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REDUCED RANK EXTRAPOLATION APPLIED TO ELECTRONIC STRUCTUR E
COMPUTATIONS *

SEBASTIEN DUMINILT AND HASSANE SADOK!

Abstract. This paper presents a new approach for accelerating theexgmence of a method for solving a
nonlinear eigenvalue problem that arises in electroniecsire computations. Specifically, we seek to solve the
Schrodinger equation using the Kohn-Sham formulation. Téugsiires the solution of a nonlinear eigenvalue prob-
lem. The currently prevailing method for determining an appnate solution is the Self-Consistent Field (SCF)
method accelerated by Anderson’s iterative procedure orogdegn-type method. We propose to formulate the
nonlinear eigenvalue problem as a nonlinear fixed pointlprokand to accelerate the convergence of fixed-point
iteration by vector extrapolation. We revisit the reducadkr extrapolation method, a polynomial-type vector ex-
trapolation method, and apply it in the RSDFT (real-spacesitiefunctional theory) software.

Key words. nonlinear eigenvalue problem, vector extrapolation, K&fmam equation, Anderson’s method,
Broyden’s method, reduced rank extrapolation.
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1. Introduction. The task of determining limits of sequences arises fredyéminu-
merical analysis, applied mathematics, and engineerihg.sEquences may be produced by
iterative methods or perturbation techniques. Many of tieoantered sequences converge
so slowly that it is difficult to determine their limit with d&ed accuracy in a straightforward
manner. The computation of the limit requires the use of eggence acceleration methods.

We are concerned with electronic structure computationsdlying the Kohn-Sham
formulation of the Schrédinger equation. The solution cardbtermined by computing a
nonlinear eigenvalue problem. The currently prevailinson method for the latter is the
Self-Consistent Field (SCF) method accelerated by Anaéssoethod or a Broyden-type
method; see, e.g.6] 16, 25, 26]. The acceleration methods are known as “mixing” methods
in the literature on electronic structure computations. piéose to apply extrapolation to
solve the nonlinear eigenvalue problem.

This paper is organized as follows. Sectmtroduces the SCF method, the nonlinear
eigenvalue problem to be solved, as well as Anderson- angdBretype acceleration meth-
ods. In SectiorB, we introduce polynomial extrapolation methods. Numérgsamples are
reported in SectioA.

2. Electronic structure computations. This section uses the same notation 2§.[
The electronic structure is described by a wave functiomhich can be obtained by solving
the Schrédinger equation

HU = EY,

whereH is the Hamiltonian operator for the system aftids the total energy.

In its original form, the operatoH is very complex, involving sums over all electrons
and nuclei and the Laplacian related to each nucleus. Teerahd problem more tractable,
we use two fundamental approximations: the Born-Oppenéieapproximation and the one-
electron approximation; se&3, 19 for more details on the simplification of the Schrédinger
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equation. With these approximations, we obtain a simplffiech of the Schrédinger equation
known as the Kohn-Sham equation

—hV?

@2.1) H(p()9(r) = | o+ Vior o), | () = B (),

where the Laplaciaiv? represents the kinetic operatdr,is Planck’s constanty is the
electron mass, and,,, is the total potential at some poinin space. The potential depends
on the charge densitydefined below. We note th&j,; is the sum of three components: the
ionic potential which reflects the energy from the core ete, the Hartree potential which
reflects electron-electron Coulombic energies, and théa&nxge-Correlation potential which
arises from the one-electron approximation:

(22) ‘/tot = ‘/i(m + Vi + VXC-

Both termsVy andVx ¢ are functions of the charge densiti), which depends on the wave
functions of the above equation,

(2.3) pir)= Y ).

occupied states

The exchange-correlation potentidl - is easily approximated by a potential from the local
density expression. Once the charge denglty is known, the Hartree potential is obtained
by solving the Poisson equation

V3V = —dmp(r).

Both potentialsi’y; and Vx have a local character and are represented by diagonal matri
ces in the discrete form of the problem. The ionic potensahiore complex; se€(] for
details. It follows from 2.3) that p can be computed from the wave functiansfor all oc-
cupied states. The wave functiotts are solutions of the eigenvalue problefhlj, whose
coefficients depend on the potential. The central compmutatitask is the repeated solu-
tion of a large, symmetric eigenvalue problem. This probtam be regarded as a nonlinear
eigenvalue problem, where the nonlinearity is handled leySEF iteration. An algorithm
for solving the nonlinear eigenvalue problem using simeiterations is described in Ta-
ble 2.1 The quantityw used in the algorithm is a given constant. Our aim is to exptbe
possibility of accelerating the simplemix iterations byngsthe Reduced Rank Extrapolation
(RRE) method.

In matrix form, the Hamiltonian is the sum of a Laplacian matthree diagonal ma-
trices, and a matrix representing the nonlocal contrilmstioTwo of the diagonal matrices
arise from discretizindg’x - andVy. The third one is due to the local part of the ionic poten-
tial. The nonlocal matrix is the sum of simple rank-one updaiver all atoms and quantum
numbers.

The SCF iteration can be expressed as fixed-point iteradiothé equation

(2.4) s = ®(s),

where®(s) represents the new potential obtained by solviag)(and using 2.2) with the
resulting wave functions and values, ang V,,;. We remark that the SCF iterations may be
less effective than desired: the convergence may be slahs@metimes the iterates diverge.
In the following, we focus on accelerating the SCF iteragioie will replace the constaunt

in Table2.1by a so-called “mixing term”, which refers to an accelenaty a quasi-Newton



ETNA
Kent State University
http://etna.math.kent.edu

REDUCED RANK EXTRAPOLATION 349

TABLE 2.1
SCF iteration algorithm.

Initial approximate charge densipyfr).
EvaluateV,,.(p(r), ).
Foriter=l, 2, ..., Maxiter do

EvaluateH (p(r)) by H(p(r)) = [*WZ + Viot (p(r),7) |-

2m
Solve H(p(r))wi(r) = Ev;(r) fori = 1,2, ...
Compute new charge densjtyr) .., by (2.3).
Solve new Hartree potenti&l; from V2V (r) = —4dwp(r).
UpdateVx¢c andV;,,.
EvaluateV;: (p(r), ) = Vien (r) + Vir (p(r), 7) + Ve (p(r). 7).
Con:]pLIteV%ot = V:fot + w(‘/tot - V'tot)-
If 7”‘/“%;‘/‘]“” < tol stop.

\ tot ~
Update‘/;ﬁot = ‘/tot-
end for

method. Broyden-type methods and Anderson’s method ackingé, 16] to improve the
convergence. Fang and Sadfl feport that Broyden’s method sometimes gives the fastest
convergence; in other experiments Anderson’s method isrfup Throughout this papér ||
denotes the Euclidean vector norm.

2.1. Generalized Broyden’s methods.Fang and Saad developed Generalized Broy-
den’s methods ind]. Determining a fixed point of4.4) is equivalent to solving the nonlinear
system of equations
(2.5) f(s) =0,
wheref(s) = s — ®(s).

2.1.1. Broyden’s methods.Introduce the linear approximation gfat s,

s+ As) ~ f(s) + J(s)As,

whereJ(s) denotes the Jacobian matrix phts. Newton’s method uses this approximation
to determine a correctioA s, of an available approximate solutiep of (2.5). Specifically,
Asy, is determined by

(2.6) J(sk)Asp = —f(sk),

Sky1 = Sk + Asy,
for k = 1,2,3,... The iterations are carried out until a sufficiently accurapproximate
solution has been determined, assuming that Newton’s rdethioverges.

Newton’s method requires the Jacobian matrix to be compattedch iteration. This can
be expensive. Quasi-Newton methods approxinidtg,) by a matrixJ, that is cheaper to
compute. Broyderd, 14] proposed to let/;, . ; be a rank-one modification of,. Specifically,
Broyden suggested that equati@ng) be replaced by

Jk:+1ASk = Afkn
whereA fi, = f(skx+1) — f(sx) and

T
As;,

Jk+1 = Jk + (Afk — JkASk) m
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ThenJ,; satisfies
(2.7) Jyus1q = Jpq Vq suchthat g7 As;, = 0.

2.1.2. A generalized Broyden's method Suppose that the most recent+ 1 iterates
{Sk—msSk—m+1, - - -, Sk ; are available and let

Asi:S’i+1_5’ia Afi:f(si-‘rl)_f(si)a Z:k_mak_m+laak_1

We now describe a generalized Broyden’s method with a flexiahk of the update of the
approximate Jacobiasy,, which is required to satisfyn secant conditions,

JeAs; = Af;, i=k—mk—m+1,...,k—1,

where the vectora\ i, Afr—ms1,--.,Afr_1 are assumed to be linearly independent
andm < n. These equations can be expressed in matrix form as

JASE = AFy,
where
ASy = [ASk—m, ASk—mt1, -, Ask—1],  AFp = [Afk—m, Afk—mt1, - Afp—1].
The analogue of conditior2(7) is
(Jg — Jk—m)qg =0

for all ¢ orthogonal to the range @f.S;.
We approximate the Jacobian at {fie+ 1)t step by

Ji1 = Ji + (AF; — J;IAS)(ASTAS)TIASE, i=1,... k.
In the context of mixing, the base case is
J1 =wl,
wherew is the mixing parameter. The next iterate is given by
Sk41 = Sk + Asg.

2.2. Anderson’s method. Let f: RY — RY be a nonlinear function. Anderson’s
method is an iterative procedure for the solution of the girenlinear system of equations
f(s) = 0. Denote the most recent iterates by ,,,...,s, and letf; = f(s;) for all
j=k—m,..., k. Anderson’s methodl] 6, 16, 25, 26] determines the next iterate, 1, in
the following way: introduce

k-1
(2.8) Sk = Sp — Z B As; = s1, — ASp,

i=k—m
) k—1
Je=fr— Z %(k)Afz‘ = fr — AFyy,
i=k—m
where

k k
Asi=siy1— 85, Afi=fixqr—fi, W= [’Y;i_)m, e 7’}/](g—)1]
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and
Ask - [Ask,—nu o 7A3k—1] 5 AFk = [A.fk—nu o 7A.fk:—1] .

By rearranging, we get
k

k
k= Z w;isi, fr= Z w; fi

i=k—m i=k—m

2]

with Zf:kfm w; = 1. The quantities, and f;, are weighted averages &f_,.,, ..., s, and

fe—m, - -, fx, respectively.
The~;’s are determined by minimizing

E®Y = (fi, fu) = ka - AFH(k)Hj
The solution satisfies the normal equations
(AFTAF )™ = AF] fi.
Substitution into 2.8) gives

Sk41 = 8k + Bf
= s+ Bfr — (ASk + BAF,)y™
= sp + Bfx — (ASk + BAFL)(AFLAF) YAFTL £,

3. Vector extrapolation methods. The solution of systems of nonlinear equations by
an iterative method yields a sequence of vectors (apprdgis@utions). When this sequence
converges slowly, extrapolation often can be applied toasoé convergence. Typically,
vector extrapolation methods perform better than scalaapalation applied to each vector
component independently. The most popular vector extaiool methods are minimal poly-
nomial extrapolation (MPE) by Cabay and Jackséj feduced rank extrapolation (RRE)
by Eddy p] and Mesina 15], and modified minimal polynomial extrapolation (MMPE) by
Sidi, Ford, and SmithZ4], Brezinski 2], and PugacheVi[7]. Convergence analyses of these
methods are presented ih(] 24]. Several different recursive algorithms for implemenqtin
these methods are described2n, 7, 11]. We note that, when applied to linearly generated
vector sequences, the MPE, RRE, and MMPE methods are rétakagilov subspace meth-
ods. Itis shown in18, 22] that the MPE and RRE approaches are mathematically egquival
to Arnoldi's method and to the generalized minimal residGVRES) method, respectively.
Vector extrapolation methods are very effective soluticgthnds for systems of nonlinear
equations 9, 12].

The first subsection discusses methods for acceleratitgy Semuences. We summarize
classical results for scalar extrapolation. These resuiltde extended to vector extrapola-
tion, which is the topic of the second subsection. Specljicdlis subsection is concerned
with the RRE method.

3.1. Scalar extrapolation. Given a real sequencg } xen With limyg . s, = s, an
acceleration transformation constructs a second seqyepgg-~ that converges faster than
the original sequence in the sense that

tp, — s

lim =0.

k—oo S — 8§
If the original sequence is divergent, the sequence tramsiiion acts as an extrapolation
method to the anti-limis.
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3.1.1. Aitken’s A? process. Given a sequencgsy, }ren With limit s, we can write the
limit as

Sk+1 — Sk
S Sk — Shil—5 1
SEp—S

If the s;, are of the form
(31) S — S + al()\l)k + CLQ()\Q)k,
where0 < |A\s] < [A1] < 1 andajas # 0, then

Sk+1 — S _ al(Al)kJrl + a2(>\2)k+1

Sk — S a(M)F + az(/\z)k
On the one hand, we have

s -5 A2\ *
’M:A1+o<<2> )
S — S )\1
For instance, the Lusternik process is a linear sequenasftranation that gives improved
convergence when applied to the sequec (It yields the sequence

(1) Sk+1 — Sk
t,' =8, — ——, k=1,2,3,...
k A —1

We havet,(gl) —s=ay kf’:j; (A\2)* and, therefore,

On the other hand, we also have

k
Sk42 — Sk41 M40 (>\2>
Sk41 — Sk A1

This relation suggests the Aitkeh? process

Sk+1 — Sk
Sk+27Sk+1 1
Sk41—Sk

) = g — . k=1,2,3,...

Thet,(f) satisfy

(2)
t —
lim -£ 5 0.
k—oo S — S

Aitken’s A? process also can be expressed as

Asy)? _
tl(f) =Sk — (Azzi = s — Asy, (A%sy) ! Asy,

where
Asp = Sk+1 — Sk, AQSk = Aspy1 — ASp = S — 2Sk4+1 + Sk42.
This shows that the,g2) can be written as ratio of two determinants

t(2) _| Sk Sk+1
k A.Sk A5k+1

/ 1 1
Ask A5k+1
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3.1.2. Interpretation of Aitken’s A2 process. We also have

t;(f) = W;io)sk + W;gl)sk+17
where~\?) = 2o and~\) = — A Consequently,\” and\" satisfy the linear
system of equations
7 + ) =1

’Y;(CO)ASk + ’Y,(Cl)ASk_,_l =0.

3.1.3. Fixed point methods.Let s;1 = ¢(sx), k = 1,2,3,..., for some nonlinear
function¢, and assume that thg converge to a limis. Then

M = (b/(s) +O(Sk — 5)_
S — S

We can construct a linear convergence acceleration method

3 Sk+1 — Sk
() _ g S Sk

¢'(s) =1
Let f(x) =« — ¢(z). Thenf(s) = 0. We define the nonlinear transformation

t}(€4):3k Skl = Sk _ f(Sk)'

(k) —1 T sk

If the s, fork = 1,2, 3,..., converge ta, then

B =5 =0((s = )%, ) —s=0((si = 5)%).

Let us introduce the cycling process. We choose a startiimgt pg and at everykt®
iteration, we set, = x; and compute

Th+1 = té4)
This yields the well-known Newton’s method
f(@k)

Tht1 = T — Flan)
When using Aitken’sA? process in cycling mode, we set
Th+1 = t((]Q)
and obtain Steffensen’s method

flar)?
flog — flar)) — f(ffk)'

Both Newton’s and Steffensen’s methods yield quadrativemence,

Thy1 = T +

|1 — 8| < K |zg — 5]

We will generalize the cycling process below.
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3.2. Vector extrapolation. Let {s; }ren be a sequence of vectors RYY, and define
the first and second forward differences

Ask:sk_‘_lfsk, k:0,1,2,...,
A5y = Aspy1 — Asy, k=0,1,2,...
It is known that the RRE method, when applied to the sequérgé,cn, produces

approximations;** of the limit or the anti-limit of the sequende. } .en. These approxi-
mations are defined by

(3.2) kF{gE Z (q)SkH,

where
q

(3-3) S =1, Zmﬂ(q) =0, 1=0,1,...,¢—1,
=0

with the scalars);; defined by the inner products
Nij = (A Spqi, Asprj)

in RY. It follows from (3.2 and @3.3) thatt;?** can be expressed as a ratio of two determi-
nants:

Sk Sk+1 s Sk+4q
10,0 No,1 s 70,q
thRE _ 77q—1,0 77(1—1,1 e nq—l,q
1 1 - 1
10,0 Mo,1 e 70,q
Ng—1,0 Tg—1,1 *+ Tg—1,4q

Introduce the matrices
A'Sy = [Alsp, .o, Alspg 1], i=1,2.
Using Schur complements;/ " can be written as
il = s, — ASk A5 Asy,
WhereAZS,:q denotes the Moore-Penrose generalized inverge®sf, ,; it is defined by
AQS,jq = (A*S] A*Sk )T AS]

provided thaidet(A%S} A%Sy ,) # 0. We assume this to be the case. Thgff” is well

defined and unique. The vectdl,?stE can be computed efficiently for several value¢ @ind
q using algorithms described |ﬁ!][
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We will give an estimate for the residual norm for nonlineastpems. Introduce the new
approximation

q

‘RRE __ (q)

lieq —§ V; Skjt1-
j=0

In[12], we defined the generalized residuak§f” as

@) L) — L

which can be expressed as
FtEaE) = As — A2Sy  AS) Asy.

Notice thatf(tﬁ?E ) is obtained by projecting orthogonallys,. onto the subspace generated
by the vectorsAZsy, ..., A%spy,1. We remark that(¢{'7") may be considered as an
approximation of the true residual. In particular, when seguence is generated linearly,
7(tftRF) is the true residual. Therefore a stopping criterion canaset orj|7(¢5")]|.

3.2.1. Implementation of the RRE method.From an implementation perspective, we
will be interested only in the case wheris kept fixed. Accordingly, we sét = 0 and denote
the vectort§ *# by tJH7E.

The linear system3(3) is written as

75 + 7 + 77 =1

+ ...
W (A%s0,As0)  + NV (A%, As1) ..+ 7D (A%s0,As,) =0
(3.5) 'Y(()q)(AQSh Asg)  + 7£q)(A251, Asy) + ... + 'Yéq)(Azsh Asg) =0

'V(Sq)(AQSqfl’ASO) + 'Yiq)(AQSqflvAsl) +... F 'yéq)(AQSq,l,Asq) = 0.
(a)

Introduce the scala@(q) = % fori =0,...,q. Then
Ya
(q)
72-(‘1): qﬁi for i=0,...,q—1 and ﬁé‘nzl.
> A"
=0

With this notation, the linear systerfi.f) becomes

ﬂéq)(Azso,Aso) + ...+ ﬂ%@l(AQSO,Asq_l) = —(A%sg,Asy)
éq)(Azsq_l,Aso) + ...+ qujl(Azsq_l,Asq_l) = —(A%s,_1,As,).

This system can be written in the form
(3.6) (AQSqT AS,) B@ = _ASqT Asg,

where3(®) = [ﬁé‘”, . ,ﬁéq_)l]T andAS, = [Asg, ..., Asy_1].

Assume now that the coefficierwéq), . ,»ygq> have been calculated, and introduce the
new variables

aé(n =1- fyéQ), ag(n = ag-q_)l — fy](»Q) , 1<j<qg-—1, and ozt(;i)l = ’yéq).
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Then the vectot"¥ can be expressed as

q—1
(3.7 tfRE =50+ Z a§q)Asj =s0+ AS, ol?
7=0
wherea(?) = [a(()q), e oz((lq_)l]T.
We remark that in order to determine tm@), we must first compute th@i(") by solving
the linear system of equation3.6). Using (3.4) and @.7), the generalized residuait; ")
can be expressed as

q
FETE) =3 Asi = Ay 19,

=0

wherey(® = [{? ... AT

3.2.2. An algorithm for the RRE method. Fast, stable, and storagewise economical
algorithms are described i8,[24]. These algorithms solve least-squares problems by QR
factorization. We provide an overview.

Let ASy, (4+1) have full rank, namely rarfld Sy, ;1)) = ¢ + 1. Then we can deter-
mine a QR factorizatiol\ Sy ;1) = QqR,, WhereQ, = [qo. q1,. - -, q,] € R¥*(+D) has
orthonormal columng;, and R, € RTVx(@+1) is upper triangular with positive diagonal
entries. The matrix), is obtained fromy,_; € RY*4 by appending the columg,. Sim-
ilarly, R, is obtained fromRk,_; € R?*? by appending a row and a columnit,_,. The
details of the resulting algorithm are described in Table Note that, we need to store only
the vectors;, and the matrix}),. The remaining quantities can be overwritten. We remark tha
the vectorg, does not have to be computed since it is not needed for dewgnfRE The
QR factorization can be computed inexpensively by applyiregmodified Gram Schmidt
process to the vectors, i1, . . ., Sk4q+1-

TABLE 3.1
Basic RRE algorithm.

Step 0. Input: the vectors;, si+1, - - -, Sktq+1-
Step 1. Computai = As; = Si+1 — Si, i=kk+1,...,k+q.
SetUj:[uk|uk+1|...\uk+j], 7=0,1,...

Compute the QR factorization &f,, namelyU, = Q,R
(Ug—1 = Qq—1R4—1 is contained ir/,).

Step 2. Solve the linear system
RIRyd=e; d=l|do,dy,....dg)"  e=[1,1,...,1]".
(This amounts to solving two triangular systems.)

Seth = 37 d
Sety; = (1/A) d;fori=0,...,q
Step3. Compute = [ag, a1, ..., q 1]  Via

ag=1-— 703 a7_aj—1_7j7j:1a"'aq_1'
Computet2E via

RRE h

t/vq _8k+Qq 1( q— 10[).

The basic RRE algorithm of Tablg1 becomes increasingly expensive @gcreases,
because the work requirement grows quadratically with thalver of iteration stepg and
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the storage requirement grows linearly. A good way to keepstiorage requirement and
the average computational cost low is to restart the RREri#hgo periodically. Table3.2
describes the restarted method.

TABLE 3.2
Restarted RRE algorithm, with restarts eversgteps.

Step 0. Input: set = 0, choose an integerand the vectors,.
Stepl. Generatg; = ®(s;), j=0,...,q+1(seeB.9).
Step 2. Compute the approximatiofﬁRE using the RRE Algorithm in Tabld.1
Step 3. Ift}'"'¥ satisfies accuracy test, stop.
Otherwise, sek( = ¥, k = k 4+ 1and go to Step 1.

We will apply the RRE method to the solution of the nonlingastem of equations

(3.8) flz) =0

defined by the nonlinear functioh: RY — R, Denote the solution of interest Byand let
so be an initial approximation of. We generate the sequenge ss, s3, . .. by a fixed-point
iteration, say

(3.9) Spy1 = P(sp), k=0,1,2,... ®:RY - RV,

wherex — ®(z) = 0 is a possibly preconditioned form d3.@) with the same solutior, and
is such thatimy,_. ., s = s in case of convergence of the.
We consider the following algorithm:
¢ choose a starting poiat’,
e atthe iteratiork, setsy = z* ands; ;1 = ®(s;) fori =0, ..., q,
e computez®+! such that

k+1 _ RRE __ 2 Qg+
xr = tO,qk = S0 — ASqukA SO,qk-,ASO’

whereg;, is the degree of the minimal polynomial & (s) for the vectorz* — s, i.e., the
degree of the polynomial of lowest degree such that®’(s))(z* — s) = 0.

We will show quadratic convergence of the RRE method. Thieviahg theorem uses
the notation

ar(2) = /et (H} (2) He()),

where

o (2@ -2 P (z) — %1 (x)
) (I(P(w) —af e (@) — <I>‘Ik—1(at)> '

THEOREM 1. LetJ = ®'(s) and assume that the matrikx — I is regular. We set
M = ||(J — I)~]|. Let the Frechet derivativé’ satisfy the Lipschitz condition

19" (z) = @' (| < Lllz—yll, Va,yeD,
whereD is an open and convex subset®f. If

Ja > 0,IK,Vk > K ag(zF) > a,
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then there is a neighborhodd of s such that for alls, € U

o+t —sl| < & (Jla* ~5]°)

This result was shown irf]. Since there exists a neighborhoodso$uch that the vec-
tors Asg, ..., Asq,.—1 are linearly independent and the vectdys,, ..., As,, are linearly
dependent, and sineg is not known in practice, we can replageby [, wherel, is such
that

17 (5 *5)1| = o.
Hence, we obtain a variant of the method which has the sanvemence property and which
is more interesting for application. In practieg, is unknown. Therefore we let. be fixed
and small.

It is useful to apply the extrapolation method to an equivaf@econditioned system.
The new system will be chosen such that the new basic iter&tioonvergent. In this case,
the application of the extrapolation scheme after a numhblgaigic iterations is recommended.

4. Numerical experiments. All computational experiments presented were carried out
using MATLAB 7.1 with the RSDFT (real-space density funotbtheory) software. RSDFT
calculates properties of the electronic structure of mdx It is based on previous work
done by Chelikowsky’s Material Science Group at the Unigrsf Texas (Austin) in col-
laboration with Saad and his colleagues at the UniversitiMoiesota. These scientists
created a program entitled Pseudopotential AlgorithmsRieal Space Eigenvalue Calcula-
tions (PARSEC) on which RSDFT is based. The algorithms us&®SDFT are simpler than
those of PARSEC, with the hope that RSDFT can be used for itgaeind prototyping of
new algorithms.

RSDFT calculates the Laplacian and then computes the imténpal of the molecule.
The Laplacian is calculated using finite difference methogl§ornberg. The program rep-
resents the Laplacian as a linear term in nearby wave fungtibues. The ionic potential is
approximated by a pseudopotential proposed by Sha28in Then the program goes through
a self-consistent loop, which calculates the Ceperly-Aé&kehange correlation potential, the
Hartree potential, and determines the eigenvalues andwgtors. If the computed results
do not satisfy a specified tolerance, the loop is repeated.

For all tests, iteration is terminated as soon as a vectith

1/ ()]

< tol
[Ed|

has been determined. We refer|tf(x)|| as the residual error. We present results for three
different problems.

4.1. Accelerating process.This section explores the potential for accelerating the si
plemix iteration using the RRE method discussed in the &dtan. The simplemix iterations
are constructed by applying the SCF algorithm given in Tahle

Figures4.1, 4.2, and4.3 show the behavior of the residual norm, using a logarithmic
scale, for the simplemix and RRE methods for several valfies @he three figures display
results for three different sizes of the nonlinear systems.

In the first example, we consider the carbon atom (C). Therootiehe problem is
n = 54872. Figure4.1 displays the computed results. Both the simplemix methdt wi
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the mixing parameter = 0.4 and the RRE method perform well, with the latter method giv-
ing a somewhat faster reduction of the norm of the residuat.ewe remark that the mixing
parametetw = 0.4 is suitable for this problem. For the following two problems= 0.3 is a
better choice.

10

Simplemix, w=0.4
—>*—RRE

10
-2

10

3|

10

10

log10 of the residual reduction

107°F

10

0 5 10 15 20 25 30
iterations number

FIGURE 4.1. Results of methods, RSDFT, C atam= 0.4.

The second example applies the simplemix and RRE methotie t8ddium atom (Na)
and the Silicon atom (Si). The size of the system is 74088. Figure4.2shows the residual
reduction. The simplemix method is applied with the mixirsggmetetw = 0.3. The RRE
method is seen to yield the fastest convergence.

Finally, in the last example, we have chosen a Carbon moeaxidlecule (CO). The
size of the system is = 157464. Figure4.3displays the computed residual errors obtained
with the simplemix method witbv = 0.3 and with RRE. The latter method yields the fastest
convergence of the residual error.

4.2. Cycling process.We compare the restarted RRE method with the generalized Bro
den method and the Anderson method. These methods arechfiptiee same examples as
above. Here RRE&) denotes the RRE process restarted evesteps.

Figures4.4-4.5 display the computed results. Figutel shows both the RRE(6) and
RRE(10) method exhibit fast convergence, whereas the gkreat Broyden method (this
method performs better than the Broyden methgj)l {nd the Anderson method converge
slower; in fact the latter methods are outperformed by thekmix method. In Figuré.5
all methods perform about the same.

5. Conclusion. We applied the RRE method and the restarted RRE method taatie-K
Sham formulation of the Schrédinger equation. We obtaiétlyffast convergence for all
examples. Thus, vector extrapolation methods may havefalusé to play in electronic
structure computations. We plan to test it in PARSEC softwar
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FIGURE 4.2. Results of methods, RSDFT, Si and Na atems; 0.3.

10

Simplemix, w=0.3
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FIGURE 4.3. Results of methods, RSDFT, CO atams= 0.3.
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FIGURE 4.4. Results of methods, RSDFT, C atom.
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FIGURE 4.5. Results of methods, RSDFT, Si and Na atoms.
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