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REDUCED RANK EXTRAPOLATION APPLIED TO ELECTRONIC STRUCTUR E
COMPUTATIONS ∗

SÉBASTIEN DUMINIL† AND HASSANE SADOK†

Abstract. This paper presents a new approach for accelerating the convergence of a method for solving a
nonlinear eigenvalue problem that arises in electronic structure computations. Specifically, we seek to solve the
Schrödinger equation using the Kohn-Sham formulation. Thisrequires the solution of a nonlinear eigenvalue prob-
lem. The currently prevailing method for determining an approximate solution is the Self-Consistent Field (SCF)
method accelerated by Anderson’s iterative procedure or a Broyden-type method. We propose to formulate the
nonlinear eigenvalue problem as a nonlinear fixed point problem and to accelerate the convergence of fixed-point
iteration by vector extrapolation. We revisit the reduced rank extrapolation method, a polynomial-type vector ex-
trapolation method, and apply it in the RSDFT (real-space density functional theory) software.

Key words. nonlinear eigenvalue problem, vector extrapolation, Kohn-Sham equation, Anderson’s method,
Broyden’s method, reduced rank extrapolation.
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1. Introduction. The task of determining limits of sequences arises frequently in nu-
merical analysis, applied mathematics, and engineering. The sequences may be produced by
iterative methods or perturbation techniques. Many of the encountered sequences converge
so slowly that it is difficult to determine their limit with desired accuracy in a straightforward
manner. The computation of the limit requires the use of convergence acceleration methods.

We are concerned with electronic structure computations bysolving the Kohn-Sham
formulation of the Schrödinger equation. The solution can be determined by computing a
nonlinear eigenvalue problem. The currently prevailing solution method for the latter is the
Self-Consistent Field (SCF) method accelerated by Anderson’s method or a Broyden-type
method; see, e.g., [6, 16, 25, 26]. The acceleration methods are known as “mixing” methods
in the literature on electronic structure computations. Wepropose to apply extrapolation to
solve the nonlinear eigenvalue problem.

This paper is organized as follows. Section2 introduces the SCF method, the nonlinear
eigenvalue problem to be solved, as well as Anderson- and Broyden-type acceleration meth-
ods. In Section3, we introduce polynomial extrapolation methods. Numerical examples are
reported in Section4.

2. Electronic structure computations. This section uses the same notation as [21].
The electronic structure is described by a wave functionψ which can be obtained by solving
the Schrödinger equation

HΨ = EΨ,

whereH is the Hamiltonian operator for the system andE is the total energy.
In its original form, the operatorH is very complex, involving sums over all electrons

and nuclei and the Laplacian related to each nucleus. To render the problem more tractable,
we use two fundamental approximations: the Born-Oppenheimer approximation and the one-
electron approximation; see [13, 19] for more details on the simplification of the Schrödinger
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equation. With these approximations, we obtain a simplifiedform of the Schrödinger equation
known as the Kohn-Sham equation

(2.1) H(ρ(r))ψ(r) =

[

−~∇2

2m
+ Vtot [ρ(r), r]

]

ψ(r) = Eψ(r),

where the Laplacian∇2 represents the kinetic operator,~ is Planck’s constant,m is the
electron mass, andVtot is the total potential at some pointr in space. The potential depends
on the charge densityρ defined below. We note thatVtot is the sum of three components: the
ionic potential which reflects the energy from the core electrons, the Hartree potential which
reflects electron-electron Coulombic energies, and the Exchange-Correlation potential which
arises from the one-electron approximation:

(2.2) Vtot = Vion + VH + VXC .

Both termsVH andVXC are functions of the charge densityρ(r), which depends on the wave
functions of the above equation,

(2.3) ρ(r) =
∑

occupied states

|ψi(r)|
2
.

The exchange-correlation potentialVXC is easily approximated by a potential from the local
density expression. Once the charge densityρ(r) is known, the Hartree potential is obtained
by solving the Poisson equation

∇2VH = −4πρ(r).

Both potentialsVH andVXC have a local character and are represented by diagonal matri-
ces in the discrete form of the problem. The ionic potential is more complex; see [20] for
details. It follows from (2.3) thatρ can be computed from the wave functionsψi for all oc-
cupied states. The wave functionsψi are solutions of the eigenvalue problem (2.1), whose
coefficients depend on the potential. The central computational task is the repeated solu-
tion of a large, symmetric eigenvalue problem. This problemcan be regarded as a nonlinear
eigenvalue problem, where the nonlinearity is handled by the SCF iteration. An algorithm
for solving the nonlinear eigenvalue problem using simplemix iterations is described in Ta-
ble 2.1. The quantityω used in the algorithm is a given constant. Our aim is to explore the
possibility of accelerating the simplemix iterations by using the Reduced Rank Extrapolation
(RRE) method.

In matrix form, the Hamiltonian is the sum of a Laplacian matrix, three diagonal ma-
trices, and a matrix representing the nonlocal contributions. Two of the diagonal matrices
arise from discretizingVXC andVH . The third one is due to the local part of the ionic poten-
tial. The nonlocal matrix is the sum of simple rank-one updates over all atoms and quantum
numbers.

The SCF iteration can be expressed as fixed-point iteration for the equation

(2.4) s = Φ(s),

whereΦ(s) represents the new potential obtained by solving (2.1) and using (2.2) with the
resulting wave functions and values, ands = Vtot. We remark that the SCF iterations may be
less effective than desired: the convergence may be slow, and sometimes the iterates diverge.
In the following, we focus on accelerating the SCF iterations. We will replace the constantω
in Table2.1by a so-called “mixing term”, which refers to an acceleration by a quasi-Newton
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TABLE 2.1
SCF iteration algorithm.

Initial approximate charge densityρ(r).
EvaluateVtot(ρ(r), r).
For iter=1, 2, . . . , Maxiter do

EvaluateH(ρ(r)) by H(ρ(r)) =
[

−~∇2

2m
+ Vtot (ρ(r), r)

]

.

SolveH(ρ(r))ψi(r) = Eψi(r) for i = 1, 2, . . .
Compute new charge densityρ(r)new by (2.3).
Solve new Hartree potentialVH from∇2VH(r) = −4πρ(r).
UpdateVXC andVion.
EvaluateṼtot(ρ(r), r) = Vion(r) + VH(ρ(r), r) + VXC(ρ(r), r).
ComputeṼtot = Vtot + ω(Ṽtot − Vtot).

If ‖Ṽtot−Vtot‖

‖Ṽtot‖
< tol stop.

UpdateVtot = Ṽtot.
end for

method. Broyden-type methods and Anderson’s method are used in [6, 16] to improve the
convergence. Fang and Saad [6] report that Broyden’s method sometimes gives the fastest
convergence; in other experiments Anderson’s method is superior. Throughout this paper‖·‖
denotes the Euclidean vector norm.

2.1. Generalized Broyden’s methods.Fang and Saad developed Generalized Broy-
den’s methods in [6]. Determining a fixed point of (2.4) is equivalent to solving the nonlinear
system of equations

(2.5) f(s) = 0,

wheref(s) = s − Φ(s).

2.1.1. Broyden’s methods.Introduce the linear approximation off ats,

f(s + ∆s) ≈ f(s) + J(s)∆s,

whereJ(s) denotes the Jacobian matrix off at s. Newton’s method uses this approximation
to determine a correction∆sk of an available approximate solutionsk of (2.5). Specifically,
∆sk is determined by

J(sk)∆sk = −f(sk),(2.6)

sk+1 = sk + ∆sk,

for k = 1, 2, 3, . . . The iterations are carried out until a sufficiently accurateapproximate
solution has been determined, assuming that Newton’s method converges.

Newton’s method requires the Jacobian matrix to be computedat each iteration. This can
be expensive. Quasi-Newton methods approximateJ(sk) by a matrixJk that is cheaper to
compute. Broyden [3, 14] proposed to letJk+1 be a rank-one modification ofJk. Specifically,
Broyden suggested that equation (2.6) be replaced by

Jk+1∆sk = ∆fk,

where∆fk = f(sk+1) − f(sk) and

Jk+1 = Jk + (∆fk − Jk∆sk)
∆sT

k

∆sT
k ∆sk

.
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ThenJk+1 satisfies

(2.7) Jk+1q = Jkq ∀q such that qT ∆sk = 0.

2.1.2. A generalized Broyden’s method.Suppose that the most recentm + 1 iterates
{sk−m, sk−m+1, . . . , sk} are available and let

∆si = si+1 − si, ∆fi = f(si+1) − f(si), i = k − m, k − m + 1, . . . , k − 1.

We now describe a generalized Broyden’s method with a flexible rank of the update of the
approximate JacobianJk, which is required to satisfym secant conditions,

Jk∆si = ∆fi, i = k − m, k − m + 1, . . . , k − 1,

where the vectors∆fk−m,∆fk−m+1, . . . ,∆fk−1 are assumed to be linearly independent
andm ≤ n. These equations can be expressed in matrix form as

Jk∆Sk = ∆Fk,

where

∆Sk = [∆sk−m,∆sk−m+1, . . . ,∆sk−1] , ∆Fk = [∆fk−m,∆fk−m+1, . . . ,∆fk−1] .

The analogue of condition (2.7) is

(Jk − Jk−m)q = 0

for all q orthogonal to the range of∆Sk.
We approximate the Jacobian at the(k + 1)st step by

Ji+1 = Ji + (∆Fi − Ji∆Si)(∆ST
i ∆Si)

−1∆ST
i , i = 1, . . . , k.

In the context of mixing, the base case is

J1 = ωI,

whereω is the mixing parameter. The next iterate is given by

sk+1 = sk + ∆sk.

2.2. Anderson’s method. Let f : R
N → R

N be a nonlinear function. Anderson’s
method is an iterative procedure for the solution of the given nonlinear system of equations
f(s) = 0. Denote the most recent iterates bysk−m, . . . , sk and letfj = f(sj) for all
j = k − m, . . . , k. Anderson’s method [1, 6, 16, 25, 26] determines the next iterate,sk+1, in
the following way: introduce

s̄k = sk −

k−1
∑

i=k−m

γ
(k)
i ∆si = sk − ∆Skγk,(2.8)

f̄k = fk −
k−1
∑

i=k−m

γ
(k)
i ∆fi = fk − ∆Fkγk,

where

∆si = si+1 − si, ∆fi = fi+1 − fi, γk = [γ
(k)
k−m, . . . , γ

(k)
k−1]



ETNA
Kent State University 

http://etna.math.kent.edu

REDUCED RANK EXTRAPOLATION 351

and

∆Sk = [∆sk−m, . . . ,∆sk−1] , ∆Fk = [∆fk−m, . . . ,∆fk−1] .

By rearranging, we get

s̄k =
k

∑

i=k−m

ωjsi, f̄k =
k

∑

i=k−m

ωjfi

with
∑k

i=k−m ωj = 1. The quantities̄sk andf̄k are weighted averages ofsk−m, . . . , sk and
fk−m, . . . , fk, respectively.

Theγi’s are determined by minimizing

E(γ(k)) =
〈

f̄k, f̄k

〉

=
∥

∥

∥
fk − ∆Fkγ(k)

∥

∥

∥

2

2
.

The solution satisfies the normal equations

(∆FT
k ∆Fk)γ(k) = ∆FT

k fk.

Substitution into (2.8) gives

sk+1 = s̄k + βf̄k

= sk + βfk − (∆Sk + β∆Fk)γ(k)

= sk + βfk − (∆Sk + β∆Fk)(∆FT
k ∆Fk)−1∆FT

k fk.

3. Vector extrapolation methods. The solution of systems of nonlinear equations by
an iterative method yields a sequence of vectors (approximate solutions). When this sequence
converges slowly, extrapolation often can be applied to enhance convergence. Typically,
vector extrapolation methods perform better than scalar extrapolation applied to each vector
component independently. The most popular vector extrapolation methods are minimal poly-
nomial extrapolation (MPE) by Cabay and Jackson [4], reduced rank extrapolation (RRE)
by Eddy [5] and Mesina [15], and modified minimal polynomial extrapolation (MMPE) by
Sidi, Ford, and Smith [24], Brezinski [2], and Pugachev [17]. Convergence analyses of these
methods are presented in [10, 24]. Several different recursive algorithms for implementing
these methods are described in [2, 5, 7, 11]. We note that, when applied to linearly generated
vector sequences, the MPE, RRE, and MMPE methods are relatedto Krylov subspace meth-
ods. It is shown in [18, 22] that the MPE and RRE approaches are mathematically equivalent
to Arnoldi’s method and to the generalized minimal residual(GMRES) method, respectively.
Vector extrapolation methods are very effective solution methods for systems of nonlinear
equations [9, 12].

The first subsection discusses methods for accelerating scalar sequences. We summarize
classical results for scalar extrapolation. These resultswill be extended to vector extrapola-
tion, which is the topic of the second subsection. Specifically, this subsection is concerned
with the RRE method.

3.1. Scalar extrapolation. Given a real sequence{sk}k∈N with limk→∞ sk = s, an
acceleration transformation constructs a second sequence{tk}k∈N that converges faster than
the original sequence in the sense that

lim
k→∞

tk − s

sk − s
= 0.

If the original sequence is divergent, the sequence transformation acts as an extrapolation
method to the anti-limits.
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3.1.1. Aitken’s∆2 process. Given a sequence{sk}k∈N with limit s, we can write the
limit as

s = sk −
sk+1 − sk

sk+1−s

sk−s
− 1

.

If the sk are of the form

(3.1) sk = s + a1(λ1)
k + a2(λ2)

k,

where0 < |λ2| < |λ1| < 1 anda1a2 6= 0, then

sk+1 − s

sk − s
=

a1(λ1)
k+1 + a2(λ2)

k+1

a1(λ1)k + a2(λ2)k
.

On the one hand, we have

sk+1 − s

sk − s
= λ1 + O

(

(

λ2

λ1

)k
)

.

For instance, the Lusternik process is a linear sequence transformation that gives improved
convergence when applied to the sequence (3.1). It yields the sequence

t
(1)
k = sk −

sk+1 − sk

λ1 − 1
, k = 1, 2, 3, . . .

We havet(1)k − s = a2
λ2−λ1

1−λ1
(λ2)

k and, therefore,

lim
k→∞

t
(1)
k − s

sk − s
= 0.

On the other hand, we also have

sk+2 − sk+1

sk+1 − sk

= λ1 + O

(

(

λ2

λ1

)k
)

.

This relation suggests the Aitken∆2 process

t
(2)
k = sk −

sk+1 − sk

sk+2−sk+1

sk+1−sk

− 1
, k = 1, 2, 3, . . .

Thet
(2)
k satisfy

lim
k→∞

t
(2)
k − s

sk − s
= 0.

Aitken’s ∆2 process also can be expressed as

t
(2)
k = sk −

(∆sk)2

∆2sk

= sk − ∆sk (∆2sk)
−1

∆sk,

where

∆sk = sk+1 − sk, ∆2sk = ∆sk+1 − ∆sk = sk − 2sk+1 + sk+2.

This shows that thet(2)k can be written as ratio of two determinants

t
(2)
k =

∣

∣

∣

∣

sk sk+1

∆sk ∆sk+1

∣

∣

∣

∣

/

∣

∣

∣

∣

1 1
∆sk ∆sk+1

∣

∣

∣

∣

.
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3.1.2. Interpretation of Aitken’s ∆2 process.We also have

t
(2)
k = γ

(0)
k sk + γ

(1)
k sk+1,

whereγ
(0)
k = ∆sk+1

∆2sk

andγ
(1)
k = − ∆sk

∆2sk

. Consequently,γ(0)
k andγ

(1)
k satisfy the linear

system of equations

γ
(0)
k + γ

(1)
k = 1,

γ
(0)
k ∆sk + γ

(1)
k ∆sk+1 = 0.

3.1.3. Fixed point methods.Let sk+1 = φ(sk), k = 1, 2, 3, . . ., for some nonlinear
functionφ, and assume that thesk converge to a limits. Then

sk+1 − s

sk − s
= φ′(s) + O(sk − s).

We can construct a linear convergence acceleration method

t
(3)
k = sk −

sk+1 − sk

φ′(s) − 1
.

Let f(x) = x − φ(x). Thenf(s) = 0. We define the nonlinear transformation

t
(4)
k = sk −

sk+1 − sk

φ′(sk) − 1
= sk −

f(sk)

f ′(sk)
.

If the sk, for k = 1, 2, 3, . . ., converge tos, then

t
(3)
k − s = O((sk − s)2), t

(4)
k − s = O((sk − s)2).

Let us introduce the cycling process. We choose a starting point x0 and at everykth

iteration, we sets0 = xk and compute

xk+1 = t
(4)
0 .

This yields the well-known Newton’s method

xk+1 = xk −
f(xk)

f ′(xk)
.

When using Aitken’s∆2 process in cycling mode, we set

xk+1 = t
(2)
0

and obtain Steffensen’s method

xk+1 = xk +
f(xk)2

f(xk − f(xk)) − f(xk)
.

Both Newton’s and Steffensen’s methods yield quadratic convergence,

|xk+1 − s| ≤ K |xk − s|2.

We will generalize the cycling process below.
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3.2. Vector extrapolation. Let {sk}k∈N be a sequence of vectors inRN , and define
the first and second forward differences

∆sk = sk+1 − sk, k = 0, 1, 2, . . . ,

∆2sk = ∆sk+1 − ∆sk, k = 0, 1, 2, . . .

It is known that the RRE method, when applied to the sequence{sk}k∈N, produces
approximationstRRE

k,q of the limit or the anti-limit of the sequence{sk}k∈N. These approxi-
mations are defined by

(3.2) tRRE
k,q =

q
∑

j=0

γ
(q)
j sk+j ,

where

(3.3)
q

∑

j=0

γ
(q)
j = 1,

q
∑

j=0

ηijγ
(q)
j = 0, i = 0, 1, . . . , q − 1,

with the scalarsηij defined by the inner products

ηij = (∆2sk+i,∆sk+j)

in R
N . It follows from (3.2) and (3.3) thattRRE

k,q can be expressed as a ratio of two determi-
nants:

tRRE
k,q =

∣

∣

∣

∣

∣

∣

∣

∣

∣

sk sk+1 · · · sk+q

η0,0 η0,1 · · · η0,q

...
...

...
...

ηq−1,0 ηq−1,1 · · · ηq−1,q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1
η0,0 η0,1 · · · η0,q

...
...

...
...

ηq−1,0 ηq−1,1 · · · ηq−1,q

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Introduce the matrices

∆iSk,q = [∆isk, . . . ,∆isk+q−1], i = 1, 2.

Using Schur complements,tRRE
k,q can be written as

tRRE
k,q = sk − ∆Sk,q∆

2S+
k,q∆sk,

where∆2S+
k,q denotes the Moore-Penrose generalized inverse of∆2Sk,q; it is defined by

∆2S+
k,q = (∆2ST

k,q∆
2Sk,q)

−1∆2ST
k,q,

provided thatdet(∆2ST
k,q∆

2Sk,q) 6= 0. We assume this to be the case. ThentRRE
k,q is well

defined and unique. The vectorstRRE
k,q can be computed efficiently for several values ofk and

q using algorithms described in [7].



ETNA
Kent State University 

http://etna.math.kent.edu

REDUCED RANK EXTRAPOLATION 355

We will give an estimate for the residual norm for nonlinear problems. Introduce the new
approximation

t̃RRE
k,q =

q
∑

j=0

γ
(q)
j sk+j+1.

In [12], we defined the generalized residual oftRRE
k,q as

(3.4) r̃(tRRE
k,q ) = t̃RRE

k,q − tRRE
k,q ,

which can be expressed as

r̃(tRRE
k,q ) = ∆sk − ∆2Sk,q∆

2S+
k,q∆sk.

Notice that̃r(tRRE
k,q ) is obtained by projecting orthogonally∆sk onto the subspace generated

by the vectors∆2sk, . . . ,∆2sk+q−1. We remark that̃r(tRRE
k,q ) may be considered as an

approximation of the true residual. In particular, when thesequence is generated linearly,
r̃(tRRE

k,q ) is the true residual. Therefore a stopping criterion can be based on‖r̃(tRRE
k,q )‖.

3.2.1. Implementation of the RRE method.From an implementation perspective, we
will be interested only in the case whenk is kept fixed. Accordingly, we setk = 0 and denote
the vectortRRE

0,q by tRRE
q .

The linear system (3.3) is written as

(3.5)

γ
(q)
0 + γ

(q)
1 + . . . + γ

(q)
q = 1

γ
(q)
0 (∆2s0,∆s0) + γ

(q)
1 (∆2s0,∆s1) + . . . + γ

(q)
q (∆2s0,∆sq) = 0

γ
(q)
0 (∆2s1,∆s0) + γ

(q)
1 (∆2s1,∆s1) + . . . + γ

(q)
q (∆2s1,∆sq) = 0

...
...

...
...

...

γ
(q)
0 (∆2sq−1,∆s0) + γ

(q)
1 (∆2sq−1,∆s1) + . . . + γ

(q)
q (∆2sq−1,∆sq) = 0.

Introduce the scalarsβ(q)
i =

γ
(q)
i

γ
(q)
q

for i = 0, . . . , q. Then

γ
(q)
i =

β
(q)
i

q
∑

i=0

β
(q)
i

for i = 0, . . . , q − 1 and β(q)
q = 1.

With this notation, the linear system (3.5) becomes

β
(q)
0 (∆2s0,∆s0) + . . . + β

(q)
q−1(∆

2s0,∆sq−1) = −(∆2s0,∆sq)

β
(q)
0 (∆2sq−1,∆s0) + . . . + β

(q)
q−1(∆

2sq−1,∆sq−1) = −(∆2sq−1,∆sq).

This system can be written in the form

(3.6) (∆2ST
q ∆Sq)β(q) = −∆ST

q ∆sq,

whereβ(q) = [β
(q)
0 , . . . , β

(q)
q−1]

T and∆Sq = [∆s0, . . . ,∆sq−1].

Assume now that the coefficientsγ(q)
0 , . . . , γ

(q)
q have been calculated, and introduce the

new variables

α
(q)
0 = 1 − γ

(q)
0 , α

(q)
j = α

(q)
j−1 − γ

(q)
j , 1 ≤ j ≤ q − 1, and α

(q)
q−1 = γ(q)

q .
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Then the vectortRRE
q can be expressed as

(3.7) tRRE
q = s0 +

q−1
∑

j=0

α
(q)
j ∆sj = s0 + ∆Sq α(q),

whereα(q) = [α
(q)
0 , . . . , α

(q)
q−1]

T .

We remark that in order to determine theγ
(q)
i , we must first compute theβ(q)

i by solving
the linear system of equations (3.6). Using (3.4) and (3.7), the generalized residualr̃(tRRE

q )
can be expressed as

r̃(tRRE
q ) =

q
∑

i=0

γ
(q)
i ∆si = ∆Sq+1 γ(q),

whereγ(q) = [γ
(q)
0 , . . . , γ

(q)
q ]T .

3.2.2. An algorithm for the RRE method. Fast, stable, and storagewise economical
algorithms are described in [8, 24]. These algorithms solve least-squares problems by QR
factorization. We provide an overview.

Let ∆Sk,(q+1) have full rank, namely rank(∆Sk,(q+1)) = q + 1. Then we can deter-
mine a QR factorization∆Sk,(q+1) = QqRq, whereQq = [q0, q1, . . . , qq] ∈ R

N×(q+1) has
orthonormal columnsqj , andRq ∈ R

(q+1)×(q+1) is upper triangular with positive diagonal
entries. The matrixQq is obtained fromQq−1 ∈ R

N×q by appending the columnqq. Sim-
ilarly, Rq is obtained fromRq−1 ∈ R

q×q by appending a row and a column toRq−1. The
details of the resulting algorithm are described in Table3.1. Note that, we need to store only
the vectorsk and the matrixQq. The remaining quantities can be overwritten. We remark that
the vectorqq does not have to be computed since it is not needed for determining tRRE

k,q . The
QR factorization can be computed inexpensively by applyingthe modified Gram-Schmidt
process to the vectorssk, sk+1, . . . , sk+q+1.

TABLE 3.1
Basic RRE algorithm.

Step 0. Input: the vectorssk, sk+1, . . . , sk+q+1.
Step 1. Computeui = ∆si = si+1 − si, i = k, k + 1, . . . , k + q.

SetUj =
[

uk |uk+1 | . . . |uk+j

]

, j = 0, 1, . . .
Compute the QR factorization ofUq, namelyUq = QqRq.
(Uq−1 = Qq−1Rq−1 is contained inUq).

Step 2. Solve the linear system
RT

q Rqd = e; d = [d0, d1, . . . , dq]
T , e = [1, 1, . . . , 1]

T .
(This amounts to solving two triangular systems.)
Setλ =

∑q

i=0 di.
Setγi = (1/λ) di for i = 0, . . . , q.

Step 3. Computeα = [α0, α1, . . . , αq−1]
T via

α0 = 1 − γ0; αj = αj−1 − γj , j = 1, . . . , q − 1.
ComputetRRE

k,q via
tRRE
k,q = sk + Qq−1(Rq−1α).

The basic RRE algorithm of Table3.1 becomes increasingly expensive asq increases,
because the work requirement grows quadratically with the number of iteration stepsq and
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the storage requirement grows linearly. A good way to keep the storage requirement and
the average computational cost low is to restart the RRE algorithm periodically. Table3.2
describes the restarted method.

TABLE 3.2
Restarted RRE algorithm, with restarts everyq steps.

Step 0. Input: setk = 0, choose an integerq and the vectorss0.
Step 1. Generatesj+1 = Φ(sj), j = 0, . . . , q + 1 (see (3.9)).
Step 2. Compute the approximationtRRE

q using the RRE Algorithm in Table3.1.
Step 3. IftRRE

q satisfies accuracy test, stop.
Otherwise, sets0 = tRRE

q , k = k + 1 and go to Step 1.

We will apply the RRE method to the solution of the nonlinear system of equations

(3.8) f(x) = 0

defined by the nonlinear functionf : R
N → R

N . Denote the solution of interest bys and let
s0 be an initial approximation ofs. We generate the sequences1, s2, s3, . . . by a fixed-point
iteration, say

(3.9) sk+1 = Φ(sk), k = 0, 1, 2, . . . Φ : R
N → R

N ,

wherex−Φ(x) = 0 is a possibly preconditioned form of (3.8) with the same solutions, and
is such thatlimk→∞ sk = s in case of convergence of thesk.

We consider the following algorithm:
• choose a starting pointx0,
• at the iterationk, sets0 = xk andsi+1 = Φ(si) for i = 0, . . . , qk,
• computexk+1 such that

xk+1 = tRRE
0,qk

= s0 − ∆S0,qk
∆2S+

0,qk
∆s0,

whereqk is the degree of the minimal polynomial ofΦ′(s) for the vectorxk − s, i.e., the
degree of the polynomialp of lowest degree such thatp(Φ′(s))(xk − s) = 0.

We will show quadratic convergence of the RRE method. The following theorem uses
the notation

αk(x) =
√

det(H∗
k(x)Hk(x)),

where

Hk(x) =

(

Φ(x) − x

‖Φ(x) − x‖
, . . . ,

Φqk(x) − Φqk−1(x)

‖Φqk(x) − Φqk−1(x)‖

)

.

THEOREM 1. Let J = Φ′(s) and assume that the matrixJ − I is regular. We set
M =

∥

∥(J − I)−1
∥

∥. Let the Frechet derivativeΦ′ satisfy the Lipschitz condition

‖Φ′(x) − Φ′(y)‖ ≤ L ‖x − y‖ , ∀x, y ∈ D,

whereD is an open and convex subset ofC
p. If

∃α > 0,∃K,∀k ≥ K : αk(xk) > α,
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then there is a neighborhoodU of s such that for alls0 ∈ U

∥

∥xk+1 − s
∥

∥ ≤ K
(

∥

∥xk − s
∥

∥

2
)

.

This result was shown in [9]. Since there exists a neighborhood ofs such that the vec-
tors ∆s0, . . . ,∆sqk−1 are linearly independent and the vectors∆s0, . . . ,∆sqk

are linearly
dependent, and sinceqk is not known in practice, we can replaceqk by lk, wherelk is such
that

‖r̃(tRRE
lk

)‖ = 0.

Hence, we obtain a variant of the method which has the same convergence property and which
is more interesting for application. In practice,qk is unknown. Therefore we letqk be fixed
and small.

It is useful to apply the extrapolation method to an equivalent preconditioned system.
The new system will be chosen such that the new basic iteration is convergent. In this case,
the application of the extrapolation scheme after a number of basic iterations is recommended.

4. Numerical experiments. All computational experiments presented were carried out
using MATLAB 7.1 with the RSDFT (real-space density functional theory) software. RSDFT
calculates properties of the electronic structure of molecules. It is based on previous work
done by Chelikowsky’s Material Science Group at the University of Texas (Austin) in col-
laboration with Saad and his colleagues at the University ofMinnesota. These scientists
created a program entitled Pseudopotential Algorithms forReal Space Eigenvalue Calcula-
tions (PARSEC) on which RSDFT is based. The algorithms used in RSDFT are simpler than
those of PARSEC, with the hope that RSDFT can be used for teaching and prototyping of
new algorithms.

RSDFT calculates the Laplacian and then computes the ionic potential of the molecule.
The Laplacian is calculated using finite difference methodsby Fornberg. The program rep-
resents the Laplacian as a linear term in nearby wave function values. The ionic potential is
approximated by a pseudopotential proposed by Shaw in [23]. Then the program goes through
a self-consistent loop, which calculates the Ceperly-Alder exchange correlation potential, the
Hartree potential, and determines the eigenvalues and eigenvectors. If the computed results
do not satisfy a specified tolerance, the loop is repeated.

For all tests, iteration is terminated as soon as a vectorx with

‖f(x)‖

‖x‖
≤ tol

has been determined. We refer to‖f(x)‖ as the residual error. We present results for three
different problems.

4.1. Accelerating process.This section explores the potential for accelerating the sim-
plemix iteration using the RRE method discussed in the last section. The simplemix iterations
are constructed by applying the SCF algorithm given in Table2.1.

Figures4.1, 4.2, and4.3 show the behavior of the residual norm, using a logarithmic
scale, for the simplemix and RRE methods for several values of ω. The three figures display
results for three different sizes of the nonlinear systems.

In the first example, we consider the carbon atom (C). The order of the problem is
n = 54872. Figure4.1 displays the computed results. Both the simplemix method with
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the mixing parameterω = 0.4 and the RRE method perform well, with the latter method giv-
ing a somewhat faster reduction of the norm of the residual error. We remark that the mixing
parameterω = 0.4 is suitable for this problem. For the following two problems, ω = 0.3 is a
better choice.
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FIGURE 4.1. Results of methods, RSDFT, C atom,ω = 0.4.

The second example applies the simplemix and RRE methods to the Sodium atom (Na)
and the Silicon atom (Si). The size of the system isn = 74088. Figure4.2shows the residual
reduction. The simplemix method is applied with the mixing parameterω = 0.3. The RRE
method is seen to yield the fastest convergence.

Finally, in the last example, we have chosen a Carbon monoxide molecule (CO). The
size of the system isn = 157464. Figure4.3displays the computed residual errors obtained
with the simplemix method withω = 0.3 and with RRE. The latter method yields the fastest
convergence of the residual error.

4.2. Cycling process.We compare the restarted RRE method with the generalized Broy-
den method and the Anderson method. These methods are applied to the same examples as
above. Here RRE(k) denotes the RRE process restarted everyk steps.

Figures4.4–4.5 display the computed results. Figure4.4 shows both the RRE(6) and
RRE(10) method exhibit fast convergence, whereas the generalized Broyden method (this
method performs better than the Broyden method [6]) and the Anderson method converge
slower; in fact the latter methods are outperformed by the simplemix method. In Figure4.5
all methods perform about the same.

5. Conclusion. We applied the RRE method and the restarted RRE method to the Kohn-
Sham formulation of the Schrödinger equation. We obtained fairly fast convergence for all
examples. Thus, vector extrapolation methods may have a useful role to play in electronic
structure computations. We plan to test it in PARSEC software.
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FIGURE 4.2. Results of methods, RSDFT, Si and Na atoms,ω = 0.3.
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FIGURE 4.3. Results of methods, RSDFT, CO atom,ω = 0.3.
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FIGURE 4.4. Results of methods, RSDFT, C atom.
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FIGURE 4.5. Results of methods, RSDFT, Si and Na atoms.
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