
Electronic Transactions on Numerical Analysis.
Volume 38, pp. 363-400, 2011.
Copyright  2011, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University

http://etna.math.kent.edu

BLOCK FACTORIZATIONS AND QD-TYPE TRANSFORMATIONS
FOR THE MR 3 ALGORITHM ∗

PAUL R. WILLEMS† AND BRUNO LANG‡

Abstract. Factorizing symmetric tridiagonal matrices and propagating the factorizations to shifted matrices are
central tasks in the MR3 algorithm for computing partial eigensystems. In this paper we propose block bidiagonal
factorizationsLDL

∗ with 1 × 1 and2 × 2 blocks inD as an alternative to the bidiagonal and twisted factoriza-
tions used hitherto. With block factorizations, the elementgrowth can be reduced (or avoided altogether), which
is essential for the success of the MR3 algorithm, in particular, if the latter is used to determine the singular value
decomposition of bidiagonal matrices. We show that the qd algorithm used for shifting bidiagonal factorizations,
e.g.,LDL

∗ − τ I =: L
+
D

+(L+)∗ can be extended to work with blocks in a mixed stable way, including criteria for
determining a suitable block structure dynamically.

Key words. symmetric tridiagonal matrix, eigensystem, MRRR algorithm, block bidiagonal factorizations,
qd algorithm, theory and implementation

AMS subject classifications.65F15, 65G50, 15A18

1. Introduction. The MR3 (multiple relatively robust representations, MRRR) algo-
rithm [3, 4, 5] allows one to solve the (partial) symmetric tridiagonal eigenvalue problem,
TSEP, i.e., to compute selected eigenpairs(λi, qi), i ∈ I, of a symmetric tridiagonal matrix
T ∈ R

n×n. The algorithm requires roughlyO(|I| · n) operations, which is asymptotically
optimal.

From a distant point of view, MR3 works as follows. Determine the eigenvalues ofT

to such precision that they can be classified assingletons(with sufficientrelativedistance to
the other eigenvalues, e.g., agreement to at most three leading decimal digits) andclusters.
For singletonsλi, a variant of Rayleigh quotient iteration (RQI) and inverseiteration yields
extremely accurate eigenpairs (tiny residuals). Then these eigenvectors are automatically or-
thogonal to working precision, thus removing any need for Gram–Schmidt orthogonalization
and the burden of communication in a parallel implementation. Clustersλi ≈ · · · ≈ λi+s

cannot be handled directly. Instead, for each cluster one chooses ashift τ ≈ λi very close
to (or even inside) the cluster and considers the matrixT − τ I. The eigenvaluesλi − τ, . . .,
λi+s − τ of that matrix will then enjoy much larger relative distances thanλi, . . . , λi+s

did, and therefore they may be singletons forT − τ I, meaning that now eigenvectors can be
computed very accurately. If some of these eigenvalues are still clustered, then the shifting
is repeated. Proceeding this way amounts to traversing a so-calledrepresentation treewith
the original matrixT at the root, and children of a node standing for shifted matrices due to
clusters. The eigenvectors are computed at the leaves of thetree. An analysis of the MR3

algorithm exposing five criteria that must be fulfilled in order to guarantee small residuals
and good orthogonality may be found in [16, 17].

As the name conveys, the MR3 algorithm is intimately coupled with the concept ofrep-
resentationsof matrices. A representation is just a minimal set of numbers defining a matrix.
For MR3 to work, the transition from a node to its child,T − τ I =: T+, must not change the
invariant subspace of a cluster—and at least some of its eigenvalues—by too much. In other

†WestLB AG (willems@math.uni-wuppertal.de).
‡University of Wuppertal, Faculty of Mathematics and NaturalSciences, Gaußstr. 20, D-42097 Wuppertal

(lang@math.uni-wuppertal.de).
∗Received May 13, 2011. Accepted August 14, 2011. Published online December 20, 2011. Recommended by

M. Hochstenbach. This work was carried out while P. Willems was with the Faculty of Mathematics and Natural Sci-
ences at the University of Wuppertal. The research was partially funded by the Bundesministerium für Bildung und
Forschung, contract number 01 IH 08 007 B, within the projectELPA—Eigenwert-L̈oser f̈ur Petaflop-Anwendungen.

363

ETNA
Kent State University

http://etna.math.kent.edu

364 P. R. WILLEMS AND B. LANG

words, the employed representations at the nodes must berelatively robust. In general, this
robustness cannot be achieved if one works directly with the“default representation” of a
symmetric tridiagonal matrix by its2n− 1 entries because they do not necessarily determine
small eigenvalues to high relative precision. Alternativerepresentations have been found to
be superior when it comes to relative robustness. Prominentexamples are the entries of lower
bidiagonal factorizations

T = LDL∗ =




1
ℓ1 1

. ..
. . .

ℓn−1 1







d1

d2

. . .
dn







1 ℓ1
1

. . .

. . . ℓn−1

1




and the analogous upper bidiagonal factorizationsT = URU∗ (obtained by starting the fac-
torization at the bottom of the matrix). A generalization ofboth leads to the so-calledtwisted
factorizationsT = NkGkN∗

k, which one gets by “fusing” together the upper part of anLDL∗

and the lower part of aURU∗ decomposition. Note that we write∗ for the transpose of a
matrix.

The sole possible cause of trouble with the MR3 algorithm is that relatively robust repre-
sentations cannot always be guaranteed a priori in a practicable way. Robustness is intimately
linked to element growthwhen forming the bidiagonal (or twisted) factorizations. Element
growth means that some of the data representing these factorizations are substantially larger
than the entries in the tridiagonal matrix.

In [16, Chapter 3] it was shown how the MR3 algorithm can also be used to compute
the bidiagonal singular value decomposition,BSVD, for an upper bidiagonal matrixB, i.e., to
determine singular valuesσi ≥ 0 and the corresponding left and right singular vectorsui, vi

such thatBvi = uiσi. It is well-known that theBSVD is tightly coupled with theTSEP for
the so-called Golub–Kahan matrixTGK, which is obtained by interleaving the diagonal and
subdiagonal elements ofB on the subdiagonal of a double-sized matrix:

B =




a1 b1

a2
. . .
. . . bn−1

an


 Ã TGK =




0 a1

a1 0 b1

b1 0 a2

a2 0
.. .

.. .
.. . bn−1

bn−1 0 an

an 0




.

Extracting the odd- and even-numbered components ofTGK’s eigenvectors intou andv in-
deed gives numerically orthogonal singular vectorsif the essential property of the matrix
TGK having anearly constant diagonal (ncd)can be maintained during the initial factori-
zation and the ensuing shifting [16, Chapter 3]. Therefore, in the context of theBSVD the
problem of element growth is magnified since local element growth in successive translates
of a Golub–Kahan matrix can cause loss of the ncd property.

This paper is devoted to a technique that reduces the problems involving element growth.
The approach is to allow2×2 pivots, orblocks, in D, leading to ablock factorization(BF).
Before going into details we illustrate the benefits of BFs with two examples.

EXAMPLE 1.1. A Golub–Kahan matrix does not admit a bidiagonal (or twisted) fac-
torization, because the first pivot is zero regardless of where you start. The natural way to

ETNA
Kent State University

http://etna.math.kent.edu

BLOCK FACTORIZATIONS FOR THE MR3 ALGORITHM 365

factorize an (unreduced) Golub–Kahan matrix is using2×2 pivots all the way:



0 a1

a1 0 b1

b1 0 a2

a2 0


 = LDL∗ with L =




1
1

b1
a1

1

1


 , D =




0 a1

a1 0
0 a2

a2 0


 .

At no time was there a choice to take a single pivot; the block structure is indeed unique.
EXAMPLE 1.2. Letα ≪ 1 and consider the bidiagonal matrixB = [1 1

α] with singular
valuesσ1 ≈ α, σ2 ≈ 2. Shifting the corresponding Golub–Kahan matrix by−α gives a
bidiagonal factorization




−α 1
1 −α 1

1 −α α
α −α


 = LDL∗

with D = diag
(
− α, 1−α2

α , −α 2−α2

1−α2 , −α 1
2−α2

)
. Clearly there is a huge local element

growth in D(2). The representationLDL∗ still is ncd, but if we had to shift it again, the
property would probably be lost completely due to rounding errors.

Using2×2 pivots, the same matrix can be factorized as follows:



−α 1
1 −α 1

1 −α α
α −α


 = LDL∗ with L =




1
1

k1 ℓ2 1
ℓ3 1


 , D =




d1 1
1 c2

d3

d4


 ,

wherek1 = 1
1−α2 , ℓ2 = α

1−α2 , ℓ3 = − 1−α2

2−α2 , d1 = −α, c2 = −α, d3 = −α 2−α2

1−α2 , and
d4 = −α 1

2−α2 . For this case the block structure is not unique, but the chosen one makes the
most sense, showing no discernible element growth at all.

For factorizing a symmetric tridiagonal matrixT given by its entries asT = LDL∗,
block factorizations have been employed with great success[7, 10]. Higham shows in [11]
how 2×2 pivots can be used to solve a symmetric tridiagonal linear equation system in a
normwise backward stable way.

The idea to employ block factorizations as representationswithin MR3 and its derivatives
is not new. However, up to now it was not known how to do so. One of the five criteria that
are necessary for MR3 to work, coined SHIFTREL in [17], states that we must be able to shift
representations in a componentwise mixed relatively stable way, that is, we need to compute

(1.1) LDL∗ − τ I =: L+D+(L+)∗

such that small relative changes to the inputs (the representation ofLDL∗) and outputs (the
representation ofL+D+(L+)∗) give an exact relation. To achieve this requirement for the
unblocked case, with diagonal matricesD andD+, the inventors of MR3 developed the so-
calleddifferential stationary quotient-differences with shiftalgorithmdstqds, and variants
thereof [3, 5]. As representations they employed the entriesdi, ℓi, d+

i , ℓ+

i of the factors
involved. In another paper [18], we have studied variations on this theme. We found that,
even while working with the same matricesLDL∗ andL+D+(L+)∗, it may be beneficial to
define the representations differently. One example havinga direct impact on the following
pages is what we call ane–representation: use the offdiagonal elements of the tridiagonal
matrix instead of the entriesℓi, ℓ+

i of the bidiagonal factors. The motivation for doing so is

ETNA
Kent State University

http://etna.math.kent.edu

366 P. R. WILLEMS AND B. LANG

Input: (d1, . . . , dn), (e1, . . . , en−1),
whereei = ℓidi, shift τ

Output: (d+
1 , . . . , d+

n)

1. s1 := 0

2. for i = 1 to n − 1 do
3. d+

i
:= di + (si − τ)

4. si+1 := e2
i (si − τ)

‹

(did
+

i)

5. endfor
6. d+

n := dn + (sn − τ)

LDL∗

L̃D̃L̃∗

L+D+(L+)∗

L̃+D̃+(L̃+)∗

dstqds

computed

−τ

exact

Perturb
di by 1ǫ⋄,
ei by 3ǫ⋄

Perturb
d+

i by 2ǫ⋄

FIG. 1.1. Left-hand side:Algorithmdstqds to computeL+
D

+(L+)∗ = LDL
∗ − τ for e–representations.

The offdiagonal elementsei are unchanged by shifting, thus they can be reused in the representation ofL+
D

+(L+)∗.
Right-hand side:Mixed relative error analysis ofdstqds, cf. [18, Theorem 5.3].ǫ⋄ stands for machine epsilon, cf.
Section3.1. Only first-order bounds are shown, that is,ei may be perturbed by3ǫ⋄ + O(ǫ2⋄).

that shifting does not change the offdiagonal entries, i.e., the same dataei = ℓidi = ℓ+

i d+

i can
be used for representingLDL∗ andL+D+(L+)∗. An adapted version ofdstqds is shown in
Figure1.1, together with the results of a mixed relative error analysis. For full details and
proofs we refer the reader to [18]. Indeed, the paper [18] can be seen as a foundation for
the present one and we will have to refer to it occasionally. Nevertheless, to ensure that this
paper is stand-alone the necessary techniques and results will be recalled where needed, if
only quite tersely.

The goal to achieve mixed relative stability for (1.1) becomes rather more intricate ifD

andD+ are block-diagonal of bandwidth one, maybe even with non-conforming structure. We
have devised a new algorithm to compute (1.1), with the feature to change the block structure
from D to D+ on-the-fly. One could call it blockeddstqds. After studying some general
structural properties of block factorizations with2×2 pivots in Section2, we will present
the algorithm in Section3 and provide a complete relative error analysis. Finally, Section 4
contains numerical experiments to show how the MR3-based methods forTSEP and BSVD

can benefit from using block factorizations.
To the best of our knowledge, most of the contents of this paper are new. Many details

have been inspired by private communications with Beresford Parlett. The only previous
work pertaining to qd-like algorithms for block factorizations that we know of is unpublished
work by Carla Ferreira and Lisa Miranian [8]. We took the motivation for the conditions
when to choose a2×2 pivot (Block CriterionI in Section3.2) from there, but except for that,
the approach we take is different.

2. Properties and representation of block factorizations.In this section we will de-
rive the structural properties of block factorizations with 1× 1 and2× 2 pivots and introduce
the quantities we have selected to represent such factorizations in a non-redundant way.

2.1. The structure of block factorizations with 2×2 pivots. For a given symmetric
tridiagonal matrixT, we denote the diagonal and offdiagonal entries asci andei, respectively:

T =




c1 e1

e1 c2

. . .
. . .

. . .
. . .

. . . cn−1 en−1

en−1 cn




∈ R
n×n.

ETNA
Kent State University

http://etna.math.kent.edu

BLOCK FACTORIZATIONS FOR THE MR3 ALGORITHM 367

We only consider unreduced matrices, that is,ei 6= 0 for i = 1, . . . , n − 1.
Suppose we have a decompositionT = LDL∗ with a unit lower triangular L and a

block-diagonalD with blocks of size one or two, i.e.,

D = diag
(
D1, . . . ,DN

)
, whereDj ∈ R

size(j)×size(j), size(j) ∈ {1, 2}.

Partition the matricesL andT conformably, withTk,j andLk,j referring to individual blocks
of the lower triangles (k ≥ j). LetL∗

k,j := (Lk,j)
∗ = (L∗)j,k, which is different from(L∗)k,j .

As L is unit triangular, the blocksLj,j must be nonsingular. Multiply thejth block
column ofL by L−1

j,j and takeLj,jDjL
∗
j,j instead ofDj to see that, without loss of generality,

we can assume them to be identities, i.e.,

Lj,j = Isize(j), j = 1, . . . , N.

Using the block triangular structure ofL, the relationT = LDL∗ becomes

(2.1) Tk,j =

min{j,k}∑

i=1

Lk,iDiL
∗
j,i, 1 ≤ j, k ≤ N.

The following lemma summarizes some properties of block factorizations, in particular
that they can only exist if the diagonal blocksDj are nonsingular, except possibly forDN .

LEMMA 2.1. Let the unreduced tridiagonalT have a block factorizationT = LDL∗ as
outlined above. ThenT1,1 = D1, and forj = 1, . . . , N − 1 the following holds:

(i) Tj+1,j = Lj+1,jDj .
(ii) Dj is nonsingular. (DN may be singular.)

(iii) Lk,j = 0 for k > j + 1.
(iv) Tj+1,j+1 = Dj+1 + s e1e

∗
1 with s ∈ R, e1 = Isize(j+1)(:, 1).

Proof. We will proceed by induction onj. Forj = 0 the claims hold because (i)–(iii) are
void, and (2.1) givesT1,1 = D1, which also is (iv) withs = 0.

Now let j ≥ 1 and assume that the claims hold for allj′ < j. Invoking (2.1) and making
use of (iii) for all1 ≤ j′ < j gives us (i). From that andT being unreduced we have

(2.2) Lj+1,jDj = Tj+1,j 6= 0,

and thereforeDj 6= 0. Hence,Dj can be singular only ifsize(j) = 2 andDj has rank one.
Using the induction hypothesis on (iv) forj − 1 yieldsTj,j = Dj + s e1e

∗
1, which implies

Dj(2, 1) 6= 0, again due to the irreducibility ofT. Thus

(2.3) Dj = (v, βv) for some0 6= v ∈ R
2, β ∈ R.

SinceTj+1,j has only zeros in its first column, we haveLj+1,jv = 0 by (i). But then (2.3)
impliesLj+1,jDj = 0, a contradiction to (2.2). SoDj must be nonsingular after all.

SinceT is tridiagonal, we have0 = Tk,j = Lk,jDj for all k > j + 1, by virtue of (2.1)
and (iii) holding forj′ < j. Together with (ii) this gives us (iii) forj.

For (iv) there is only something left to prove ifsize(j) = 2. Letei = Tj+1,j(1, 2) denote
the one nonzero entry inTj+1,j (top right position). Then the nonsingularity ofDj and (i)
yields

Lj+1,jDjL
∗
j+1,j = Lj+1,jDjD

−1
j DjL

∗
j+1,j = Tj+1,jD

−1
j T∗

j+1,j = e2
i D

−1
j (2, 2)

︸ ︷︷ ︸
=:s

e1e
∗
1,

which gives us (iv).

ETNA
Kent State University

http://etna.math.kent.edu

368 P. R. WILLEMS AND B. LANG

Thus,L has in fact onlyN − 1 nontrivial blocks, making double indices superfluous.
With Lj := Lj+1,j ∈ R

size(j+1)×size(j) andIj := Isize(j) we can summarize the situation as

T =




I1
L1 I2

. . .
. . .

LN−1 IN







D1

D2

. . .
DN







I1 L∗
1

I2
.. .
.. . L∗

N−1

IN




.

Glancing at this formula one might think thatL has bandwidth three. In fact, by (i) and (ii)
of Lemma2.1we haveLj+1,j = Tj+1,jD

−1
j , and since only the top right entry ofTj+1,j is

nonzero, only the first row ofLj+1,j can be nonzero. This reveals the rather special structure
of L: a bandwidth bounded by two but nevertheless onlyn − size(N) ≤ n − 1 nontrivial
(meaning nonzero and offdiagonal) entries, at most two in each block. In particular,L has
less thann − 1 nontrivial entries if and only ifD ends with a2 × 2 block.

Now we will look more closely at the block entries and how theyrelate to the entries
of T. Recall that property (iv) of Lemma2.1 revealed thatDj has at most the top left entry
not being also an entry ofT. We will denote this qualifying feature ofDj as di, where
i = 1 +

∑j−1
k=1 size(k). Then we have

(2.4) Dj =





di, size(j) = 1,
[
di ei

ei ci+1

]
, size(j) = 2.

It was already stated thatL has at mostn − 1 nontrivial entries. Depending on the structure,
we will use lettersk andℓ to refer to them, more precisely

(2.5) Lj =





ℓi, size(j) = size(j + 1) = 1,
[
ℓi

0

]
size(j) = 1, size(j + 1) = 2,

[
ki ℓi+1

]
, size(j) = 2, size(j + 1) = 1,

[
ki ℓi+1

0 0

]
, size(j) = size(j + 1) = 2.

With our definition, for each indexi there exists either adi or aci, and either aki or anℓi, but
never both. We have two reasons for distinguishing betweend’s andc’s for D, and between
thek’s andℓ’s for L instead of usingd1, . . . , dn for the diagonal andℓ1, . . . , ℓn−size(N) for
the nontrivial entries inL (as in [8]). First, the respective two quantities have very differing
semantics, e.g., aci is also a diagonal entry ofT, but adi is not. This distinction will become
more pronounced as we go on. The second reason is clarity of presentation. Employing block
factorizations inevitably involves case distinctions to deal with the block structure, which can
become confusing at points. Separatingdiag(D) into di’s andci’s, andL into ki’s andℓi’s
lets formulae carry the block structure implicitly, whereas using justdi andℓi does not.

Henceforward, our treatment is based on entries (indicesi) instead of blocksDj and
block numbersj. We will also make a slight but crucial adjustment in terminology in denoting
theDj ’s aspivotsfrom now on and useblocksynonymously to2×2 pivot or 2 × 2 block; a
Dj with size(j) = 1 is just a1 × 1 or singlepivot (butnot a block anymore). Thus, we can
categorize the role of an indexi ∈ {1, . . . , n} into exactly one of either

ETNA
Kent State University

http://etna.math.kent.edu

BLOCK FACTORIZATIONS FOR THE MR3 ALGORITHM 369

• beingsingle, with datadi andℓi (the latter only ifi < n);
• starting a block, with datadi andki (the latter only ifi < n − 1);
• ending a block, with dataci andℓi (the latter only ifi < n).

The determinants of2×2 pivots will play an important role, so we let

(2.6) ∆i := dici+1 − e2
i

for eachi that starts a block. Based on these we define fori = 1, . . . , n − 1 the quantity

(2.7) invD(i) :=





1
/
di, if i is single,

0, if i starts a block,

di−1

/
∆i−1, if i ends a block.

This definition is always proper if the factorization exists. Using Lemma2.1, the relation
between the diagonals ofD andT can now be stated compactly as

(2.8) T(i, i) ≡ D(i, i) + e2
i−1invD(i − 1),

which includes the special caseT(1, 1) = D(1, 1) = d1 if we assume quantities with “out-
of-range” indices to be zero. ConcerningL, point (i) in Lemma2.1gives the characterization

(2.9)

{
ki = −ei+1ei

/
∆i, if i starts a block andi < n − 1,

ℓi = eiinvD(i), if i does not start a block.

We close our introduction to2×2 pivots with two more examples.
EXAMPLE 2.2. The structural properties (2.4) and (2.5) do not guarantee the product

LDL∗ to be a tridiagonal matrix. Consider the factors from Example 1.2 and changeL to L̃

just by replacingℓ2 with ℓ2(1 + ǫ) for someǫ 6= 0. This results in

(L̃DL̃∗)(3, 1) = ℓ2ǫ 6= 0.

Hence, relative perturbations to the nontrivial entries ofL can destroy the tridiagonal struc-
ture. This happens only if the perturbations are uncorrelated. For the case above, we should
have perturbedk1 to k1(1 + ǫ) at the same time to retain the structure.

EXAMPLE 2.3. We mentioned that the factorL can have less thann−1 nontrivial entries
if (and only if) a block ends atn. The following3 × 3 problem demonstrates this:




1 2
2 3 5

5 4


 =




1
2 1

1







1
−1 5
5 4







1 2
1

1


 =: LDL∗.

2.2. A representation for block factorizations. To define a specific block factoriza-
tion, we first need a means to capture the block structure, i.e., the “type” of each index. In
order to achieve minimality of information, we just just collect the indices where a2×2 pivot
endsin a setΩ ⊆ {2, . . . , n}. By construction,i ∈ Ω impliesi − 1 6∈ Ω andi + 1 6∈ Ω, and
thereforeΩ cannot contain more than⌊n/2⌋ elements.

DEFINITION 2.4. Thestandard representationfor a top-down BFT = LDL∗ is given by
• Ω, the block structure (indices where a2×2 pivot ends),
• e1, . . . , en−1, the offdiagonal elements ofT,
• D(1, 1), . . . ,D(n, n), the diagonal entries ofD.

ETNA
Kent State University

http://etna.math.kent.edu

370 P. R. WILLEMS AND B. LANG

Note that this in fact generalizes thee–representation for non-blocked decompositions dis-
cussed in [18], as for the case that only single pivots are employed (Ω = ∅), the same data
items are kept. Using the setΩ one can tell whether aD(i, i) is actually adi (if i 6∈ Ω) or aci

(if i ∈ Ω).
In [18] it proved very useful to distinguish betweenprimary data items, which are ac-

tually stored and may be perturbed independently from each other to prove mixed stability,
andsecondarydata, which are computed from the primary quantities and “inherit” their per-
turbations. With respect to the above standard representation for block factorizations, the
quantities∆i, invD(i), as well as the entrieski andℓi of L, are secondary data and can be
derived according to (2.6), (2.7) and (2.9), respectively.

REMARK 2.5 (Preserving tridiagonal form). It is natural to ask why none of the entries
of L is used in our representation. Indeed, why not represent a block factorization using the
nontrivial entries ofD andL, as it is usually done for standard bidiagonal decompositions?
Such a representation would effectively containfive numbers for each2×2 pivot (except
theN th), namelydi, ci+1, ei, ki, andℓi+1. But these quantities are not independent, since
they have to obey (2.9). Thus, basing a componentwise error analysis on such a representation
would be fatal, as uncorrelated perturbations to all five data items at once will in general cause
(2.9) not to be satisfied any more. The effect was already exhibited in Example2.2: loss of
tridiagonal structure, due to fill-in inLjDj .

One possible alternative to Definition2.4 would be to use all entries fromD, but only
the ℓi of L, i.e., the data

{
di, ℓi−1

∣∣ i 6∈ Ω
}

and
{
ei−1, ci

∣∣ i ∈ Ω
}

. We prefer the data in
Definition 2.4because the offdiagonal entries remain unchanged by shifting. Thus, maximal
use of the offdiagonal elements is good for efficiency and reduces the number of perturbations
to specify in the mixed error analysis of the shifting algorithm. This will save us a lot of work
on the following pages.

2.3. The connection between blocked and non-blocked.Allowing 2×2 pivots inD

forfeits uniqueness, in the sense that multiple block structures may be possible for the same
symmetric tridiagonal matrix, including for example usingno blocks at all. LetT have a block
factorizationT = LDL∗ as before but also a non-blocked lower bidiagonal factorization
T = L̂D̂L̂∗ with diagonalD̂. Using (2.8) and (2.9), the following relations between the
elements are easily derived by induction oni:

d̂i ≡

{
∆i−1

/
di−1, if i ends a block inD,

di, otherwise,

ℓ̂i ≡





−ki

/
ℓi+1, if i 6= n − 1 starts a block inD,

en−1

/
dn−1, if i = n − 1 starts a block inD,

ℓi, otherwise.

Clearly, the only case where a blockedT = LDL∗ exists but a non-blockedT = L̂D̂L̂∗ does
not, occurs when a block-startingdi from D is zero. These relations were another reason for
us to keepci andki separate fromdi andℓi, as only the latter are identical to the corresponding
data in a non-blocked factorization of the same matrix.

2.4. When to choose a 2-by-2 pivot and when not.For factorizingT = LDL∗—with
or without shift and not regarding howT is represented—the motivation for allowing a2×2
pivot inD covering indicesi andi+1 is to avoid what would otherwise become a very “large”
single pivotdi+1. How to gauge what is “large” depends on the application. In the past, a
variety of schemes have been devised to evaluate when selecting a2×2 pivot; see, e.g., [7, 11].

ETNA
Kent State University

http://etna.math.kent.edu

BLOCK FACTORIZATIONS FOR THE MR3 ALGORITHM 371

They all essentially try to avoid global element growth, that is, they would comparedi+1 to
the norm‖T‖ or to a quantity of comparable magnitude, such as the spectral diameter.

Alternatively, one can evaluate thelocal element growth caused by the potential single
pivot di+1, by comparing it directly to the concerned diagonal entryT(i + 1, i + 1). This
would become the lower right entryci+1 of a block, should one be chosen. If not, the single
pivot di+1 is given by

T(i + 1, i + 1) = di+1 + e2
i

/
di.

Hence, ifdi+1 exceedsT(i + 1, i + 1) in magnitude by far, there has to be a cancellation
betweendi+1 ande2

i /di, soe2
i /di must also exceedT(i+1, i+1) in magnitude. The latter is

preferable for a test, since it does not require to computedi+1. All in all, this motivates that

each2×2 pivot

[
di ei

ei ci+1

]
in D should fulfill

(2.10) |dici+1| < K
¤
e2
i

for some constantK
¤
∈ (0, 1).

None of the above-mentioned pivoting strategies aiming at global element growth would
ever choose a2×2 pivot violating (2.10) because, basically, avoiding local element growth
requires the most2×2 pivots. Since the error analysis to come does only require that each
selected2×2 pivot obeys (2.10), it carries over to other (more lax) pivoting schemes.

Requirement (2.10) is closely linked to the computation of the block determinants∆i.
Recall that for any real numbersx andy, the condition number for the addition or subtraction
x ± y is given by

(2.11) κ±(x, y) =
|x| + |y|

|x ± y|

because perturbingx to x(1 + ξ) andy to y(1 + η) leads to a result(x ± y)(1 + ζ), where
|ζ| ≤ κ±(x, y) · max{|ξ|, |η|}. Thus, if (2.10) is fulfilled then

(2.12) κ−(dici+1, e
2
i) <

1 + K
¤

1 − K
¤

=: κ∆

is a worst-case bound for the condition number of the final subtraction in the computation
of ∆i = dici+1 − e2

i . Even the lax choiceK
¤

= 1/4 results in a benign bound ofκ∆ = 5/3.
As about every use of a block factorization will have to referto the block determinants at
some point, being able to compute them stably is crucial. Themeanings ofK

¤
andκ∆ will

remain in effect throughout this paper.
In practice, the test (2.10) will be executed in a floating-point context, and thereforethe

quantitiesdici+1 ande2
i will not be available exactly, but only as floating-point approxima-

tionsfl(dici+1) andfl(e2
i). More generally, we may desire that the condition still holds when

the involved quantitiesdi, ci+1 ande2
i are changed by a limited perturbation, and it should

do so for the same constantK
¤

, so that the theoretical error bounds we are going to derive
remain valid. There is a simple recipe to achieve this, namely that for an evaluation of condi-
tion (2.10) in practice we plug in a value forK

¤
that is slightly smaller (0.999K

¤
, say) than

the one used to derive the error bounds. Details on this matter can be found in [16]; from
now on we will just assume that it is done properly. Then, oncewe have established (2.10)
we may conclude that this relation, as well as (2.12), also hold for the computed quantities:

(2.13) |fl(dici+1)| < K
¤
fl(e2

i) and κ−(fl(dici+1),fl(e2
i)) < κ∆.

ETNA
Kent State University

http://etna.math.kent.edu

372 P. R. WILLEMS AND B. LANG

3. Stationary block factorization. The purpose of this section is to develop an ana-
logue todstqds for block factorizations, i.e., to compute

(3.1) T − τ = T+, where T = LDL∗, T+ = L+D+(L+)∗ ∈ R
n×n

andD, D+ are block-diagonal (with bandwidth one) each.
We call LDL∗ the sourceandL+D+(L+)∗ the target of the process. Our treatment is

based on the standard representation, that is, we assume to get the data
(
Ω, {di}, {cj}, {ek}

)

as input forLDL∗, and the outputs
(
Ω+, {d+

i }, {c
+

j }, {ek}
)

will defineL+D+(L+)∗.
The goal is an algorithm that allows a componentwise mixed relative error analysis.

Hence, we need to find suitable perturbations of the input andoutput data items, of the form

di Ã d̃i, i 6∈ Ω, ci Ã c̃i, i ∈ Ω,

ei Ã ẽi, i = 1, . . . , n − 1,

d+

i Ã d̃+

i , i 6∈ Ω+, c+

i Ã c̃+

i , i ∈ Ω+,

such that the thus perturbed matrices satisfyL̃D̃L̃∗ − τ = L̃+D̃+(L̃+)∗ exactly. Note that the
perturbations todi, ci, d+

i , c+

i can be compactly stated as

D(i, i) Ã D̃(i, i), D+(i, i) Ã D̃+(i, i), i = 1, . . . , n.

Auxiliaries. Just as in standarddstqds [18, Section 5] we introduce auxiliaryadjust-
mentquantities

(3.2) si := D+(i, i) − D(i, i) + τ, i = 1, . . . , n.

However, for block factorizations these do not allow for a recursive formulation of the facto-
rization process like in [18, Remark 5.1] except if the block structuresΩ andΩ+ are identical.
Furthermore, the way to computesi+1 is no longer unique, but depends on the local structure
at hand, meaning the four true values ofi ∈ Ω, i ∈ Ω+, i + 1 ∈ Ω, i + 1 ∈ Ω+. With (2.8)
we have

si+1 = e2
i

(
invD(i) − invD+(i)

)
, i = 1, . . . , n − 1.

The definition (2.7) of invD(i) andinvD+(i) yields nine possible cases to be considered (not
sixteen, because neitherΩ nor Ω+ contain two consecutive indices); they are compiled in
Table3.1.

Pictogram notation. The error analysis to come is based on considering these cases
separately, but we will have to jump between them occasionally. It is error-prone to differen-
tiate the cases based solely on the mathematical definition.The pictograms introduced in the
table will help us identify the cases by their structural characteristics, which are just the sets
Ω andΩ+ and the pattern they induce for the distribution of the diagonal entries ofD andD+

into dis andcjs.
DEFINITION 3.1 (Pictograms).The top line in the pictogram represents the structure

in D and the bottom line the structure inD+. We uset to represent adi (i.e., the start of a
block, or a single pivot) andd for a cj , with a connecting line to further mark a block.

For an example, consider caseS6, defined byi ∈ Ω, i 6∈ Ω+, i + 1 6∈ Ω+. Note that the
pictogram for caseS6has nothing in its lower left corner. The reason is that this case does
not specify ifi − 1 belongs toΩ+ or not, because it has no impact on the definition ofsi+1.

ETNA
Kent State University

http://etna.math.kent.edu

BLOCK FACTORIZATIONS FOR THE MR3 ALGORITHM 373

TABLE 3.1
Standard formulae and alternative formulae for the next adjustmentsi+1. The alternative formulae use previ-

ous auxiliaries in the form of already computed quantitiessj − τ , j ≤ i. See Definition3.1 for the pictograms in
the third column.

Case Description i
↓

si+1 alternative formulae forsi+1

S1
i, i + 1 6∈ Ω
i, i + 1 6∈ Ω+

t

t

t

t

e2
i

di

−
e2

i

d+

i

e2
i (si − τ)

did
+

i

S2
i + 1 ∈ Ω
i + 1 ∈ Ω+

t

t

d

d
0

S3
i ∈ Ω
i ∈ Ω+

t

t

d

d

t

t

e2
i di−1

∆i−1

−
e2

i d
+

i−1

∆+

i−1

e2
i

ˆ

e2
i−1(si−1 − τ) − di−1d

+

i−1τ
˜

∆i−1∆
+

i−1

S4
i + 1 ∈ Ω
i, i + 1 6∈ Ω+

t

t

d

t
−

e2
i

d+

i

S5
i, i + 1 6∈ Ω
i + 1 ∈ Ω+

t

t

t

d

e2
i

di

S6
i ∈ Ω
i, i + 1 6∈ Ω+

t d

t

t

t

e2
i di−1

∆i−1

−
e2

i

d+

i

e2
i

ˆ

di−1(si − τ) + e2
i−1

˜

∆i−1d
+

i

S7
i, i + 1 6∈ Ω
i ∈ Ω+

t

t

d

t

t

e2
i

di

−
e2

i d
+

i−1

∆+

i−1

e2
i

ˆ

d+

i−1(si − τ) − e2
i−1

˜

di∆
+

i−1

S8
i ∈ Ω
i + 1 ∈ Ω+

t d

t

t

d

e2
i di−1

∆i−1

S9
i + 1 ∈ Ω
i ∈ Ω+

t

t

d

d

t
−

e2
i d

+

i−1

∆+

i−1

Also keep in mind that at at the right end might stand for the start of a block, but this,too,
has no effect on howsi+1 is defined.

The casesS1, S3, S6andS7are special because they do not allow one to computesi+1

using just multiplications and divisions. It is possible torewrite their definitions such that
previously computed auxiliaries can be utilized for computing si+1; the resulting alternative
definitions are also collected in Table3.1. Let us illustrate their derivation for the caseS3:

si+1 = e2
i

(di−1

∆i−1

−
d+

i−1

∆+

i−1

)
from Table3.1,

= e2
i

di−1(d
+

i−1c
+

i − e2
i−1) − d+

i−1(di−1ci − e2
i−1)

∆i−1∆
+

i−1

by (2.6),

= e2
i

e2
i−1(d

+

i−1 − di−1) − di−1d
+

i−1τ

∆i−1∆
+

i−1

asc+

i = ci − τ,

= e2
i

e2
i−1(si−1 − τ) − di−1d

+

i−1τ

∆i−1∆
+

i−1

by (3.2).

Note that standarddstqds is completely subsumed in caseS1and the respective (stan-
dard and alternative) formulae are identical.

Allowing perturbations in the auxiliaries and the shifts. The task to compute a block
factorization will prove to be much harder than in standarddstqds. To make the problem
manageable, we allow for two further perturbations:

ETNA
Kent State University

http://etna.math.kent.edu

374 P. R. WILLEMS AND B. LANG

1. s1 := 0
2. for i = 1 to n − 1 do
3. D+(i, i) := D(i, i) + (si − τ)
4. // Compute block determinants
5. if i ∈ Ω then
6. ∆i−1 := di−1ci − e2

i−1

7. if i ∈ Ω+ then
8. ∆+

i−1
:= d+

i−1c
+

i − e2
i−1

9. // Compute next auxiliary si+1

10. si+1 := . . .
11. endfor
12. D+(n, n) := D(n, n) + (sn − τ)

ALGORITHM 3.1: Template for the stationary block factorization.

(i) The computed auxiliariessi need not to fulfill the respective relation from Table3.1
exactly for the perturbed data. Instead, we will be content if a small relative perturbation of
si has this property. This relaxation makes it meaningful to see the auxiliaries as secondary
data and denote bỹsi the correct value for the perturbed data; this is achieved byreplacing
everything in any definition by its perturbed counterpart, e.g.,

s̃i+1 = ẽ 2
i

(
d̃i−1/∆̃i−1 − 1/d̃+

i

)
= ẽ 2

i

(
d̃i−1/(d̃i−1c̃i − ẽ 2

i−1) − 1/d̃+

i

)

for caseS6.
(ii) The effective shift for any indexi may be perturbed, that is, instead for (3.1) above

we actually strive for

L̃D̃L̃∗ − diag(τ̃i) = L̃+D̃+(L̃+)∗,

allowing different shifts for the diagonal entries. This ismainly a notational convenience
because perturbed shifts might also be written as an outer (multiplicative) perturbation,

L̃D̃L̃∗ − diag(τ̃i) = L̃+D̃+(L̃+)∗ ⇔ YL̃D̃L̃∗Y − τ = YL̃+D̃+(L̃+)∗Y,

whereY = diag((τ̃1/τ)−1/2, . . . , (τ̃n/τ)−1/2). Multiplicative perturbations are known to be
perfectly conditioned with respect to their effect on eigenvalues and invariant subspaces [1, 6].

With these two simplifications, the relations to be fulfilledby the perturbation are just

(3.3) D̃+(i, i)
!
= D̃(i, i) + s̃i − τ̃i, i = 1, . . . , n,

as our standard representation allows to reuse the offdiagonalsei for the target. (Here and in

the following we use the symbol
!
= for “should be equal to”.)

Determining the new block structure. Based on the auxiliariessi and assuming the
block structureΩ+ is known, the computation ofL+D+(L+)∗ can proceed in a manner similar
to standarddstqds, using Algorithm3.1as an algorithmic template.

One application where the block structureΩ+ would be known beforehand is when a
non-blocked factorizationL+D+(L+)∗ is desired, i.e., withD+ being diagonal or, equiva-
lently, Ω+ = ∅. In Section3.4we will present a customized algorithm just for this purpose.

In general, however, we want to determine a suitable block structure on the fly, for ex-
ample with the intent to minimize (local) element growth. Then Algorithm3.1 needs to be
augmented with suitable tests to set upΩ+. The natural position for such a test is right after

ETNA
Kent State University

http://etna.math.kent.edu

BLOCK FACTORIZATIONS FOR THE MR3 ALGORITHM 375

a d+

i has been computed in line 3 to decide if this should start a new2×2 pivot in the target
factorization, that is, ifi + 1 should be added toΩ+. The concrete shape and form of the test
has to depend on the block structureΩ in the source. We will develop and discuss a couple
of usable situation-specific tests on the following pages. But regardless of how they are im-
plemented, we should keep in mind that a2×2 pivot may only be chosen if (2.10) is fulfilled
for T+, that is,

(3.4) |d+

i c+

i+1| < K
¤
e2
i .

Except for the choice ofΩ+, the prominent point left open in Algorithm3.1is the computation
of si+1 in line 10. We have already indicated that this has to depend on the actual case at hand
as determined byΩ andΩ+ and that there are alternative formulae for some cases. Doing it
wrong can make componentwise mixed relative stability impossible to achieve.

We will tackle the nine cases for computingsi+1 from Table3.1 by partitioning them
into groups which can then be considered one at a time:

(i) CaseS1has already been dealt with in [18] for standarddstqds based on ane–re-
presentation. Accordingly, the alternative formulae fromTable3.1can be used, and the error
analysis fore–representations from [18, Theorem 5.3] does apply, cf. Figure1.1.

(ii) CasesS2andS3state that a block inD corresponds to one inD+. This will be our
first challenge in Section3.2.

(iii) In Section3.3we will deal extensively with casesS4andS6. Those constitute what
we callbreaking a block: single pivots inD+ whereD has a block.

(iv) The largest chunk will be to tackleS5 and S7–S9 in Section3.5. They have in
common that a block inD+ is (or has just been) introduced whereD does not have one—we
call this creating a block. A special role will fall toS8 andS9, where blocks inD andD+

dooverlap, because once these two cases start to alternate and form anoverlap sequence, the
worst-case relative perturbation bounds will depend on thelength of the sequence. We are not
yet able to overcome this problem completely, but it can be controlled in a practicable way.

We will present, for each of (ii)–(iv), a computational sequence tailored just for the com-
putation of thesi concerned. These are intended to be used as plugin for the template in
Algorithm 3.1 and will be accompanied by a complete relative error analysis covering all
data involved. The final algorithm and its error analysis in Section3.6 can then be built by
composition. Due to the amount of technical details involved and for the sake of a more fluent
presentation, we moved the full proofs of the error analysisinto the appendix.

3.1. Preparations for the error analysis. We assume the standard model for floating-
point arithmetic, that is, for a floating-point operation which is well-defined (no underflow or
overflow), the exact resultz and the numberx computed on the machine can be related as

(3.5) x = z(1 + γ) = z/(1 + δ), |γ|, |δ| ≤ ǫ⋄,

with machine epsilonǫ⋄. Most modern architectures adhere to the IEEE 754 standard for
floating-point arithmetic [13, 14]. For IEEEdouble precision with 53-bit significands
and eleven-bit exponents the above model is fulfilled withǫ⋄ = 2−53 ≈ 1.1 ·10−16. For more
information on binary floating-point arithmetic and the IEEE standard see [9, 12, 15].

We assume the reader to be familiar with the concept of mixed relative perturbation anal-
ysis and only recall the customized notation for sharp first-order analysis introduced in [18]
and the rules for propagating perturbations.

DEFINITION 3.2 ([18, Definition 3.2]). For any p, n ∈ R
≥0 and 0 ≤ pnǫ⋄ < 1, we

define

ǫ[p](n) := placeholder for a quantityα with |α| ≤
nǫ⋄

1 − pnǫ⋄
= nǫ⋄ + p(nǫ⋄)

2 + O(ǫ3⋄).

ETNA
Kent State University

http://etna.math.kent.edu

376 P. R. WILLEMS AND B. LANG

We abbreviateǫ[1](n) =: ǫ(n) and writeǫ⋄ instead ofǫ[0](1) if in placeholder context (on the
right-hand side of an “

.
=”).

By “placeholder” we mean that occurrences ofǫ·-terms should be interpreted simi-
larly to the traditionalO(·) notation. To pronounce relations that deal with unspecifiedquan-
tities like these we will write “

.
= ” instead of “=”. The expressions become unambiguous if

interpreted from left to right.
THEOREM 3.3 (Rules for running error analysis [18, Theorem 3.3 and Corollary 3.4]).

Letp, n, q,m ∈ R
≥0 andR = max{1, p, q}. Then

(
1 + ǫ[p](n)

)(
1 + ǫ[q](m)

) .
= 1 + ǫ[R](n + m),

(
1 + ǫ[p](n)

)−1 .
= 1 + ǫ[p+1](n),

(
1 + ǫ[p](n)

)1/2 .
= 1 + ǫ[2p+2](1

2n),

provided that0 ≤ skǫ⋄ < 1 for each quantityǫ[s](k).
Letmi ∈ R andsi ∈ {−1, 1}, i = 1, . . . , n, be given. Then

(3.6)
n∏

i=1

(1 + miǫ⋄)
si

.
= 1 + ǫ(D), whereD :=

n∑

i=1

|mi|,

providedDǫ⋄ < 1.
For any quantitya we will normally usẽa for its perturbed counterpart, and we reserve

the letter̺ for the associated relative perturbation factors:

ã = a · ̺(a).

We do not use a special notation to distinguish floating-point numbers from “exact” ones.
In the remainder of this paper, unadorned symbolsdi, ei, c+

i , ∆i, . . . in an algorithm or its
accompanying error analysis always refer to numbers as theyare stored in the machine.

Recall our use of the term secondary data for anything (meaningful) which can be derived
from a representation’s primary data; so far we have alreadyintroduced the block determi-
nants∆i, i + 1 ∈ Ω, and the auxiliariessi as such. Secondary data also have a natural
counterpart under the influence of a perturbation, namely the value one obtains if every pri-
mary data occurrence in a definition is replaced by the perturbed version. We will extend
the˜-notation and̺ to refer to perturbed secondary data as well. Hence, the determinants for
the2×2 blocks inD̃ are

∆̃i = d̃ic̃i+1 − ẽ 2
i = ∆i̺(∆i), i + 1 ∈ Ω,

etc. Note that, although our lax use of the˜-notation might suggest otherwise, there still re-
mains the subtle point that we can choose primary perturbations likedi Ã d̃i freely, whereas
∆i Ã ∆̃i is an immediate consequence once all perturbations to the primary data are fixed.

Concerning the offdiagonal elementsei, for a shifted factorization based on our standard
representation only their squarese2

i will ever be needed, so assume we have them as

(3.7) fl(e2
i) = e2

i (1 + εi), |εi| ≤ ǫ⋄, i = 1, . . . , n − 1.

Induced perturbations for the block determinants. It will be necessary to relate the
block determinants∆i and∆+

i as computed in lines 6 and 8 of Algorithm3.1 to the exact
ones∆̃i and ∆̃+

i for the perturbed matrices. Based on the floating-point model (3.5) and
on (3.7), we can state

(3.8)
∆i(1 + β∆) = dici+1(1 + α∆) − e2

i (1 + εi), for i + 1 ∈ Ω,

∆+

i (1 + β+

∆) = d+

i c+

i+1(1 + α+

∆) − e2
i (1 + εi), for i + 1 ∈ Ω+,

ETNA
Kent State University

http://etna.math.kent.edu

BLOCK FACTORIZATIONS FOR THE MR3 ALGORITHM 377

with suitable perturbations|α∆|, |α
+
∆|, |β∆|, |β

+
∆| ≤ ǫ⋄. Those will of course depend oni,

but it is not necessary to make this dependency explicit. We will ensure that for all2×2
pivots, the condition of computing its determinant is bounded byκ∆ from (2.13). Then we
obtain a connection between the computed value∆i and the exact valuẽ∆i (corresponding
to perturbed primary data) as follows. Take the identities∆̃i = ∆i̺(∆i), etc., to rewrite the
exact valuẽ∆i = d̃ic̃i+1 − ẽ 2

i as

∆̃i = di̺(di) · ci+1̺(ci+1) − e2
i ̺(e2

i)

= dici+1(1 + α∆)F
︸ ︷︷ ︸

=:x

·
̺(di)̺(ci+1)

(1 + α∆)F︸ ︷︷ ︸
=:1+ξ

− e2
i (1 + εi)F︸ ︷︷ ︸

=:y

·
̺(e2

i)

(1 + εi)F︸ ︷︷ ︸
=:1+η

,

where the latter equality holds for eachF 6= 0 and, in particular, forα∆ andεi from the com-
putationsfl(dici+1) = dici+1(1+α∆) andfl(e2

i) = e2
i (1+εi) in (3.8) and (3.7), respectively.

Now insert the valuesx, y and the perturbationsξ, η, as defined via the braces, into (2.11) to
obtain

∆̃i = (x − y) · (1 + γ) for some|γ| ≤ κ−(x, y) · max{|ξ|, |η|}

= (1 + β∆)∆iF · (1 + γ),

due to (3.8). Taking into account the invariance of the condition with respect to scaling, (2.13)
yields

κ−(x, y) = κ−(x/F, y/F) = κ−(fl(dici+1),fl(e2
i)) < κ∆.

To summarize, fori + 1 ∈ Ω we obtain

(3.9)

̺(∆i) = (1 + β∆)F (1 + γ), where

|γ| ≤ κ∆ · max

{∣∣∣
̺(di)̺(ci+1)

(1 + α∆)F
− 1

∣∣∣,
∣∣∣

̺(e2
i)

(1 + εi)F
− 1

∣∣∣
}

,

andF 6= 0 may be chosen freely. Fori + 1 ∈ Ω+ the same argument yields an analogous
bound for̺(∆+

i) with the sameκ∆, ̺(e2
i) andεi.

Perturbations for the auxiliaries. Except for few special cases, we will perturb the data
influencingsi, and maybe also the shift̃τi, just so that

(3.10) si − τ = s̃i − τ̃i

holds. This means the exact difference of the quantitiessi andτ (which are floating-point
numbers stored in the machine) equals the exact difference of the perturbed datãsi and τ̃i

(which in general will not be representable as floating-point numbers).
Provided the relation (3.10) holds, there is an obvious way to perturb the diagonal data

of D andD+ such that (3.3) is achieved. Assume the computation in line 3 of Algorithm3.1
obeys

(3.11) D+(i, i)(1 + δ+

i) = D(i, i) + (si − τ)
/
(1 + σi),

∣∣δ+

i

∣∣,
∣∣σi

∣∣ ≤ ǫ⋄,

whereσi accounts for the subtraction and will retain this meaning throughout the paper,
and δ+

i accounts for the error in the addition. This notation, too, will hold from now on.
Multiply by 1 + σi and, noting (3.10), there is an obvious way to go,

(3.12) ̺(D(i, i)) := 1 + σi, ̺(D+(i, i)) := (1 + δ+

i)(1 + σi).

ETNA
Kent State University

http://etna.math.kent.edu

378 P. R. WILLEMS AND B. LANG

These will serve as our default perturbation forD andD+.
To attain the relationsi − τ = s̃i − τ̃i in the first place, there are basically two ways.

The obvious one is to chooseei−1 Ã ẽi−1 just so that the computedsi becomes exact,
i.e.,si = s̃i. Then there is even no need to touch the shift, asτ̃i := τ will do the trick. An
alternative is made possible ifsi is not too large in magnitude compared to the shift, e.g.,

|si| ≤ R|τ |

for some parameterR. Then we can achievesi−τ = s̃i−τ̃i for every choice ofei−1 Ã ẽi−1

by moving any “excess” from̃si to τ̃i, in the form

(3.13) τ̃i − τ = s̃i − si =⇒
∣∣̺(τi) − 1

∣∣ ≤ R
∣∣̺(si) − 1

∣∣,

defining τ̃i. This provides us with one additional degree of freedom in the choice of̃ei−1,
which can be used to fix some other critical computation. Notethat, effectively, we did cast
a relative perturbation of one quantity (s̃i) as an absolute one and then wrote it again as a
relative one, but for a different quantity (τ). This technique will be a crucial ingredient for
the error analysis.

This closes the general preparations. Note that, whenever (3.12) can be used, all that
remains to be done is to specify fitting perturbationsei Ã ẽi for the offdiagonal data.

3.2. Keep a block.Block factorizations are mostly harmless as long as the block struc-
ture is not changed. With respect to Table3.1this comprises the casesS1, S2andS3. ForS1
a single pivot in the source corresponds to a single pivot in the target—this corresponds to
standarddstqds for ane–representation, and the error bounds from Figure1.1do apply. In
this section we will deal with the casesS2andS3: a block inD is reproduced inD+, that is,
wekeepthe block.

We begin by devising a criterion to determine when a block should be kept. Assume we
have a block in the source covering indicesi andi + 1, that is,i + 1 ∈ Ω. The option of
keeping the block does only present itself if we did not already choose a block in the target at
i − 1, so assumei 6∈ Ω+. Considering again Table3.1, the choice between keeping the block
or not corresponds to the choice between the casesS2or S4.

It is desirable to keep the structure, but this is not always possible. At least, we have
to ensure that each block inD+ satisfies condition (3.4). The dataT(i + 1, i + 1) = ci+1

are readily available in our standard representation in this situation, so just one extra addition
givesT+(i + i, i + 1) = ci+1 − τ . This yields the following test.

Block Criterion I (BC– I).
t

t

d

?
↑

i
Fix a parameterK1 ≤ K

¤
. Keep the block if

|d+

i (ci+1 − τ)| < K1e
2
i .

Now focus on the case that a blocki + 1 ∈ Ω is indeed kept, that is, we assume the
following situation (cf. Definition3.1for the pictogram):

In: si = s̃i
t

t

i
↓

d

d

t

t

Out: si+2 = s̃i+2.

As depicted, we requiresi as input and assume it to be exact with respect to the perturbed
data; the produced outputsi+2 shall have the same property. The computation will go through
caseS2in Table3.1, followed by caseS3(for si+2 instead ofsi+1), but to ensure stability we

ETNA
Kent State University

http://etna.math.kent.edu

BLOCK FACTORIZATIONS FOR THE MR3 ALGORITHM 379

1. si+1 := 0
2. x := e2

i (si − τ) − did
+

i τ
3. si+2 := e2

i+1 x
/(

∆i ∆+

i

)

ALGORITHM 3.2: Keep a block.

need to take the alternative formula for the latter. This leads to the computational sequence
in Algorithm 3.2, to be integrated with our algorithmic template in Algorithm 3.1.

Recall our goal: We need to find perturbations to the primary data involved, namelydi,
d+

i , ci+1, c+

i+1, ei andei+1, and optionally also the shiftsτi, τi+1, such that the relation (3.3)
is fulfilled for i andi + 1, with respect to the exact adjustmentss̃i, s̃i+1 for the perturbed
data. Combined with the In/Out-specification above, this boils down to achieving

d̃+

i
!
= d̃i + (si − τ̃i), sinces̃i = si,(3.14)

c̃+

i+1
!
= c̃i+1 − τ̃i+1, assi+1 = 0,(3.15)

s̃i+2
!
= si+2.(3.16)

The following lemma states that these relations can in fact be obtained with suitable
perturbations, without touching the shift. The proof for the lemma is given in AppendixA.1.

LEMMA 3.4. If a block in the source is reproduced in the target,i + 1 ∈ Ω ∩ Ω+, let in
Algorithm3.1 the auxiliariessi+1 andsi+2 be computed as in Algorithm3.2. Then we can
find perturbations

di Ã d̃i
.
= ǫ(1), d+

i Ã d̃+

i
.
= ǫ(2),

ci+1 Ã c̃i+1
.
= ǫ(1), c+

i+1 Ã c̃+

i+1
.
= ǫ(2),

ei Ã ẽi
.
= ǫ[4](3), ei+1 Ã ẽi+1

.
= ǫ[4](7

2 + 7
2κ∆),

such that

d̃+

i = d̃i + si − τ, c̃+

i+1 = c̃i+1 − τ, and si+2 = s̃i+2.

3.3. Break a block. In the previous section we dealt with the situation that a block in
the sourceD is kept for the targetD+. Now we will consider how to break a block without
any overlap, that is, without creating a new block ending within {i, i + 1, i + 2}:

In: si = s̃i
t

t

i
↓

d

t

t

t

Out: si+2 = s̃i+2.

As depicted, we requiresi as input and assume it to be exact with respect to the perturbed
data, and we deliversi+2 enjoying the same property. We do not require that the decision to
refrain from adding either one ofi, i + 1 or i + 2 to Ω+ has been taken because BC–I is not
fulfilled, but we assume

d+

i 6= 0 and d+

i+1 6= 0,

as otherwise the factorization would not be possible.
With respect to Table3.1, the computation will go throughS4for si+1, followed byS6

for si+2. There are different ways to computesi+2. From caseS6we get the formula

si+2 =
e2
i+1

∆id
+

i+1

[
did

+

i+1 − ∆i︸ ︷︷ ︸
=: x

]
,

ETNA
Kent State University

http://etna.math.kent.edu

380 P. R. WILLEMS AND B. LANG

1. si+1 := −e2
i

‹

d+

i

2. if |si+1| ≤ Rbrk|τ | or sign(di) 6= sign(d+

i) then
3. x := di(si+1 − τ) + e2

i // Formula I
4. else
5. x := −si+1(si − τ) − diτ // Formula II
6. si+2 := e2

i+1 x
‹ `

∆id
+

i+1

´

ALGORITHM 3.3: Break a block according to a given thresholdRbrk > 1.

revealing the intermediate quantityx whose stable computation is a critical ingredient for
breaking a block. This meaning ofx will remain in effect until the end of Section3.4.

The alternative formula from Table3.1for caseS6shows thatx can also be written as

(3.17) x = di(si+1 − τ) + e2
i .

Two points should be noted. For having the slightest chance of finding a perturbation forei+1

such thatsi+2 becomes exact, we must computex stably, meaning that the computedx should
be only a small relative perturbation away from the exactx̃ for perturbed data. Second, neither
one of the two formulae for computingx introduced above is always stable. This remains
true even if one would assume that Block CriterionI was not fulfilled. These points make the
task of breaking a block special, because they effectively force us to include a branch in the
computation.

Computingx as in (3.17) is advantageous, because it reuses the quantitysi+1− τ , which
is required to computed+

i+1 anyway (line 3 in Algorithm3.1). But for a relative error analysis,
this approach is problematic because it usesei explicitly again, althoughsi+1 does already
depend onei. An alternative formulation forx is

x =
e2
i

d+

i

(si − τ) − diτ = −si+1(si − τ) − diτ.

This one is easily derived from (3.17), making use of the two identitiessi − τ = d+

i − di

and si+1 = −e2
i /d+

i . Again the outermost subtraction involved cannot bode wellfor all
configurations, but at least the double dependency ofei is removed.

Both formulae to computex that were just introduced have their uses. They are integrated
in Algorithm 3.3, together with a test for deciding which formula to take. Again we state only
the parts relevant for computing the auxiliariessi+1 andsi+2 and assume the rest is done
according to Algorithm3.1.

Although we also have investigated other ways to computesi+2, we do not see how to
lead a mixed relative error analysis to completion if only one formula (I, II or another one) is
used for all cases. However, we will show that the combination of Formulae I and II, together
with the test in line 2 in Algorithm3.3, leads to success. This result will be summarized in
Lemma3.5, and to arrive there we proceed as follows (see AppendixA.2 for the details):
(a) If |si+1| ≤ Rbrk|τ | for some fixedRbrk > 1, thensi+1 is not much larger thanτ in

magnitude, and then Formula I is fine because we can employ thetechnique surmised in
(3.13) to modify the shift, opening up the freedom to perturbei to control the subtraction
involved in computingx in line 3 of Algorithm3.3. LemmaA.2 will deal with this case.

(b) If |si+1| > Rbrk|τ | andsign(di) 6= sign(d+

i), then due toRbrk > 1 andsi+1 = −e2
i /d+

i ,
sign(si+1 − τ) = sign(si+1) = − sign(d+

i) . Thus,sign(di) 6= sign(d+

i) implies that
di(si+1 − τ) ande2

i are nonnegative, and therefore the final addition in line 3 ofAlgo-
rithm 3.3 is well-conditioned:

κ[x] := κ+

(
fl(di(si+1 − τ)),fl(e2

i)
)

= 1,

ETNA
Kent State University

http://etna.math.kent.edu

BLOCK FACTORIZATIONS FOR THE MR3 ALGORITHM 381

whereκ+ is defined according to (2.11). LemmaA.1 will show that Formula I is fine in
this case because we are free to fix̺(ei) for any choice of̺ (di) such thatsi+1 = s̃i+1

holds, while still being able to control the effect onx.
(c) Finally, LemmaA.3 will establish that Formula II is fine for the case|si+1| > Rbrk|τ |.

These are just three out of a variety of conditions we studiedwhile investigating how to
break a block. Similarly to (b) one can show that Formula II isfine if the computation ofx in
line 5 of Algorithm3.3 is well-conditioned. However, just the three conditions stated above
are included in Algorithm3.3, so we will present only them in detail.

The following Lemma3.5 summarizes the error analysis for breaking a block accord-
ing to Algorithm 3.3 by taking the worst case bounds from LemmasA.1–A.3. Indeed, as
|si+1| ≫ |τ | excludes the possibility of harmful cancellation betweensi+1 andτ , just (a)
and (c) alone would suffice to cover all input configurations,so one could even drop (b), and
LemmaA.1 is not strictly required to break a block stably. We use it in asupporting role to
alleviate some of the rather largish error bounds from LemmaA.3 in practice.

LEMMA 3.5. For the case that a block inD is broken without overlap, i.e.,i + 1 ∈ Ω
andΩ+∩{i−1, i, i+1} = ∅, let in Algorithm3.1the auxiliariessi+1 andsi+2 be computed
as in Algorithm3.3, with a parameterRbrk > 1. LetR∗ := (Rbrk − 1)−1. Then there is a
perturbation

di Ã d̃i
.
= ǫ(1), d+

i Ã d̃+

i
.
= ǫ(2),

ci+1 Ã c̃i+1
.
= ǫ(3 + 2R∗), d+

i+1 Ã d̃+

i+1
.
= ǫ(4 + 2R∗),

ei Ã ẽi
.
= ǫ[4](3), ei+1 Ã ẽi+1

.
= ǫ[6](11

2 + 2κ∆ + (κ∆ + 1)R∗),

τ Ã τ̃i+1
.
= ǫ(4Rbrk),

such that

d̃+

i = d̃i + si − τ, d̃+

i+1 = c̃i+1 + s̃i+1 − τ̃i+1, and si+2 = s̃i+2.

The computed adjustmentsi+1 will satisfy s̃i+1
.
= si+1(1 + ǫ(4)).

3.4. Blocked to non-blocked factorization.A crucial application of breaking blocks is
when we desire a non-blocked target factorizationL+D+(L+)∗ with D+ being diagonal, i.e.,
Ω+ = ∅. Computation of a general (blocked to blocked) factorization is expensive due to
the conditionals involved. For an MR3 algorithm based on block factorizations as representa-
tions for inner nodes, there is really no need to employ blocks during bisection or computing
eigenvectors, as then the element growth in the target has noeffect on accuracy. Algorithm3.4
provides a non-blocked factorization, making use of the results from the previous pages.

THEOREM 3.6 (Error analysis for blocked to non-blockeddstqds). Let Algorithm3.4
be executed without underflow or overflow in an environment that satisfies the floating-point
model(3.5), and let all blocks inD satisfy(2.12).

Then there are perturbations to the inputs and outputs such that

LDL∗ − diag(τ̃i) = L+D+(L+)∗

holds exactly. The perturbations can be bounded depending on the parametersRbrk andK
¤

according to Lemma3.5. The specific choicesRbrk = 3, K
¤

= 1/8 lead to the following
bounds; only first-order bounds are shown, i.e., an entryp stands for a boundpǫ⋄ + O(ǫ2⋄).

LDL∗

di Ã d̃i 1

ci Ã c̃i 4

L+D+(L+)∗ i 6∈ Ω i ∈ Ω

d+

i Ã d̃+

i 2 5

i 6∈ Ω i ∈ Ω

ei Ã ẽi 3 10

τ Ã τ̃i 0 12

ETNA
Kent State University

http://etna.math.kent.edu

382 P. R. WILLEMS AND B. LANG

Input: Ω, shift τ , {D(i, i)} = {di | i 6∈ Ω} ∪ {ci | i ∈ Ω}, {e1, . . . , en−1}

Output: {d+
1 , . . . , d+

n}

Parameter: Rbrk > 1

Notes: The offdiagonal elementsei are reused to representT+. Computing the block de-
terminants∆i, i + 1 ∈ Ω, is not shown; these should have been cached beforehand.

1. s1 := 0
2. for i = 1 to n − 1 do
3. d+

i
:= D(i, i) + (si − τ)

4. if i + 1 ∈ Ω then // initiate breaking the block
5. si+1 := −e2

i

‹

d+

i // S4
6. elseif i 6∈ Ω then // standard dstqds
7. si+1 := e2

i (si − τ)
‹

(did
+

i) // S1
8. else // finish breaking the block
9. if |si| ≤ Rbrk|τ | or sign(di−1) 6= sign(d+

i−1) then
10. x := di−1(si − τ) + e2

i−1 // Formula I
11. else
12. x := −si(si−1 − τ) − di−1τ // Formula II
13. si+1 := e2

i x
‹ `

∆i−1d
+

i

´

// S6
14. endfor
15. d+

n := D(n, n) + (sn − τ)

ALGORITHM 3.4: Factorize blocked to non-blocked: Given a block factorization T = LDL
∗ ∈ R

n×n in standard
representation, compute data for non-blockedL

+
D

+(L+)∗ = T
+ such thatL+

D
+(L+)∗ = LDL

∗ − τ .

Proof. One just has to note that the bounds in Lemma3.5 are already large enough to
encompass the error bounds from Figure1.1 for non-blockeddstqds (e–representation).
The specific parameter settingsRbrk = 3, K

¤
= 1/8 imply R∗ = 0.5 andκ∆ = 9/7; then

the indicated bounds are immediate.
REMARK 3.7 (Breakdowns in Algorithm3.4). Since no2× 2 pivots are allowed in

the target, the factorization may break down if ad+

i becomes zero. This can be handled
analogously to standarddstqds, cf. [18, Section 8] for details.

REMARK 3.8 (Optimizing Algorithm3.4). We formulated Algorithm3.4with the inten-
tion to maximize clarity, but in this form it is quite inefficient, due to the many conditionals
involved. An alternative design could use a nested loop structure:

1. while i < n do
2. while i + 1 6∈ Ω do
3. . . . // do normal dstqds
4. endwhile
5. // break the block
6. . . .
7. i := i + 2
8. endwhile

This reduces the number of extra conditionals to one per block in the source, which is min-
imal, since we cannot avoid having to select between Formulae I and II for stable computa-
tion.

3.5. Creating blocks and handling overlap. In this section we will analyze how to
createnew blocks at a position where the source does not have one. Wewill start with
discussing criteria to decide when this is sensible.

ETNA
Kent State University

http://etna.math.kent.edu

BLOCK FACTORIZATIONS FOR THE MR3 ALGORITHM 383

When to create a new block inD+. Assume the factorization process did just compute
d+

i at an indexi where no block starts in the source, that is,i + 1 6∈ Ω. This leaves two
cases to consider, sinceD might still have a block ending at indexi (cf. Definition3.1for the
pictograms):

i
↓
t

t

t

?
or t d

t

i
↓

t

?
Here one could try to test for (2.10) directly by tentatively computing the diagonal ele-
mentT+(i + 1, i + 1) = c+

i+1. This would require to first determinesi+1 according to either
caseS5or S8in Table3.1, and then check if

(3.18)
∣∣d+

i

(
di+1 + (si+1 − τ)

)∣∣ < K
¤
e2
i

holds. This approach has the advantage of being to-the-point. A 2×2 pivot is chosen ag-
gressively in every situation where it makes sense according to the basic condition (2.10).
However, there are two drawbacks. If the test should indicate not to choose a2×2 pivot, we
end up in caseS1or S6instead. Then the computedsi+1 becomes invalid; its computation—
including at least one division—as well as the two additions to getc+

i+1, would have been
wasted. The second drawback is more serious: we need additional assumptions about created
blocks for the error analysis to succeed, and the direct test(3.18) does not provide them.

Due to these reasons we use the following stronger criterionfor determining if a block
should be introduced where the source does not have one.

Block Criterion II (BC– II).
t

t

?
↑

iFix a parameterK2 ≤ K
¤
/3. Choose a2×2 pivot if

|d+

i | · max
{
|τ |, |di+1|

}
< K2e

2
i and

{
|d+

i | < K2|di| if i 6∈ Ω,

|d+

i di−1| < K2|∆i−1| if i ∈ Ω.

To motivate this criterion, suppose a created block satisfies it in exact arithmetic. Then
the expressions forsi+1 in casesS5or S8from Table3.1reveal

c+

i+1 =

{
di+1 + e2

i

/
di − τ, if i 6∈ Ω,

di+1 + e2
i di−1

/
∆i−1 − τ, otherwise,

=⇒ |d+

i c+

i+1| < K
¤
e2
i .

Assuming the safeguard measures concerningK
¤

mentioned at the end of Section2.4 have
been heeded, the choiceK2 ≤ K

¤
/3 ensures that the above property will hold for the per-

turbed quantities as well, so indeed the computed block datawill even have the stronger
properties (2.13) again.

Deploying BC–II instead of (3.18) has the advantage that

(3.19) |∆+

i | > (1 − K
¤
)e2

i >
3(1 − K

¤
)

K
¤

|d+

i di+1|

will hold for any chosen block. For example, withK
¤

= .25 this means the “hidden” pivot
∆+

i

/
d+

i would have been at least nine times larger in magnitude thandi+1 (or infinite if
d+

i = 0); so the choice to create a block was well-founded.

ETNA
Kent State University

http://etna.math.kent.edu

384 P. R. WILLEMS AND B. LANG

t

t

j
d

t

t

d

d

t

t

d

d

t
. . .

t

d

d

t

t

d

d

t

k
t

t

t

t

j
t

d

d

t

t

d

d

t

t

d
. . .

d

t

t

d

d

t

k
t

t

TypeB/B (k > j + 2) TypeC/B (k > j + 1)

t

t

j
d

t

t

d

d

t

t

d

d

t
. . .

t

d

d

t

t

d

k
t

t

t

t

j
t

d

d

t

t

d

d

t
. . .

t

d

d

t

t

d

k
t

t

TypeB/C (k > j + 1) TypeC/C (k > j)

FIG. 3.1. The four types of overlap sequences, classified as to whetherthey start/end by breaking a block (B)
or creating a new one (C); cf. Definition3.1for the pictograms.

Overlap with blocks in D. A newly created block in the target canoverlapwith blocks
in the source ifi − 1 ∈ Ω or i + 1 ∈ Ω. There is only one situation where this does not
happen:

t

t

t

d

i
↓

t

t

One could call this the “clean” or “pristine” creation of a new block. It is symmetrical to
breaking a block. Indeed, this can be realized based on the less restrictive test (3.18) in a way
completely analogous to breaking a block in Section3.3, including a necessary branch in the
computation. Our implementation does indeed include this special treatment, but we have
chosen not to present its error analysis here, since it does not convey anything new compared
to breaking a block. Furthermore, as it turns out, if the morerestrictive Block CriterionII is
employed, the computational branch is not necessary.

There is a fundamental problem involved with overlapping blocks. It arises whenD
andD+ each have a sequence of consecutive blocks that are out-of-sync, in the sense that
i ∈ Ω ⇔ i 6∈ Ω+. With respect to Table3.1, this means alternating betweenS8 andS9.
We call this phenomenon anoverlap sequence. The essential problem with it is that we
cannot formulate the factorization as a recursive process like one can for standarddstqds,
cf. [18, Remark 5.1]. As a consequence the perturbation bounds to attain mixed relative sta-
bility will grow with the length of the sequence, at least in general. To explain why this is so,
consider the following section of an overlap sequence, around i ∈ Ω:

· · ·
t

t

d

d

t

i
↓

t

d

d

t
· · ·

Any perturbation strategy has to fix̃ei to controls̃i+1 such that (3.3) is fulfilled. As i ∈ Ω,
this makes̺ (ei) depend on̺ (∆i−1). Now ei contributes to∆+

i , so̺(∆+

i) will depend on
̺(ei) and therefore,̺ (ei+1) will have to depend on̺(ei), too, forming a cycle.

Because of this interdependency we can deal with overlap sequences only by considering
them en bloc, starting from the last indexj with j 6∈ Ω ∪ Ω+ and up to the nextk with
k +1 6∈ Ω∪Ω+. Then each sequence can start and end by either creating a block or breaking
one. This leaves four basic types of overlap sequences; see Figure3.1. The constraints shown
on j andk stem from requiring that at least one new block fromD+ be contained. Note that
typeC/C includesk = j + 1, the creation of a new block without any overlap, which was
introduced already. We kept this case as the error analysis to follow covers it seamlessly.

The computation of the adjustmentssj+1, . . . , sk+1 for any of the four types can pro-
ceed as summarized in Algorithm3.5. It uses the standard formulae from Table3.1 for the

ETNA
Kent State University

http://etna.math.kent.edu

BLOCK FACTORIZATIONS FOR THE MR3 ALGORITHM 385

1. if j + 1 ∈ Ω then // begin by breaking a block
2. sj+1 := −e2

j

‹

d+

j

3. else // begin by creating a block
4. sj+1 := e2

j

‹

dj

5. for i = j + 1 to k − 1 do
6. if i ∈ Ω then
7. si+1 := e2

i di−1

‹

∆i−1

8. else
9. si+1 := −e2

i d
+

i−1

‹

∆+

i−1

10. endfor
11. if k ∈ Ω then // end with breaking a block
12. sk+1 := e2

k

ˆ

(sk − τ)dk−1 + e2
k−1

˜‹`

∆k−1d
+

k

´

13. else // end with creating a block
14. sk+1 := e2

k

ˆ

(sk − τ)d+

k−1 − e2
k−1

˜‹`

dk∆+

k−1

´

ALGORITHM 3.5: Compute adjustments for an overlap sequence.

auxiliaries up tosk and the alternative formulae from Table3.1for sk+1.
A complete error analysis of this sequence is given in Appendix A.3. In the following

we will just highlight the key points.
The computation as such is simple, but the mentioned interdependency means that for

the offdiagonal elements the best bound we obtain is, up to first order,

(3.20) |̺(ei) − 1| ≤
(5

2
+ (2κ∆ + 1)

κi−j+1
∆ − 1

κ∆ − 1

)
· ǫ⋄ for j < i < k;

cf. (A.23) in AppendixA.3.2.
This dependence on the length of the overlap sequence is far too strong to make the result

of much practical use. For example, with the moderate boundκ∆ = 3/2 (which we get with
K

¤
= 1/5) and a sequence of lengthk− j = 6, the perturbation toe2

k−1 alone would already
exceed100ǫ⋄.

But there is light at the horizon in the form of choice. After all, the bound above can
be monitored during a computation. Should it grow too large,we can simply choose not to
take a2×2 pivot, thus capping the sequence. The only situation where we absolutelymust
take a2×2 pivot is if d+

i becomes zero. But this is actually a favorable situation, because it
causessi+2 to be zero as well (cf. line 9 in Algorithm3.5for i + 1). This effectively lifts any
restriction oñei+1 and therefore cuts the dependency chain.

The full error analysis in AppendixA.3.2 does include this optimization not only for
d+

i = 0 (thussi+2 = 0), but more generally for any situation where an|si| becomes “small”.
The analysis reveals that this effectively resets the recurrence, that is, the exponent toκ∆

in (3.20). The resulting error bounds are compiled in Theorem3.9 in Section3.6.

3.6. The complete algorithm. Algorithm 3.6 summarizes the work on the previous
pages for stationary block factorizations, with support for changing the block structure.

The basic design remains identical to the template Algorithm 3.1, except that we have
omitted statements to compute the block determinants∆i and ∆+

i . Essentially it is the
straightforward combination of standarddstqds for ane–representation, cf. Figure1.1, and
the computational sequences that we have considered for keeping (Algorithm3.2), breaking
(Algorithm 3.3) or creating (Algorithm3.5) blocks. However, this fact is obscured somewhat
due to the integration of a control mechanism for overlap sequences.

The outermost loop in Algorithm3.6is composed of two parts. The “first” half, lines 3–
21, handles the factorization as long as the block structureis not changed. With respect to

ETNA
Kent State University

http://etna.math.kent.edu

386 P. R. WILLEMS AND B. LANG

Input: Ω, shift τ , {di | i 6∈ Ω}, {ci | i ∈ Ω}, {e1, . . . , en−1}

Output: Ω+, {d+

i | i 6∈ Ω+}, {c+

i | i ∈ Ω+}

Parameters: Rbrk > 1, Rosq > 0, bmax ≥ 0, K¤ < 1/3 as in (2.10),
K1 ≤ K¤, K2 ≤ K¤/3 for BC–I and BC–II

1. Ω+ := ∅, i := 1, s1 := 0
2. while i < n do
3. d+

i
:= di + (si − τ)

4. if i + 1 ∈ Ω then
5. if BC–I is fulfilled then // keep the block
6. Ω+ := Ω+ ∪ {i + 1}
7. si+1 := 0 // S2
8. if i < n − 1 then
9. c+

i+1
:= ci+1 − τ

10. x := e2
i (si − τ) − did

+

i τ
11. si+2 := e2

i+1 x
‹`

∆i ∆+

i

´

// S3
12. i := i + 1
13. else // initiate breaking the block
14. si+1 := −e2

i

‹

d+

i // S4
15. else
16. if BC–II is fulfilled then // initiate creating a new block
17. Ω+ := Ω+ ∪ {i + 1}
18. si+1 := e2

i

‹

di // S5
19. else // standard dstqds
20. si+1 := e2

i (si − τ)
‹

(did
+

i) // S1
21. i := i + 1
22. b := 0 // counts number of created blocks in an overlap sequence
23. while i < n and (i ∈ Ω) 6⇔ (i 6∈ Ω+) do
24. D+(i) := D(i) + (si − τ)
25. if |si| ≤ Rosq|τ | then
26. b := 0 // reset counter
27. if i ∈ Ω+ then
28. if i + 1 ∈ Ω then // continue sequence
29. si+1 := −e2

i d
+

i−1

‹

∆+

i−1 // S9
30. else // end by create
31. si+1 := e2

i

`

d+

i−1(si − τ) − e2
i−1

´‹`

∆+

i−1di

´

// S7
32. else
33. if BC–II is fulfilled and

34.
“

b < bmax or i = n − 1 or |d+

i |e
2
i+1 ≤ (1 − K¤)Rosq|τ |e

2
i

”

then

35. Ω+ := Ω+ ∪ {i + 1} // create next block in the sequence
36. b := b + 1
37. si+1 := e2

i di−1

‹

∆i−1 // S8
38. else // end by break or clean break
39. if i − 1 ∈ Ω+ or |si| ≤ Rbrk|τ | or sign(di−1) 6= sign(d+

i−1) then
40. x := di−1(si − τ) + e2

i−1

41. else
42. x := −si(si−1 − τ) − di−1τ
43. si+1 := e2

i x
‹

(∆i−1d
+

i) // S6
44. i := i + 1
45. endwhile
46. endwhile
47. D+(n) := D(n) + (sn − τ)

ALGORITHM 3.6: Blockeddstqds: ComputeL+
D

+(L+)∗ = LDL
∗ − τ for block factorizations.

ETNA
Kent State University

http://etna.math.kent.edu

BLOCK FACTORIZATIONS FOR THE MR3 ALGORITHM 387

Table3.1this encompasses casesS1–S5. There is nothing new here.
The “second” half, lines 22–45, is essentially one inner loop to handle any block structure

changes from source to target. As such it concerns casesS6–S9 from Table3.1. This loop
will only be entered if either one of the statements in line 14or 18 were executed to initiate
a structure change, i.e., breaking or creating a block, respectively. The former one of those,
together with lines 39–43 incorporates breaking a block from Algorithm 3.3 as well as end-
by-break for an overlap sequence (line 12 from Algorithm3.5), due to the extra testi−1 ∈ Ω+

in line 39. Note that Algorithm3.4 is fully contained in Algorithm3.6; the former can be
revealed by fixing the tests for creating a new block in lines 5, 16 and 33 to evaluate to false.

The main new ingredient is the counterb, which is increased by one for each created
block in an overlap sequence. It is reset to zero in line 26 whenever the current adjustmentsi

is not much larger than the shift, where the specifics are controlled by a parameterRosq. This
integrates the optimized handling of overlap sequences that was mentioned at the end of the
last section.

A new block may only be created if the complex test in lines 33–34 is passed. Besides
checking for BC–II , creating a block in the target is only allowed if we can control the error
bounds for the overlap sequence. To this end, one of three conditions has to be met:
(1) b < bmax: The length of the sequence is still deemed acceptable.
(2) i = n−1: For a block that is created at the end it is easy to give very benign perturbation

bounds to attain mixed relative stability, since nosi+2 has to be computed.
(3) Because we require BC–II , the stronger property (3.19) will hold. Then fulfillment of the

test |d+

i |e
2
i+1 ≤ (1 − K

¤
)Rosq|τ |e

2
i implies |si+2| ≤ Rosq|τ | if the sequence contains

i+2, i.e., we know that the test in line 25 will subsequently cause the counter to be reset.
Note that condition(3) permits the choice of a2×2 pivot whenever a tinyd+

i is encountered;
in particular, the condition is always fulfilled ifd+

i = 0. Hence, the factorization cannot break
down, even forbmax = 0.

The following result summarizes the componentwise mixed relative error analysis for
Algorithm 3.6.

THEOREM 3.9 (Error analysis for blockeddstqds). Let Algorithm3.6 be executed
without underflow or overflow in an environment that satisfiesthe floating-point model(3.5).
Then there are perturbations to the inputs and outputs such that

LDL∗ − diag(τ̃i) = L+D+(L+)∗

holds exactly, with bounds to the individual perturbationsgiven in the following table (cf.
Definition3.1for the pictograms).

t

t

i
↓

t

t

d

d

i
↓

t

t

d

t

i
↓

t

d

d

t

i
↓

or
d

t

t

d

i
↓

t

t

t

d

i
↓

D(i) 1 1 3 + 2R∗ 1 1

D+(i) 2 2 4 + 2R∗ 2 2

τi 0 0 4Rbrk max
˘

Rosq(4 + Q), 21 + 3Q
¯

0

ei 3 7

2
(κ∆ + 1) 11

2
+ 2κ∆ + (κ∆ + 1)R∗ 15

2
+ 3

2
Q 5

2
+ 1

2
Q

Only first-order bounds are shown, i.e., an entryp stands for a boundpǫ⋄ + O(ǫ2⋄), and

R∗ :=
1

Rbrk − 1
, Q := (2 + 4κ∆)

κ
2(B+1)
∆ − 1

κ∆ − 1
,

ETNA
Kent State University

http://etna.math.kent.edu

388 P. R. WILLEMS AND B. LANG

where0 ≤ B ≤ bmax is the maximal value attained by the counterb during the computation.
Proof. The bounds are obtained by combining the results for non-blockeddstqds from

Figure1.1with Lemmata3.4, 3.5, A.4 andA.5.
Recall that our main objective was not to provide the sharpest possible error bounds, but

to devise an algorithm for stationary block factorizationsfor which we can give component-
wise relative error bounds in the first place.

However, there is no denying the fact that the bounds are quite large compared to standard
dstqds. This is mainly due to the problems with overlap sequences, manifested by the
parameterQ (for bmax = 0 and withRbrk = 3, K

¤
= 1/8 as in Theorem3.6 we could

bound |̺(ei) − 1| by 10ǫ⋄). One could fear that such large componentwise errors would
overshadow the benefits of using2×2 pivots regarding control of the local element growth.
But keep in mind that the bounds are of a worst-case nature only. The experiments in the
next section will show that the accuracy of the delivered results is far better than what these
bounds would suggest.

Note also that the error bounds might be reduced significantly by taking smallerK
¤

values. As an example,K
¤

= 0.001 leads toκ∆ ≈ 1.002, and thereforeQ in Theorem3.6
grows rather moderately for smallbmax, Q ≈ 12(B + 1) for B ≤ 10. However, this choice
also implies that many fewer2×2 pivots will be used (cf. BC–I and BC–II), thus increasing
the admissible element growth, e.g., to|∆+

i /d+

i | ' 3000di+1 in (3.19). This may be harmful
if blocked factorizations are used in the context of the MR3 algorithm.

4. Numerical results. Block factorizations can be used as components for the tridiag-
onal MR3 algorithm as well as in adapted solution strategies forBSVD, the singular value
decomposition of an upper bidiagonal matrix. This section evaluates the potential gain from
doing so.

In [16, Chapter 3] we have shown how, contrary to the established general consensus,
BSVD can indeed be solved reliably by applying a just slightly modified MR3 algorithm to the
Golub–Kahan matrix (cf. Example1.1). We have developed a prototype (meaning experimen-
tal and non-optimized) implementation of this algorithm, which can be configured to employ
standard twisted factorizations (XMR-TGK) or top-down block factorizations (BMR-TGK).
For testing we used a testset containing19240 bidiagonal matricesB. Those were produced
by generating tridiagonal matrices of various standard types (including all types used in [2]) in
dimensions up to100, possibly self-gluing them, then scaling, splitting, shifting for positive
definiteness and finally taking the Cholesky factors of the remaining unreduced subblocks.
Details of the generation process can be found in [16, pp. 111 ff]. The test results are shown
on the left-hand side of Table4.1.

For TSEP, we have implemented our own custom MR3 algorithm, which incorporates
some new techniques that we have developed. These techniques and the implementation are
presented in detail in [17]. Here we only want to assess the impact that block factorizations
can have forTSEP. We do also know how to do a progressive transformation (dqds) with
blocks, that is, the transitionLDL∗ − τ =: U+R+(U+)∗ from a lower to an upper (block)
bidiagonal decomposition. For reasons of space this topic is not discussed in the present
paper, but this feature has been integrated in the implementation.

This code, too, is configurable in what type of representation to use. We have compared
three variations: using standard twisted factorizations (XMR), using onlyLDL∗ block factori-
zations (BMR-LDL), or with the abovementioned twisted block factorizations(BMR, the de-
fault). We also used a synthetic testset here, but since thisis a complete and production-level
TSEP-solver no preprocessing steps need to be applied to the generated tridiagonal matrices,
and the set is larger (base matrices were generated for all dimensions up to200 before glu-
ing). For a detailed description of the generation process see [17, Section 5]. The test results

ETNA
Kent State University

http://etna.math.kent.edu

BLOCK FACTORIZATIONS FOR THE MR3 ALGORITHM 389

TABLE 4.1
Orthogonality and residual norms of theTGK-basedBSVD prototype solversXMR-TGK (with twisted fac-

torizations) andBMR-TGK (block factorizations), and the releaseTSEPsolversXMR (with twisted factorizations),
BMR-LDL (LDL

∗ block factorizations) andBMR (twisted block factorizations). The lines belowMAX give the per-
centages of test cases with maximum residual and loss of orthogonality, resp., in the indicated ranges.

BSVD-solvers TSEP-solvers
(19240 testcases) (116874 testcases)

XMR-TGK BMR-TGK XMR BMR-LDL BMR

Orthogonality levels
max

˘

|U∗U − I|, |V∗V − I|
¯

/ nǫ⋄ max
˘

|Q∗Q − I|
¯

/ nǫ⋄

5.34 4.41 AVG 234.19 68.63 1.44
1.38 1.69 MED 0.49 0.42 0.48
3095 788 MAX 9.68 · 106 7.86 · 106 9473

92.59 % 91.04 % 0 . . . 10 98.724 % 98.872 % 98.894 %
7.04 % 8.73 % 10 . . . 100 1.119 % 1.070 % 1.070 %
0.12 % 0.12 % 100 . . . 200 0.022 % 0.022 % 0.009 %
0.11 % 0.08 % 200 . . . 500 0.027 % 0.026 % 0.013 %
0.07 % 0.03 % 500 . . . 103 0.027 % 0.005 % 0.009 %
0.06 % > 103 0.080 % 0.005 % 0.006 %

Residual norms
max

˘

‖Bv̄i − ūiσ̄i‖, ‖B
∗ūi − v̄iσ̄i‖

¯

/ ‖B‖nǫ⋄ max
˘

‖Tqi − qiλi‖
¯

/ ‖T‖nǫ⋄

0.45 0.44 AVG 0.63 0.63 0.63
0.13 0.13 MED 0.13 0.13 0.13
118 4.67 MAX 13.48 13.48 13.48

84.96 % 85.11 % 0 . . . 1 80.807 % 80.813 % 80.807 %
15.03 % 14.89 % 1 . . . 10 19.192 % 19.186 % 19.192 %

10 . . . 100 0.001 % 0.001 % 0.001 %
0.01 % > 100

for the three configurations are shown on the right-hand sideof Table4.1.
For both problemsBSVD andTSEP, the methods that use block factorizations do so in

basically the same manner, by replacing them with the standard twisted factorizations as
representations at the nodes in MR3’s representation tree. For the execution of shifts, that
is, to construct block factorizations for the representations at child nodes, Algorithm3.6 is
deployed with parametersRbrk = 5, Rosq = n/4, bmax = 4, K

¤
= 1/8, K1 = K

¤
,

K2 = K
¤
/3.01. Sturm counts for bisection are done using the customized blocked to non-

blocked factorization from Algorithm3.4 with parameterRbrk = 8. To construct the non-
blocked factorizations that are needed for computing accurate eigenvectors, the same instan-
tiation of Algorithm3.4was employed, together with a progressive analogue.

Due to the synthetic nature of the testsets containing many extreme cases that are un-
likely in practice, we can say that all five solvers, with or without blocks, handle their task
reasonably well. However, the results in Table4.1also clearly show that allowing2×2 pivots
can substantially improve the level of accuracy and stability of MR3-based methods.

There are a couple of noteworthy observations to be made fromthe numbers. Residual
norms are generally unproblematic, which is a typical feature of MR3 (but not of all appli-
cations of MR3 to solveBSVD, cf. [16] for counterexamples). That the residual statistics
are almost identical for the threeTSEP-solvers further shows that residual norms produced
by MR3 are far less sensitive to changes in the algorithm than orthogonality is. Concerning
orthogonality, it is interesting to note that the introduction of top-down block factorizations

ETNA
Kent State University

http://etna.math.kent.edu

390 P. R. WILLEMS AND B. LANG

in BMR-LDL does give a strong improvement, but the real jump comes from allowing twisted
block factorizations. This shows how crucial the one additional degree of freedom in choos-
ing the twist index can be to adapt to the problem at hand and avoid element growth where it
arises.

What the results in Table4.1 do not show is the possible performance impact of block
factorizations. Due to the many conditionals involved, Algorithm 3.6 is far more expensive
than a non-blocked factorization, so one could fear that we are just paying for reliability
with speed. In [17] we have compared execution times of our releaseTSEP-solverBMR with
the MR3 and Divide-and-Conquer implementationsDSTEGR andDSTEDC in the LAPACK
library. Those results refute the fears concerning efficiency for block factorizations. The main
reason for this is that the bulk of the work is actually to perform bisection and RQI steps, for
which we only need the much faster Algorithm3.4.

Acknowledgements.The authors want to thank Osni Marques and Christof Vömel for
providing us thePract matrices, Beresford Parlett for pointing us to block factorizations in the
first place and for many fruitful discussions, and the referees for their valuable suggestions,
which helped us to improve the presentation.

REFERENCES

[1] J. W. DEMMEL, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.
[2] J. W. DEMMEL , O. A. MARQUES, B. N. PARLETT, AND C. VÖMEL, A testing infrastructure for LAPACK’s

symmetric tridiagonal eigensolvers, ACM Trans. Math. Software, 35 (2009), pp. 1–13. (Also available
as LAPACK Working Note #182).

[3] I. S. DHILLON , A newO(n2) algorithm for the symmetric tridiagonal eigenvalue/eigenvector problem, Ph.D.
Thesis, Computer Science Division, University of California, Berkeley, 1997.

[4] I. S. DHILLON AND B. N. PARLETT, Multiple representations to compute orthogonal eigenvectors of sym-
metric tridiagonal matrices, Linear Algebra Appl., 387 (2004), pp. 1–28.

[5] , Orthogonal eigenvectors and relative gaps, SIAM J. Matrix Anal. Appl., 25 (2004), pp. 858–899.
[6] S. C. EISENSTAT AND I. C. F. IPSEN, Relative perturbation results for eigenvalues and eigenvectors of

diagonalisable matrices, BIT, 38 (1998), pp. 502–509.
[7] H.-R. FANG AND D. P. O’LEARY, Stable factorizations of symmetric tridiagonal and triadic matrices, SIAM

J. Matrix Anal. Appl., 28 (2006), pp. 576–595.
[8] C. M. A. FERREIRA AND L. M IRANIAN , (no title). Notes on qd-algorithms using blocks, 2005.
[9] D. GOLDBERG, What every computer scientist should know about floating-point arithmetic, ACM Comput.

Surveys, 23 (1991), pp. 5–48.
[10] N. J. HIGHAM , Stability of the diagonal pivoting method with partial pivoting, SIAM J. Matrix Anal. Appl.,

18 (1997), pp. 52–65.
[11] , Stability of blockLDLT factorization of a symmetric tridiagonal matrix, Linear Algebra Appl., 287

(1999), pp. 181–189.
[12] , Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia, 2002.
[13] IEEE, IEEE Standard 754-1985 for binary floating-point arithmetic, Aug. 1985.
[14] , IEEE Standard 754-2008 for floating-point arithmetic, Aug. 2008.
[15] W. KAHAN , Lecture notes on the status of IEEE standard 754 for binary floating point arithmetic, Tech.

Report, EECS, UC Berkeley, 1996. http://www.cs.berkeley.edu/∼wkahan/ieee754status/IEEE754.PDF.
[16] P. R. WILLEMS, On MR3-type Algorithms for the Tridiagonal Symmetric Eigenproblem and the Bidiagonal

SVD, Ph.D. Thesis, Fachbereich Mathematik und Naturwissenschaften, Bergische Universität Wuppertal,
Wuppertal, Germany, 2010.

[17] P. R. WILLEMS AND B. LANG, A framework for the MR3 algorithm: theory and implementation, Preprint
BUW-SC 2011/2, Fachbereich Mathematik und Naturwissenschaften, Bergische Universität Wuppertal,
Wuppertal, Germany, 2011.

[18] , Twisted factorizations and qd-type transformations for the MR3 algorithm—new representations
and analysis, Preprint BUW-SC 2011/3, Bergische Universität Wuppertal, Fachbereich Mathematik und
Naturwissenschaften, Wuppertal, Germany, 2011.

ETNA
Kent State University

http://etna.math.kent.edu

BLOCK FACTORIZATIONS FOR THE MR3 ALGORITHM 391

Appendix A. The details of the error analyses.
In the follwing we provide the more technical details to complete the analyses in Sec-

tions3.2, 3.3and3.5.

A.1. Completing the analysis of keeping a block.In this section we prove Lemma3.4
by specifying the necessary perturbations.

Proof. Concerning the intermediatex andsi+2, under the assumption that the execution
environment obeys the floating-point model (3.5), we have

x(1 + βx) = e2
i (si − τ)

1 + εi

(1 + σi)(1 + α1)
− did

+

i τ(1 + α2),(A.1)

si+2(1 + βs) = e2
i+1(1 + εi+1)x

/(
∆i ∆+

i

)
,(A.2)

where|α1|, |βx| ≤ ǫ⋄, α2
.
= ǫ(2), βs

.
= ǫ(3) andεi, εi+1, σi stem from (3.7) and (3.11).

Note that the bounds forα2 andβs were obtained by combining two (three) terms1 + ξj

or (1 + ξj)
−1 with |ξj | ≤ ǫ⋄ according to (3.6). In the following we will frequently invoke

Theorem3.3without further notice.
The shift need not be perturbed:τ̃i = τ̃i+1 = τ . Then, as per requirementsi = s̃i and

trivially also si+1 = 0 = s̃i+1, the default perturbations defined in (3.12) can be employed
for di, d+

i , ci+1 andc+

i+1, to the effect

(A.3)
d̃i := di(1 + σi), c̃i+1 := ci+1(1 + σi+1),

d̃+

i := d+

i (1 + δ+

i)(1 + σi), c̃+

i+1 := c+

i+1(1 + δ+

i+1)(1 + σi+1).

So far this gives us (3.14) and (3.15), but we still have to assure (3.16). We have not touched
eitherei or ei+1 and can perturb them freely to achieve this.

As a first step, perturbei Ã ẽi to control the subtraction involved in computingx. The
goal is to get the exact intermediate for perturbed data,x̃, to be a small relative perturbation
of the computed value,x. We multiply (A.1) with (1 + σi)

2(1 + δ+

i)
/
(1 + α2) and substitute

(A.3) to obtain

x(1 + βx)
(1 + σi)

2(1 + δ+

i)

1 + α2
= e2

i (si − τ)
1 + εi

(1 + σi)(1 + α1)

(1 + σi)
2(1 + δ+

i)

1 + α2
− d̃id̃

+

i τ.

This tells us how to achieve

x̃ = ẽ 2
i (si − τ) − d̃id̃

+

i τ,

namely by setting

(A.4) ẽi := ei ·

√
(1 + εi)(1 + σi)(1 + δ+

i)

(1 + α1)(1 + α2)

.
= ei ·

(
1 + ǫ[4](3)

)
,

which gives

x̃ = x
(1 + βx)(1 + σi)

2(1 + δ+

i)

1 + α2

.
= x ·

(
1 + ǫ(6)

)
.

Finally, we perturbei+1 Ã ẽi+1 to gets̃i+2 = si+2. As the computation ofsi+2 involves
the block determinants∆i and∆+

i , we have to control the perturbation’s effect on them. Just

ETNA
Kent State University

http://etna.math.kent.edu

392 P. R. WILLEMS AND B. LANG

for this purpose did we craft the tool (3.9). Invoking (3.9) with F := (1 + σi)
/
(1 + α2) and

substituting the values̺(di), ̺(ci+1) and̺(ei) from (A.3) and (A.4) yields

∆̃i = ∆i(1 + β∆)(1 + σi)(1 + γ)
/
(1 + α2),

with

|γ| ≤ κ∆ · max

{∣∣∣
(1 + σi+1)(1 + α2)

1 + α∆

− 1
∣∣∣,

∣∣∣
1 + δ+

i

1 + α1
− 1

∣∣∣
}

.
= κ∆ǫ(4).

In analogous fashion we obtain a bound for̺(∆+

i), using (3.9) with F+ := (1+σi)(1+ δ+

i):

∆̃+

i = ∆+

i (1 + β+

∆)(1 + σi)(1 + δ+

i)(1 + γ+), γ+ .
= κ∆ǫ(3).

The purpose for factoring out1 + α2 from ∆̃i was to cancel out with the one from̺(x) in

ẽi+1 := ei+1

√
1 + εi+1

1 + βs
̺(∆i)̺(∆+

i)
/
̺(x)

= ei+1

√
(1 + β∆)(1 + β+

∆)

(1 + βx)(1 + βs)
(1 + εi+1)(1 + γ)(1 + γ+)

.
= ei+1

√
(1 + ǫ(7))(1 + ǫ(7κ∆))

.
= ei+1

(
1 + ǫ[4](7

2 + 7
2κ∆)

)
.

Inserting everything into (A.2) we obtain the desired relation

s̃i+2 = ẽ 2
i+1

(
ẽ 2
i (si − τ) − d̃id̃

+

i τ
)/(

∆̃i∆̃
+

i

)
= si+2.

A.2. Completing the analysis of breaking a block.To analyze the breaking of a block,
let us first identify the effects of executing Algorithm3.3 in floating-point arithmetic:

si+1(1 + βs) = −e2
i (1 + εi)

/
d+

i ,(A.5)

x(1 + βx) =





di(si+1 − τ)

(1 + α1)(1 + σi+1)
+ e2

i (1 + εi), for Formula I,

−
si+1(si − τ)

(1 + α2)(1 + σi)
− diτ(1 + α3), for Formula II,

(A.6)

si+2(1 + β′
s) = e2

i+1(1 + εi+1)x
/ (

∆id
+

i+1

)
,(A.7)

where|α1|, |α2|, |α3|, |βx|, |βs| ≤ ǫ⋄, β′
s

.
= ǫ(3), andεi, εi+1, σi, σi+1 stem from (3.7) and

(3.11).
The error analyses in the three following lemmas have in common that the shift for the

index i is not perturbed,̃τi := τ , and that the default perturbation (3.12) is deployed fordi

andd+

i ,

(A.8) d̃i := di(1 + σi), d̃+

i := d+

i (1 + δ+

i)(1 + σi).

One main goal will always be to prove that the computedx has a small relative distance to
the exact one for the perturbed data,

x̃ = x̺(x) = d̃i(s̃i+1 − τ̃i+1) + ẽ 2
i = −s̃i+1(s̃i − τ) − d̃iτ̃i+1.

ETNA
Kent State University

http://etna.math.kent.edu

BLOCK FACTORIZATIONS FOR THE MR3 ALGORITHM 393

The reason is that if we have an acceptable bound on|̺(x) − 1| then based on (A.7) we can
attains̃i+2 = si+2 by definingẽi+1 according to

(A.9) ẽi+1 := ei+1

√
1 + εi+1

1 + β′
s

·
̺(∆i)̺(d+

i+1)

̺(x)

.
= ei+1 · (1 + ǫ[6](2))

√
̺(∆i)̺(d+

i+1)

̺(x)
.

So, what is left to do is to perturb three data items and the shift for the indexi+1, namely

ci+1 Ã c̃i+1, d+

i+1 Ã d̃+

i+1, ei Ã ẽi, τ Ã τ̃i+1,

in order to ensure (3.3) for i + 1, that is,

(A.10) d̃+

i+1
!
= c̃i+1 + s̃i+1 − τ̃i+1.

With these preparations done, the following three lemmas can be considered separately,
as they do not depend on each other.

LEMMA A.1. For Formula I, letκ[x] = κ+

(
fl(di(si+1 − τ)),fl(e2

i)
)
. Then we can find

a perturbation

ci+1 Ã c̃i+1
.
= ǫ(1), ei Ã ẽi

.
= ǫ[4](2),

d+

i+1 Ã d̃+

i+1
.
= ǫ(2), ei+1 Ã ẽi+1

.
= ǫ[6](4 + κ[x] + κ∆),

such that(A.10) is fulfilled with τ̃i+1 = τ . The computed adjustmentsi+1 will be exact, that
is, si+1 = s̃i+1.

Proof. Based on (A.5) we attains̃i+1 = si+1 by setting

(A.11) ẽi := ei

√
̺(d+

i)(1 + εi)

1 + βs
= ei

√
(1 + εi)(1 + σi)(1 + δ+

i)

1 + βs

.
= ei ·(1+ǫ[4](2)).

Inserting the default perturbations (3.12) for ci+1, d+

i+1 into (3.11) gives us

d̃+

i+1 = c̃i+1 + si+1 − τ,

from which we obtain (A.10) by usingsi+1 = s̃i+1 and fixingτ̃i+1 := τ . For the interme-
diatex we make use of̃si+1 = si+1, τ̃i+1 = τ , (A.8) and (A.11) to obtain

x̃ = d̃i(si+1 − τ) + ẽ 2
i = di(si+1 − τ)(1 + σi) + e2

i

(1 + εi)(1 + σi)(1 + δ+

i)

1 + βs
.

Now we cast this in terms of (A.6) and use the definition ofκ[x] to see that the perturbation’s
effect onx can be controlled as

̺(x) = (1 + βx)(1 + σi)(1 + ξ), ξ
.
= ǫ(2κ[x]).

Since̺(di) and ̺(e2
i) have the common factorF := 1 + σi, (3.9) lets us conclude

that the computed∆i relates to the exact block determinant for perturbed data according to
∆̃i = ∆i̺(∆i), where

̺(∆i) = (1 + β∆)(1 + σi)(1 + γ), γ
.
= ǫ(2κ∆).

ETNA
Kent State University

http://etna.math.kent.edu

394 P. R. WILLEMS AND B. LANG

Finally, plug the obtained̺(d̃i), ̺(x) and̺(∆i) into (A.9) and cancel terms to determineẽi+1

such that̃si+2 = si+2 holds.
LEMMA A.2. For Formula I, let |si+1| ≤ Rbrk|τ | for a parameterRbrk > 1. Then

there is a perturbation

ci+1 Ã c̃i+1
.
= ǫ(1), ei Ã ẽi

.
= ǫ[4](2),

d+

i+1 Ã d̃+

i+1
.
= ǫ(2), ei+1 Ã ẽi+1

.
= ǫ[6](9

2 + 1
2κ∆),

τ Ã τ̃i+1
.
= ǫ(4Rbrk),

such that(A.10) is fulfilled. The computed adjustmentsi+1 will satisfy

s̃i+1
.
= si+1(1 + ǫ(4)).

Proof. We cannot assume that the computation ofx is well-conditioned. Therefore
we choose the perturbationei Ã ẽi specifically to safeguard the subtraction involved in
computingx, namely as

ẽi := ei ·
√

(1 + εi)(1 + σi)(1 + σi+1)(1 + α1)
.
= ei · (1 + ǫ[4](2)).

This gives us

(A.12) x(1 + βx)(1 + σi)(1 + σi+1)(1 + α1) = d̃i(si+1 − τ) + ẽ 2
i ,

and together with (A.5) and (A.8) we obtain

s̃i+1 = −
ẽ 2
i

d̃+

i

= si+1

(1 + σi+1)(1 + α1)(1 + βs)

(1 + δ+

i)

.
= si+1(1 + ǫ(4)).

Now employ the precondition and invoke (3.13) to defineτ̃i+1 satisfying

̺(τi+1)
.
= 1 + ǫ(4Rbrk),

such thatsi+1 − τ = s̃i+1 − τ̃i+1. Together with (A.12) this gives

(A.13) x̃ = x(1 + βx)(1 + σi)(1 + σi+1)(1 + α1),

and together with the default perturbations (3.12) for ci+1, d+

i+1, as well as (3.11), we get the
desired relation (A.10).

Concerning the block determinant∆i, note that̺ (di)̺(ci+1) and̺(e2
i) have the com-

mon factorF = (1 + σi)(1 + σi+1), so our tool (3.9) gives

(A.14) ̺(∆i)
.
= (1 + β∆)(1 + σi)(1 + σi+1)(1 + ǫ(κ∆)).

Invoke (A.9), insert (A.14), (3.12) and (A.13), and cancel terms to find the right perturbation
for ei+1.

LEMMA A.3. For Formula II, let |si+1| > Rbrk|τ | for a parameterRbrk > 1 and define
R∗ := (Rbrk − 1)−1. Then there is a perturbation

ci+1 Ã c̃i+1
.
= ǫ(3 + 2R∗), ei Ã ẽi

.
= ǫ[4](3),

d+

i+1 Ã d̃+

i+1
.
= ǫ(4 + 2R∗), ei+1 Ã ẽi+1

.
= ǫ[6](11

2 + 2κ∆ + (κ∆ + 1)R∗),

such that(A.10) is fulfilled with τ̃i+1 = τ . The computed adjustmentsi+1 will satisfy

s̃i+1
.
= si+1(1 + ǫ(2)).

ETNA
Kent State University

http://etna.math.kent.edu

BLOCK FACTORIZATIONS FOR THE MR3 ALGORITHM 395

Proof. Again, our first action is to perturbei to safeguard the computation ofx. Setting

ẽi := ei

√
(1 + εi)(1 + σi)(1 + δ+

i)

(1 + α2)(1 + α3)(1 + βs)

.
= ei (1 + ǫ[4](3))

we reach that goal, because in concert with (A.5) and (A.6) it gives us

s̃i+1 = −
ẽ 2
i

d̃+

i

= si+1

1

(1 + α2)(1 + α3)

.
= si+1 (1 + ǫ(2)),

as well as

(A.15) x(1 + βx)(1 + σi)
/
(1 + α3) =

ẽ 2
i

d̃+

i

(si − τ) − d̃iτ = x̃.

The precondition implies|si+1| < (1 + R∗)|si+1 − τ |. Hence,

s̃i+1 − τ = si+1(1 + α2)
−1(1 + α3)

−1 − τ = (si+1 − τ)(1 + ζ)

with

ζ =
(
(1 + α2)

−1(1 + α3)
−1 − 1

) si+1

si+1 − τ

.
= ǫ(2 + 2R∗).

Thus, together with̃τi+1 = τ and (3.11) we can achieve the desired relation (A.10) through

(A.16)
c̃i+1 := ci+1 · (1 + σi+1)(1 + ζ)

.
= ci+1 · (1 + ǫ(3 + 2R∗)),

d̃+

i+1 := d+

i+1 (1 + δ+

i+1)(1 + σi+1)(1 + ζ)
.
= d+

i+1 (1 + ǫ(4 + 2R∗)).

Concerning the block determinant, invoke (3.9) with F := 1 + σi for

(A.17) ̺(∆i) = (1 + β∆)(1 + σi)(1 + γ), γ
.
= κ∆ǫ(4 + 2R∗).

Use (A.9) together with (A.17), (A.16) and (A.15) for the definition of̃ei+1.

A.3. Completing the analysis of creating blocks and handling overlap. The meaning
of the indicesj andk to denote the beginning and end of the overlap sequence will remain in
effect during this section, thus freeingi to be used as running index.

We can summarize the effects of executing Algorithm3.5in floating-point arithmetic by
stating that, fori = j, . . . , k,

(A.18) si+1 = (1 + εi)(1 + αi) ·





e2
i /(. . .) with αi

.
= ǫ(1), if i = j,

e2
i · (. . .) with αi

.
= ǫ(2), if j < i < k,

e2
k x

/
(. . .) with αi

.
= ǫ(4), if i = k,

introducing the intermediate quantity

(A.19) x =

{
(sk − τ)dk−1(1 + βk)

/
(1 + σk) + e2

k−1(1 + εk−1), if k ∈ Ω,

(sk − τ)d+

k−1(1 + βk)
/
(1 + σk) − e2

k−1(1 + εk−1), if k ∈ Ω+,

where |βk| ≤ ǫ⋄ and εi, σk are those from (3.7) and (3.11), respectively. Note that the
rounding error from the outermost addition in computingx contributes toαk and that we use
the same namesx andβk for both types of endings.

ETNA
Kent State University

http://etna.math.kent.edu

396 P. R. WILLEMS AND B. LANG

The error analysis for Algorithm3.5 will proceed as follows. We will first focus on the
start and the repeating middle part up tosk. This is the hardest part, as it involves dealing
with perturbation bounds that depend on the length of the sequence (i.e., the distance toj).
Once that is covered, we can deal with the two types of endingsand wrap up.

As was already hinted at, the main challenge is that the required perturbations ofei and
∆i depend onei−1 and∆i−1, respectively. With the intent of handling these interdependen-
cies more fluently, we define numberspi andqi to be minimal such that

̺(e2
i)

/
(1 + εi)

.
= 1 + ǫ(pi), i = j, . . . , k,

and

̺(∆i)
.
= 1 + ǫ(qi), for i + 1 ∈ Ω,

̺(∆+

i)
.
= 1 + ǫ(qi), for i + 1 ∈ Ω+

i = j, . . . , k − 1.

For the diagonal data ofD andD+ we deploy the default perturbations (3.12). Further-
more, we will have to use the tool (3.9) so often that we will not always state the reference.

A.3.1. Two beginnings. The “right” perturbationej Ã ẽj to getsj+1 to be exact for
the perturbed data is given by

(A.20) ̺(e2
j) := (1 + εj)(1 + αj) ·

{
̺(d+

j), if j + 1 ∈ Ω,

̺(dj), if j + 1 ∈ Ω+
=⇒ pj ≤ 3.

The default perturbations (3.12) for this case are

d̃j = dj(1 + σj), ̺(D) = (1 + σj+1),

d̃+

j = d+

j (1 + δ+

j)(1 + σj), ̺(D+) = (1 + δ+

j+1)(1 + σj+1),

where eitherD = cj+1, D+ = d+

j+1 if j + 1 ∈ Ω, or D = dj+1, D+ = c+

j+1 if j + 1 ∈ Ω+.
Hence, depending on the situation we can invoke (3.9) with F := 1 + σj+1, or the analogous
formula for̺(∆+) with F+ := 1 + σj+1 to reveal the perturbation’s effect on the first block
determinant of the sequence to be

(A.21)

{
̺(∆j)

.
= 1 + ǫ(2 + 2κ∆), if j + 1 ∈ Ω,

̺(∆+

j)
.
= 1 + ǫ(2 + 4κ∆), if j + 1 ∈ Ω+

=⇒ qj ≤ 2 + 4κ∆.

A.3.2. The middle part. For i = j + 1 : k − 1, the perturbationei Ã ẽi to get
si+1 = s̃i+1 is

(A.22) ̺(e2
i) := (1+εi)(1+αi)·

{
̺(∆i−1)

/
̺(di−1), i ∈ Ω,

̺(∆+

i−1)
/
̺(d+

i−1), i ∈ Ω+
=⇒ pi ≤ qi−1+4.

Concerning the block determinants, it is not hard to realizethat the maxima in (3.9) are then
attained with thee2

i -terms. Hence, if those are perturbed as just specified, we will have

qi ≤ 1 + κ∆pi.

Combining this with (A.22) we see that theqi obey the recurrenceqi ≤ b + r · qi−1 with
b = 1 + 4κ∆ andr = κ∆, and therefore

qi ≤ b · φi−j−1(r) + qj · r
i−j ≤ max{b, qj} · φi−j(r) for j < i < k,

ETNA
Kent State University

http://etna.math.kent.edu

BLOCK FACTORIZATIONS FOR THE MR3 ALGORITHM 397

where

φm(z) :=

m∑

i=0

zi =

{
m + 1, if z = 1,

(zm+1 − 1)
/
(z − 1), otherwise.

Together with (A.22) and the bound onqj from (A.21) we obtain

(A.23) pi ≤ 4 + (2 + 4κ∆) · φi−j(κ∆), j < i < k,

from which (3.20) follows by noting that̺ (e2
i)

.
= 1 + ǫ(1 + pi) due to (A.20).

In the following we will show that the recurrence is effectively “reset” when ad+

i be-
comes zero (yieldingsi+2 = 0 in line 9 of Algorithm3.5) or, more generally, for any situation
where an|si| becomes “small”. The idea here was used before, namely that if, for any i, the
adjustmentsi is not much larger in magnitude than the shiftτ , then the latter can be perturbed
to provide freedom in the choice for̃ei−1.

We will limit this optimization to the middle part. So, assume we have for ani with
j < i < k that |si+1| ≤ Rosq |τ | holds for a parameterRosq > 0. Then perturbei Ã ẽi

instead of (A.22) simply as

(A.24) ẽ 2
i := e2

i (1 + εi)

and employ (3.13) to defineτ̃i+1 such thatsi+1 − τ = s̃i+1 − τ̃i+1 is upheld. Look at the
middle line of (A.18) to see that the above choice forẽi implies

̺(si+1) = (1 + αi)
−1 ·

{
̺(di−1)/̺(∆i−1), i ∈ Ω,

̺(d+

i−1)/̺(∆+

i−1), i ∈ Ω+.

Hence, the necessary perturbationτ̃i+1 = τ̺(τi) to the shift from (3.13) can be bounded as

∣∣̺(τi+1) − 1
∣∣ ≤ Rosq

∣∣̺(si+1) − 1
∣∣ ≤ Rosq ǫ[2](4 + qi−1).

This effectively resets the recurrence, since (A.24) givespi = 0 andqi ≤ 1 + 5κ∆. The
parameterRosq is yet unspecified. Indeed, we can choose it freely; its sole purpose is to
control̺(τi). The following lemma summarizes where we stand.

LEMMA A.4. Let in Algorithm3.1the adjustmentssj+1, . . . , sk for an overlap sequence
be computed as in Algorithm3.5. Fix a parameterRosq > 0 and define fori = j, . . . , k − 1

h(i) := i − max
{
m

∣∣ m = j or j < m ≤ i and|sm+1| ≤ Rosq |τ |
}
.

Then there is a perturbation such that(3.3) is fulfilled for i = j + 1, . . . , k. With suitable
numbers

qi ≤ (2 + 4κ∆)φh(i)(κ∆), j ≤ i < k,

the individual perturbations can be bounded as follows:

D(i, i) Ã D̃(i, i)
.
= ǫ(1), D+(i, i) Ã D̃+(i, i)

.
= ǫ(2),

ej Ã ẽj
.
= ǫ[4](2), ei Ã ẽi

.
= ǫ[4](5

2 + 1
2qi−1), j < i < k,

τ̃j = τ, τ̃j+1 = τ, τ Ã τ̃i
.
= Rosq ǫ[2](4 + qi−2), j + 1 < i ≤ k.

ETNA
Kent State University

http://etna.math.kent.edu

398 P. R. WILLEMS AND B. LANG

The implied perturbations for the secondary quantities will obey

i + 1 ∈ Ω : |̺(∆i) − 1|

i + 1 ∈ Ω+ : |̺(∆+

i) − 1|

}
≤ ǫ(qi), j ≤ i < k,

s̃j+1 = sj+1, |̺(si+1) − 1| ≤ ǫ[2](4 + qi−1), j < i < k.

The main purpose of the preceding analysis was not only to provide worst-case perturba-
tion bounds, but also to give us the means to control the computation of an overlap sequence.
Whenever ad+

i becomes small enough in magnitude that it causes|si+2| to become small as
well with respect to|τ | (cf. Section3.6 for a detailed test to detect this after computingd+

i),
we can choose a2×2 pivot while keeping a tight control over the error bounds. Otherwise,
we retain the option of keeping track of the current length ofthe sequence (better: the current
h(i)) and if this exceeds some threshold just choose a single pivot, thus ending the sequence
and capping the bounds.

The challenging part is done; what remains is to deal with thetwo possible ways for the
sequence to end. For the following we have to rely on the stronger Block CriterionII , and in
particular (3.19).

A.3.3. An end by creation: k ∈ Ω+. We assume thatsk − τ is exact, i.e.,sk − τ
= s̃k − τ̃k. LemmaA.4 does deliver this. What remains to be done is just to defineek Ã ẽk

such thatsk+1 becomes exact,sk+1 = s̃k+1. The following picture summarizes the situation
(cf. Definition3.1for the pictogram):

In: sk − τ = s̃k − τ̃k

t

t

d

k
↓

t

t

Out: sk+1 = s̃k+1.

Note that we may havek = j + 1.
The task might be impossible should the computation of the intermediatex in line 14 of

Algorithm 3.5 involve cancellation. We will show that this computation cannot be too badly
conditioned if the choice for a2×2 pivot atk − 1 was based on BC–II .

Depending on the situation at hand,sk is defined in one of two ways:

sk =

{
e2
k−1

/
dk−1, if k − 1 6∈ Ω,

e2
k−1dk−2

/
∆k−2 if k − 1 ∈ Ω.

Thus, fulfillment of the second condition in BC–II implies |sk| < (K
¤
/3)e2

k−1/|d
+

k−1|,
which yields

|sk − τ ||d+

k−1| ≤ 2max
{
|sk|, |τ |

}
|d+

k−1| < 2
3K

¤
e2
k−1.

Because of the safeguard onK
¤

to anticipate rounding errors, we can safely conclude that
the computation ofx in line 14 of Algorithm3.5 is governed by

(A.25) κ−

(
fl((sk − τ)d+

k−1),fl(e2
k−1)

)
<

3 + 2K
¤

3 − 2K
¤

=: κ[x].

Hence we can control the rounding errors expressed in the lower line of (A.19) as

(A.26) x̃ = (sk − τ)d̃+

k−1 − ẽ 2
k−1 = x̺(x) with |̺(x) − 1| ≤ κ[x] ǫ(max{4, pk−1}).

Finally,

(A.27) ̺(e2
k) := (1 + εk)̺(∆+

k−1)̺(dk)(1 + αk)
/
̺(x)

makessk+1 exact, as desired.

ETNA
Kent State University

http://etna.math.kent.edu

BLOCK FACTORIZATIONS FOR THE MR3 ALGORITHM 399

A.3.4. An end by breaking: k ∈ Ω. The situation at hand is

In: sk − τ = s̃k − τ̃k

t

t

d

d

t

k
↓

t

t

Out: sk+1 = s̃k+1.

This is very similar to breaking a block from Section3.3. Indeed, the waysk+1 is computed
in line 12 of Algorithm3.5 corresponds to Formula I in Algorithm3.3. The difference is
that, here, we have overlap at the left end:k − 1 ∈ Ω+. This will prove to be beneficial,
because here we can assume that the created block covering indices{k − 2, k − 1} satisfies
BC–II , which will allow us to show that the single computational branch does work for all
configurations. Note that we must havek > j + 1, so thatsk is defined as

sk = −e2
k−1d

+

k−2

/
∆+

k−2.

For the analysis, we consider two cases, depending on the parameter

R := (1 − 2K
¤
)−1,

which is larger than one only ifK
¤

< 1/2 holds, and we assume it does.
Case 1: |sk| ≤ R |τ |. We employ the perturbations from LemmaA.4 but throw away

those forek−1 andτk. We will redefine them manually to still retainsk − τ = s̃k − τ̃k. With
the intent of controllingx, we perturbek−1 instead as

̺(e2
k−1) := (1 + εk−1)̺(dk−1)(1 + σk)

/
(1 + βk),

yielding

s̃k = sk̺(sk) = sk̺(d+

k−2)̺(dk−1)
[
̺(∆+

k−2)(1 + αk−1)(1 + βk)
]−1

(1 + σk).

Now invoke (3.13) to move the relative perturbations to the shift. This defines τ Ã τ̃k with
∣∣̺(τk) − 1

∣∣ ≤ R · |̺(sk) − 1| ≤ R ǫ[2](7 + qk−2),

and gives the desiredsk − τ = s̃k − τ̃k. According to the upper line in (A.19) we therefore
have

(A.28) x̃ = (sk − τ)d̃k−1 + ẽ 2
k−1 = x

̺(dk−1)(1 + σk)

1 + βk
=⇒ |̺(x) − 1| ≤ ǫ(3).

Case 2: |sk| > R |τ |. In this case we can keep the permutations forek−1 andτk from
LemmaA.4; therefore we already havesk − τ = s̃k − τ̃k. If BC–II is fulfilled for the created
block ending atk − 1 ∈ Ω+, then our definition ofR and (3.19) for i = k − 2 give

|sk − τ ||dk−1| < 2(1 − K
¤
)|sk||dk−1| < 2

3K
¤
e2
k−1.

In fact, the safeguard onK
¤

allows us to relax this relation by a small perturbation on each
side, so that we may assume the computation ofx to be controlled by

κ+

(
fl((sk − τ)dk−1),fl(e2

k−1)
)

<
3 + 2K

¤

3 − 2K
¤

= κ[x],

with the sameκ[x] as in (A.25). In fact, this was the motivation for our definition ofR. Thus,

(A.29) x̃ = (sk − τ)d̃k−1 + ẽ 2
k−1 = x̺(x) with |̺(x) − 1| ≤ κ[x] ǫ(max{3, pk−1}).

ETNA
Kent State University

http://etna.math.kent.edu

400 P. R. WILLEMS AND B. LANG

In both cases the analysis revealed that the computedx is close to the exact value for
computed data, with a bound on̺(x). Thus we achievesk+1 = s̃k+1 with the perturbation

(A.30) ẽ 2
k := e2

k(1 + εk)̺(∆k−1)̺(d+

k)(1 + αk)
/
̺(x).

LEMMA A.5. Let in Algorithm3.1 the adjustmentssj+1, . . . , sk+1 for an overlap se-
quence be computed as in Algorithm3.5. Furthermore, let all2×2 pivots inD+ satisfy Block
Criterion II with a parameterK

¤
< 1/3.

Then there is a perturbation such that(3.3) holds forj ≤ i ≤ k and the computedsk+1 is
exact. The componentwise bounds from LemmaA.4do apply, with the following adjustments
and extensions:

D(k, k) Ã D̃(k, k)
.
= ǫ(1), D+(k, k) Ã D̃+(k, k)

.
= ǫ(2).

if k = j + 1: if k > j + 1:

ek Ã ẽk
.
= ǫ[6](7 + 1

2qk−1), ek Ã ẽk
.
= ǫ[6](15

2 + 1
2qk−1 + qk−2),

τk = τ, τk Ã τ̃k
.
= ǫ[2](max{21 + 3qk−2, Rosq(4 + qk−2)}),

s̃k = sk, sk Ã s̃k
.
= ǫ[2](7 + qk−2).

Proof. The subtle point is that we might have redefinedẽk−1 if ending with breaking a
block. But it is easy to verify that the bounds to̺(ek−1) and̺(∆k−1) from LemmaA.4 do
still apply, just̺(sk) can increase from1 + ǫ[2](4 + qk−2) to 1 + ǫ[2](7 + qk−2).

For the finalek Ã ẽk, note that regardless of the type of ending, the perturbation’s
effect on the intermediatex as stated in (A.26), (A.28) and (A.29) allows the uniform bound
|̺(x) − 1| ≤ κ[x] ǫ(max{4, pk−1}) with κ[x] = (3 + 2K

¤
)
/
(3 − 2K

¤
). The prerequisite

K
¤

< 1/3 givesκ[x] < 2 andR < 3. The latter determines the bound on̺(τk), and (A.27)
and (A.30) lead to the stated bound for̺(ek); recall that the analysis leading to LemmaA.4
revealedpj ≤ 3 andpi ≤ qi−1 + 4, i > j.

