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BLOCK FACTORIZATIONS AND QD-TYPE TRANSFORMATIONS
FOR THE MR ? ALGORITHM *

PAUL R. WILLEMS AND BRUNO LANG*

Abstract. Factorizing symmetric tridiagonal matrices and propagatiegactorizations to shifted matrices are
central tasks in the MRalgorithm for computing partial eigensystems. In this papemnopose block bidiagonal
factorizationsLDL* with 1 x 1 and2 x 2 blocks inD as an alternative to the bidiagonal and twisted factoriza-
tions used hitherto. With block factorizations, the elemgnawth can be reduced (or avoided altogether), which
is essential for the success of the RM&gorithm, in particular, if the latter is used to determine #ingular value
decomposition of bidiagonal matrices. We show that the qdritlgo used for shifting bidiagonal factorizations,
e.g,LDL* — 7l =: L*D*(L*)* can be extended to work with blocks in a mixed stable way, gioly criteria for
determining a suitable block structure dynamically.
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1. Introduction. The MR’ (multiple relatively robust representations, MRRR) algo-
rithm [3, 4, 5] allows one to solve the (partial) symmetric tridiagonajezivalue problem,
TSER i.e., to compute selected eigenpdils, q;), ¢ € I, of a symmetric tridiagonal matrix
T € R™*™. The algorithm requires roughl§(|I| - n) operations, which is asymptotically
optimal.

From a distant point of view, MRworks as follows. Determine the eigenvaluesTof
to such precision that they can be classifiediagletongwith sufficientrelative distance to
the other eigenvalues, e.g., agreement to at most thremdeddcimal digits) andlusters
For singletons\;, a variant of Rayleigh quotient iteration (RQI) and inveitegation yields
extremely accurate eigenpairs (tiny residuals). Theretleggenvectors are automatically or-
thogonal to working precision, thus removing any need far@+Schmidt orthogonalization
and the burden of communication in a parallel implementatiGlusters\; ~ --- ~ A4,
cannot be handled directly. Instead, for each cluster onesss sshift 7 ~ \; very close
to (or even inside) the cluster and considers the matrix 7l. The eigenvalueg; — 7, .. .,
Airs — 7 of that matrix will then enjoy much larger relative distasdban);, ..., \iis
did, and therefore they may be singletonsTor 71, meaning that now eigenvectors can be
computed very accurately. If some of these eigenvaluestifirelgstered, then the shifting
is repeated. Proceeding this way amounts to traversingcalted representation treavith
the original matriXT at the root, and children of a node standing for shifted rmesrdue to
clusters. The eigenvectors are computed at the leaves dfete An analysis of the MR
algorithm exposing five criteria that must be fulfilled in erdo guarantee small residuals
and good orthogonality may be found ibg 17].

As the name conveys, the MRlgorithm is intimately coupled with the conceptrep-
resentation®f matrices. A representation is just a minimal set of nurslgiefining a matrix.
For MR® to work, the transition from a node to its chill,— 71 =: T*, must not change the
invariant subspace of a cluster—and at least some of its\@ages—by too much. In other
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words, the employed representations at the nodes mustdtesely robust In general, this
robustness cannot be achieved if one works directly with“dedault representation” of a
symmetric tridiagonal matrix by it3n — 1 entries because they do not necessarily determine
small eigenvalues to high relative precision. Alternatiepresentations have been found to
be superior when it comes to relative robustness. Promamemhples are the entries of lower
bidiagonal factorizations

1 d 14

01 ds 1
T=LDL* = .

K s én—l
1 dy, 1

and the analogous upper bidiagonal factorizatibns URU* (obtained by starting the fac-
torization at the bottom of the matrix). A generalizatiorboth leads to the so-callédisted
factorizationsT = N, G, N, which one gets by “fusing” together the upper part oLan_*
and the lower part of & RU* decomposition. Note that we writefor the transpose of a
matrix.

The sole possible cause of trouble with the MiRgorithm is that relatively robust repre-
sentations cannot always be guaranteed a priori in a padd¢ievay. Robustness is intimately
linked to element growtlwhen forming the bidiagonal (or twisted) factorizationdergent
growth means that some of the data representing theseifattons are substantially larger
than the entries in the tridiagonal matrix.

In [16, Chapter 3] it was shown how the MRigorithm can also be used to compute
the bidiagonal singular value decompositiesyD, for an upper bidiagonal matrig, i.e., to
determine singular values > 0 and the corresponding left and right singular vectqrs;
such thaBv; = u;0;. It is well-known that thessvD is tightly coupled with thersepfor
the so-called Golub—Kahan matrix.«, which is obtained by interleaving the diagonal and
subdiagonal elements 8fon the subdiagonal of a double-sized matrix:

F 0 .
aq 0 bl
a1 bl . b1 0 ag
B — az " o Tax = az 0
. bnfl . b 1
i bp—1 0 a,
L a, 0 |

Extracting the odd- and even-numbered componeniB@fs eigenvectors inta andv in-
deed gives numerically orthogonal singular vectibrshe essential property of the matrix
Tex having anearly constant diagonal (ncdjan be maintained during the initial factori-
zation and the ensuing shifting§, Chapter 3]. Therefore, in the context of thevb the
problem of element growth is magnified since local elemeatvgin in successive translates
of a Golub—Kahan matrix can cause loss of the ncd property.

This paper is devoted to a technique that reduces the prehbfemiving element growth.
The approach is to allo@ x 2 pivots, orblocks in D, leading to ablock factorization (BF).
Before going into details we illustrate the benefits of BFghwivo examples.

ExamMPLE 1.1. A Golub-Kahan matrix does not admit a bidiagonal (osted) fac-
torization, because the first pivot is zero regardless ofrevlyeu start. The natural way to
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factorize an (unreduced) Golub—Kahan matrix is ugin@ pivots all the way:

0 ag 1 0 ay

aq 0 b1 . * . o 1 . al 0
by 0 ay =LDL* with L= % 1 , D= 0 a
az 0 1 as 0

At no time was there a choice to take a single pivot; the blakcture is indeed unique.

EXAMPLE 1.2. Leta < 1 and consider the bidiagonal matix= [ ! ! ] with singular
valueso; = a, oo =~ 2. Shifting the corresponding Golub—Kahan matrix by gives a
bidiagonal factorization

— 1
Ima 1 — LDL*
1 —« «

with D = diag( — «, 1‘aa2 —aZ= 32, —a52). Clearly there is a huge local element
growth in D(2). The representationDL* still |s ncd, but if we had to shift it again, the
property would probably be lost completely due to roundirrgrs.

Using2 x 2 pivots, the same matrix can be factorized as follows:

—a 1 1 dp 1
1 —a 1 o B 1 1 e
l—a o =LDL* with L= Kyl 1 , D= ds ,
o —Q [31 d4
wherek; = - 1a2,€2 — Oy = ﬁ,ch = —q, 62 = —a,ds = al o, and
dy = —a5=

most sense showmg no discernible element growth at all.

For factorizing a symmetric tridiagonal matrik given by its entries a3 = LDL*,
block factorizations have been employed with great sucicgsi)]. Higham shows in11]
how 2 x 2 pivots can be used to solve a symmetric tridiagonal lineaatgn system in a
normwise backward stable way.

The idea to employ block factorizations as representatidtisn MR® and its derivatives
is not new. However, up to now it was not known how to do so. Ofrteefive criteria that
are necessary for MiRo work, coined SIIFTREL in [17), states that we must be able to shift
representations in a componentwise mixed relatively stakly, that is, we need to compute

(1.1) LDL* — 71 =: L*D*(L*)*

such that small relative changes to the inputs (the reptatsem of LDL*) and outputs (the
representation oE*D*(L*)*) give an exact relation. To achieve this requirement for the
unblocked case, with diagonal matrid@sand D+, the inventors of MR developed the so-
calleddifferential stationary quotient-differences with skafgorithmdst qds, and variants
thereof B, 5]. As representations they employed the entrgs?;, d, ¢} of the factors
involved. In another papeflf], we have studied variations on this theme. We found that,
even while working with the same matrice®L* andL+D*(L*)*, it may be beneficial to
define the representations differently. One example haaidgect impact on the following
pages is what we call an-representation: use the offdiagonal elements of theagital
matrix instead of the entrie§, ¢; of the bidiagonal factors. The motivation for doing so is
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Input:  (dy,...,d,), (€1, €n_1), . dst qds ]
wheree; = ¢,d;, shift LDL computed LD*(LY)

Output: (df,...,d})

1 5 =0 Pertur

2. fori=1ton—1do d; by le,, cl:l)frtt)urge

3. dj = d;i+(s; =) e; by 3es i DY 2€o

4. Sit1 = 6?(31' - T)/(did:r)

5. endfor e —r -~ o~

6. di = dyt(s0—7) WL e HPIY

FiG. 1.1. Left-hand sideAlgorithmdst qds to computed. *D+(L+)* = LDL* — 7 for e—representations.
The offdiagonal elements are unchanged by shifting, thus they can be reused in theseptation of T D+ (LT)*.
Right-hand sideMixed relative error analysis alst qds, cf. [18, Theorem 5.3]¢,, stands for machine epsilon, cf.
Section3.1. Only first-order bounds are shown, thatég,may be perturbed b§e, + O(e2).

that shifting does not change the offdiagonal entries the.same datg, = ¢,d, = ¢/ d} can
be used for representindL* andL*D*(L*)*. An adapted version afst qds is shown in
Figure 1.1, together with the results of a mixed relative error analysior full details and
proofs we refer the reader t4§]. Indeed, the paperlB] can be seen as a foundation for
the present one and we will have to refer to it occasionallgvettheless, to ensure that this
paper is stand-alone the necessary techniques and redlulte wecalled where needed, if
only quite tersely.

The goal to achieve mixed relative stability fdr.{) becomes rather more intricateDf
andD+* are block-diagonal of bandwidth one, maybe even with narfarning structure. We
have devised a new algorithm to computel), with the feature to change the block structure
from D to DT on-the-fly. One could call it blockedst qds. After studying some general
structural properties of block factorizations wizh« 2 pivots in Sectior2, we will present
the algorithm in Sectio® and provide a complete relative error analysis. Finallgtisa 4
contains numerical experiments to show how theMf@sed methods forsepand BSvD
can benefit from using block factorizations.

To the best of our knowledge, most of the contents of this papenew. Many details
have been inspired by private communications with BeresRarlett. The only previous
work pertaining to qd-like algorithms for block factoriizais that we know of is unpublished
work by Carla Ferreira and Lisa MiraniaB][ We took the motivation for the conditions
when to choose ax 2 pivot (Block Criterionl in Section3.2) from there, but except for that,
the approach we take is different.

2. Properties and representation of block factorizations.In this section we will de-
rive the structural properties of block factorizationshwiitx 1 and2 x 2 pivots and introduce
the quantities we have selected to represent such fadiorizan a non-redundant way.

2.1. The structure of block factorizations with 2 x 2 pivots. For a given symmetric
tridiagonal matrixT, we denote the diagonal and offdiagonal entries ande,, respectively:

€1 €

€1 Co
T — . .. .. E R'ILXH
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We only consider unreduced matrices, thatjs# 0fori =1,...,n — 1.
Suppose we have a decompositibn= LDL* with a unit lowertriangular L and a
block-diagonalD with blocks of size one or two, i.e.,

D = diag(Ds,...,Dn), whereD; € Rs#()xsizeld) - gize(j) € {1,2}.

Partition the matrices and T conformably, withT,, ; andL_; referring to individual blocks
of the lower trianglesk > j). LetL; , := (Lx ;)" = (L"), x, Which is different from(L*) ;.

As L is unit triangular, the blocks; ; must be nonsingular. Multiply thgth block
column ofL by L;;_ and takeL; ;D;L7 ; instead ofD; to see that, without loss of generality,
we can assume them to be identities, i.e.,

Ljﬁj = Isize(j)a j=1,...,N.
Using the block triangular structure bf the relationT = LDL* becomes

min{j,k}
(2.1) Te; = Y LuDill,, 1<jk<N.
=1

The following lemma summarizes some properties of blockoféations, in particular
that they can only exist if the diagonal blodRs are nonsingular, except possibly g .
LEMMA 2.1. Let the unreduced tridiagondl have a block factorizatiol = LDL* as
outlined above. Thef; ; = Dy, andforj =1,..., N — 1 the following holds:
() Ty = Lj+1,505-
(i) D, is nonsingular. Oy may be singular.)
(i) Ly, =0fork > j+ 1.
(lV) Tj+1,j+1 = Dj+1 + selef with s € R, €, = lsize(j+1)(:v ].)
Proof. We will proceed by induction oi. Forj = 0 the claims hold because (i)—(iii) are
void, and @.1) givesT; ; = Dy, which also is (iv) withs = 0.
Now let; > 1 and assume that the claims hold for glkc j. Invoking (2.1) and making
use of (iii) for all1 < j’ < j gives us (i). From that and@ being unreduced we have

(2.2) Lj+1,505 = Tj41,; #0,

and thereford,; # 0. Hence,D; can be singular only ifize(j) = 2 andD, has rank one.
Using the induction hypothesis on (iv) fgr— 1 yieldsT; ; = D; + se;e}, which implies
D;(2,1) # 0, again due to the irreducibility of. Thus

(2.3) D; = (v,8v) forsome0 #v e R? BeR.

SinceT,11,; has only zeros in its first column, we hakg; ;v = 0 by (i). But then £.3
impliesL; 1 ;D; = 0, a contradiction to4.2). SoD; must be nonsingular after all.
SinceT is tridiagonal, we have = T, ; = L, ;D; for all £ > j + 1, by virtue of 2.1)
and (iii) holding forj’ < j. Together with (i) this gives us (iii) foy.
For (iv) there is only something left to provesike(j) = 2. Lete, = T;41,;(1,2) denote
the one nonzero entry if;;, ; (top right position). Then the nonsingularity Bf; and (i)
yields
Lj-‘rLijL;—&-l,j = Lj+17ijDj_1DjL;+1,j = Tj+1,ij_1T;+1,j = 612Dj_1(272) erel,

=8

which gives us (iv). a
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Thus, L has in fact onlyN — 1 nontrivial blocks, making double indices superfluous.

WithL; := Ljy1; € ReizeG+1)xsize(d) gndl; := I;,.(;) we can summarize the situation as
ly D, li L3
T = B .|2 . . : "
TN " Dy LJ,VN‘ '

Glancing at this formula one might think thiathas bandwidth three. In fact, by (i) and (ii)
of Lemma2.1we havel ;1 ; = T 1 ; Dj‘l, and since only the top right entry ot ; is
nonzero, only the first row df;; ; can be nonzero. This reveals the rather special structure
of L: a bandwidth bounded by two but nevertheless anly size(N) < n — 1 nontrivial
(meaning nonzero and offdiagonal) entries, at most two ahddock. In particularL has
less tham — 1 nontrivial entries if and only iD ends with & x 2 block.

Now we will look more closely at the block entries and how thelate to the entries
of T. Recall that property (iv) of Lemma.1revealed thaD; has at most the top left entry
not being also an entry of. We will denote this qualifying feature db; asd;, where

i =1+ Y7} size(k). Then we have

d, size(j) = 1,
(2.4) D, = ) )
! di e , size(j) =2.
€ Cin1

It was already stated thathas at most: — 1 nontrivial entries. Depending on the structure,
we will use letters: and/ to refer to them, more precisely

l;, size(j) = size(j + 1) =1,

",
Z] size(j) =1, size(j + 1) = 2,

(2.5) L, = }
[k iy ], size(j) =2, size(j +1) =1,

0

ki 4’51] . size(j) = size(j +1) = 2.
With our definition, for each indekthere exists either@, or ac,, and either &, or an’;, but
never both. We have two reasons for distinguishing betw#sandc’s for D, and between
thek's and/'s for L instead of usingl,, . .., d, for the diagonal and, ,.... 7,  y, for
the nontrivial entries ik (as in B]). First, the respective two quantities have very diffgrin
semantics, e.g.,@ is also a diagonal entry df, but ad, is not. This distinction will become
more pronounced as we go on. The second reason is claritgeéptation. Employing block
factorizations inevitably involves case distinctions &abwith the block structure, which can
become confusing at points. Separatitigg(D) into d,’s andc¢,’s, andL into k;'s and/,’s
lets formulae carry the block structure implicitly, whesessing jusil, and/, does not.
Henceforward, our treatment is based on entries (indip@sstead of blockdD; and
block numberg. We will also make a slight but crucial adjustment in ternhigy in denoting
the D,’s aspivotsfrom now on and usbklock synonymously t@ x 2 pivot or2 x 2 block; a
D, with size(j) = 1is just al x 1 or singlepivot (butnota block anymore). Thus, we can
categorize the role of an indéxc {1,...,n} into exactly one of either
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e beingsingle with datad, and/, (the latter only ifi < n);
e starting a blockwith datad; andk; (the latter only ifi < n — 1);
¢ ending a blockwith datac; and/, (the latter only ifi < n).

The determinants df x 2 pivots will play an important role, so we let

(2.6) A, = dieiy, —€F

for eachi that starts a block. Based on these we defing ferl, ..., n — 1 the quantity
1/d,, if 7 is single

(2.7) invp (i) = <0, if 7 starts a block

d;_1/A;_y, ifiendsa block

This definition is always proper if the factorization existdsing Lemma2.1, the relation
between the diagonals 8fandT can now be stated compactly as

(2.8) T(i,i) = D(i,4) + €2 ,invp(i — 1),

which includes the special ca3¢1,1) = D(1,1) = d; if we assume quantities with “out-
of-range” indices to be zero. Concernibgpoint (i) in Lemma2.1 gives the characterization

2.9
29 L, = e;invp(i), if ¢ does not start a block

{ ki = —e;qe;/A,;, if istartsablock and< n — 1,

We close our introduction t® x 2 pivots with two more examples.

EXAMPLE 2.2. The structural propertieg.¢) and @.5) do not guarantee the product
LDL* to be a tridiagonal matrix. Consider the factors from ExaripP and changé to L
just by replacing’s with ¢, (1 + €) for somee # 0. This results in

(LDL*)(3,1) = fye # 0.

Hence, relative perturbations to the nontrivial entries @fin destroy the tridiagonal struc-
ture. This happens only if the perturbations are uncordlafFor the case above, we should
have perturbed; to k(1 + €) at the same time to retain the structure.
ExamMPLE 2.3. We mentioned that the factiocan have less than— 1 nontrivial entries
if (and only if) a block ends at. The following3 x 3 problem demonstrates this:
1
2 5(1=1]2 1 -1 5 1 =: LDL".
4 1 5 4 1

Ut W N

2.2. A representation for block factorizations. To define a specific block factoriza-
tion, we first need a means to capture the block structure the “type” of each index. In
order to achieve minimality of information, we just just ket the indices where 2ix2 pivot
endsin a set? C {2,...,n}. By construction; € Q impliesi — 1 ¢ Q andi + 1 ¢ Q, and
thereforef2 cannot contain more tham /2| elements.

DEFINITION 2.4. Thestandard representatiéor a top-down BFT = LDL* is given by

e ), the block structure (indices where2 2 pivot ends),
e ¢1,...,e,_1, the offdiagonal elements @f,
e D(1,1),...,D(n,n), the diagonal entries db.
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Note that this in fact generalizes therepresentation for non-blocked decompositions dis-
cussed in 18], as for the case that only single pivots are employ@d=( (), the same data
items are kept. Using the s@tone can tell whether B (i, ) is actually ad, (if ¢ ¢ Q) or ac;

(if i € Q).

In [18] it proved very useful to distinguish betwe@nimary data items, which are ac-
tually stored and may be perturbed independently from edlodér do prove mixed stability,
andsecondanydata, which are computed from the primary quantities ankéefit” their per-
turbations. With respect to the above standard represemtédr block factorizations, the
quantitiesA;, invp(7), as well as the entriels, and/; of L, are secondary data and can be
derived according toX6), (2.7) and @.9), respectively.

REMARK 2.5 (Preserving tridiagonal form). Itis natural to ask wiona of the entries
of L is used in our representation. Indeed, why not represerdck ffibctorization using the
nontrivial entries ofD andL, as it is usually done for standard bidiagonal decompasifto
Such a representation would effectively contéiire numbers for eack x 2 pivot (except
the Nth), namelyd,, ¢, ,, e;, k;, and/, ;. But these quantities are not independent, since
they have to obey(9). Thus, basing a componentwise error analysis on such eseptation
would be fatal, as uncorrelated perturbations to all fiva dams at once will in general cause
(2.9 not to be satisfied any more. The effect was already exkiliitd&Example2.2 loss of
tridiagonal structure, due to fill-in ih;D;.

One possible alternative to Definitich4 would be to use all entries frod, but only
the?; of L, i.e., the data{d,, ¢,_, |i ¢ Q} and{e,_;,c;|i € Q}. We prefer the data in
Definition 2.4 because the offdiagonal entries remain unchanged byrghiffihus, maximal
use of the offdiagonal elements is good for efficiency andced the number of perturbations
to specify in the mixed error analysis of the shifting algfom. This will save us a lot of work
on the following pages.

2.3. The connection between blocked and non-blockedAllowing 2 x 2 pivots in D
forfeits uniqueness, in the sense that multiple block sines may be possible for the same
symmetric tridiagonal matrix, including for example usimgblocks at all. LeT have a block
factorizationT = LDL* as before but also a non-blocked lower bidiagonal facttidna
T = LDL* with diagonalD. Using €.8) and @.9), the following relations between the
elements are easily derived by inductionion

i = A,_,/d;_y, if iends ablock i,
' d otherwise

—k;/t;.y, ifi#n—1startsablockim,
l; = {e,_1/d, 1, ifi=n—1startsablockim,

l;, otherwise
Clearly, the only case where a block&d= LDL* exists but a non-blocke® = LDL* does
not, occurs when a block-startinfy from D is zero. These relations were another reason for

us to keep;, andk; separate frord, and/,, as only the latter are identical to the corresponding
data in a non-blocked factorization of the same matrix.

2.4. When to choose a 2-by-2 pivot and when notror factorizingT = LDL*—with
or without shift and not regarding how s represented—the motivation for allowin@ a 2
pivot in D covering indiceg andi+1 is to avoid what would otherwise become a very “large”
single pivotd;,;. How to gauge what is “large” depends on the application.hingast, a
variety of schemes have been devised to evaluate whenisglaéix2 pivot; see, e.g.,7, 11].
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They all essentially try to avoid global element growth ttisathey would comparé;; to

the norm||T|| or to a quantity of comparable magnitude, such as the speéraeter.
Alternatively, one can evaluate thacal element growth caused by the potential single

pivot d; 11, by comparing it directly to the concerned diagonal effity + 1,7 + 1). This

would become the lower right entry, , of a block, should one be chosen. If not, the single

pivot d; 1 is given by

T@i+1,i4+1) = diyy +€7/d;.

Hence, ifd; 1 exceedsT (¢ + 1,7 + 1) in magnitude by far, there has to be a cancellation
betweeni,  , ande?/d;, soe? /d; must also exceedi(i + 1,7+ 1) in magnitude. The latter is
preferable for a test, since it does not require to comgyte. All in all, this motivates that

each?2 x 2 pivot [ di e } in D should fulfil
€ Cit1

(2.10) |dicisa| < Ko

for some constank; € (0,1).

None of the above-mentioned pivoting strategies aimindadtad element growth would
ever choose & x 2 pivot violating .10 because, basically, avoiding local element growth
requires the most x 2 pivots. Since the error analysis to come does only requatdhch
selected x 2 pivot obeys 2.10), it carries over to other (more lax) pivoting schemes.

RequirementZ.10) is closely linked to the computation of the block determitsa)\, .
Recall that for any real numbersandy, the condition number for the addition or subtraction
x + y is given by

_ e[+ 1yl

because perturbing to z(1 + £) andy to y(1 + n) leads to a resulx + y)(1 + ¢), where
[<| < kx(z,y) - max{||, |n|}. Thus, if .10 is fulfilled then

1+ K,
(2.12) K_(dic;iy1,€7) < 11—72 =! K,
is a worst-case bound for the condition number of the finatragbon in the computation
of A; = d;c;,, — e. Even the lax choic&’, = 1/4 results in a benign bound ef, = 5/3.
As about every use of a block factorization will have to refethe block determinants at
some point, being able to compute them stably is crucial. fibanings ofK; and«x,, will
remain in effect throughout this paper.

In practice, the test2(10 will be executed in a floating-point context, and therefitre
quantitiesd;c; ., ande? will not be available exactly, but only as floating-point apgma-
tionsfl(d;c; ;) andfl(e?). More generally, we may desire that the condition still Isoihen
the involved quantitieg;, ¢, , ande? are changed by a limited perturbation, and it should
do so for the same constafit,, so that the theoretical error bounds we are going to derive
remain valid. There is a simple recipe to achieve this, nguielt for an evaluation of condi-
tion (2.10 in practice we plug in a value fdk that is slightly smaller(.999K, say) than
the one used to derive the error bounds. Details on this medte be found in16]; from
now on we will just assume that it is done properly. Then, oneehave establishe@ (L0
we may conclude that this relation, as well 8sl@), also hold for the computed quantities:

(2.13) [fi(d;c; 1) < KDﬂ(ef) and "f—(ﬂ(diciﬂ)ﬁ(e?)) < Ka-
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3. Stationary block factorization. The purpose of this section is to develop an ana-
logue todst gqds for block factorizations, i.e., to compute

(3.1) T—7 =T+ where T=LDL*, T+ =LD*(L*)* € R™"

andD, D* are block-diagonal (with bandwidth one) each.

We call LDL* the sourceandL*D*(L*)* the target of the process. Our treatment is
based on the standard representation, that is, we assureetteglatg (2, {d, }, {c,},{e,})
as input forLDL*, and the output§Q*, {d; }, {c; }, {e,}) will define L*D+(L*)*.

The goal is an algorithm that allows a componentwise mixdative error analysis.
Hence, we need to find suitable perturbations of the inputamgut data items, of the form

d,~d;, 1€Q, ¢~ ¢, 1E€Q,
e;~¢€, 1=1,...,n—1,

+ o It g + + ~ +
df ~d7, 1 ¢Qt, ¢~ , 1€t

such that the thus perturbed matrices satﬁﬁz* — 7= E+5+(E+)* exactly. Note that the
perturbations t@,, c;, d;, c; can be compactly stated as

D(i,i) ~ D(i,i), D*(i,i)~ D*(i,i), i=1,...,n.

Auxiliaries. Just as in standamdist qds [18, Section 5] we introduce auxiliatgdjust-
mentquantities
(3.2) S,

7

= D*(i,i) — D(i,i) +7, i=1,...,n.

However, for block factorizations these do not allow for eunsive formulation of the facto-
rization process like inl[8, Remark 5.1] except if the block structur@sandQ* are identical.
Furthermore, the way to compudg, , is no longer unique, but depends on the local structure
at hand, meaning the four true valuesiaf Q2,7 € QF, i+ 1€ Q,i+1 € QF. With (2.9

we have

sip1 = e (invp(i) — invp+ (7)), i=1,...,n—1.

The definition 2.7) of invp (i) andinvp+ (7) yields nine possible cases to be considered (not
sixteen, because neith@ nor O contain two consecutive indices); they are compiled in
Table3.1

Pictogram notation. The error analysis to come is based on considering thess case
separately, but we will have to jump between them occadiprials error-prone to differen-
tiate the cases based solely on the mathematical definifioa pictograms introduced in the
table will help us identify the cases by their structuralreleéeristics, which are just the sets
Q andQ2* and the pattern they induce for the distribution of the dred@ntries oD andD+
into d;s ande;s.

DEFINITION 3.1 (Pictograms).The top line in the pictogram represents the structure
in D and the bottom line the structure Ir*. We usee to represent al, (i.e., the start of a
block, or a single pivot) and for a c;, with a connecting line to further mark a block.

For an example, consider caSg defined byi € Q,i ¢ QF, 7+ 1 ¢ Q. Note that the
pictogram for cas&6 has nothing in its lower left corner. The reason is that thisecdoes
not specify ifi — 1 belongs td2* or not, because it has no impact on the definitios,of, .
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TABLE 3.1
Standard formulae and alternative formulae for the nextiatthents, , ;. The alternative formulae use previ-
ous auxiliaries in the form of already computed quantit§§s— 7,7 < i. See Definitior8.1for the pictograms in
the third column.

Case| Description § Sit1 alternative formulae fos, , ;

g1 | BitlgQ oo e el ei(si—1)
Bhi+1gQt PP d, df d,df
i+1eQ .-

S2 i+1eQt O 0

S3 i€ e—O © e;d; _ ezgd:r—l e; [612_1(51'_1 -7) - di—ld:r—lﬂ
ieQt e—O o Ay A A AL,

o4 |iTlEQ o e
i,i+1¢Q" o0 df

o5 | Bit1EQ o0 el
i+1leQt O d;

ss | i€9 O o eidioy € e [disi (s —7) +ef_4]
Qi+l Qr o o A, df A df

o |Bit1g0 oo | o edf, & [dy (si = 1) — i 4]
ieqQt —O o d; Af, d; A7

e |i€0 O o eid;_,
i+1eQt *—O Ay

s |it1eQ o _edi,
ieQt —O o Al

Also keep in mind that @ at the right end might stand for the start of a block, but ttue,
has no effect on how,_ , is defined.

The cases’1, S3 S6andS7are special because they do not allow one to compute
using just multiplications and divisions. It is possibler&write their definitions such that
previously computed auxiliaries can be utilized for conmik, , , ; the resulting alternative
definitions are also collected in Tal8€el. Let us illustrate their derivation for the caS&

Sit1 = 512 (di_l - ditl) from Table3.1,
Ay AL
= ¢? di(d_ycf — ezzA—il)l_Ai?—ll(di—ﬁi —ef ) by (2.6),
= ¢? el ;dll_i)fz diadiaT asc/ =¢; — T,
_ e egl(s“Ai_Tl)M_cf“d;‘” by (3.2).

Note that standardst gqds is completely subsumed in caSé and the respective (stan-
dard and alternative) formulae are identical.

Allowing perturbations in the auxiliaries and the shifts. The task to compute a block
factorization will prove to be much harder than in standdsd qds. To make the problem
manageable, we allow for two further perturbations:
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1. s =0
2. fori=1ton—1do
3. D*(i,4) := D(,4) + (s; — 7)
4. /l Compute block determinants
5. if i € Qthen
6. Ay = diqg —612—1
7. if i € Q" then
8. Af | = df e ey
9. /I Compute next auxiliary s, 1
10. Sip1 = ...
11. endfor
12. D*(n,n) = D(n,n) + (s, — 7)

ALGORITHM 3.1: Template for the stationary block factorization.

(i) The computed auxiliaries, need not to fulfill the respective relation from Taldlel
exactly for the perturbed data. Instead, we will be contkatdmall relative perturbation of
s; has this property. This relaxation makes it meaningful ®the auxiliaries as secondary
data and denote by, the correct value for the perturbed data,; this is achieverkpiacing
everything in any definition by its perturbed counterpad, e

gz‘+1 = gz? (az‘—l/&i—l - 1/Ez+) = giQ (Ei—l/(gi—lgi - giQ—I) - 1/Ezz+)
for caseSa

(ii) The effective shift for any index may be perturbed, that is, instead f8t1) above
we actually strive for

LDL* — diag(7;) = L*D*(L")*,

allowing different shifts for the diagonal entries. Thisnminly a notational convenience
because perturbed shifts might also be written as an outdtifiticative) perturbation,

LDL* — diag(7;) = L*D*(L*)* <« YLDL*Y —7 = YL'D*(L)*Y,

whereY = diag((7,/7)~'/2,..., (7./7)~/?). Multiplicative perturbations are known to be
perfectly conditioned with respect to their effect on eigdnes and invariant subspacésq].
With these two simplifications, the relations to be fulfillegthe perturbation are just

(3.3) D*(i,i) = D(i,i)+3 —7, i=1,...,n,

as our standard representation allows to reuse the offdége, for the target. (Here and in
the following we use the symbéi for “should be equal to”.)

Determining the new block structure. Based on the auxiliaries, and assuming the
block structuré2 is known, the computation &fD+(L*)* can proceed in a manner similar
to standardist qds, using Algorithm3.1as an algorithmic template.

One application where the block structipe would be known beforehand is when a
non-blocked factorizatioh*D+(L*)* is desired, i.e., wittD* being diagonal or, equiva-
lently, @+ = (). In Section3.4we will present a customized algorithm just for this purpose

In general, however, we want to determine a suitable blatlcsire on the fly, for ex-
ample with the intent to minimize (local) element growth.efihAlgorithm 3.1 needs to be
augmented with suitable tests to set(up. The natural position for such a test is right after
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ad; has been computed in line 3 to decide if this should start ane® pivot in the target
factorization, that is, if + 1 should be added tQ*. The concrete shape and form of the test
has to depend on the block struct@ten the source. We will develop and discuss a couple
of usable situation-specific tests on the following pagest rBgardless of how they are im-
plemented, we should keep in mind that:a2 pivot may only be chosen i2(10 is fulfilled

for T+, that is,

(3.4) dciq] < Kpe;.

Except for the choice dR*, the prominent point left open in Algorithf1is the computation
of s;,, inline 10. We have already indicated that this has to deperti@actual case at hand
as determined b2 and2™ and that there are alternative formulae for some cases.ghDbin
wrong can make componentwise mixed relative stability iagilnle to achieve.

We will tackle the nine cases for computing, , from Table3.1 by partitioning them
into groups which can then be considered one at a time:

(i) CaseS1has already been dealt with i) for standarddst qds based on ar—re-
presentation. Accordingly, the alternative formulae froale3.1can be used, and the error
analysis fore—representations froni, Theorem 5.3] does apply, cf. Figutel

(i) CasesS2 andS3state that a block id corresponds to one iD*. This will be our
first challenge in SectioB.2

(iii) In Section3.3we will deal extensively with cas€¥/andS6. Those constitute what
we callbreaking a blocksingle pivots inD™ whereD has a block.

(iv) The largest chunk will be to tackl&5 and SS9 in Section3.5. They have in
common that a block iD* is (or has just been) introduced whédedoes not have one—we
call this creating a block A special role will fall toS8 andS9, where blocks irD andD+
dooverlap because once these two cases start to alternate and favedap sequencéhe
worst-case relative perturbation bounds will depend orethgth of the sequence. We are not
yet able to overcome this problem completely, but it can b#rotled in a practicable way.

We will present, for each of (ii)—(iv), a computational seque tailored just for the com-
putation of thes, concerned. These are intended to be used as plugin for thmatimin
Algorithm 3.1 and will be accompanied by a complete relative error analgsivering all
data involved. The final algorithm and its error analysis @tt®n 3.6 can then be built by
composition. Due to the amount of technical details invdlaad for the sake of a more fluent
presentation, we moved the full proofs of the error analygsthe appendix.

3.1. Preparations for the error analysis. We assume the standard model for floating-
point arithmetic, that is, for a floating-point operationietnis well-defined (no underflow or
overflow), the exact resuttand the number. computed on the machine can be related as

(3.5) z=z(1+7)=z2/(1+0), ] |0] <e,

with machine epsilor,. Most modern architectures adhere to the IEEE 754 standard f
floating-point arithmetic13, 14]. For IEEEdoubl e preci si on with 53-bit significands
and eleven-bit exponents the above model is fulfilled it 2753 ~ 1.1-10~'6. For more
information on binary floating-point arithmetic and the EEBtandard seé®[12, 15].

We assume the reader to be familiar with the concept of migkdive perturbation anal-
ysis and only recall the customized notation for sharp 6rgier analysis introduced i)
and the rules for propagating perturbations.

DEFINITION 3.2 ([18, Definition 3.2]). For anyp,n € RZ2% and0 < pne, < 1, we
define

e®l(n) := placeholder for a quantityx with || < . _neo = ne, + p(nes)® + O(ed).

o
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We abbreviate!" (n) =: e(n) and writee,, instead of!® (1) if in placeholder context (on the
right-hand side of an =£”").

By “placeholder” we mean that occurrencese0f-)-terms should be interpreted simi-
larly to the traditional?(-) notation. To pronounce relations that deal with unspecdiggh-
tities like these we will write “= " instead of '=". The expressions become unambiguous if
interpreted from left to right.

THEOREM 3.3 (Rules for running error analysi$g, Theorem 3.3 and Corollary 3.4]).
Letp,n,q,m € RZ% and R = max{1,p, ¢}. Then

(1+€e”(n)(1+€e(m)) = 14 € (n+m),
(1 4 P! (n))71 14+ e[”“](n),
(14 ()% = 14 ral(Lp),

provided thal < ske, < 1 for each quantity! (k).
Letm; e Rands; € {-1,1},i=1,...,n, be given. Then

n n
(3.6) H(l + mie,)* = 1+¢(D), whereD := Z [mil,
=1 =1
providedDe, < 1.
For any quantity, we will normally useq for its perturbed counterpart, and we reserve
the letterp for the associated relative perturbation factors:

a = a-o(a).
We do not use a special notation to distinguish floating-pimbers from “exact” ones.
In the remainder of this paper, unadorned symlls:;, ¢/, A,,... in an algorithm or its

accompanying error analysis always refer to numbers asateestored in the machine.

Recall our use of the term secondary data for anything (meéul) which can be derived
from a representation’s primary data; so far we have alréeattlyduced the block determi-
nantsA;,i + 1 € €, and the auxiliaries;; as such. Secondary data also have a natural
counterpart under the influence of a perturbation, namelw#tue one obtains if every pri-
mary data occurrence in a definition is replaced by the pestlversion. We will extend
the™-notation and to refer to perturbed secondary data as well. Hence, themigiznts for
the2 x 2 blocks inD are

A, = dieyy — 2 =No(d,), i+1€Q,

K3

etc. Note that, although our lax use of thanotation might suggest otherwise, there still re-
mains the subtle point that we can choose primary pertun@tiked, ~- E,L- freely, whereas
A~ ﬁi is an immediate consequence once all perturbations to ifmaryr data are fixed.
Concerning the offdiagonal elemeris for a shifted factorization based on our standard
representation only their squar€swill ever be needed, so assume we have them as

(3.7) fi(e?) = e?(1+¢e), leil <€, i=1,...,n—1

Induced perturbations for the block determinants. It will be necessary to relate the
block determinantg\;, and A} as computed in lines 6 and 8 of Algorith&l to the exact
onesA,; and A} for the perturbed matrices. Based on the floating-point (glé) and

on (3.7), we can state
A1+ Ba) = dicip1(T+an) —ef(1+¢e), fori+1eq,
Af(148L) = dicf.(1+ak)—el(l+g), fori+1eQt,

K3

(3.8)
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with suitable perturbationgy.|, |af], [8al, |8L] < e.. Those will of course depend on
but it is not necessary to make this dependency explicit. \lleewsure that for all2 x 2
pivots, the condition of computing its determinant is boechdby <, from (2.13. Then we
obtain a connection between the computed valyend the exact valuéi (corresponding
to perturbed primary data) as follows. Take the identifigs= A, 0(A,), etc., to rewrite the
exactvalued, = d,¢, , — &2 as

A; =d;o(d;) 'Ci+19(ci+1) - 6?@(612)

o(d;)o(ciyq) 2 G
=dic; (Il +a)F-——— —e;(14+¢)F ———,
;ﬂ,_A)/ (1 + as)F ;/L (1+5i)F
— T =y T

=: =:1+4n

where the latter equality holds for eagh# 0 and, in particular, forv, ande; from the com-
putationsi(d; ¢, ;) = d;c; 1 (1+ ) andfi(e?) = e?(1+¢;) in (3.8) and B.7), respectively.
Now insert the values, y and the perturbationg 7, as defined via the braces, inta11) to
obtain
Aj=(z—y)-(L+) forsomely| < r_(z,y) max{|¢], |n[}
=1+ B:)AF - (1+7),
due to (8.8). Taking into account the invariance of the condition witpect to scaling2(13
yields
/ﬁ:,({E,y) = n,(x/F, y/F) = H*(ﬁ(dicz#l)»ﬁ(ezz)) < HA'

To summarize, fof + 1 € Q we obtain

o(d;)) = (1+4+8.)F1+~), where
(3.9) o(d)o(c,y ) o(e?)
|'7| < KA.maX{’(l-i—OzA)J};_ , ‘W—l‘},

andF' # 0 may be chosen freely. For+ 1 € Q+ the same argument yields an analogous
bound forg(A;) with the samex,, o(e?) ande;.

Perturbations for the auxiliaries. Except for few special cases, we will perturb the data
influencings;, and maybe also the shi, just so that
(3.10) S, —T = 8, — T

7

holds. This means the exact difference of the quantijesnd (which are floating-point
numbers stored in the machine) equals the exact differehtteeqerturbed data, and7;
(which in general will not be representable as floating-ppirmbers).

Provided the relation3( 10 holds, there is an obvious way to perturb the diagonal data
of D andD+* such that 8.3) is achieved. Assume the computation in line 3 of AlgoritBrh
obeys

(3.12) D¥(i,i)(1+6;) = D(i,i) + (s, —7) /(L +03), |6

whereo; accounts for the subtraction and will retain this meaningubghout the paper,
andd; accounts for the error in the addition. This notation, tod| kold from now on.
Multiply by 1 + o; and, noting 8.10), there is an obvious way to go,

(3.12) oD(i,i)) = 1401,  o(D*(i,i)) == (1+6)(1+0,).

O-i’ S €0,

)
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These will serve as our default perturbation BbandD+.

To attain the relatiors; — 7 = s, — 7; in the first place, there are basically two ways.
The obvious one is to choosg_; ~~ €, _; just so that the computesl becomes exact,
i.e.,s; = 5;. Then there is even no need to touch the shift;as= 7 will do the trick. An
alternative is made possiblesf is not too large in magnitude compared to the shift, e.g.,

|si| < Rl7|
for some parametek. Then we can achiewg—7 = s, —7; for every choice o, _, ~» €, _;
by moving any “excess” from; to 7;, in the form
(3.13) Ti—T = 8;,—68; = lo(r;) — 1| < R|o(s;) — 1

7 7

b

defining7;. This provides us with one additional degree of freedom &ahoice ofe;_,
which can be used to fix some other critical computation. Nt effectively, we did cast
a relative perturbation of one quantity, as an absolute one and then wrote it again as a
relative one, but for a different quantity), This technique will be a crucial ingredient for
the error analysis.

This closes the general preparations. Note that, whenévep (can be used, all that
remains to be done is to specify fitting perturbatiens- ¢, for the offdiagonal data.

3.2. Keep a block. Block factorizations are mostly harmless as long as thed#trtic-
ture is not changed. With respect to TaBlé this comprises the cas&d, S2andS3 ForS1
a single pivot in the source corresponds to a single pivohéntarget—this corresponds to
standardist qds for ane—representation, and the error bounds from Figutelo apply. In
this section we will deal with the cas&2andS3 a block inD is reproduced ib*, that is,
we keepthe block.

We begin by devising a criterion to determine when a bloclukhbe kept. Assume we
have a block in the source covering indigeand: + 1, that is,i + 1 € 2. The option of
keeping the block does only present itself if we did not alseehoose a block in the target at
1 — 1, so assume ¢ Q. Considering again Tabl& 1, the choice between keeping the block
or not corresponds to the choice between the cages S4.

It is desirable to keep the structure, but this is not alwayssiple. At least, we have
to ensure that each block D' satisfies condition3.4). The datal (i 4+ 1,7 + 1) = ¢;
are readily available in our standard representation sdiiiation, so just one extra addition
givesT* (i +1,i+ 1) = ¢;,; — 7. This yields the following test.

!

Block Criterion | (BC—1).

)

Fix a parametef(; < K. Keep the block if

EREN ]

ldi (c;ipq —7)| < Kle?.

7

Now focus on the case that a block- 1 € Q is indeed kept, that is, we assume the

following situation (cf. Definitior.1for the pictogram):
1
1
In:s, =35, O o Out:s; 5 = 5;, 5.
—O o
As depicted, we require; as input and assume it to be exact with respect to the pedurbe
data; the produced outpsit, , shall have the same property. The computation will go thinoug

caseS2in Table3.1, followed by casé&3(for s, , , instead ofs, , ), but to ensure stability we
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1. s, =0
2. x = eXs;—7T)— d,dft
3. sipg = efﬂ x/(Al A:’)

ALGORITHM 3.2: Keep a block.

need to take the alternative formula for the latter. Thisléetd the computational sequence
in Algorithm 3.2, to be integrated with our algorithmic template in Algonit3. 1

Recall our goal: We need to find perturbations to the primanty éhvolved, namely,,
df, ciyqs ¢, € @nde; , and optionally also the shifts, 7;,1, such that the relatior8(3)
is fulfilled for i andi + 1, with respect to the exact adjustmeafs s, , for the perturbed
data. Combined with the In/Out-specification above, thitslipwn to achieving

(3.14) df = d,+(s;—7), sinces, = s,

(3.15) Ty = ot — T ass;; =0,
~ !

(3.16) Sii0 = Siyo-

The following lemma states that these relations can in facolstained with suitable
perturbations, without touching the shift. The proof foe tamma is given in Appendix. 1.

LEmMMA 3.4. If a block in the source is reproduced in the target; 1 € Q N Q*, letin
Algorithm 3.1 the auxiliariess;  ; ands,; , be computed as in Algorith®.2. Then we can
find perturbations

di~d; = €(1), df ~di = €2),
~ - -+ -+ -
Cit1 ™ Ciy1 = e(1), Cit1 ™ 61 = €(2),
~ . 4 ~ - a7 7
€; > € = 1(3), Ci1 ™ €1 = NG+ gk,
such that
df = di+s;—7, ¢ = ¢y —7 and s, = S,

3.3. Break a block. In the previous section we dealt with the situation that aklo
the sourceD is kept for the targeD+. Now we will consider how to break a block without
any overlap, that is, without creating a new block endindnimif¢, ¢ + 1,4 + 2}:

]
~ | ~
In: s, =3, —O o Out: s, » =55

o o0
As depicted, we require,; as input and assume it to be exact with respect to the pedurbe
data, and we delivey; , , enjoying the same property. We do not require that the detisi
refrain from adding either one @fi + 1 ori + 2 to Q* has been taken because B@&-not
fulfilled, but we assume
df #0 and dj , #0,

as otherwise the factorization would not be possible.

With respect to Tablé.1, the computation will go througB4for s, ,, followed by S6
for s, ,. There are different ways to computg ,. From case&s6we get the formula

2
_ %n +
Sit2 = 4Aidi++1 [didi+1 - Ai]v

= X
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1 s = —ei/df
2. if [siy1] < Ruwx|7| OF sign(d;) # sign(d;) then
3. z = di(8,41 —T) + €3 /I Formula |
4. else
5. T = —Sipq1(s; — 1) —d;T /I Formula Il
6. Sito = 612+137/(Aidi++1)

ALGORITHM 3.3: Break a block according to a given threshdij,,.,. > 1.

revealing the intermediate quantitywhose stable computation is a critical ingredient for
breaking a block. This meaning ofwill remain in effect until the end of Sectioh4.
The alternative formula from Tabl& 1 for caseS6 shows thatr can also be written as

(3.17) = di(s; —T)+ €5

Two points should be noted. For having the slightest chahfieding a perturbation foe, , |
suchthast,  , becomes exact, we must computstably, meaning that the computedhould
be only a small relative perturbation away from the exafcir perturbed data. Second, neither
one of the two formulae for computing introduced above is always stable. This remains
true even if one would assume that Block Criteriamas not fulfilled. These points make the
task of breaking a block special, because they effectivaiyef us to include a branch in the
computation.

Computingz as in 8.17) is advantageous, because it reuses the quantity— 7, which
is required to computé;, ; anyway (line 3 in Algorithn8.1). But for a relative error analysis,
this approach is problematic because it usesxplicitly again, although;  , does already
depend ore;. An alternative formulation fox is

2
_ &

oF (i =7) —d;T = —s;,1(s; —7) — d;T.

This one is easily derived fron8(17), making use of the two identities — 7 = d} — d;

ands; , = —e?/d}. Again the outermost subtraction involved cannot bode feellall

configurations, but at least the double dependeney i removed.

Both formulae to compute that were just introduced have their uses. They are intedrat
in Algorithm 3.3, together with a test for deciding which formula to take. igae state only
the parts relevant for computing the auxiliarigs ; and s, , and assume the rest is done
according to AlgorithnS8. 1

Although we also have investigated other ways to compyte, we do not see how to
lead a mixed relative error analysis to completion if onlgdormula (1, Il or another one) is
used for all cases. However, we will show that the combimedioFormulae | and Il, together
with the test in line 2 in Algorithn8.3, leads to success. This result will be summarized in
Lemma3.5, and to arrive there we proceed as follows (see AppeaAdd{or the details):

(@) If s, 1] < Rpn|7| for some fixedRy, . > 1, thens,;,, is not much larger tham in
magnitude, and then Formula | is fine because we can empldgctheique surmised in
(3.13 to modify the shift, opening up the freedom to pertaytho control the subtraction
involved in computinge in line 3 of Algorithm3.3. LemmaA.2 will deal with this case.

(b) If |s,;1] > Ruwk|7| andsign(d,) # sign(d; ), then due taRy, > 1ands,, , = —e?/d],
sign(s;,; — 7) = sign(s; ;) = —sign(d}) . Thus,sign(d;) # sign(d;) implies that
d;(s;;, — 7) ande? are nonnegative, and therefore the final addition in line Blgb-
rithm 3.3is well-conditioned:
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wherex is defined according td@2(11). LemmaA.1 will show that Formula | is fine in

this case because we are free todix;) for any choice ofo(d;) such thats;, ,, =5,

holds, while still being able to control the effect on
(c) Finally, LemmaA.3 will establish that Formula Il is fine for the cagg_ ;| > Rp.i|7|.

These are just three out of a variety of conditions we studileile investigating how to
break a block. Similarly to (b) one can show that Formula firis if the computation of: in
line 5 of Algorithm 3.3 is well-conditioned. However, just the three conditioretetl above
are included in Algorithn8.3, so we will present only them in detail.

The following Lemma3.5 summarizes the error analysis for breaking a block accord-
ing to Algorithm 3.3 by taking the worst case bounds from Lemma$—A.3. Indeed, as
|s;41] > || excludes the possibility of harmful cancellation betwagn, andr, just (a)
and (c) alone would suffice to cover all input configuratismspne could even drop (b), and
LemmaA.1 is not strictly required to break a block stably. We use it sugporting role to
alleviate some of the rather largish error bounds from Lemin3dn practice.

LEMMA 3.5. For the case that a block iD is broken without overlap, i.ei,+ 1 € Q
andQ*N{i—1,i,i+1} = 0, letin Algorithm3.1the auxiliariess, ., ands; , , be computed

as in Algorithm3.3, with a parametery,, ;. > 1. Let R* := (Rp — 1)~1. Then thereis a
perturbation
d~d; = e(1), df ~df = e(2),
Cip1 ™ a1 = €(B+2R"), iy~ di, = e(4+2R"),
e; € =el(3), €ix1 ™ €1 = /[6](1*21 +2r, + (K, +1DRY),

T~ Tip1 = €(4Rpu),
such that

di = di+s;—7 diy = ¢ +8 —Tier, and s, = 5.
The computed adjustmesyt,, will satisfys;, ; = s;, (1 + €(4)).

3.4. Blocked to non-blocked factorization. A crucial application of breaking blocks is
when we desire a non-blocked target factorizatiom+(L+)* with D* being diagonal, i.e.,
Q+ = (. Computation of a general (blocked to blocked) factoraratis expensive due to
the conditionals involved. For an MRalgorithm based on block factorizations as representa-
tions for inner nodes, there is really no need to employ datking bisection or computing
eigenvectors, as then the element growth in the target heffew on accuracy. Algorithid.4
provides a non-blocked factorization, making use of thealtegrom the previous pages.

THEOREM 3.6 (Error analysis for blocked to non-blockédt qds). Let Algorithm3.4
be executed without underflow or overflow in an environmeattghtisfies the floating-point
model(3.5), and let all blocks irD satisfy(2.12).

Then there are perturbations to the inputs and outputs shiah t

LDL* — diag(7;) = L*D*(L*)*

holds exactly. The perturbations can be bounded dependirigeoparametersy,,x and K-
according to Lemm&.5. The specific choiceRy,x = 3, K5 = 1/8 lead to the following
bounds; only first-order bounds are shown, i.e., an eptsgands for a bounge,, + O(€2).

LDL* | LDHLY)* | igQ ieQ liga icq
d,~d;, | 1 df ~df | 2 5 e;~¢ | 3 10

c,~~¢ | 4 T~ T 0 12
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Input: Q, shift7, {D(4,4)} = {d; |1 € QY U {c; |i € Q}. {e1,...,€n1}
Output: {df,....d}}
Parameter: Ry > 1
Notes: The offdiagonal elements are reused to represent . Computing the block de-
terminants\;, i + 1 € £, is not shown; these should have been cached beforehand.
1. s :=0
2. fori=1ton—1do
3. df = D(i,i) + (s; — 7)
4. ifi+1 € Qthen / initiate breaking the block
5. Sip1 = —ef/d? /I S4
6. elseif i € Q then // standard dst qds
7. Si1 = ei(s; — 1)/ (did}) I1's1
8. else /I finish breaking the block
9. if |s;| < Ruek|7] OF sign(d;_;) # sign(d; ;) then
10. x = d;_q(s; —T) + el /l Formula |
11. else
12. x = —s8;(84_1 —T)—d;_1T /I Formula Il
13. sip1 = e/ (Ai1df) 11 S6
14. endfor

15. df := D(n,n) + (s, — 7)

ALGORITHM 3.4: Factorize blocked to non-blocked: Given a block factoimafl = LDL* € R™*™ in standard
representation, compute data for non-blockedD+ (L*)* = T+ suchtha.t*D+(LT)* = LDL* — 7.

Proof. One just has to note that the bounds in Lenf@riaare already large enough to
encompass the error bounds from Figaré for non-blockeddst qds (e—representation).
The specific parameter settings,x = 3, K5 = 1/8 imply R* = 0.5 andx, = 9/7; then
the indicated bounds are immediate. O

REMARK 3.7 (Breakdowns in Algorithn8.4). Since no2 x 2 pivots are allowed in
the target, the factorization may break down ifla becomes zero. This can be handled
analogously to standadbt qds, cf. [18, Section 8] for details.

REMARK 3.8 (Optimizing Algorithm3.4). We formulated Algorithn8.4 with the inten-
tion to maximize clarity, but in this form it is quite ineffint, due to the many conditionals
involved. An alternative design could use a nested loogsira:

1. whilei<ndo
2 whilei+1 ¢ Qdo
3. ... /I do normal dst qds
4, endwhile
5 /I break the block
6

7. 1:=1+2

8. endwhile

This reduces the number of extra conditionals to one pekhlothe source, which is min-
imal, since we cannot avoid having to select between Forenludand 1l for stable computa-
tion.

3.5. Creating blocks and handling overlap. In this section we will analyze how to
createnew blocks at a position where the source does not have onewillVstart with
discussing criteria to decide when this is sensible.
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When to create a new block inD*. Assume the factorization process did just compute
d at an index; where no block starts in the source, thatiist 1 ¢ Q. This leaves two
cases to consider, sin@emight still have a block ending at indéXcf. Definition 3.1 for the
pictograms):

1 !
o0 or O o
e ? o ?

Here one could try to test for2(10 directly by tentatively computing the diagonal ele-
mentT*(i 4+ 1,4 + 1) = ¢;, ;. This would require to first determing, , according to either
caseS5or S8in Table3.1, and then check if

(3.18) |df (dipq + (5,41 —7))| < Kgé?

holds. This approach has the advantage of being to-the:paAir2 x 2 pivot is chosen ag-
gressively in every situation where it makes sense acaogridirthe basic condition2(10).
However, there are two drawbacks. If the test should indicatto choose & x 2 pivot, we
end up in cas&lor S6instead. Then the computad, , becomes invalid; its computation—
including at least one division—as well as the two additiangétc;, ;, would have been
wasted. The second drawback is more serious: we need agdisissumptions about created
blocks for the error analysis to succeed, and the direc{3e58 does not provide them.

Due to these reasons we use the following stronger critédodetermining if a block

should be introduced where the source does not have one.

Block Criterion Il (BC— II).

D @

Fix a parametefs < K/3. Choose & x 2 pivot if

.= @

|df| < Ks|d] if i ¢ Q,

dr|- .|d; < Kye? and ,
| 2‘ maX{‘Tl | Z+1|} 262 {|d:rdl_1 < K2|Ai_1| |f'L€ Q

To motivate this criterion, suppose a created block sagidfim exact arithmetic. Then
the expressions for;, ; in casesS50r S8from Table3.1reveal

+ {dz‘+1 +ei/d; -, itigQ, dfcfq| < Kger.

¢, = .
- diyy +€2d,_y/A;_y — T, otherwise

Assuming the safeguard measures concerfipgmnentioned at the end of Secti@ have
been heeded, the choidé, < K,/3 ensures that the above property will hold for the per-
turbed quantities as well, so indeed the computed block @édtaeven have the stronger
properties 2.13 again.

Deploying BC4l instead of 8.18 has the advantage that

3(1 - K,
(3.19) Al > (- Ko > XK

will hold for any chosen block. For example, wifti; = .25 this means the “hidden” pivot
Aj/di+ would have been at least nine times larger in magnitude thap (or infinite if
df = 0); so the choice to create a block was well-founded.
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J k J k

O &0 O O &0 o e eO0 O e OeOe

e 6—O 6O o O O o o —0O 6—O O —O o o
TypeB/B (k> j+2) TypeC/B (k>j+1)

J k J k

O &0 &0 O o0 0 60 eO oo

e &0 60O & -O O @ e—0O O & -O O @
TypeB/IC (k> j+1) TypeC/IC (k> j)

FiG. 3.1. The four types of overlap sequences, classified as to whiiestart/end by breaking a block (B)
or creating a new one (C); cf. Definitioh 1 for the pictograms.

Overlap with blocks in D. A newly created block in the target camerlapwith blocks
inthe source if — 1 € Qori+ 1 € Q. There is only one situation where this does not
happen:

(3
!
o 0 o
—O o
One could call this the “clean” or “pristine” creation of awélock. It is symmetrical to
breaking a block. Indeed, this can be realized based onsbkedstrictive test3(18 in a way
completely analogous to breaking a block in Sec8d® including a necessary branch in the
computation. Our implementation does indeed include theial treatment, but we have
chosen not to present its error analysis here, since it daesonvey anything new compared
to breaking a block. Furthermore, as it turns out, if the mresgrictive Block Criterionl is
employed, the computational branch is not necessary.

There is a fundamental problem involved with overlappingcks. It arises whe
andD* each have a sequence of consecutive blocks that are oytiofis the sense that
1€ Q< ¢ QFf. With respect to Tabl&.1, this means alternating betwe&®a and S9.
We call this phenomenon awverlap sequence The essential problem with it is that we
cannot formulate the factorization as a recursive proékeohe can for standarmdist gds,
cf. [18, Remark 5.1]. As a consequence the perturbation boundsaia atixed relative sta-
bility will grow with the length of the sequence, at least engral. To explain why this is so,

consider the following section of an overlap sequence,radow 2:

7
1
e—O O

0O O o

Any perturbation strategy has to fé to controls, ; such that§.3) is fulfilled. Asi € (2,
this makeso(e;) depend orp(A,_;). Now e; contributes taA, soo(A;) will depend on
o(e;) and thereforeg(e, , ;) will have to depend on(e; ), too, forming a cycle.

Because of this interdependency we can deal with overlagesegs only by considering
themen blog starting from the last index with j ¢ Q U QF and up to the nexk with
k+1¢ QuUQT. Then each sequence can start and end by either creatingkedvlbreaking
one. This leaves four basic types of overlap sequencesjgeB.1l The constraints shown
on j andk stem from requiring that at least one new block frbm be contained. Note that
type C/C includesk = j + 1, the creation of a new block without any overlap, which was
introduced already. We kept this case as the error anaty$ilow covers it seamlessly.

The computation of the adjustments, ,, ..., s, for any of the four types can pro-
ceed as summarized in Algorithf5. It uses the standard formulae from TaBlé for the
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if j+1 € Qthen I/ begin by breaking a block
Sp1 =~
else // begin by creating a block
sjit1 = €5 /d;
fori=j+4+1tok—1do
if i € Qthen
Sit1 = €gd¢71/Aif1
else
Si+1 = _ezzd:r—1/Az‘+—1

©oNoOGOM~®WNE

10. endfor

11. if k € Qthen /I end with breaking a block
12. Spe1 = en[(sp —T)dp_1 +en_y]/(Ap_1df)

13. else // end with creating a block
14. Sppr = ex[(sy — T —er 1]/ (dpAf_))

ALGORITHM 3.5: Compute adjustments for an overlap sequence.

auxiliaries up tos, and the alternative formulae from Taliel for s, ;.

A complete error analysis of this sequence is given in AppeAd3. In the following
we will just highlight the key points.

The computation as such is simple, but the mentioned inpertdency means that for
the offdiagonal elements the best bound we obtain is, updbdider,

i—j+1
(3.20)  lo(e;) — 1| < (§ + (26, + 1)’“7_) 6o forj<i<k

2 Ky —1
cf. (A.23) in AppendixA.3.2.

This dependence on the length of the overlap sequence @fatrong to make the result
of much practical use. For example, with the moderate beyne: 3/2 (which we get with
K- = 1/5) and a sequence of length- j = 6, the perturbation te7 _, alone would already
exceedl00¢,.

But there is light at the horizon in the form of choice. Aftdl, ¢he bound above can
be monitored during a computation. Should it grow too lavge,can simply choose not to
take a2 x 2 pivot, thus capping the sequence. The only situation wher@lwgolutelymust
take a2 x 2 pivot is if ] becomes zero. But this is actually a favorable situationabse it
causes;, , , to be zero as well (cf. line 9 in Algorithra.5for 7 + 1). This effectively lifts any
restriction ore; , ; and therefore cuts the dependency chain.

The full error analysis in Appendi®.3.2 does include this optimization not only for
di = 0 (thuss, ., = 0), but more generally for any situation where|ajj becomes “small”.
The analysis reveals that this effectively resets the reoge, that is, the exponent Q
in (3.20. The resulting error bounds are compiled in Theof2&in Section3.6.

3.6. The complete algorithm. Algorithm 3.6 summarizes the work on the previous
pages for stationary block factorizations, with supportdieanging the block structure.

The basic design remains identical to the template Algorighl, except that we have
omitted statements to compute the block determindxtsand A;]. Essentially it is the
straightforward combination of standatdt qds for ane—representation, cf. Figudel, and
the computational sequences that we have considered fpinke@Algorithm 3.2), breaking
(Algorithm 3.3) or creating (AlgorithnB.5) blocks. However, this fact is obscured somewhat
due to the integration of a control mechanism for overlajusages.

The outermost loop in Algorithri.6is composed of two parts. The “first” half, lines 3—
21, handles the factorization as long as the block strudgtunet changed. With respect to
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Input: Q, shiftr, {d; |i € Q}, {c;|i € Q}. {e1,...,€n_1}
Output: Qt {df i g Qt}, {cflieQt}
Parameters: Rurk > 1, Rosq > 0, bmax > 0, K < 1/3 asin .10,
K < Kp, K2 < K /3 forBCH and BCH
1. QT:=0,i:=1,s,:=0
2. whilei <ndo
3. df = d;+ (s; — 1)
4. if i+ 1€ Qthen
5. if BCH is fulfilled then I/ keep the block
6. Qf == Qtu{i+1}
7. Siy1 = 0 II'S2
8. if i <n—1then
9. Chy = G — T
10. = el(s; — 1) —ddiT
11. Sive = era /(A A)) Il S3
12. 1= 1+1
13. else /l initiate breaking the block
14. Sip1 = —e?/di+ Il S4
15. else
16. if BCHI is fulfilled then /I initiate creating a new block
17. Qt = QTu{i+1}
18. sip1 = er/d; Il S5
19. else // standard dst qds
20. Siyq = er(s; — T)/(d,-di*) /I S1
21. i = i+1
22. b:=0 /I counts number of created blocks in an overlap sequence
23. whilei <nand (i € Q) & (1 € Q) do
24. D* (i) := D)+ (s; — 7)
25. if |s;] < Rosq|T| then
26. b:=0 I reset counter
27. if i € QT then
28. ifi+1¢€Qthen Il continue sequence
29. Sip1 = —epdi /AT 11's9
30. else /l end by create
31. Siyq 1= €7 (d?’_l(si —T)— e?_l)/(AZ'_ldi) Il S7
32. else
33. if BCHI is fulfilled and
34. (b < bmax Ori=n—1or |df|e?; < (1 - KD)ROSQMef) then
35. Qf == Qtu{i+1} Il create next block in the sequence
36. b:=10b+1
37. Sitq = e?di,l/Ai,l /I S8
38. else /I end by break or clean break
39. ifi —1€ Q" or|s;| < Ruw|7] Or sign(d;_;) # sign(d;_,) then
40. x = di_q(s; —T)+ el
41. else
42. z = —8i(8i_1 —T)—ds_1T
43, Sip1 = e [(A_q1d)) Il S6
44, i = i+4+1
45, endwhile
46. endwhile
47. DT (n) := D(n) + (s, — 7)

ALGORITHM 3.6: Blockeddst gqds: ComputeL* D+ (L*)* = LDL* — 7 for block factorizations.
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Table3.1this encompasses cases-S5 There is nothing new here.

The “second” half, lines 22—45, is essentially one innepltwhandle any block structure
changes from source to target. As such it concerns a8€39 from Table3.1 This loop
will only be entered if either one of the statements in lineot48 were executed to initiate
a structure change, i.e., breaking or creating a blockeaely. The former one of those,
together with lines 39-43 incorporates breaking a blockfédgorithm 3.3 as well as end-
by-break for an overlap sequence (line 12 from Algoritbu%), due to the extratest-1 € Q*
in line 39. Note that Algorithn8.4 is fully contained in Algorithm3.6; the former can be
revealed by fixing the tests for creating a new block in lingsand 33 to evaluate to false.

The main new ingredient is the counterwhich is increased by one for each created
block in an overlap sequence. Itis reset to zero in line 26nether the current adjustmest
is not much larger than the shift, where the specifics arealbed by a parameteR .. This
integrates the optimized handling of overlap sequencedsiths.mentioned at the end of the
last section.

A new block may only be created if the complex test in lines3Bis passed. Besides
checking for BCH, creating a block in the target is only allowed if we can cohtihe error
bounds for the overlap sequence. To this end, one of threditemrs has to be met:

(1) b < bmax: The length of the sequence is still deemed acceptable.

(2) i = n—1: For a block that is created at the end it is easy to give venygoeperturbation
bounds to attain mixed relative stability, since4)9, has to be computed.

(3) Because we require BGQ+the stronger property3(19 will hold. Then fulfillment of the
test|df|eZ,; < (1 — Kg)Rosq|7|€? implies|s;,,| < Rosq|7|if the sequence contains
i+ 2, i.e., we know that the test in line 25 will subsequently eailre counter to be reset.

Note that conditior{3) permits the choice of 2x 2 pivot whenever a tinyl is encountered;

in particular, the condition is always fulfilledd = 0. Hence, the factorization cannot break

down, even fob,,. = 0.

The following result summarizes the componentwise mixdatike error analysis for
Algorithm 3.6.

THEOREM 3.9 (Error analysis for blockedst qds). Let Algorithm3.6 be executed
without underflow or overflow in an environment that satisfiesfloating-point mod€(3.5).
Then there are perturbations to the inputs and outputs shiah t

LDL* — diag(7;) = L*D*(L*)*

holds exactly, with bounds to the individual perturbatiaigen in the following table (cf.
Definition 3.1 for the pictograms).

(4

7 i i i 7
1 1 1 1 l 1
[ J —O —O —O or O e [ 2 ]
[ J —O [ I oM ] —O —O
DG) |1 1 3+ 2R* 1 1
D*(i) | 2 2 4+ 2R 2 2
T 0 0 4Ry max { Rosq(4 + Q), 21 + 3Q} 0
€; 3 |Z(ka+1)| 3 + 268 + (ks + 1)R" L4139 5+1Q

Only first-order bounds are shown, i.e., an entrgtands for a bounge, + O(¢2), and

1 HQ(B-l—l) 1

s ——— = (D44 VA
Rm oy Q= 2 )=
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where0 < B < by,ax is the maximal value attained by the counieturing the computation.

Proof. The bounds are obtained by combining the results for nookielddst qds from
Figurel.1with Lemmata3.4, 3.5 A.4 andA.5. |

Recall that our main objective was not to provide the shagpessible error bounds, but
to devise an algorithm for stationary block factorizatiémswhich we can give component-
wise relative error bounds in the first place.

However, there is no denying the fact that the bounds are targje compared to standard
dst gds. This is mainly due to the problems with overlap sequencemjifasted by the
parameteiQ) (for by.x = 0 and with Ry,,x = 3, K5 = 1/8 as in Theoren8.6 we could
bound|o(e;) — 1| by 10¢,). One could fear that such large componentwise errors would
overshadow the benefits of usifig 2 pivots regarding control of the local element growth.
But keep in mind that the bounds are of a worst-case natuse dile experiments in the
next section will show that the accuracy of the deliverediltegs far better than what these
bounds would suggest.

Note also that the error bounds might be reduced signifigdtitaking smallerk,
values. As an exampldy, = 0.001 leads tox, ~ 1.002, and therefor&) in Theorem3.6
grows rather moderately for small,.x, @ =~ 12(B + 1) for B < 10. However, this choice
also implies that many fewerx 2 pivots will be used (cf. BCand BCH), thus increasing
the admissible element growth, e.g.|f97 /d;| £ 3000d,, , in (3.19. This may be harmful
if blocked factorizations are used in the context of theMRyorithm.

4. Numerical results. Block factorizations can be used as components for theatidi
onal MR® algorithm as well as in adapted solution strategiessf®vD, the singular value
decomposition of an upper bidiagonal matrix. This sectialieates the potential gain from
doing so.

In [16, Chapter 3] we have shown how, contrary to the establishadrgeconsensus,
BSVD can indeed be solved reliably by applying a just slightly ified MR® algorithm to the
Golub—Kahan matrix (cf. Examplel). We have developed a prototype (meaning experimen-
tal and non-optimized) implementation of this algorithnhigh can be configured to employ
standard twisted factorizationX{fR- TGK) or top-down block factorizationBBVR- TGK).
For testing we used a testset containi®g40 bidiagonal matrice®. Those were produced
by generating tridiagonal matrices of various standardgy{ncluding all types used i&])) in
dimensions up ta00, possibly self-gluing them, then scaling, splitting, shi for positive
definiteness and finally taking the Cholesky factors of theai@ing unreduced subblocks.
Details of the generation process can be found &) pp. 111 ff]. The test results are shown
on the left-hand side of Table 1L

For TSER, we have implemented our own custom R&gorithm, which incorporates
some new techniques that we have developed. These techragdehe implementation are
presented in detail inl]7]. Here we only want to assess the impact that block facttboza
can have forrser. We do also know how to do a progressive transformategd§) with
blocks, that is, the transitiobDL* — 7 =: U*R*(U*)* from a lower to an upper (block)
bidiagonal decomposition. For reasons of space this tapitt discussed in the present
paper, but this feature has been integrated in the impleatient

This code, too, is configurable in what type of representaticuse. We have compared
three variations: using standard twisted factorizatiofdR), using onlyLDL* block factori-
zations BMR- LDL), or with the abovementioned twisted block factorizatigBSR, the de-
fault). We also used a synthetic testset here, but sincésthisomplete and production-level
TSEPRsolver no preprocessing steps need to be applied to theajeddridiagonal matrices,
and the set is larger (base matrices were generated fomadindiions up t@00 before glu-
ing). For a detailed description of the generation procesdl¥, Section 5]. The test results
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TABLE 4.1
Orthogonality and residual norms of thEgk-basedBsvD prototype solversXMR- TGK (with twisted fac-
torizations) andBMR- TGK (block factorizations), and the releasseP solversXVR (with twisted factorizations),
BMR- LDL (LDL* block factorizations) an@MR (twisted block factorizations). The lines belewx give the per-
centages of test cases with maximum residual and loss afgwotiality, resp., in the indicated ranges.

BSVD-solvers TSEP-solvers
(19240 testcases) (116874 testcases)
XVR- T&K BMR- T&K XMR BVR- LDL BMR
Orthogonality levels
max {|U*U — I|,|[V*V — 1|} / ne, max {|Q*Q — I|} / ne.
5.34 4.41 AVG 234.19 68.63 1.44
1.38 1.69 MED 0.49 0.42 0.48
3095 788 MAX 9.68 - 10° 7.86 - 10° 9473
92.59 % 91.04 % 0...10 98.724 % 98.872 % 98.894 %
7.04 % 8.73% 10...100 1.119% 1.070 % 1.070 %
0.12% 0.12% 100...200 0.022% 0.022% 0.009 %
0.11% 0.08% 200...500 0.027% 0.026 % 0.013%
0.07% 0.03 % 500...10°% 0.027% 0.005 % 0.009 %
0.06 % > 103 0.080 % 0.005 % 0.006 %
Residual norms
max {||BY; — G|, | BT — %} / [|B]|neo max {| Tq: — qidll} / I TlInee
0.45 0.44 AVG 0.63 0.63 0.63
0.13 0.13 MED 0.13 0.13 0.13
118 4.67 MAX 13.48 13.48 13.48
84.96 % 85.11% 0...1 80.807 % 80.813 % 80.807 %
15.03 % 14.89 % 1...10 19.192% 19.186 % 19.192 %
10...100 0.001 % 0.001 % 0.001 %
0.01 % > 100

for the three configurations are shown on the right-handaidable4.1

For both problem&svb and TSEP, the methods that use block factorizations do so in
basically the same manner, by replacing them with the stdnttested factorizations as
representations at the nodes in #Rrepresentation tree. For the execution of shifts, that
is, to construct block factorizations for the representaiat child nodes, Algorithr.6is
deployed with parameterBy,x = 5, Rosq = n/4, bmax = 4, Kg = 1/8, K1 = K,

K, = K /3.01. Sturm counts for bisection are done using the customizecket to non-
blocked factorization from Algorithn3.4 with parameterRy,,, = 8. To construct the non-
blocked factorizations that are needed for computing atewigenvectors, the same instan-
tiation of Algorithm3.4was employed, together with a progressive analogue.

Due to the synthetic nature of the testsets containing matrgrae cases that are un-
likely in practice, we can say that all five solvers, with othvaiut blocks, handle their task
reasonably well. However, the results in Tabléalso clearly show that allowingx 2 pivots
can substantially improve the level of accuracy and stghili MR3-based methods.

There are a couple of noteworthy observations to be made themumbers. Residual
norms are generally unproblematic, which is a typical femtf MR® (but not of all appli-
cations of MR to solveBsvD, cf. [16] for counterexamples). That the residual statistics
are almost identical for the threesersolvers further shows that residual norms produced
by MR2 are far less sensitive to changes in the algorithm than gathality is. Concerning
orthogonality, it is interesting to note that the introdantof top-down block factorizations
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in BVMR- LDL does give a strong improvement, but the real jump comes filowiag twisted
block factorizations. This shows how crucial the one adddi degree of freedom in choos-
ing the twist index can be to adapt to the problem at hand aoidl @ement growth where it
arises.

What the results in Tablé.1 do not show is the possible performance impact of block
factorizations. Due to the many conditionals involved, githm 3.6 is far more expensive
than a non-blocked factorization, so one could fear that meejust paying for reliability
with speed. In17] we have compared execution times of our releeser-solverBVR with
the MR® and Divide-and-Conquer implementatidBSTEGR andDSTEDC in the LAPACK
library. Those results refute the fears concerning effydar block factorizations. The main
reason for this is that the bulk of the work is actually to peri bisection and RQI steps, for
which we only need the much faster Algorittsnl.

Acknowledgements. The authors want to thank Osni Margques and Christidingl for
providing us théPract matrices, Beresford Parlett for pointing us to block faiz@tions in the
first place and for many fruitful discussions, and the redsrfor their valuable suggestions,
which helped us to improve the presentation.
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Appendix A. The details of the error analyses.
In the follwing we provide the more technical details to cdete the analyses in Sec-
tions3.2, 3.3and3.5.

A.1l. Completing the analysis of keeping a block.In this section we prove Lemnta4
by specifying the necessary perturbations.

Proof. Concerning the intermediateands,_ ,, under the assumption that the execution
environment obeys the floating-point mode!5), we have

_ 2 —r I+ei o +r
(Al) (E(l +ﬁx) = € (sz )(1 +Oz)(1 +(X1) dzdz (1 +a2)a
(A.2) Sia(1+08s) = 61?-5—1(1 +€it1) x/(Ai A;r)’

where|ai], |G| < €, aa = €(2), Bs = €(3) ande;, e;41, o; stem from 8.7) and @.11).
Note that the bounds fax, and 3, were obtained by combining two (three) terms- &;
or (1 + &)~ ! with |¢;] < e, according to 8.6). In the following we will frequently invoke
Theorem3.3without further notice.

The shift need not be perturbed: = 7,,; = 7. Then, as per requiremest = 5, and
trivially also s, ; = 0 = 5, 1, the default perturbations defined .12 can be employed
ford;, d;, c;;, andc;, , to the effect

7 Wi

d; = d;(1+ 0y), Ciy1 = Ci1 (1 +0i4a),

A3 ~
#3) df ==df(1+6))1+0:), ¢y =c(1+67 )1+ 0i41).

So far this gives us3(14) and @.15, but we still have to assur&.(L6). We have not touched
eithere; or e, ; and can perturb them freely to achieve this.

As a first step, perturb, ~~ ¢€; to control the subtraction involved in computimg The
goal is to get the exact intermediate for perturbed datéy be a small relative perturbation
of the computed value;. We multiply (A.1) with (1 +¢;)?(1+6;) /(1 + a2) and substitute
(A.3) to obtain

1+¢; (1+0:)%(1+6))
(1+0’7,)(1+O[1) 1+O[2

x(l-l—ﬁz)(l—’—ai) (1+9/) = e(s; —T)

— @ZZ'Z*T
1 + [65)

This tells us how to achieve

namely by setting

(A4) 6 = ei'\/(1+5i)(1+@><1+53) = e (L+7(3)),

(T4 a1)(1+ a2)
which gives

~ (4 B)A+0)2(1+6) L
=z T o = z- (1+€(6)).

Finally, we perturke; , , ~ ¢, , togets, ., = s, ,. Asthe computation of; , , involves
the block determinantd; andA;, we have to control the perturbation’s effect on them. Just
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for this purpose did we craft the tod.¢). Invoking 3.9) with F := (1 + ¢;) /(1 + a2) and
substituting the values(d;), o(c;, ) ando(e;) from (A.3) and (A.4) yields

A; = AL+ Ba)(L+0)(1+7)/(1+as),
with

(14 0i+1)(1 + a9)
il S/@A'max{‘ o -1

)

1+06;

L1 = 4).

Tl = e

In analogous fashion we obtain a bound #n\}), using @.9) with F+ := (1+0;)(1+6;):
A = ATA+BD)A+o)1+6) 1+, T = kae(3).

The purpose for factoring out+ as from ﬁi was to cancel out with the one fropfx) in

~ 1 i
Ciy1 = €i+1\/ ﬁfﬂtlQ(Ai)Q(A:—r)/Q(@

_ a8+ BE)
(L4 Ba) (1 + Bs)

= e D)+ l7m)

= eH_l(l + 6[4](% + %HA)).

(I +eip)(T+7)(A+7%)

Inserting everything intoA.2) we obtain the desired relation
Siya = gi2+1 (giQ(si —7)— EzEfT)/(Kzﬁ:r) = Siyo a

A.2. Completing the analysis of breaking a block.To analyze the breaking of a block,
let us first identify the effects of executing Algorithen3in floating-point arithmetic:

(A.5) 5i+1(1 +0s) = _612(1 + gi)/d;a
di(8;41—T)
(1+01)(1+0i41)
$i11(8; —7)

-~ —d.7(1 , forFormulal
(1+0€2)(1+0’Z) zT( +O¢3) L

(A7) s(1405) = 612+1(1 +€it1) 93/ (Az‘d;rJrl) )

where|aq |, |azl, |as), |8z, |8s] < €0, B, = €(3), ande;, €;41, 04, 0541 Stem from 8.7) and
(3.1D.

The error analyses in the three following lemmas have in comthat the shift for the
index is not perturbed7; := 7, and that the default perturbatioB.{2) is deployed ford,
andd;,

+eX(1+4¢;), for Formulal
(A.6) x(1+6:) =

(A.8) d; = d;(140;), df = d(1+36)(1+0,).

?

One main goal will always be to prove that the computdhs a small relative distance to
the exact one for the perturbed data,

T = zo(x) = d;(S;y1 — Tix1) + e = —8i41(8; = 7) — d;Tiy1.
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The reason is that if we have an acceptable boung@r) — 1| then based onX(.7) we can
attains, , , = s, , by defininge, , , according to

(A.9) gi-i—l = ez‘+1\/1 T . Q(Ai)g(d;ﬂ) = €iy1- (1 +€[6](2)) Q(Ai)é;ﬁ“).

1+ 3, o(z) 0
So, what is left to do is to perturb three data items and tHefshithe index: + 1, namely

~ + T+ ~ ~
Cit1 ™~ Ciy1s di+1 ~ di+17 €~ € T~ Titl,

in order to ensure3(3) for i + 1, that is,

~ N _
(A.10) dit1 = Cipr + 8ip1 — Tit1.

With these preparations done, the following three lemmasbeaconsidered separately,
as they do not depend on each other.

LEMMA A.1. For Formula I, letk[z] = r1(f(d;(s; ., — 7)),fl(e2)). Then we can find
a perturbation

Ciy1~ Gy = (1), €~ € = "(2),
d¢++1 ~ 31‘11 = €(2), €41~ €41 = (4 + Klz] + Ky),
such that(A.10) is fulfilled with7; ; = 7. The computed adjustmesjt, ; will be exact, that

iS, 8,11 = S;41-
Proof. Based onA.5) we attains;, ; = s, by setting

(All)e, == ¢ = ¢, (1+€"(2)).

g) _, [Ate)d+o)+9])
1+ 5, ¢ 1+ 5

Inserting the default perturbations.{2 for ¢; , ,, d, , into (3.1]) gives us

o
divy = CGy1+841— T,

from which we obtain4.10) by usings,  ; = s, ,, and fixing7;,; := 7. For the interme-
diatex we make use of;, | = s, 4, 741 = 7, (A.8) and (A.11) to obtain

~ 14e)(1+0;)(1+ 6
E — di(8i+1_7)+gi2 — dz(sz+1_7—)(1+0—1)+612( +€’L)<1—:>ZZ)( +61,)

Now we cast this in terms of\(6) and use the definition of|x] to see that the perturbation’s
effect onx can be controlled as

o) = 1+ 6.)1+0:)(1+8), & = e(2k[z]).
Since o(d;) and o(e?) have the common factaF := 1 + oy, (3.9) lets us conclude
that the computed\, relates to the exact block determinant for perturbed datarding to

A, = A 0(A;), where

o(8;) = (L+Ba) (A +0))(1+7), 7 = €(2r,).
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Finally, plug the obtained(d; ), o(z) ando(A,) into (A.9) and cancel terms to determiag
suchthats; , = s;,, holds. ad

LEMMA A.2. For Formula |, let[s,, ;| < Ry.|7| for a parameterR,. > 1. Then
there is a perturbation

Cit1 ™~ Cip1 = €(1), e; ~ € = €1(2),
dig ~diy, = €2), €1 ™ €ip1 = 6[6](% + %"%),
T~ Tip1 = €(4Rp),

such that(A.10) is fulfilled. The computed adjustment ; will satisfy

Sip1 = 8i1(1+¢€(4)).

Proof. We cannot assume that the computationzaé well-conditioned. Therefore
we choose the perturbatiary ~~ €, specifically to safeguard the subtraction involved in
computingz, namely as

g = e VI r )+ o)L+ o)l +ar) = ¢ (1+c(2)).
This gives us

(A.12) e(1+ B.) A+ o)1+ 0i1) A+ ar) = dy(s;4, —7) + €2,
and together withA.5) and (.8) we obtain

_ e? 1+oi1)(1T+a)(1+6s) .
Sit1 = e - siH( Hzi%—éf)l)( ) = si1(1+€(4)).

Now employ the precondition and invoke.{3) to definer, ., satisfying
o(rit1) = 1+ €(4Rpi),

suchthats; ,, — 7 =35;,; — 7;4+1. Together with {.12) this gives

(A.13) T = 2(1+6:)1+0:)(1+0i41)(1+ an),

and together with the default perturbatiosiQ) for ¢, , ,, d;, ,, as well as §.11), we get the
desired relation/4.10).

Concerning the block determinat;, note thato(d,)o(c,, ;) ando(e?) have the com-
mon factorF’ = (1 + o;)(1 + 0;4+1), So our tool 8.9) gives

(A.14) o(8;) = (1+Ba)(1+0:)(1 + oig1)(1 + (k).
Invoke (A.9), insert @.14), (3.12 and @A.13), and cancel terms to find the right perturbation
fore, ;. d

LEMMA A.3. For Formula ll, let|s, ;| > Ry«|7| for a parameterRy,,. > 1 and define
R* := (Rpx — 1)~ 1. Then there is a perturbation

Cip1 ™ Ciy1 = €3+ 2R7), e e =el(3),
Ay~ di, = e(4+2RY), ey~ Epq = €9 (3 4+ 26, + (ks +1)RY),
such that(A.10) is fulfilled with7;; = 7. The computed adjustmesjt_, will satisfy

Sip1 = Sip1(L+€(2)).
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Proof. Again, our first action is to perturg to safeguard the computation ef Setting

. #um)(lm)(lw)
TV A+ a)(1 +as)(1+ Bs)

= e, (1+¢(3))

7

we reach that goal, because in concert witlbj and (A.6) it gives us

_ e? 1

Sit1 d? Pi (1 + az)(l + ag) s ( - 6( ))’
as well as
g2 -
(A.15) (14 8.)A+01) /(1 +a3) = Z(s, —7) — dy7 = 7.

The precondition implies, , | < (1 + R*)[s;,; — 7|. Hence,

Sip1—7 = s (L+a) A +as) ™ =7 = (s, —7)(1+C)

with

¢ = (1+an)(L4a)™ = 1) - S”iT = (24 2RY).
i+1

Thus, together with; ; = 7 and @3.11) we can achieve the desired relatign10) through

(A16) Civ1 = Cpp (T+oipn)(1+C) = ¢y (T+e(3+2RY)),
. E;H = diy (14670 +0i)(1+¢) = di; (1+e(4+2R)).

Concerning the block determinant, invoke9) with F' := 1 + o; for

(A.17) 0(A;) = (14 82)A+0i)(1+7), 7 = rae(4+2R").
Use (A.9) together with A.17), (A.16) and (A.15) for the definition ofe, , ;. a

A.3. Completing the analysis of creating blocks and handlig overlap. The meaning
of the indicesj andk to denote the beginning and end of the overlap sequenceanitin in
effect during this section, thus freeingo be used as running index.

We can summarize the effects of executing Algorithfmin floating-point arithmetic by
stating that, fot = 5, ...k,
e2/(...) witha; =¢€(1), ifi=j,

(A18) s, = (I1+e)(l+ay) S e-(...) withey =¢€(2), ifj<i<k,
eix/() with a; = €(4), if i =k,

introducing the intermediate quantity

(A.19) r = (s, = T)dy_1 (1 Jrﬁk)/(l +ox) + ei,l(l +ep—1), IfkeqQ,
' (s, = T)df_ (L4 Bk)/(L+0x) — e2_1(1+e,_1), ifkeQr,

where |3;| < e, ande;, oy are those from3.7) and @.11), respectively. Note that the
rounding error from the outermost addition in computingontributes tay;, and that we use
the same namesandg;, for both types of endings.
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The error analysis for Algorithr8.5will proceed as follows. We will first focus on the
start and the repeating middle part upstp This is the hardest part, as it involves dealing
with perturbation bounds that depend on the length of theesee (i.e., the distance §9.
Once that is covered, we can deal with the two types of endingsvrap up.

As was already hinted at, the main challenge is that the redyerturbations of, and
A, depend ore,_, andA,_,, respectively. With the intent of handling these interdejss-
cies more fluently, we define numbersandg; to be minimal such that

0e) /(1 +e) = L+elp), i=j,....k
and

o(A;) = 1+¢€(g;), fori+1eQ,
o(Af) = 1+4e(q), fori+1eQ*

For the diagonal data d andD* we deploy the default perturbation3.{2. Further-
more, we will have to use the tod.@) so often that we will not always state the reference.

A.3.1. Two beginnings. The “right” perturbatiore; ~~ €; to gets; , to be exact for
the perturbed data is given by

d), ifj+1eQ
o(dj), ifj+1e€9, <3

(A20) o)) = <1+fj)(”0‘j)'{g(dj>, itj+1e0r

The default perturbation8(12) for this case are

d; =d;(1+0;), o(D) = (1+0j41),
dj = dj(1+67)(1+05), o(D7) = (1+67,,)(1 +0j41),

where eitheD = ¢, ,, D* =d; ,if j+1e€QorD=d; ,, D" =cj,ifj+1€Q"
Hence, depending on the situation we can invéké)with /' := 1+ 0,4, or the analogous
formula foro(A*) with F'* := 1 4+ ¢;44 to reveal the perturbation’s effect on the first block
determinant of the sequence to be

o(A;) = 1+¢(2+2r,), fj+1eQ,
(A.21) . L — <2+ 4k,.
o(A7) = 1+e(2+4k,), fj+1€Qf
A.3.2. The middle part. For¢ = j + 1 : k — 1, the perturbatiore, ~~ ¢, to get
Siy1 = 8i411S
o(A;_1)/old;_y), i€Q,
o(A ) eld} ), ieQr

Concerning the block determinants, it is not hard to realize the maxima in3.9) are then
attained with the:?-terms. Hence, if those are perturbed as just specified, Waavie

(A.22) Q(e?) = (1+€i)(1+ai)-{ = p; <q-1+4

G < 1+ K.p;.

Combining this with A.22) we see that the; obey the recurrencg < b+ r - ¢;—1 with
b=1+ 4k, andr = k,, and therefore

q; < b- gﬁi_j_l(T) +q; St < max{b,qj} . qi)l-_j(r) forj <1< k,
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where

¢7n(2) = Zzz _ {m—i—l, IfZ:].v

— (zmt1—1)/(z— 1), otherwise.
Together with A.22) and the bound on; from (A.21) we obtain
(AZS) pi §4+(2+4K’A) '¢i—j(HA)v J<i< k,

from which @3.20) follows by noting thaio(e?) = 1+ ¢(1 + p;) due to @A.20).

In the following we will show that the recurrence is effeeliy “reset” when ad; be-
comes zero (yielding, ., = 0in line 9 of Algorithm3.5) or, more generally, for any situation
where ans,| becomes “small”. The idea here was used before, namelyftlat any, the
adjustmens, is not much larger in magnitude than the shifthen the latter can be perturbed
to provide freedom in the choice fey_, .

We will limit this optimization to the middle part. So, assemwe have for an with
J < i < kthat|s; ;| < Rosq|7| holds for a parameteR,s, > 0. Then perturke; ~~ ¢;
instead of A.22) simply as
(A.24) e? = e2(14¢)
and employ §.13) to define7;,; such thats,,; — 7 = 5, ; — 7,11 is upheld. Look at the
middle line of (A.18) to see that the above choice &grimplies

o(d;_1)/0(A;_q), 1€,

) = (Hai)_l'{gu:_l)/gmr_l), o

Hence, the necessary perturbation, = 7o(7;) to the shift from 8.13 can be bounded as
|Q(Ti+1) - ]-’ § Rosq |Q(sz+1) - 1| S Rosq 6[2](4 + Qi—1)~

This effectively resets the recurrence, sinée2d) givesp; = 0 andg; < 1+ 5x,. The
parameterR, is yet unspecified. Indeed, we can choose it freely; its salpgse is to
control o(7;). The following lemma summarizes where we stand.

LEMMA A.4. Letin Algorithm3.1the adjustments; ., , ..., s, for an overlap sequence
be computed as in Algorith@5. Fix a parametetRs, > 0 and define foi = j,...,k — 1

h(i) == i—max{m|m=jorj<m<iandl|s, | < Rosq|T|}.

Then there is a perturbation such th@.3) is fulfilled fori = j + 1,..., k. With suitable
numbers

¢ < (2+46,)0n0)(ks), J<i <k,
the individual perturbations can be bounded as follows:
D(i,i) ~ D(i,i) = €(1),  D*(i,i) ~ D*(i,i) = €(2),
e; e = e(2), e, e = W2+ 1q), j<i<k,
7=, Tit1 =T, T~ Ty = Rosq€® (44 ¢qi—2), j+1<i<k.
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The implied perturbations for the secondary quantities$ ebkey

it1eQ:  Jo(A) -1
< i)y S<k7
i+1eQt: |o(A7) 1] < ela) =i

Sjr1 = Sjt1s lo(8i41) =1 < (4 +gim1), j<i<k

The main purpose of the preceding analysis was not only tggeavorst-case perturba-
tion bounds, but also to give us the means to control the ctatipn of an overlap sequence.
Whenever al; becomes small enough in magnitude that it calisgs | to become small as
well with respect tdr| (cf. Section3.6 for a detailed test to detect this after computifyg,
we can choose 2x 2 pivot while keeping a tight control over the error boundshétvise,
we retain the option of keeping track of the current lengtthefsequence (better: the current
h(4)) and if this exceeds some threshold just choose a singl¢, piues ending the sequence
and capping the bounds.

The challenging part is done; what remains is to deal withweepossible ways for the
sequence to end. For the following we have to rely on the ggpBlock Criterionll, and in
particular 3.19.

A.3.3. An end by creation: k£ € Qt. We assume that, — 7 is exact, i.e.s, — 7
=5, — 7. LemmaA.4 does deliver this. What remains to be done is just to defjne ¢,
such thats, , ; becomes exact, ,, = s, ;. The following picture summarizes the situation

(cf. Definition 3.1 for the pictogram):
k
In: s, —7=35, —Tp i ° Outis, | =3, -
—O o
Note that we may have = j + 1.

The task might be impossible should the computation of tterimediater in line 14 of
Algorithm 3.5involve cancellation. We will show that this computatiomnpat be too badly
conditioned if the choice for ax 2 pivot atk — 1 was based on BCk

Depending on the situation at hang,is defined in one of two ways:

ex1/dp_1; ifk—1¢9Q,
S =
» &2 1dy o/, ifk—1€Q
Thus, fulfillment of the second condition in BC-mplies|s, | < (Kg/3)ez_,/Id} |,
which yields
sk = 7lldi 1| < 2max{[syl, |7 }|d}_,| < §Kpei_s.
Because of the safeguard &}, to anticipate rounding errors, we can safely conclude that
the computation of in line 14 of Algorithm3.5is governed by
342K
(A.25) co(A((sp — 7)di_)) A(ep_y)) < ————2 =: &zl
3— 2K,
Hence we can control the rounding errors expressed in therlime of (A.19) as

(A.26) 7= (s4 — T)Ez,_l —¢2 | =zo(x) with |o(z)— 1| < r[z] e(max{4,pp_1}).
Finally,

(A.27) o(e}) = (1+er)o(Af_1)e(dy)(1+ ax)/o(x)

makess, , ; exact, as desired.
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A.3.4. Anend by breaking: k € Q. The situation at hand is

k
. -~ ~ l . -~
Nt s, —7=35, — T —O © Out.sk+1:sk+1.

—O O o
This is very similar to breaking a block from Sectidr8. Indeed, the way,,_ , is computed
in line 12 of Algorithm 3.5 corresponds to Formula | in Algorith®.3. The difference is
that, here, we have overlap at the left edd:- 1 € Q*. This will prove to be beneficial,
because here we can assume that the created block covetiogsfic — 2, k — 1} satisfies
BCHI, which will allow us to show that the single computationahtch does work for all
configurations. Note that we must halve> j + 1, so thats, is defined as

Sk = _eifle—z/AZ—T
For the analysis, we consider two cases, depending on thenpter
R := (1-2K,)",

which is larger than one only K, < 1/2 holds, and we assume it does.

Case 1:]s,| < R|7|. We employ the perturbations from Lemma4 but throw away
those fore,,_, andr,. We will redefine them manually to still retaiy — 7 =5, — 73.. With
the intent of controllinge, we perturke,,_, instead as

olei_1) == (L4ep—1)o(dp_1)(1+0o%) /(14 Br),

yielding

5, = spo(sy) = spo(df_y)o(dy_1) [e(Af )1+ ak-1)(1 +ﬁk)]_1(1 +0k).
Now invoke 3.13 to move the relative perturbations to the shift. This define~ 7, with
lo(mi) = 1] < R-lo(sy) — 1] < Re™(7+ qu—2),

and gives the desireq, — 7 = 5, — 7;. According to the upper line in(19) we therefore
have
o(d_1)(1+ o)

A28) T = (s, —T)d,_, +¢2 , =
( ) T (8 = T)dp_q + €51 €z 1+ 3,

lo(z) —1] < €(3).

Case 2:|s;| > R|7|. In this case we can keep the permutationsefor, andr, from
LemmaA.4; therefore we already hawg — 7 = 5, — 7. If BC-I is fulfilled for the created
block ending ak — 1 € 7, then our definition of? and @3.19 for i = k — 2 give

Isg — Tlldp_1] < 2(1 — Kp)l[sg|ldy_1| < %Kuei—r

In fact, the safeguard oR  allows us to relax this relation by a small perturbation ochea
side, so that we may assume the computatian tof be controlled by

i 8((sk = 7)) A 1) < TS = il

with the sames ] as in (A.25). In fact, this was the motivation for our definition & Thus,

(A29) &= (s, —7)d)_, + 2, = zo(x) with |o(z)— 1| < k[z] e(max{3,pp_1}).
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In both cases the analysis revealed that the computedclose to the exact value for
computed data, with a bound efiz). Thus we achieve, , = 5, with the perturbation

(A.30) er = en(l+ep)o(Ap_1)old))(1+ ar)/o(z).

LEMMA A.5. Letin Algorithm3.1the adjustments;_ ,,...,s, ., for an overlap se-
guence be computed as in Algoritls. Furthermore, let alb x 2 pivots inD* satisfy Block
Criterion I with a parameterk; < 1/3.

Then there is a perturbation such th@t3) holds forj < i < k and the computes}, , , is
exact. The componentwise bounds from Lemrdalo apply, with the following adjustments
and extensions:

D(k,k) ~» D(k, k) = e(1), D (k, k)~ D*(k,k) = €(2).

if k= j+1: it k> +1:
e~ € = N7+ 3q-1), e~ € = €9+ Lgp_1 + qu—2),

TR = T, Tk~ T = €l(max{21 4+ 3qx—_2, Rosq(4 + qr—2)}),
5. = S, s~ 5, = (T4 gr_2).

Proof. The subtle point is that we might have redefirgd, if ending with breaking a
block. But it is easy to verify that the boundsdte, ;) ando(A,_,) from LemmaA.4 do
still apply, justo(s,,) can increase from + € (4 + gx—2) t0 1 + (7 + gi_2).

For the finale, ~» €., note that regardless of the type of ending, the perturbatio
effect on the intermediate as stated in4.26), (A.28) and (A.29) allows the uniform bound
lo(z) — 1| < k[z] e(max{4, pp_1}) with s[z] = (3 4+ 2K,)/(3 — 2Ky). The prerequisite
K, < 1/3 givesk[z] < 2 andR < 3. The latter determines the bound gfr;.), and (A.27)
and (A.30) lead to the stated bound fp(e,,); recall that the analysis leading to Lemrhat
revealedp; < 3andp; < g1+ 4,7 > j. a



