCq, to be of moderate size-( 10), o,
ayq, and oy should beO(e,), whereasg; = O(ne,), and R,, may become as large as
O(1/gaptol). Thus the following theorems provide bountsidy, = O(ne,||Mo||/ gaptol)
for the residuals andrthnm, = O(ne,/ gaptol) for the orthogonality.

THEOREM 2.4 (Residual norms for MR[37, Thm. 3.1]). Let the representation tree
traversed by Algorithm2. 1 satisfy the requirementsLG, SHIFTREL, andGETVEC. For given
index;j € o, letd = depth(j) be the depth of the node wheje= g; was computed (cf.
Figure 2.1) andMg, My, ..., M, be the representations along the path from the (&g, 7o)
to that node, with shifts; linking M; andM;_ 1, respectively. Then

. 1+ .
H(Mo—)\*)QH < (HrleafH +7spdlam“\/|0]> 1_2 =: residm,,

whereX* := 75 + -+ 4 7q—1 + Al andy 1= Cegn (d(a) + ar) + o) 4+ 2(d + 1)5;.

The following theorem confirms the orthogonality of the cagal eigenvectors and
bounds their angles to the local invariant subspaces. Ibames Lemma 3.4 and Theorem 3.5
from [37].

THEOREM2.5. Let the representation tree traversed by AlgoritAmfulfill the require-
mentsRRR, RELGAPS, SHIFTREL, andGETVEC. Then for each nodéM, I) in the tree with
child index set/ C I, the computed vectots, j € J, will obey

sinZ(q; , Qs[M]) < Cyees (g + (depth(j) — depth(M)) (v + ay))n/gaptol + &,
wherex := Rgyne, + (1. Moreover, any two computed vectegsandg;, i # j, will obey
%quj < Clecs (ai + dpax (o] + aT))n/gaptol + K =: orthm,,

whered,ax := max{depth(i) | i € I} denotes the maximum depth of a node in the tree.
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3. The singular value decomposition of bidiagonal matrices|In this section we briefly
review the problenBsvD and its close connection to the eigenvalue problem foragdnal
symmetric matrices.

3.1. The problem. Throughout this paper we considgre R™*™, an upper bidiagonal
matrix with diagonal entrieg; and offdiagonal elements, that is,

B = diag(ay,...,a,) +diag,(b1,...,bp—1).
The goal is to compute the fuingular value decomposition
(3.1) B = UxXV* with U*U=V*V =1, ¥ =diag(o1,...,04,), ando; < --- < o,.

The columnsy; = U(:,4) andv; = V(:,4) are calledeft andright singular vectorsrespec-
tively, and theo; are thesingular values Taken togetherio;, u;, v;) form asingular triplet
of B. Note that we order the singular valuascendinglyin order to simplify the transition
betweerBsvD andTSEP

For any algorithm solving@svp, the computed singular triplets;, d;, v;) should be
numerically orthogonain the sense

(3.2) max {|U°0 — 1], V'V -1} = O(ne,),
where|-| is to be understood componentwise. We also desire segtlual norms
(3.3) max {||BY; — 8,7, B8 — %]} = O(|B]neo).

In the literature the latter is sometimes stated as the Engector pairs being “(well) cou-
pled.”

3.2. Singular values to high relative accuracy.In [4] Demmel and Kahan established
that every bidiagonal matrix (represented by entries)rdetess its singular values to high
relative accuracy.

The current state-of-the-art for computing singular valisethe dgds-algorithm by Fer-
nando and Parlettlf, 32], which builds upon 4] as well as Rutishauser’s original qd-
algorithm [B4]. An excellent implementation of dqds is included iarRack in the form of
routinex LASQL. Alternatively, bisection could be used, but this is nodgneduch slower—
in our experience it becomes worthwhile to use bisectioteats of dgds only if less than
ten percent of the singular values are desired (dqds canbenlised to compute all singular
values).

The condition 8.3) alone does merely convey that each computedhust lie within
distanceO(||B||ne,) of someexact singular value dB. A careful but elementary argument
based on the Gap Theoret? (applied to the Golub—Kahan matrix, see below) shows that
(3.2 and @.3) combined actually provide fabsolute accuracin the singular values, mean-
ing each computed; lies within distance?(||B|ne,) of the exactr;. To achieverelative
accuracy a straightforward modification is just to recompute theyalar values afterwards
using, for example, dqds. Itis clear that doing so cannaot §p@), at least as long as; was
computed with absolute accuracy. The recomputation daesweo necessarily be overhead;
for MR3-type algorithms like those we study in this paper one neeitisli approximations
to the singular values anyway, the more accurate the b&tethere is actually a gain from
computing them up front to full precision.

3.3. Associated tridiagonal problems.There are two standard approaches to reduce
the problemBsvD to TSER involving three different symmetric tridiagonal matréce
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3.3.1. The normal equations.From @3.1) we can see the eigendecompositions of the
symmetric tridiagonal matricéd8B* andB*B to be

BB* = UX2U*, B*B = VX2V*.

These two are calledormal equationsanalogously to the linear least squares problem. The
individual entries oBB* andB*B can be expressed using thoseBof

BB* = diag(aj +b3,...,a0_; +b5_1,a2) + diag,y (azbi, ..., anbp-1),

B*B = diag(aj,a3 +b3,...,a> +b2_,) +diag,(aibi,...,an—1bp_1).

[k 0 n—1

Arguably the most straightforward approach to tackle gls&/D would be to just employ
the MR algorithm for Tsep (Algorithm 2.1) to compute eigendecompositions BB* and
B*B separately. This gives both left and right singular vectarsvell as the singular values
(twice). A slight variation on this theme would compute jtis¢ vectors on one side, for
exampleBB* = UX2U*, and then get the rest through solviBg = uo. As BB* andB*B
are already positive definite bidiagonal factorizations,would naturally take them directly
as root representations, avoiding the mistake to form eittagrix product explicitly.

In short, this black box approach is a bad idea. While the wegtti andV computed
via the twoTSEPRs are orthogonal almost to working precision, the resid{is — t,5;|| and
|IB*u; — v;3;|| may beO(o;) for clustered singular values, which is unacceptable fgyda
o;. Roughly speaking, this comes from computiigindV independently — so there is no
guarantee that the correspondingandv; “fit together.” Note that this problem is not tied to
taking MR® as eigensolver but also occurs if QR or divide and conqueused to solve the
two TSErsindependently

With MR? it is, however, possible to “couple” the solution of the tweEPs in a way
that allows to control the residuals. This is done by runmitiR® on only one of the matrices
BB* or B*B, sayBB*, and “simulating” the action of MRon B*B with the same sequence
of shifts, that is, with an identical representation tréfeFegure2.1. The key to this strategy
is the observation that the quantities that would be contpirteMR® on B*B can also be
obtained from the respective quantities in B8*-run via so-calleccoupling relations For
several reasons the Golub—Kahan matrix (see the followis@udsion) is also involved in the
couplings. Seel[9, 20, 21, 39 for the development of the coupling approach a8 for a
substantially revised version.

In our experiments, however, an approach based entirelh®rGblub—Kahan matrix
turned out to be superior, and therefore we will not purswertbrmal equations and the
coupling approach further in the current paper.

3.3.2. The Golub-Kahan matrix. Given an upper bidiagonal matr we obtain a
symmetric eigenproblem of twice the size by forming Belub—Kahan (GK) matrior
Golub—Kahan fornof B [13],

0 BJ|..
TGK(B) = Pps [B* 0:| Pp87
wherePps is theperfect shufflpermutation orR?" that maps any € R?" to
Pst = [X(’ﬂ + 1)a X(l),X(TL + 2)7X(2)7 e ,X(Qn),x(n)] *a

or, equivalently stated,

Plex = [(2),x(4), ..., x(2n),x(1),x(3),...,x(2n — 1)] .
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Itis easy to verify thall .« (B) is a symmetric tridiagonal matrix with a zero diagonal arel th
entries ofB interleaved on the offdiagonals,

TGK(B) = diagil(ah b17 az, b27 sy p—1, bn—la an)a
and that its eigenpairs are related to the singular trigieBvia
(o, u,v) is a singular triplet 0B with |Ju]| = |lv|| =1

iff (+0,q) are eigenpairs of .« (B), where||q|| = 1,q = \%Pps [i\ﬂ .

Thusv makes up the odd-numbered entrieg iandu the even-numbered ones:
(3.4) a = —=[v(1),u(1),v(2),u(2),...,v(n),u(n)]".

It will frequently be necessary to relate rotations of GKegigectorsy to rotations of
theiru andv components. This is captured in the following lemma. Thenfdation has been
kept fairly general; in particular the permutatiéy; is left out, but the claim does extend
naturally if it is reintroduced.

LEMMA 3.1.Letq, q' be non-orthogonal unit vectors that admit a conforming itian

u u’
q= M q = [V,}, u,v #o.

Lety, := A(U, u’), Py = A(V,v’) andy := Z(q,q’). Then

IA

1nax{||u||sin<pu7||v\|sincp\,} sin ¢,

o
AWl -} < BetUcosd)
Cos ¥

N

max {||u']| = Jul

Proof. Definer such that

u’cosp+ry,
vicosp+r, |’

= Yl = qcosp+r =

q = vl = q %) =
The resulting situation is depicted in Figudel. Consequently,
ullsing, <[]l < [Ir]] = sing.

Now u’ cos p = u — r, implies (u’ — u) cos p = (1 — cosp)u — r,. Use the reverse triangle
inequality and|ul| < 1 for

oIl = Jlull[ cos . < [I(u" = u)cos | = [[(1 = cos p)u — || < (1 = cos @) ul| + [|ru]
< (1 —cosy) +sinp

and divide bycos ¢ # 0 to obtain the desired bound fgjfu’(| — ||u||\. The claims pertaining
to thev components are shown analogously. 0

Application to a given approximatioql for an exact GK eigenvectaeyr merely requires
to exploit ||ul| = ||v|| = 1/v/2. In particular, the second claim of Lemngal will then
enable us to control how much the normsubfandv’ can deviate from /+/2, namely ba-
sically by no more thasin ¢ + O(sin? ), providedy is small, which will be the case in
later applications. (For large, the bound in the lemma may be larger than the obvious
max { |[[u[| = [lull|,|IIV']| = [Iv|][|} < 1, given that all these vectors have length at niokt



ETNA
Kent State University
http://etna.math.kent.edu

MR3-GK ALGORTHM FOR THE BIDIAGONAL SVD 11

lull sin

g F
q,7||q/|| =1 [|u”|| cos u

FiG. 3.1.Situation for the proof of Lemnfal The global setting is on the left, the right side zooms ihgus
theu components. Note that in genetal # ¢ andr, will not be orthogonal tas, nor tou’.

3.4. Preprocessing.Before actually solving thesvb problem, the given input matrix
B should be preprocessed with regard to some points. In gntraser, where it suffices
to deal with the offdiagonal elements, now all entrie8adre involved with the offdiagonals
of T¢k(B), which makes preprocessing a bit more difficult.

If the input matrix is lower bidiagonal, work witB* instead and swap the roles 0Of
andV. Multiplication on both sides by suitable diagonal sigmatonatrices makes all entries
nonnegative, and we can scale to get the largest elemeatgrimper range. Then, in order to
avoid several numerical problems later on, it is highly adbie to get rid of tiny entries by
setting them to zero and splitting the problem. To summavizeshould arrive at

(3.5 nes||B|| < min{ay, b;}.

However, splitting a bidiagonal matrix to attaid.f) by setting all violating entries to zero is
not straightforward. Two issues must be addressed.

If an offdiagonal elemert; is zero,B is reducible and can be partitioned into two smaller
bidiagonal problems. If a diagonal elementis zero therB is singular. An elegant way to
“deflate” one zero singular value is to apply one sweep ofrti@icit zero-shift QR method,
which will yield a matrixB’ with b,_, = b),_; = a], = 0, cf. [4, p. 21]. Thus the zero singular
value has been revealed and can now be removed by splittmthiree upper bidiagonal parts
B1.i—1, Bi:n—1 andB,, ,,, the latter of which is trivial. An additional benefit of theR(weep
is a possible preconditioning effect for the probletd][ but of course we will also have to
rotate the computed vectors afterwards.

The second obstacle is that usirdgg) as criterion for setting entries to zero will impede
computing the singular values to high relative accurach wéspect to the input matrix. There
are splitting criteria which retain relative accuracy, fiestance those employed within the
zero-shift QR algorithm4, p. 18] and the slightly stronger ones by Pig 32]. However, all
these criteria allow for less splitting thaB. ).

To get the best of both, that is, extensive splitting withtalbenefits as well as relatively
accurate singular values, we propose a 2-phase splittifalaws:

1) Split the matrix as much as possiblihout spoiling relative accuracy. This results in a
partition of B into bIocksBSi), ...,BY which we call therelative splitof B.

2) Split each blocks!?) further aggressively into blockB':", ..., BL™) to achieve 8.5.
We denote the collection of subblocRS.”) asabsolute spliof B.

3) SolveBsvD for each block in the absolute split independently.

4) Use bisection to refine the computed singular values di bk B to high relative
accuracy with respect to the parent bIcB:fi%) in the relative split.

Since the singular values of the blocks in the absolute giliin absolute accuracy with
respect taB, the requirements3(2) and 3.3) will still be upheld. In fact, if dqds is used to
precompute the singular values (cf. Sect®#) one can even skip steps 1) and 4), since the
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singular values that are computed for the blocks of the albsaplit are discarded anyways.
The sole purpose of the separate relative split is to sped¢ideugfinement in step 4).

We want to stress that we propose the 2-phase splitting atemwnly a subset of sin-
gular triplets is desired. Then an additional obstacle igdiba consistent mapping of triplet
indices between the blocks. This can be done efficientlyitlisihot entirely trivial.

4. MR? and the Golub—Kahan matrix. In this section we investigate the approach to
use MR on the Golub—Kahan matrix to solve the probleswp.

A black boxapproach would employ MR¢as is,” without modifications to its internals,
to compute eigenpairs df .« (B) and then extract the singular vectors via4f. Here the
ability of MR® to compute partial spectra is helpful, as we need only concerselves with
one half of the spectrum of ., (B). Note that using MR this way would also offer to
compute only a subset of singular triplets at reduced castent solution methods f@asvb
like divide-and-conquer or QR do not provide this feature.

The standing opinion for several years has been that thereiadamental problems in-
volved which cannot be overcome, in particular concerniregarthogonality of the extracted
left and right singular vectors. The main objective of thestson is to refute that notion.

We start our exposition with a numerical experiment to iatBthat using MRas a pure
black box method on the Golub—Kahan matrix is indeed not adalea.

EXAMPLE 4.1. We used BPACK'’s test matrix generatddL ATMS to construct a bidiag-
onal matrix with the following singular values, rangingween0.9 - 10~8 and110.

o3 = 0.9, o140 =1-1077, o5 = 1+1077, o016 = 1.1,
o; — Ui+4/1001 i:12,11,...71,
o = 100-0; 4, i=117,...,20.

Then we formed the symmetric tridiagonal matfig, (B) € R*0*40 explicitly. The MR
implementatiorDSTEMR from LAPACK 3.2.1 was called to give us the upereigenpairs
(74,4;) of Tek(B). The matrix is well within numerical range, so tH28TEMR neither splits
nor scales the tridiagonal problem. The singular vectorgeen extracted via

[Ez] = \@P;Sqi.

The results are shown in Figufel. The left plot clearly shows thddSTEMR does its
job of solving the eigenproblem posed By (B). But the right plot conveys just as clearly
that the extracted singular vectors are far from being ghal. In particular, the small
singular values are causing trouble. Furthermoreythiedv components have somehow lost
their property of having equal norm. However, their normes still close enough to one that
normalizing them explicitly would not improve the orthogdity levels significantly.

This experiment is not special—similar behavior can be olegkconsistently for other
test cases with small singular values. The explanatiomiplsi MR’ does neither know,
nor care, what a Golub—Kahan matrix is. It will start just bgagys, by first choosing a shift
outside the spectrum, say< —o,, and computd . (B) — 7 = L D,L{ as positive definite
root representation. From there it will then deploy furthkifts into the spectrum df,D L
to isolate the requested eigenpairs.

What happens is that the first shift to the outside smears alll simgular values into
one cluster, as shown in Figufe2. Consider for instance we hay8|| > 1 and are working
with the standardaptol = 0.001. We can even assume the initial shift was done exactly; so

let )\fi) = 04; — 7 be the eigenvalues &f,D, L. Then for all indices with o; < 0.0005 the

~
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Fic. 4.1. Data for Example4.1, on a per-vector basis; = 1,...,20. Left: scaled orthogonality
IQ"d; — e;lloc/nec With e, = (0,...,0,1,0,...,0)* denoting thei-th unit vector, and scaled residuals

I Tex (B)a; — §,;5:|/2||B||nes for TSEP. Right: scaled orthogonalitifU*a; — e;lloo/n€s, [[V*V; — €, ||co /€0
and scaled deviation from unit length|d; |2 — 1| /neo, |[|9:]|2 — 1| /neo, for BSVD.

Spectrum ofT ¢« (B):

@ relgap>1 @

—?n —0.9005 —gi Q Uf 0.0905 U{n
I
V2Pia-i =[] [4vi]=V2Piaq
Spectrum oL ,DyLy = Tek(B) — 7
[ | clustered | J
—0p —7 —0.0005—7 —0i—7 —7 0i—7 0.00056—-7 0on—T
i

VIPLQr = {0 ] )

FIG. 4.2.Why the naive black box approach of f18h T ¢k is doomed.

corresponding\fi) will belong to the same cluster &f D Lg, since theirelative distance is

A

0
A -
max { \)\fi) l, |/\(04

—1

(oi—7)—(—0; —7) 20;

g; —T

< gaptol.
g; —T

1}
Therefore, for such a singular triplet;, u;, v;) of B, bothof P | [+ ] will be eigenvectors
associated with that cluster @t (B). Hence, further (inexact) shifts based on this config-
uration cannot guarantee to separate them again cleanhse@uently, using MRas black
box on the Golub—Kahan matrix in this fashion could in piikeieven produce eigenvectors
q with identicalu or v components.

This problem is easy to overcome. After all we know that thigies of T« (B) form an
RRR, so the initial outside shift to find a positive definite@troepresentation is completely
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Input:  Upper bidiagonaB € R™"*", index setlp C {1,...,n}
Output: Singular triplety5;, t;, v;),4 € Io

1. Execute the MRalgorithm fortsep(Algorithm 2.1), but takeM := Tk (B) as root
representation in step 1, using the entrieBafirectly.
This gives eigenpair&s;, g;), € lo.

2. Extract the singular vectors v{%f} = \/insqi.

Algorithm 4.1: MR on the Golub—Kahan matrix. Compute specified singularetipbf
bidiagonalB using the MR algorithm onT . (B).

unnecessary—we can just talkg := T (B) directly as root. For shifting, that is, for com-
puting a child representatioi™ = T« (B) — i on the first level, a special routine exploiting
the zero diagonal should be employed.Mf is to be a twisted factorization this is much
easier to do than standadd wgds; see [L3, 25] and our remarks ing8, Sect. 8.3]. With this
setting, small singular values can be handled by a (poy#ividt in one step, without danger

of spoiling them by unwanted contributions from the negathounterparts. This solution
method is sketched in Algorithm.1. Note that we now have heterogeneous representation
types in the tree, as the rodt.«(B) is represented by its entries. In any case, our general
setup of MR and its proof in B5, 37] can handle this situation.

One can argue that the approach is still flawed on a fundatrien&d. Grof3er gives an
example in L9 which we want to repeat at this point. In fact his argumemnt ba fielded
against using@ny TSEP-solver on the Golub—Kahan matrix fesvb.

ExAMPLE 4.2 (cf. Beispiel 1.33 in19]). Assume the exact GK eigenvectors

1 1
1 (u 1 1 1 |(u 1]-1

P* i_ (] [ , P* _ J I ,
R IR R
-1 1

form (part of) the basis for a cluster. The computed vectdlisgenerally not be exact, but
c S

might for instance b&,,;P% [d: | q;], whereG,,, is a rotation[ % {], ¢ + s* = 1, in the
2-3 plane. We end up with computed singular vectors

N [c—}—s} V205 = [sic}, V2V, = |:C—_18:|’ﬁ\_/j {C‘*l‘s],

that have orthogonality leve|s;u;| = |viv;| = s

However, this rotation does leave the invariant subspaaersgml byy; andq; (cf. Lem-
ma4.4below), so ifs? is large, the residual norms af andg; would suffer, too.

That the extracted singular vectors can be far from orthabgewen if the GK vectors are
fine led Grol3er to the conclusion that there must be a fundeingroblem. Until recently
we believed that as welBp, p. 914]. However, we will now set out to prove that with just
a small additional requirement, Algoritht1 will actually work. This is a new result and
shows that there is nfundamentaproblem in using MR on the Golub—Kahan matrix. Of
particular interest is that the situation in Exampla—which, as we mentioned, would apply
to all TSEPsolvers onT ,,—can be avoided if MRis deployed as in Algorithrd. 1.
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The following definition will let us control the danger thétet shifts within MR lose
information about the singular vectors.

DEFINITION 4.3. A subspaces of R?"*2" with orthonormal basigq;);c; is said to
haveGK structureif the systemsu;);c; and (v;);cs Of vectors extracted according to

H = V2Piaqi, i€l
are orthonormal each.

The special property of a GK matrix is that all invariant quéses belonging to (at most)
the first or second half of the spectrum have GK structure.igerwectors are shift-invariant,
this property carries over to any matrix that can be writh g (B) — . for suitableB, which
is just any symmetric tridiagonal matrix of even dimensidthva constant diagonal

The next lemma reveals that theandv components of every vector within a subspace
with GK structure have equal norm. Thus the actual choice@btrthonormal systeffy; ) in
Definition 4.3is irrelevant.

LEMMA 4.4. Let the subspac§ C R?"*2" have GK structure. Then for eashe S,

Vas = Py, H with - [Jsu[| = flsu]l

Proof. AsS has GK structure, we have an orthonormal bésis. . . , q,,) for S such that
* u; .
\/§Ppsqi = {v}’ 1=1,...,m,

with orthonormalu; andv;. Eachs € S can be written as = a;q; + -+ - + @, Qm, and
therefore

s [t s _ s

a1vy + -+ oV Sy

Since theu; andv; are orthonormal we hav, ||? = Y~ a? = ||s, % O

Now comes the proof of concrete error bounds for Algorithih The additional require-
ment we need is that the local subspaces are kept “near” totfaktsgre. We will discuss
how to handle this requirement in practice afterwards.

For simplicity we assume that the call to M step 1 of Algorithmé.1 produces per-
fectly normalized vectors|g,|| = 1, and that the multiplication by/2 in step 2 is done
exactly.

THEOREM 4.5 (Proof of correctness for Algorithih1). Let Algorithm4.1be executed
such that the representation tree built by RiBatisfies all five requirements listed in Sec-
tion 2.5. Furthermore, let each nod@M, I') have the property that a suitable perturbation
I\N/IGK = erp(M, £cx) can be found such that the subspe@e[lvlck] has GK structure. Fi-
nally, letresid s and orthex denote the right-hand side bounds from Theof#and from
the second inequality in Theorelb, respectively. Then the computed singular triplets will
satisfy

max { cosZ(i;, 0;), cosZ(V;,V;)} < W24, i+#j,
max {[[[G:]| — 1|, [l = 1]} < V24 +0(4%),
maX{HB\_/i—Gi@H,HB*Gi—\_/i61||} < \@T@SidGK,

whereA = orthgx + CveCSnEGK/gaptol.
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Proof. As all requirements for MRare fulfilled, Theorem®.4 and 2.5 apply for the
computed GK eigenpaif@;, g, ).

We will first deal with the third bound concerning the residuarms. Invoke the defini-
tion of the Golub—Kahan matrix to see

Bv; — 0;0;
_ P _ L 7 1Y
Tex(B)a; — 80 = 5Py {B*ai - vic—n]
and then use Theoref4 to obtain
HB\_/Z — Gi6i||2 + ||B*Gl — \7i6iH2 = 2||TGK(B)C_]1 - ﬁiéin S 27‘€$ZdiK

For orthogonality, consider indicésand; and let(M, N) be the last common ancestor
of ¢+ andj, i.e., the deepest node in the tree such that I andj € J for different child
index setsl, J C N. The boundorthek 0On the right-hand side in the second inequality in
Theorem?.5is just the worst-case for the first inequality in that theoréaken over all nodes
in the tree. Hence we have

sin/ (g, Q7[M]) < orthex.

As we assume that the regresentatfrdriulfills Requirements RRR andiRGAPS, we can
link g, to the nearby matrid . by

sin/ (G, , QrMax]) < sinZ(d;, Q1[M]) +sinZ(Q;[M], Q1[Max])
< orthex + CvecsnﬁcK/gaptol = A.
This means we can find a unit vectpe Q;[My] with sin/ (q;,q) < A.
Now QI[I\7IGK] - QN[I\7IGK] has GK structure. By Lemméa4we can therefore partition
u .
Vaa = Py [2] with ful = vl = 1.

Letul[l\~/IGK] denote the subspace spanned byitbemponents of vectors i@I[MGK]. Thus
u € Ur[M¢k], and LemmaB.1gives

sin/ (G, Ur[Max]) < sinZ(Gs,u) < V24,

as well as the desired propettjd; || — 1| < v/2A + O(A?) for the norms. Repeat the steps
above forj to arrive atsin/ (ii; , Us[Max]) < V2A. We can write

Ui =x+r, x€UMacl, rLx, |rll=]dlsing(d, UsMex]),

0j=y+s, yeUsMal, sly, |s|=Iu;]sins(d;, Us[Mex])-

SinceQn[Mqx] has GK structure anfin J = §, the spacesl;[Mq.] andif;[M,] are
orthogonal, and in particular L y. Therefore

0705 = Xy +9) +r7a) < Isf g < fxlsl 4 [l

where we made use ofy = 0 for the first inequality and invoked the Cauchy—Schwartz

inequality for the second one. Together wijtj| < ||T;|, this yields
cosé(ﬂijj) = _|u7; uj_l < H_SH + H_rH < 2V2A.
aallf[ag = gl g

The bounds for the right singular vectatsare obtained analogously. 0O
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One conclusion from Theorem5is that it really does not matter if we extract the sin-
gular vectors as done in step 2 of Algorithiri by multiplying theq subvectors by/2, or if
we normalize them explicitly.

The new requirement that was introduced in Theodebis stated minimally, namely that
the representatiorid can be perturbed to yield local invariant subspaces with @Glctire.
In this situation we say that the subspacevbfnearly” has GK structure. At the moment
we do not see a way to specifically test for this property. Hmrewe do know that any
even-dimensioned symmetric tridiagonal matrix with a ¢ansdiagonal is just a shifted
Golub—Kahan matrix, so trivially each subspace (within ba#) has GK structure. Let us
capture this.

DEFINITION 4.6. If for a given representation of symmetric tridiagordlthere exists
an elementwise relative perturbation

M = erp(M,£) suchthat M(i,i) = c,

then we say thaltl has anearly constant diagonah shortM is ncd or, if more detail is to
be conveyedyl € ncd(c) or M € ned(c, €).

Clearly, the additional requirement for Theorén® is fulfilled if all representations in
the tree are ncd. Note that a representation being ncd ddesenessarily imply that all
diagonal entries are about equal, because there might ¢e lacal element growth. For
example LDL* can be ncd even ifd,| > |(LDL*)(4,¢)| for some index, cf. Example4.8
below.

Thencd property can easily and cheaply be verified in practice, éoganLDL* fac-
torization with the conditiof(LDL*)(i, ) — const = O(e,) - max{ |d;|, |¢?_,d; |} for all
i > 1. Note that the successively shifted descendants of a Giialien matrix can only
violate the ncd property if there was large local elemeniincat some diagonal entries on
the way.

REMARK 4.7. Since Theorem.5 needs the requiremenH8-TREL anyway, the shifts
Tex(B) — u = M to get to level one must be executed with mixed relative BtabThere-
fore, all representations on level one will automaticallyrizd and as such always fulfill the
extra requirement of having subspaces near to GK strudhdependent of element growth
or relative condition numbers.

The preceding theoretical results will be demonstratedctioa by numerical experi-
ments in Sectio®. Those will confirm that Algorithn.1is indeed a valid solution strategy
for BsvD. However, it will also become apparent that working with dube-Kahan matrix
as root can sometimes be problematic in practice. The raagbat Golub—Kahan matrices
are highly vulnerable to element growth when confrontedhitiny shift.

ExamMpPLE 4.8. (Cf. [36, Example 1.2]) Lein <« 1 (e.g.,a ~ ¢,) and consider the

bidiagonal matrixB = [1 i] with singular values; =~ «a, oo & 2. Shifting T« (B) by

—a gives
—a 1
1 —a 1 _ DL
1 -«

with D = diag( — a, 1*“2 —a3= o’ —az=—). Clearly there is huge local element
growth inD(2). This LDL* st|II is ncd but if we had to shift it again the property would
probably be lost completely.
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The thing is that we really have no way to avoid a tiny shiftlifsters of tiny singular
values are present. I8%, 36] a generalization to twisted factorizations calledck factor-
izationsis investigated. The latter are especially suited for BigfiGolub—Kahan matrices
and essentially render the above concerns obsolete.

5. Numerical results. In this section we present the results that were obtainduauit
prototype implementation of Algorithm.1, XMR- TGK, on two test set®ract and Synth.
We also compare t¥MR- CPL, which implements the coupling approach for running MR
on the normal equations; cf. SectidrB.1

Most of the bidiagonal matrices in the test sets were obdkiireen tridiagonal problems
T in two steps: (1)T was scaled and split to enforeg > ¢,||T||, i = 1,...,n — 1. (2) For
each unreduced subproblem we chose a shift to allow a Chotiesiomposition, yielding an
upper bidiagonal matrix.

The Pract test set contains 75 bidiagonal matrices with dimension®ou§245. They
were obtained in the above manner from tridiagonal matfices various applications. For
more information about the specific matrices sgeWhere the same set was used to evaluate
the symmetric eigensolvers inaAPACK.

The Synth set contains 19240 bidiagonal matrices that stem fromcaiify generated
tridiagonal problems, including standard types like Wilkon matrices as well as matrices
with eigenvalue distributions built intoAPACK’s test matrix generatdbLATMS. In fact, all
artificial types listed in29] are present.

For each of these basic types, all tridiagonal matrices wprnension100 were gener-
ated. Then these were split according to step (1) above hEaesulting tridiagonal subprob-
lems we made two further versions by gluirly B3] them to themselves: either two copies
with a small gluez || T||ne, or three copies with two mediu@(||T||n./€;) glues. Finally,
step (2) above was used to obtain bidiagonal factors of aidurced tridiagonal matrices.

Further additions t&ynth include some special bidiagonal matrid@shat were orig-
inally devised by Benedikt Grol3er. These were glued as wétiwever, special care was
taken that step (1) above would not affect the ma#iB for any one of these extra additions.

The codeXMR- TGK is based on @rototypeMR? Tsepsolver, XMR, which essentially
implements Algorithmd.1. XVR differs from the LAPACK implementatiorDSTEMR mainly
in the following points.

o DSTEMR relies on twisted factorization§ = N, G, Ny, represented by the non-
trivial entriesdy, ..., dk—_1, Yk, Tk+1, -- -, 7 from the matrixGy, in (2.1) and the
offdiagonal entriedy, ..., ¢x_1, uk+1, ..., Uy from Ng, whereasXMR uses the
same entries fronk;, together with then — 1 offdiagonalst dy, ..., {x_1dg_1,
Uk+1Tk+1, - - - » UpTy Of thetridiagonal matrix T. This “e—representation” provides
somewhat smaller error bounds at comparable cost;35e88] for more details.

e Even if the relative robustness (Requirement RRR) and nadel&lement growth
(Requirement EG) cannot always be guaranteed before actually performififta s
sufficient a priori criteria are available. These have begoroved inXVR.

e Several other modifications have been incorporated to e@ehanbustness and effi-
ciency, e.g., in the interplay of Rayleigh quotient itevataind bisection, and in the
bisection strategy.

An optimizedproductionimplementation oXMR is described in37].

XMR- TGK adapts the tridiagona{VR to theBsvD by usingT .« (B) as root representa-
tion. To cushion the effect of moderate element growth ordiegonal we also switched to
using “Z—representations” for the children nodes. Thepeasentations again use the entries
of Gy, together with the — 1 quantities/3dy, ..., 05 _ dx—1, U} Tk+1, - - - Ui Ty, @nd they
provide even sharper error bounds, albeit at higher caq3%,f38]. In addition to the checks
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in XMR, a shift candidate has to hed(—f, 32ne,) in order to be considered acceptable a
priori; see the discussion following Theorehb.

As the coupled approach is not discussed in the present,paperan only briefly hint
at the main features of the implementati¥iR- CPL; see B5] for more details.XMR- CPL
essentially perform&MR on the Golub—Kahan matrix ¢&entral layet’) and uses coupling
relations to implicitly run the MR algorithm simultaneously on the matricB8* andB*B
as well (“outer layers). Just like XMR- TGK we use Z-representations in the central layer,
and the representations there have to fulfill the same noditon, but the other a priori
acceptance conditions VR are only checked for the outer representations. Eigenvalue
refinements are done on the side that gives the better a pdorid for relative condition. To
counter the fact that for the coupled approach we cannoegitat $11FTREL holds always,
appropriate consistency checks with Sturm counts are dorithouter representations.

Table 5.1 summarizes the orthogonality levels and residual normX MR- TGK and
XMR- CPL on the test setsXMR- TGK works amazingly well. Indeed, the extracted vec-
tors have better orthogonality than whatrACK’s implementationDSTEMR provides for
B*B alone, and they are not much worse than those deliveredvBy

The coupled approach works also wellBract, but has some undeniable problems with
Synth. Indeed, not shown in the tables is that for 24 of the cas&yirh, XMR- CPL failed
to produce up t@.04% of the singular triplets. The reason is that for those cdseetwere
clusters where none of the tried shift candidates satisfiedaforementioned consistency
checks for the child eigenvalue bounds to replace the ngsSinFTREL. Note that these
failures are not errors, since the code did flag the tripletsct computed.

Finally let us consider the matrix from Examplel, which yields unsatisfactory orthog-
onality with a “black box” MR on the Golub—Kahan matrix (see Examplg) and large
residuals with black box M&Ron the normal equations (not shown in this paper). By coptras
bothXMR- TGK andXMR- CPL solve this problem with worst orthogonality levelsiot 5ne,
andssvD-residual norm$.68||B||ne,. Interestingly these two numbers are identical for both
methods, whereas the computed vectors differ.

The accuracy results would mean that the coupled approacleasly outclassed by
using MR on the Golub—Kahan matrix in the fashion of Algorithtri, if it were not for
efficiency. Counting the subroutine calls reveals tK&R- CPL does more bisections (for
checking the couplings) and more RQI steps (to compute thensievector), but these oper-
ations are on size-matrices, whereas the matricesXiWR- T&X all have size&n. Thus we
expectXMR- CPL to perform abou0 — 30% faster tharXMR- TCK.

These results give in fact rise to a third methoddewvD, namely a combination of the
first two: Use MR on the Golub—Kahan matriX . (B) like in Algorithm 4.1, but employ
the coupling relations to outsource the expensive eigapvafinements to smaller matrices
of half the size. This approach would retain the increasedracy ofXMR- TGK at reduced
cost, without the need for coupling checks. The catch iswgastill need the “central layer”
(translates ofT o) to be robust foiXMR- TGK, but to do the eigenvalue computations with
one “outer layer” (translates &B* or B*B) the representation there has to be robust as well.
This would be a consequence of Theorem 5.22if],[but its proof contains a subtle error.
The combined method is new and sounds promising, in paatidiblock factorizationgin-
troduced in B5, 36]) are used to increase the accuracy. At the moment we févBr TCK
because it leads to a much leaner implementation and can girefitly from any improve-
ment in the underlying tridiagonal MRalgorithm.
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TABLE 5.1
Comparison of the orthogonality levelmax {|U*U — I|,|V*V — I|}/ne, and the residual norms

max; {||BV; — 0;5|, |B*T; — V55| }/||BlInes of XMR- TGK and XMR- CPL. The lines belowmax give the
percentages of test cases with maximum residual and losshafgonality, respectively, in the indicated ranges.

Pract (75 cases) Synth (19240 cases)
XMR-TGK  XMR- CPL XVR- TCK XVR- CPL
Orthogonality level max {|U*U — I[,|[V*V — 1|} / ne,
5.35 10.71 AVG 5.34 6.33
2.71 2.44 MED 1.38 1.01
48.40 154 MAX 3095 27729
81.33% 82.67% 0...10 92.59 % 91.04 %
18.67 % 14.67% 10...100 7.04% 8.61%

2.67% | 100...200 0.12% 0.21%
200...500 0.11% 0.10%
500...10° | 0.07% 0.02%
10%...10° | 0.06% 0.03%
Residual norms max; {||BV; — G|, [|B*T: — Vi54 ||} / ||B|nes
0.35 15.78 AVG 0.45 3.14
0.07 1.37 MED 0.13 0.72
4.19 453 MAX 118 6873
92.00 % 34.67% 0...1 84.96 % 57.45%
8.00 % 50.67 % 1...10 15.03 % 35.50 %
8.00 % 10...100 7.00 %
6.67% > 100 0.01% 0.06 %
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