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PERTURBATION ANALYSIS FOR COMPLEX SYMMETRIC, SKEW
SYMMETRIC, EVEN AND ODD MATRIX POLYNOMIALS ∗

SK. SAFIQUE AHMAD† AND VOLKER MEHRMANN‡

Abstract. In this work we propose a general framework for the structuredperturbation analysis of several classes
of structured matrix polynomials in homogeneous form, including complex symmetric, skew-symmetric, even and
odd matrix polynomials. We introduce structured backward errors for approximate eigenvalues and eigenvectors
and we construct minimal structured perturbations such that an approximate eigenpair is an exact eigenpair of an
appropriately perturbed matrix polynomial. This work extends previous work of Adhikari and Alam for the non-
homogeneous case (we include infinite eigenvalues), and we show that the structured backward errors improve the
known unstructured backward errors.
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1. Introduction. In this paper we study the perturbation analysis for eigenvalues and
eigenvectors of matrix polynomials of degreem

(1.1) L(c, s) :=

m∑

j=0

cm−jsjAj ,

with coefficient matrices,Aj ∈ Cn×n. In contrast to previous work on this topic [2, 3, 4], we
consider the homogeneous form of matrix polynomials, wherethe eigenvalues are represented
as pairs(c, s) ∈ C2 \ {0}, which for c 6= 0 correspond to finite eigenvaluesλ = s

c , while
(0, 1) corresponds to the eigenvalue∞.

The eigenvalue problem for matrix polynomials arises naturally in a large number of
applications; see, e.g., [17, 18, 23, 24, 27, 29, 36, 37] and the references therein. In many
applications, the coefficient matrices have further structure which reflects the properties of
the underlying physical model; see [9, 11, 12, 19, 28, 30, 32, 37]. Since the polynomial
eigenvalue problems typically arise from physical modelling, including numerical discretiza-
tion methods such as finite element modelling [10, 31], and since the eigenvalue problem is
usually solved with numerical methods that are subject to round-off as well as approximation
errors, it is very important to study the perturbation analysis of these problems. This anal-
ysis is necessary to study the sensitivity of the eigenvalue/eigenvectors under the modelling,
discretization, approximation, and roundoff errors, but also to judge whether the numerical
methods that are used yield reliable results.

While the perturbation analysis for classical and generalized eigenvalue problems is well
studied (see [20, 33, 38]), for polynomial eigenvalue problems the situation is much less sat-
isfactory and most research is very recent; see [22, 23, 24, 35, 36]. Here we are particularly
interested in the behavior of the eigenvalues and eigenvectors under perturbations which pre-
serve the structure of the matrix polynomial. This has recently been an important research
topic [1, 2, 3, 6, 11, 12].
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In this paper we will focus on complex matrix polynomials, where the coefficient ma-
trices are complex symmetric or skew-symmetric, i.e.,L(c, s) = ±L

T (c, s), or where the
matrix polynomials areT -even orT -odd, i.e.,L(c, s) = ±L

T (c,−s). Complex (skew)-
symmetric problems arise in the finite element modelling of the acoustic field in car interiors
and in the design of axisymmetric VCSEL devices; see, e.g., [8, 34]. ComplexT -even or
T -odd problems arise in the vibration analysis for high-speed trains; see, e.g., [25, 26]. Many
applications only need finite eigenvalues and associated eigenvectors, but the eigenvectors
associated with the eigenvalue infinity play an important role as well, since quite often the
infinite spectrum has to be deflated before classical methodscan be employed; see [13, 14].

While the perturbation analysis and the construction of backward errors for finite eigen-
values have been studied in detail, there are only few results associated with the eigenvalue
infinity. We will present a systematic general perturbationframework that covers finite and
infinite eigenvalues and extends the structured theory of [1, 2, 3, 6, 11, 12] as well as the
unstructured theory for the homogeneous case studied in [5, 6, 7, 16, 24, 33]. In particular, to
present the backward error analysis for a given approximation to an eigenvalue/eigenvector
pair of a matrix polynomialL, we will construct an appropriately structured minimal (in
the Frobenius and the spectral norm) perturbation polynomial ∆L such that the given eigen-
value/eigenvector pair is exact forL + ∆L. It will turn out that the so constructed minimal
perturbation is unique in the case of the Frobenius norm and that there are infinitely many
such minimal perturbations in the case of the spectral norm.We will compare the so con-
structed perturbations with those constructed for matrix pencils and matrix polynomials in
[2, 3, 4] and show that our results generalize these results and provide the following further
information on the eigenvalues0 and∞ of L + ∆L.

• For the case of complex symmetric or skew-symmetric matrix polynomials, we show
that the nearest perturbed matrix polynomial can have all kinds of eigenvalues in-
cluding0 and∞.

• When the degree ism = 1, we present the perturbation analysis for the case of
T -even andT -odd matrix pencils and we show that the nearest perturbed pair can
have0 and∞ as eigenvalues depending on the choice of(λ, µ) for which we want
to compute the backward error. Furthermore, whenλ = 0 or µ = 0, then we show
that the perturbed pair is the same for the spectral and the Frobenius norm.

• When the degree ism > 1 and even, then for the case ofT -even matrix polynomials
we show that the nearest perturbed polynomial can have both0 and∞ eigenvalues
depending on the choice of(λ, µ) for which we want to compute the backward error.
Again, whenλ = 0, µ 6= 0 or λ 6= 0, µ = 0, then the perturbed polynomial is the
same for the spectral and the Frobenius norm.

• When m > 1 is odd, then for the case ofT -even matrix polynomials we show
that the nearest perturbed matrix polynomial can have all possible finite eigenvalues
including0 but not the eigenvalue∞.

• Whenm > 1 is even, then for the case ofT -odd matrix polynomials we show that
the nearest perturbed polynomial can have non-zero finite eigenvalues but not the
eigenvalue∞.

• Whenm > 1 is odd, then for the case ofT -odd matrix polynomials we show that
the perturbed polynomial can have only∞ and non-zero finite eigenvalues.

The paper is organized as follows: In Section2, we review some known techniques that
were developed in [5, 6, 7] for matrix pencils and identify the types of structured homoge-
neous matrix polynomials that we will analyze as well as the eigenvalue symmetry that arises
for these structured matrix polynomials. In Section3 and in Section4 we present the struc-
tured backward error analysis of an approximate eigenpair for complex symmetric, complex
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skew-symmetric,T -even, andT -odd matrix polynomials and compare these results with the
corresponding unstructured backward errors. We also present a systematic general procedure
for the construction of an appropriate structured minimal complex symmetric, complex skew-
symmetric,T -even, andT -odd polynomial∆L such that the given approximate eigenvalue
and eigenvector are exact forL + ∆L. These results cover finite and infinite eigenvalues and
generalize results of [1, 2, 3, 4, 11] in a systematic way.

2. Notation and preliminaries. We denote byRn×n, Cn×n the sets of real and com-
plex n × n matrices, respectively. For an integerp, 1 ≤ p ≤ ∞, and an elementwise
nonnegative vectorw = [w1, . . . , wn]T ∈ Rn, we define a weightedp-(semi)norm of a real
or complex vectorx = [x1, . . . , xn]T via

‖x‖w,p := ‖[w1x1, w2x2, . . . , wnxn]T ‖p.

If w is elementwise strictly positive, then this is a norm, and ifw has zero components then
it is a seminorm. We define the componentwise inverse ofw via w−1 := [w−1

1 , . . . , w−1
m ]T ,

where we use the convention thatw−1
i = 0 if wi = 0.

We will consider structured and unstructured backward errors both in the spectral norm
and the Frobenius norm onCn×n, which are given by

‖A‖2 := max
‖x‖2=1

‖Ax‖, ‖A‖F := (traceA∗A)1/2,

respectively.
By σmax(A) andσmin(A) we denote the largest and smallest singular value of a ma-

trix A, respectively. The identity matrix is denoted byI andA, AT , andAH stand for the
conjugate, transpose, and conjugate transpose of a matrixA, respectively.

The set of all matrix polynomials of degreem ≥ 0 with coefficients inCn×n is denoted
by Lm(Cn×n). This is a vector space which we can equip with weighted (semi)norms (given
a nonnegative weight vectorw := [w0, w1, . . . , wm]T ∈ Rm+1 \ {0}) defined as

|||L|||w,F := ‖(A0, . . . , Am)‖w,F = (w2
0‖A0‖2

F + . . . + w2
m‖Am‖2

F )1/2,

for the Frobenius norm and

|||L|||w,2 := ‖(A0, . . . , Am)‖w,2 = (w2
0‖A0‖2

2 + . . . + w2
m‖Am‖2

2)
1/2,

for the spectral norm. A matrix polynomial is calledregular if det(L(λ, µ)) 6= 0 for some
(λ, µ) ∈ C2\{(0, 0)}, otherwise it is calledsingular. Thespectrumof a homogeneous matrix
polynomialL ∈ Lm(Cn×n) is defined as

Λ(L) := {(c, s) ∈ C2 \ {(0, 0)} : rank(L(c, s)) < n}.

In the following we normalize the set of points(c, s) ∈ C2 \ {(0, 0)}, such thatc is real and
|c|2 + |s|2 = 1. With this normalization, it follows that the spectrumΛ(L) of a matrix poly-
nomialL ∈ Lm(Cn×n) can be identified with a subset of the Riemann sphere; see, e.g., [6].

In the following we will compute backward errors for structured matrix polynomials.
These were introduced, e.g., in [21, 35], but here we follow [5, 6, 7] and define the backward
error of an approximate eigenpair as follows. Let(λ, µ) ∈ C2 \ {(0, 0)} be an approximate
eigenvalue ofL ∈ Lm(Cn×n) with corresponding normalized approximate right eigenvector
x 6= 0 with xHx = 1, i.e.,L(λ, µ)x = 0. Then we consider the Frobenius and spectral norm
backward errors associated with a given nonnegative weightvector[w0, w1, . . . , wm]T

ηw,F (λ, µ, x,L) := inf{|||∆L|||w,F , ∆L ∈ Lm(Cn×n), (L(λ, µ) + ∆L(λ, µ))x = 0},
ηw,2(λ, µ, x,L) := inf{|||∆L|||w,2, ∆L ∈ Lm(Cn×n), (L(λ, µ) + ∆L(λ, µ))x = 0},
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respectively. Whenw := [1, 1, . . . , 1]T , then we just leave off the indexw for convenience.
The backward errors for structured matrix polynomials froma setS ⊂ Lm(Cn×n) are defined
analogously as

ηS

w,F (λ, µ, x,L) := inf{|||∆L|||w,F , ∆L ∈ S, (L(λ, µ) + ∆L(λ, µ))x = 0},
ηS

w,2(λ, µ, x,L) := inf{|||∆L|||w,2, ∆L ∈ S, (L(λ, µ) + ∆L(λ, µ))x = 0},

respectively.
In order to compute the backward errors, we will need the partial derivative∇i‖z‖w,2 of

the map

Cm+1 → R,

z 7→ ‖z‖w,2 = ‖(z0, z1, . . . , zm)‖w,2,
(2.1)

which is the derivative of (2.1) with respect to the variablezj obtained by fixing the variables
z0, z1, . . . , zi−1, zi+1, . . . , zm as constants. The gradient of the map (2.1) is then defined as

∇(‖z‖w,2) = [∇0‖z‖w,2,∇1‖z‖w,2, . . . ,∇m‖z‖w,2]
T ∈ Cm+1.

For a given(λ, µ) ∈ C2 \ {(0, 0)} andx ∈ Cn with xHx = 1, we setk := −L(λ, µ)x
and, with a given nonnegative weight vector[w0, w1, . . . , wm]T , we introduce

Hw,2 := Hw,2(λ, µ) := ‖(λmµ0, λm−1µ, . . . , λ0µm)‖w,2,

and we use the notation∇jHw,2 for the partial derivative (with respect tozj) of the map (2.1)
at (λmµ0, λm−1µ, . . . , λ0µm). Then we have

(2.2) ηw,2(λ, µ, x,L) =
‖L(λ, µ)x‖

Hw−1,2(λ, µ)
.

Defining for each of the coefficients

(2.3) zAj
:=

∇jHw−1,2

Hw−1,2

and introducing the perturbations∆Aj := zAj
kxH for the coefficients, we form the matrix

polynomial

∆L(c, s) =

m∑

j=0

cm−jsj∆Aj ,

with

|||∆L|||w,2 =
‖k‖

Hw−1,2
.

Forz ∈ C we set sign(z) := z/|z|, whenz 6= 0 and sign(z) := 0 whenz = 0. With these
definitions we have the following preliminary results whichgeneralize the corresponding
results of [5, 6] to matrix polynomials.

PROPOSITION2.1. Consider the map‖z‖w,2 given by(2.1). Then‖z‖w,2 is differen-
tiable onCm+1 and

∇i‖z‖w,2 =
w2

i zi

‖z‖w,2
, i = 0, 1, 2, . . . ,m.
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Proof. The assertion follows from the fact that∇(|zi|2) = 2zi.
The proof of the following two propositions is analogous.

PROPOSITION2.2. Let m be an integer and let̃m =
m

2
+ 1, m̂ = m if m is even and

m̃ =
m + 1

2
, m̂ = m − 1 if m is odd. Consider the mapping

Kw,2 : Cm̃ → R

z 7→ ‖[z0, z2, z4, . . . , zm̂]T ‖w,2.

ThenKw,2 is differentiable and

∇iKw,2(z) =
w2

i zi

Kw,2(z)
, i = 0, 2, 4, . . . , m̂.

PROPOSITION2.3. Let m be an integer and let̃m =
m

2
, m̂ = m if m is even and

m̃ =
m + 1

2
, m̂ = m − 1 if m is odd. Consider the mapping

Nw,2 : Cm̃ → R

z 7→ ‖[z1, z3, z5, . . . , zm̂]T ‖w,2.

ThenNw,2 is differentiable and

∇iNw,2(z) =
w2

i zi

Nw,2(z)
, i = 1, 3, 5, . . . , m̂.

PROPOSITION2.4. Consider the functions

Hw,2(c
ms0, cm−1s, . . . , c0sm) = ‖[cms0, cm−1s, . . . , c0sm]T ‖w,2,

Kw,2(c
ms0, cm−2s2, . . . , c0sm) = ‖[cms0, cm−2s2, . . . , c0sm]T ‖w,2 if m is even,

Kw,2(c
ms0, cm−2s2, . . . , csm−1) = ‖[cms0, cm−2s2, . . . , csm−1]T ‖w,2 if m is odd,

Nw,2(c
m−1s, cm−3s3, . . . , csm−1) = ‖[cm−1s, cm−3s3, . . . , csm−1]T ‖w,2 if m is even,

Nw,2(c
m−1s, cm−3s3, . . . , c0sm) = ‖[cm−1s, cm−3s3, . . . , c0sm]T ‖w,2 if m is odd.

For evenm, the following formulas hold:

m∑

j=0,j even

cm−jsj ∇jHw,2

Hw,2
=

K2
w,2

H2
w,2

m∑

j=0

w−2
j |∇jKw,2|2 = 1,

m−1∑

j=1,j odd

cm−jsj ∇jHw,2

Hw,2
=

N2
w,2

H2
w,2

m−1∑

j=1

w−2
j |∇jNw,2|2 = 1,

m∑

j=0,j even

cm−jsj ∇jKw,2

Kw,2
= 1,

m−1∑

j=1,j odd

cm−jsj ∇jNw,2

Nw,2
= 1,

m∑

j=0,j even

cm−jsj ∇jHw,2

Hw,2
+

m−1∑

j=1,j odd

cm−jsj ∇jHw,2

Hw,2
= 1.
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For oddm, the following formulas hold:

m−1∑

j=0,j even

cm−jsj ∇jHw,2

Hw,2
=

K2
w,2

H2
w,2

,
m∑

j=1,j odd

cm−jsj ∇jHw,2

Hw,2
=

N2
w,2

H2
w,2

,

m−1∑

j=0,j even

cm−jsj ∇jKw,2

Kw,2
= 1,

m∑

j=1,j odd

cm−jsj ∇jNw,2

Nw,2
= 1,

m−1∑

j=0,j even

cm−jsj ∇jHw,2

Hw,2
+

m∑

j=1,j odd

cm−jsj ∇jHw,2

Hw,2
= 1.

For all m, the following formulas hold:

m∑

j=0

cm−jsj ∇jHw,2

Hw,2
= 1,

m∑

j=0

w−2
j |∇jHw,2|2 = 1.

Proof. By Proposition2.1, we have

∇jHw,2(c
m, cm−1s, . . . , sm) =

w2
j cm−jsj

Hw,2(cm, cm−1s, . . . , sm)
.

Then, we obtain

m∑

j=0, j even

cm−jsj ∇jHw,2

Hw,2
=

m∑

j=0, j even

w2
j cm−jsj cm−jsj

H2
w,2

=
K2

w,2

Hw,2
.

The other parts follow analogously, using Propositions2.1–2.3.
After establishing these formulas for general matrix polynomials, we now turn to the

structured classes. These classes were discussed in detailin [28] but not in homogeneous
form. So let us first introduce the homogeneous versions.

DEFINITION 2.5. Let (c, s) ∈ C2 \ {(0, 0)}. A matrix polynomialL ∈ Lm(Cn×n) is
called

1. Symmetric/skew-symmetricif L(c, s) = ±L
T (c, s),

2. T -even/T -odd if L(c, s) = ±L
T (c,−s).

The spectra of these classes of structured matrices have a symmetry structure that is
summarized in the following proposition which follows directly from the results for the non-
homogeneous case in [28].

PROPOSITION2.6.
1. LetL ∈ Lm(Cn×n) be a complex symmetric or complex skew-symmetric matrix

polynomial of the form(1.1). If x ∈ Cn is a right eigenvector ofL corresponding to
an eigenvalue(λ, µ) ∈ C2 \ {(0, 0)}, thenx is a left eigenvector corresponding to
the eigenvalue(λ, µ).

2. LetL ∈ Lm(Cn×n) be a complexT -even orT -odd matrix polynomial of the form
(1.1). If x ∈ Cn andy ∈ Cn are right and left eigenvector associated to an eigen-
value (λ, µ) ∈ C2 \ {(0, 0)} of L, theny and x are right and left eigenvectors
associated to the eigenvalue(λ,−µ).

SinceT -odd andT -even matrix polynomials have coefficients that are alternating be-
tween symmetric and skew-symmetric matrices, it is clear that in the productxT (L(λ, µ))x
all terms associated with skew-symmetric coefficients vanish; these are the coefficients with
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TABLE 2.1
Eigenvalues and eigenvectors of structured matrix polynomials.

S Eigenvalues Eigenpairs xT Ajx
symmetric (λ, µ) ((λ, µ), x, x)

skew-symm. (λ, µ) ((λ, µ), x, x) 0
T-even ((λ, µ), (λ,−µ)) ((λ, µ), x, y), ((λ,−µ), y, x) 0 for all oddj
T-odd ((λ, µ), (−λ, µ)) ((λ, µ), x, y), ((−λ, µ), y, x) 0 for all evenj

odd index forT -even matrix polynomials, and the ones with even index forT -odd matrix
polynomials. We summarize the properties of these structured matrix polynomials in Ta-
ble2.1.

To derive the backward error formulas, we will frequently need the following completion
results in which for a symmetric matrixX, X

1

2 denotes the positive square root.

THEOREM 2.7 ([15]). Consider a block matrixT :=

[
A C
B X

]
. Then for any positive

number

χ ≥ max

{∥∥∥∥
[
A
B

] ∥∥∥∥
2

,

∥∥∥∥
[
A C

] ∥∥∥∥
2

}
,

the blockX can be chosen such that
∥∥∥∥

[
A C
B X

] ∥∥∥∥
2

≤ χ,

whereX is of the formX = −KAHL + χ(I − KKH)1/2Z(I − LHL)1/2, and where
K := ((χ2I − AHA)−1/2BH)H , L := (χ2I − AHA)−1/2C with Z an arbitrary matrix
such that‖Z‖2 ≤ 1.

As a Corollary of Theorem2.7one has the following result for complex matrices.

COROLLARY 2.8. Let A = ±AT , C = ±BT ∈ Cn×n andχ := σmax

([
A
B

])
. Then

there exists a symmetric/skew-symmetric matrixX ∈ Cn×n such that

σmax

([
A ±BT

B X

])
= χ,

andX has the form

X := −KAKT + χ(I − KKH)1/2Z(I − KKT )1/2,

K := B(χ2I − AA)−1/2 and whereZ = ±ZT ∈ Cn×n is an arbitrary matrix such that
‖Z‖2 ≤ 1.

In the results presented below, we always useZ = 0. In the following section we derive
backward errors for the different classes of structured matrix polynomials.

3. Backward errors for complex symmetric and skew-symmetric matrix polynomi-
als. In this section we derive backward error formulas for homogeneous complex symmetric
and skew-symmetric matrix polynomials. Throughout this section, we will make use of the

partial derivatives
∇jHw−1,2

Hw−1,2

of Hw−1,2 and ofzAj
as defined in (2.3).
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THEOREM 3.1. Let L ∈ Lm(Cn×n) be a regular, symmetric matrix polynomial of the
form (1.1), let (λ, µ) ∈ C2 \{(0, 0)}, letx ∈ Cn be such thatxHx = 1 andk := −L(λ, µ)x.
Introduce the perturbation matrices

∆Aj = −xxT AjxxH + zAj

[
xkT + kxH − 2(xT k)xxH

]
, j = 0, 1, . . . ,m

and define

∆L(c, s) =
m∑

j=0

cm−jsj∆Aj ∈ Lm(Cn×n).

Then∆L is a symmetric matrix polynomial and(L(λ, µ) + ∆L(λ, µ))x = 0.
Proof. Since for allj we have∆Aj = ∆AT

j , it follows that∆L is symmetric and we
have that

(L(λ, µ) + ∆L(λ, µ))x =

m∑

j=0

λm−jµj(Aj + ∆Aj)x

=
m∑

j=0

λm−jµj
[
Ajx − xxT Ajx + zAj

[
xkT x + k − 2(xT k)x

]]

= −k(I − xxT ) +
[
xkT x + k − 2(xT k)x

] m∑

j=0

λm−jµjzAj
.

By Proposition2.4we have that
m∑

j=0

λm−jµjzAj
= 1. Then

(L(λ, µ) + ∆L(λ, µ))x = −(I − xxT )k + xkT x + k − 2(xT k)x = 0,

sincekT x = xT k.
Theorem3.1with c = 1 andw = [1, 1, . . . , 1]T implies Theorem 4.2.1 of [2] for the case

of non-homogeneous matrix polynomials that have only finiteeigenvalues, i.e., for which
det(Am) 6= 0. Theorem3.1 also implies Theorem 2.2 of [3] for matrix pencils. Using
Theorem3.1 we then obtain the following backward errors for complex symmetric matrix
polynomials.

THEOREM 3.2. Let L ∈ Lm(Cn×n) be a complex symmetric matrix polynomial of
the form (1.1), let (λ, µ) ∈ C2 \ {(0, 0)}, let x ∈ Cn be such thatxHx = 1, and set
k := −L(λ, µ)x.

i) The structured backward error with respect to the Frobenius norm is given by

ηS

w,F (λ, µ, x,L) =

√
2‖k‖2

2 − |xT k|2
Hw−1,2

.

There exists a unique complex symmetric polynomial∆L(c, s) :=
m∑

j=0

cm−jsj∆Aj

with coefficients

∆Aj = zAj

[
xkT + kxH − (xT k)xxH

]
, j = 0, 1, . . . ,m

such that the structured backward error satisfiesηS
w,2(λ, µ, x,L) = |||∆L|||w,2 andx,

x are left and right eigenvectors corresponding to the eigenvalue(λ, µ) of L + ∆L,
respectively.
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ii) The structured backward error with respect to the spectral norm is given by

ηS

w,2(λ, µ, x,L) =
‖k‖2

Hw−1,2

and there exist a complex symmetric polynomial∆L(c, s) :=

m∑

j=0

cm−jsj∆Aj with

coefficients

∆Aj := zAj

[
xkT + kxH − (kT x)xxH − xT k(I − xxT )kkT (I − xxH)

‖k‖2
2 − |xT k|2

]

such that|||∆L|||w,2 = ηS
w,2(λ, µ, x,L), and(L(λ, µ) + ∆L(λ, µ))x = 0.

Proof. By Theorem3.1we have(L(λ, µ)+∆L(λ, µ))x = 0 and hencek = ∆L(λ, µ)x.
Now we construct a unitary matrixU which hasx as its first column,U = [x,U1] ∈ Cn×n

and let∆̃Aj := UT ∆AjU =

[
dj,j dT

j

dj Dj,j

]
, whereDj,j = DT

j,j ∈ C(n−1)×(n−1). Then

U ˜∆L(λ, µ)UH = UUT (∆L(λ, µ))UHU = ∆L(λ, µ),

and hence

U ˜∆L(λ, µ)UHx = ∆L(λ, µ)x = k,

which implies that

˜∆L(λ, µ)UHx = UT k =

[
xT k
UT

1 k

]
.

Therefore, we get that

[∑m
j=0 λm−jµjdj,j∑m
j=0 λm−jµjdj

]
=




∑m
j=0 wjdj,j

λm−jµj

wj
∑m

j=0 wjλ
m−jµj dj

wj


 =

[
xT k
UT

1 k

]
.

To minimize the norm of the perturbation, we solve this system for the parametersdj,j , dj in
a least squares sense, and obtain




w0d0,0

w1d1,1

w2d2,2

...
wmdm,m




=




zA0

zA1

zA2

...
zAm




xT k, and




w0d0

w1d1

...
wmdm


 =




zA0

zA1

zA2

...
zAm




UT
1 k,

Applying Proposition2.1, we then get the following relations

dj,j = zAj
xT k, dj = zAj

UT
1 k, j = 0, 1, . . . ,m.

From this we obtain

∆Aj = U∆̃AUH = xdj,jx
H + U1djx

H + xdT
j UH

1 + U1Dj,jU
H
1

= zAj
[(xxT kxH) + U1U

T
1 kxH + xkT U1U

H
1 )] + U1Dj,jU

H
1

= zAj
[(xxT kxH) + (I − xxT )kxH + xkT (I − xxH))] + U1Dj,jU

H
1

= zAj

[
kxH + xkT − (kT x)xxH

]
+ U1Dj,jU

H
1 .(3.1)
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In the Frobenius norm, the minimal perturbation is obtainedby takingDj,j = 0, and hence
we get

‖∆Aj‖2
F = |dj,j |2 + 2‖dj‖2

2 = |zAj
|2(|xT k|2 + 2‖UT

1 k‖2
2)

= |∇jHw−1,2|2
2‖k‖2

2 − |xT k|2
H2

w−1,2

,

since‖UT k‖2
2 = |xT k|2 + ‖UT

1 k‖2
2. Using

m∑

j=0

w2
j |∇jHw−1,2|2 = 1 from Proposition2.4,

we obtain that in the case of the Frobenius norm

|||∆L|||2w,F =

m∑

j=0

w2
j |∇jHw−1,2|2

2‖k‖2
2 − |xT k|2

H2
w−1,2

=
2‖k‖2

2 − |xT k|2
H2

w−1,2

,

and hence,

|||∆L|||w,F =

√
2‖k‖2

2 − |xT k|2
H2

w−1,2

.

As kT x is a scalar constant, it follows that all∆Aj and thus also∆L are symmetric and

(L(λ, µ) + ∆L(λ, µ))x =

m∑

j=0

λm−jµj(Aj + ∆Aj)x = −k + (

m∑

j=0

λm−jµj∆Aj)x

= −k +
m∑

j=0

λm−jµjzAj
[kxH + xkT − xkT xxH ]x

= −k + k + xkT x − xkT x = 0.

Here we have used that by Proposition2.4 we have that
m∑

j=0

λm−jµjzAj
= 1. Similarly, it

follows thatxH(L(λ, µ) + ∆L(λ, µ)) = 0.
For the spectral norm we can apply Corollary2.8to (3.1) and get

Dj,j =−zAj

P 2

[
xT k(UT

1 k)(UT
1 k)T

]

+ χ

[
I − (UT

1 k)(UT
1 k)H

P 2

]1/2

Z

[
I − UT

1 k(UT
1 k)T

P 2

]1/2

,

whereZ = ZT and‖Z‖2 ≤ 1, P 2 = ‖k‖2
2 − |xT k|2, χ :=

√
‖dj,j‖2 + ‖dj‖2

2. With the

special choiceZ = 0 we getDj,j = −zAj

P 2

[
xT k(UT

1 k)(UT
1 k)T

]
and

U1Dj,jU
H
1 = −zAj

P 2
U1U

T
1 kkT U1U

H
1 = −zAj

P 2
(I − xxT )kkT (I − xxH).

Hence,

∆Aj = zAj

[
kxH + xkT − x(kT x)xH

]
− zAj

P 2
(I − xxT )kkT (I − xxH),
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∆L(c, s) is symmetric, and(L(λ, µ) + ∆L(λ, µ))x = 0. With

χ := σmax

([
dj,j

dj

])
= |zAj

|
√

|xT k|2 + ‖UT
1 k‖2 =

|∇jHw−1,2|
Hw−1,2

‖k‖2,

and Corollary2.8we haveχ = ‖∆Aj‖2, and by Proposition2.4,
∑m

j=0 w2
j |∇jHw−1,2|2 = 1,

it follows that

ηS

w,2(λ, µ, x,L) = |||∆L|||w,2 =
‖k‖2

Hw−1,2
.

Note that in the construction of a minimal spectral norm backward error we have infinitely
many choices of an appropriate completionZ for which ‖Z‖2 ≤ 1, but here and in the
following we always takeZ = 0 to simplify the formulas.

Remark 3.3. If wj = 0 for j = 0, . . . ,m, thenzAj
=

∇jHw−1,2(λ, µ)

Hw−1,2(λ, µ)
= 0 and hence

by Theorem3.2we have that∆Aj = 0, j = 0, . . . ,m. This shows thatwj = 0 implies that
Aj remains unperturbed.

We then have the following relations between structured andunstructured backward er-
rors.

COROLLARY 3.4. LetL ∈ Lm(Cn×n) be a regular, symmetric matrix polynomial of the
form (1.1), let (λ, µ) ∈ C2 \ {(0, 0)}, let x ∈ Cn be such thatxHx = 1. Then,

ηS

w,F (λ, µ, x,L) ≤
√

2ηw,2(λ, µ, x,L)

ηS

w,2(λ, µ, x,L) = ηw,2(λ, µ, x,L).

Proof. By Theorem3.2with k := −L(λ, µ)x, we have that

ηS

w,2(λ, µ, x,L) =
‖k‖2

Hw−1,2

, andηS

w,F (λ, µ, x,L) =

√
2‖k‖2

2 − |xT k|2
Hw−1,2

and from (2.2) we have thatηw,2(λ, µ, x,L) =
‖k‖2

Hw−1,2
. Thus the assertion follows.

As a corollary we obtain the results of [2, 3, 4] for the case of non-homogeneous matrix
polynomials that have no infinite eigenvalues, as well as theresult for homogeneous matrix
pencilsL(c, s) = cA + sB ∈ L1(C

n×n) and in the special case, i.e., forc = 1, we obtain
results given in Theorems 3.1, and 3.2 of [3].

In an analogous way we can derive the results for complex skew-symmetric matrix poly-
nomials.

THEOREM 3.5. LetL ∈ Lm(Cn×n) be a complex skew-symmetric matrix polynomial of
the form(1.1), let (λ, µ) ∈ C2\{(0, 0)}, letx ∈ Cn such thatxHx = 1 andk := −L(λ, µ)x.
Introduce the perturbation matrices

∆Aj := −zAj

[
xkT − kxH

]
, j = 0, 1, 2, . . . ,m.

Then the matrix polynomial∆L(c, s) =

m∑

j=0

cm−jsj∆Aj , is complex skew-symmetric and

(L(λ, µ) + ∆L(λ, µ))x = 0.
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Proof. By construction∆L is complex skew-symmetric and by Proposition2.4, we have
m∑

j=0

λm−jµjzAj
= 1. Thus, we have

(L(λ, µ) + ∆L(λ, µ))x

= −k + ∆L(λ, µ)x = −k +

m∑

j=0

λm−jµjzAj

[
xkT − kxH

]
x

= −k + xkT x + k = 0,

asxkT x = 0, since the polynomial has skew-symmetric coefficients.
THEOREM 3.6. Let L ∈ Lm(Cn×n) be a complex skew-symmetric matrix polynomial

of the form(1.1), let (λ, µ) ∈ C2 \ {(0, 0)}, let x ∈ Cn be such thatxHx = 1 and let
k := −L(λ, µ)x. The structured backward errors with respect to the Frobenius norm and
spectral norm are given by

ηS

w,F (λ, µ, x,L) =

√
2‖k‖2

2

Hw−1,2
,

ηS

w,2(λ, µ, x,L) =
‖k‖2

Hw−1,2

,

respectively. Introducing the perturbation matrices

∆Aj = −zAj

[
xkT − kxH

]
, j = 0, 1, . . . ,m,

then ∆L(c, s) :=
∑m

j=0 cm−jsj∆Aj is skew-symmetric,(∆L(λ, µ) + L(λ, µ))x = 0,

ηS

w,F (λ, µ, x,L) = |||∆L|||w,F andηS
w,2(λ, µ, x,L) = |||∆L|||w,2.

Proof. By Theorem3.5 we have(L(λ, µ) + ∆L(λ, µ))x = 0 and hence we have that
k = ∆L(λ, µ)x. We choose a unitary matrixU of the formU = [x,U1], U1 ∈ Cn×n−1 and

define∆̃Aj := UT ∆AjU =

[
0 dT

j

−dj ∆Dj,j

]
, where

∆Dj,j = −∆DT
j,j ∈ C(n−1)×(n−1).

Then

U ˜∆L(λ, µ)UH = UUT (∆L(λ, µ))UHU = ∆L(λ, µ),

and hence

U ˜∆L(λ, µ)UHx = ∆L(λ, µ)x = k,

which implies that

˜∆L(λ, µ)UHx = UT k =

[
xT k
UT

1 k

]
.

SinceUHx = e1, it follows thatxT k = 0 and

UT
1 k = −

m∑

j=0

λm−jµjdj =

m∑

j=0

wjλ
m−jµj dj

wj
.
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To minimize the perturbation we solve the system for the parametersdj,j , dj in a least squares
sense, and obtainxT k = 0 and




w0d0

w1d1

...
wmdm


 = −




zA0

zA1

...
zAm


UT

1 k,

whereHw,2 = ‖
[
λmµ0, λm−1µ, . . . , λ0µm

]T ‖w,2. This yieldsdj,j = 0, dj = −zAj
UT

1 k
and then

∆̃Aj =

[
0 −

(
zAj

UT
1 k

)T

zAj
UT

1 k ∆Dj,j

]
.

The Frobenius norm can be minimized by taking∆Dj,j = 0 and then we have

‖∆Aj‖2
F = 2‖dj‖2

2 = 2|zAj
|2‖UT

1 k‖2 = |∇jHw−1,2|2
2‖k‖2

2

H2
w−1,2

,

since‖k‖2
2 = ‖UT k‖2

2 = |xT k|2 + ‖UT
1 k‖2

2 = ‖UT
1 k‖2

2. Also by Proposition2.4, we have

that
∑m

j=0 w2
j |∇jHw−1,2|2 = 1. Thus we obtain|||∆L|||w,F =

√
2‖k‖2

2

Hw−1,2
and

∆Aj = U∆̃AUH =
[
x U1

] [
0 dT

j

−dj ∆Dj,j

] [
xH

UH
1

]

= −U1djx
H + xdT

j UH
1 + U1∆Dj,jU

H
1

= U1zAj
UT

1 kxH − x(zAj
UT

1 k)T UH
1 + U1∆Dj,jU

H
1

= zAj

[
U1U

T
1 kxH − xkT U1U

H
1 )

]
+ U1∆Dj,jU

H
1

= zAj
[(I − xxT )kxH − xkT (I − xxH))].(3.2)

Therefore

∆Aj = zAj
[kxH − xkT ]

is complex skew-symmetric and we have(L(λ, µ) + ∆L(λ, µ))x = 0.
To minimize the spectral norm we make use of Corollary2.8and obtain

∆Dj,j = −zAj

P 2
[xT k(UT

1 k)(UT
1 k)T ]

+

[
I − (UT

1 k)(UT
1 k)H

P 2

]
Z

[
I − UT

1 k(UT
1 k)T

P 2

]
,

whereZ = −ZT with ‖Z‖2 ≤ 1, andP 2 = ‖k‖2
2 − |xT k|2. ChoosingZ = 0, we get

∆Dj,j = −zAj

P 2
[xT k(UT

1 k)(UT
1 k)T ]

and using (3.2), we get

U1∆Dj,jU
H
1 = −zAj

P 2
xT kU1U

T
1 kkT U1U

H
1 = −zAj

P 2
xT k(I − xxT )kkT (I − xxH),
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and hence

∆Aj = zAj

[
−kxH + xkT − 2x(kT x)xH

]
− zAj

P 2
xT k(I − xxT )kkT (I − xxH).

The skew-symmetry ofAj implies thatxT k = 0 and thus∆Aj = zAj

[
kxH − xkT

]
is

complex skew-symmetric. Then∆L(c, s) is complex skew-symmetric as well and with
χ∆Aj

= |zAj
|‖UT

1 k‖2 we have that(L(λ, µ) + ∆L(λ, µ))x = 0.
By Corollary2.8we obtain

‖∆Aj‖2 = |zAj
|‖UT

1 k‖2 = |zAj
|
√

‖k‖2
2 − |xT k|2 = |zAj

|‖k‖2

and henceηS
w,2(λ, µ, x,L) = |||∆L|||w,2.

As a direct corollary of Theorem3.6we have the following relation between structured
and unstructured backward errors of an approximate eigenpair.

COROLLARY 3.7. Let L ∈ Lm(Cn×n) be a skew-symmetric matrix polynomial of the
form (1.1), let (λ, µ) ∈ C2 \ {(0, 0)}, let x ∈ Cn satisfyxHx = 1, and setk := −L(λ, µ)x.
Then the structured and unstructured backward errors are related via

ηS

w,F (λ, µ, x,L) =
√

2ηw,2(λ, µ, x,L),

ηS

w,2(λ, µ, x,L) = ηw,2(λ, µ, x,L).

As a further corollary we obtain Theorem 4.3.4 of [2]; see also [4] for non-homogeneous
matrix polynomials with no infinite eigenvalues.

For matrix pencilsL(c, s) = cA0 + sA1 ∈ L1(C
n×n), Theorem3.6 in the special case

c = 1 also implies the results given in Theorem 3.3 and Theorem 4.2of [3].
To illustrate our results, in the following we present some examples.
Example 3.8.Consider the complex symmetric pencilL ∈ L1(C

2×2) with coefficients

A0 :=

[
0 1
1 0

]
andA1 :=

[
0 0
0 1

]
, and takex =

[
−ı/

√
2

ı/
√

2

]
, (λ, µ) = (0, 1).

For the Frobenius norm we obtain the coefficients of the perturbation pencil∆L as

∆A0 =

[
0 0
0 0

]
and∆A1 :=

[
0.25 0.25
0.25 −0.75

]
. Then(0, 1) is an eigenvalue ofL + ∆L

and|||∆L|||F = ηS

F (λ, µ, x,L) = 0.8660.

For the spectral norm we obtain∆A0 =

[
0 0
0 0

]
, and∆A1 =

[
0.5 0.5
0.5 −0.5

]
. Again(0, 1)

is an eigenvalue ofL + ∆L and|||∆L|||2 = ηS
2 (λ, µ, x,L) = 0.7071; see also Table3.1.

Example 3.9.Consider the complex skew-symmetric pencilL ∈ L1(C
2×2) with coeffi-

cientsA0 :=

[
0 −1
1 0

]
, A1 :=

[
0 −2
2 0

]
and takex =

[
−ı/

√
2

ı/
√

2

]
, (λ, µ) = (0, 1).

For the Frobenius norm and spectral norm, the coefficients orthe perturbation pencil are

∆A0 =

[
0 0
0 0

]
, ∆A1 =

[
0 2
−2 0

]
, (0, 1) is an eigenvalue ofL + ∆L. The norm of the

perturbation is|||∆L|||F = ηS

F (λ, µ, x,L) = 2.8284, while for the spectral norm we obtain
|||∆L|||2 = ηS

2 (λ, µ, x,L) = 2, see also Table3.1.

4. Backward errors for complexT -odd andT -even matrix polynomials. In this sec-
tion we derive backward error formulas for homogeneousT -odd andT -even matrix polyno-
mials. Throughout this section we assume that the coefficient matrix A0 is in the even posi-
tion, i.e., it is symmetric for aT -even and skew-symmetric for aT -odd matrix polynomial.
The other case can be treated analogously via a multiplication with the imaginary unitı.
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TABLE 3.1
Structured and unstructured backward errors for Examples3.8and3.9.

Example S ηS
2 (λ, µ, x,L) ηS

F (λ, µ, x,L) η2(λ, µ, x,L)
1 symmetric 0.7071 0.8660 0.7071
2 skew-symmetric 2 2.8284 2

For a given nonnegative vectorw, an eigenvalue(λ, µ) and the partial derivatives as
introduced in Propositions2.1–2.4, we use the following abbreviations.

zAj
:=

∇jHw−1,2(λ, µ)

Hw−1,2(λ, µ)
, nAj

:=
∇jNw−1,2(λ, µ)

Nw−1,2(λ, µ)
, kAj

:=
∇jKw−1,2(λ, µ)

Kw−1,2(λ, µ)
.

We then have the following backward errors.

THEOREM 4.1. LetL ∈ Lm(Cn×n) be a complexT -even orT -odd matrix polynomial
of the form(1.1), let (λ, µ) ∈ C2 \ {(0, 0)}, let x ∈ Cn be such thatxHx = 1 and set
k := −L(λ, µ)x. For j = 0, 1, 2, . . . ,m, and different cases, we introduce the following
perturbation matrices.

• In the case thatm is even andλ 6= 0, or whenm > 1 is odd then let forT -even
matrix polynomials

∆Aj :=

{
kAj

(xT k)(xxH) + zAj

[
(I − xxT )kxH + xkT (I − xxH)

]
for evenj,

−zAj

[
−(I − xxT )kxH + xkT (I − xxH)

]
for oddj,

so that the perturbation preserves the structure,
• in the case thatm > 1 is even and bothλ 6= 0, µ 6= 0, or in the case thatm is odd

andµ 6= 0, let for T -odd matrix polynomials

∆Aj :=

{
nAj

(xT k)(xxH) + zAj

[
(I − xxT )kxH + xkT (I − xxH)

]
for oddj,

−zAj

[
−(I − xxT )kxH + xkT (I − xxH)

]
for evenj,

so that the perturbation again preserves the structure,
• in the case thatλ 6= 0, µ 6= 0 consider perturbation matrices for symmetric or

skew-symmetric coefficients

∆Aj :=

{
−xxT AjxxH + zAj

[
(I − xxT )kxH + xkT (I − xxH)

]
symm.,

−zAj

[
−(I − xxT )kxH + xkT (I − xxH)

]
skew-symm.

Then there exists a matrix polynomial∆L(c, s) =
m∑

j=0

cm−jsj∆Aj ∈ Cn×n that is structure

preservingT -odd orT -even and satisfies(L(λ, µ) + ∆L(λ, µ))x = 0.

Proof. Let ∆L ∈ Lm(Cn×n) be of the form∆L(c, s) =
∑m

j=0 cm−jsj∆Aj . Then by
the construction it is easy to see that∆L is eitherT -even orT -odd and it remains to show
that (L(λ, µ) + ∆L(λ, µ))x = 0. We begin with aT -odd polynomialL. In both cases that
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m is even or odd, we have

(L(λ, µ) + ∆L(λ, µ))x =

m∑

j=0

λm−jµj(Aj + ∆Aj)x

=




m∑

j=0,j even

λm−jµjAj


 x −

[
−k + xxT k

] m∑

j=0, j even

λm−jµjzAj

+

m−1∑

j=1, j odd

λm−jµjAjx + [(xT k)x +

m−1∑

j=1, j odd

λm−jµjzAj
(I − xxT )k]

= −k +




m∑

j=0,j even

λm−jµjzAj
+

m−1∑

j=1, j odd

λm−jµjzAj


 (I − xxT )k + xT kx

= −k + k − xxT k + xT kx = 0,

since by Proposition2.4we have that

m∑

j=0, j even

λm−jµjzAj
+

m−1∑

j=1, j odd

λm−jµjzAj
= 1.

The proof forT -even polynomials is analogous.
In the special case of linear matrix polynomials, i.e., form = 1, we have the following

expressions. For even pencils we have

∆A0 := −|sign(µ)|2xxT A0xxH + zA0

[
(I − xxT )kxH + xkT (I − xxH)

]
,

∆A1 := −zA1

[
−(I − xxT )kxH + xkT (I − xxH)

]
,

and for odd pencils we have

∆A1 := −|sign(λ)|2xxT A1xxH + zA1

[
(I − xxT )kxH + xkT (I − xxH)

]
,

∆A0 := −zA0

[
−(I − xxT )kxH + xkT (I − xxH)

]
,

where|sign(z)| = 1, if z 6= 0 and|sign(z)| = 0, for z = 0.
As a corollary we obtain the results for the case of non-homogeneous matrix polynomials

with no infinite eigenvalues of Theorem 4.2.1 in [2], see also [3, 4]. This case follows by
settingc = 1,L(s) = L(1, s),Λ = [1, µ, . . . , µm]T andw = [1, 1, . . . , 1]T .

The minimal backward errors for complexT -even polynomials andm > 1 are as fol-
lows.

THEOREM 4.2. Let L ∈ Lm(Cn×n) be aT -even matrix polynomial of the form(1.1),
let (λ, µ) ∈ C2 \ {(0, 0)}, let x ∈ Cn be such thatxHx = 1 and setk := −L(λ, µ)x.

i) The structured backward error with respect to the Frobenius norm is given by

ηS

w,F (λ, µ, x,L) =





√
|xT k|2
K2

w−1,2

+ 2
‖k‖2

2 − |xT k|2
H2

w−1,2

if m is even or

if µ 6= 0 andm is odd√
2‖k‖2

2 − |xT k|2
H2

w−1,2

if λ = 0 and, m is even,
√

2‖k‖2
2 − |xT k|2

H2
w−1,2

if µ = 0 and,m is odd.
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ii) The structured backward error with respect to the spectral norm is given by

ηS

w,2(λ, µ, x,L) =





√
|xT k|2
K2

w−1,2

+
‖k‖2

2 − |xT k|2
H2

w−1,2

if m is even or

if µ 6= 0 andm is odd
‖k‖2

Hw−1,2
if λ = 0 and, m is even,

‖k‖2

Hw−1,2
if µ = 0 and,m is odd.

Whenm is even, or whenm is odd andλ 6= 0, introduce the perturbation matrices

∆Aj :=

{
kAj

(xT k)(xxH) + zAj

[
(I − xxT )kxH + xkT (I − xxH)

]
for evenj,

−zAj

[
−(I − xxT )kxH + xkT (I − xxH)

]
for oddj.

Then∆L(c, s) =
∑m

j=0 cm−jsj∆Aj is the uniqueT -even matrix polynomial satisfying

(L(λ, µ) + ∆L(λ, µ))x = 0, and |||∆L|||w,F = ηS

w,F (λ, µ, x,L). Similarly, for the spec-
tral norm, whenm is even or whenm is odd andλ 6= 0, introduce the perturbation matrices

∆Aj :=





∆Aj −
kAj

xT k(I − xxH)kkT (I − xxT )

‖k‖2 − |xT k|2 for evenj,

∆Aj for oddj.

Then the matrix polynomial∆L(c, s) =

m∑

j=0

cm−jsj∆Aj is T -even, has spectral norm

|||∆L|||w,2 = ηS
w,2(λ, µ, x,L), and satisfies(L(λ, µ) + ∆L(λ, µ))x = 0.

Proof. Theorem4.1implies that(L(λ, µ)+∆L(λ, µ))x = 0 and hencek = ∆L(λ, µ)x.
Now choose a unitary matrixU = [x,U1], U1 ∈ Cn×n−1 and let

∆̃Aj := UT ∆AjU =

[
dj,j dT

j

dj ∆Dj,j

]
, ∆Dj,j = ∆DT

j,j ∈ C(n−1)×(n−1)

whenj is even and

∆Aj = U

[
0 bT

j

−bj ∆Bj,j

]
UH , ∆BT

j,j = −∆Bj,j

whenj is odd. Then, sinceU ˜∆L(λ, µ)UT = UUT (∆L(λ, µ))UT U = ∆L(λ, µ), it follows

that U ˜∆L(λ, µ)UT x = ∆L(λ, µ)x = k, and hence ˜∆L(λ, µ)UT x = UT k =

[
xT k
UT

1 k

]
.

Using



m∑

j=0

wjdj,j
λm−jµj

wj

m∑

j=0, j even

wjλ
m−jµj dj

wj
−

m∑

j=1,j odd

wjλ
m−jµj bj

wj




=

[
xT k
UT

1 k

]
,

to minimize the perturbation, we solve this system for the parametersdj,j , dj in a least square
sense, and we obtain




w0a0,0

w2a2,2

...
wmam,m


 =




zAm

zA2

...
zAm


xT k.
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Thendj,j = kAj
xT k, dj = zAj

UT
1 k for evenj andbj = zAj

UT
1 k for oddj and we obtain

∆Aj :=





U


kAj

xT k

(
zAj

UT
1 k

)T

zAj
UT

1 k ∆Dj,j


UH for evenj,

U


 0 −

(
zAj

UT
1 k

)T

zAj
UT

1 k ∆Bj,j


UH for oddj.

This implies that

(4.1) ∆Aj = −zAj

[
−(I − xxT )kxH + xkT (I − xxH)

]
+ U1∆Dj,jU

H
1 ,

whenj is odd. For evenj, we get

∆Aj =
[
x U1

]

kAj

xT k

(
zAj

UT
1 k

)T

zAj
UT

1 k ∆Dj,j




[
xH

UH
1

]

= kAj
(xT k)(xxH) + zAj

[
U1(U

T
1 )kxH + xkT U1U

H
1

]
+ U1∆Dj,jU

H
1 ,

and thus

(4.2) ∆Aj = kAj
(xT k)(xxH) + zAj

[
(I − xxT )kxH + xkT (I − xxH)

]
+ U1∆Dj,jU

H
1 .

The Frobenius norm can be minimized by taking∆Aj,j = 0, so we obtain

∆Aj :=

{
kAj

(xT k)(xxH) + zAj

[
(I − xxT )kxH + xkT (I − xxH)

]
for evenj,

−zAj

[
−(I − xxT )kxH + xkT (I − xxH)

]
for oddj.

Since the Frobenius norm is unitarily invariant, it followsthat for evenj we have

‖∆Aj‖F =
√

|aj,j |2 + 2‖aj‖2
2 =

√
|kAj

|2|xT k|2 + 2|zAj
|2‖UT

1 k‖2
2

=

√
|∇jKw−1,2|2|xT k|2

K2
w−1,2

+ 2
|∇jHw−1,2|2‖UT

1 k‖2
2

H2
w−1,2

.

Similarly for oddj, we have‖∆Aj‖F =
√

2|zAj
|‖UT

1 k‖2. Furthermore, by Proposition2.4,

we have
m∑

j=even

w2
j |∇jKw−1,2|2 = 1 and

m∑

j=0

w2
j |∇jHw−1,2|2 = 1 whenm is even. Then it

follows that

|||∆L|||w,F =

√√√√
m∑

j=0

w2
j‖∆Aj‖2

F =

√
|xT k|2
K2

w−1,2

+
2‖UT

1 k‖2
2

H2
w−1,2

=

√
|xT k|2
K2

w−1,2

+
2(‖k‖2

2 − |xT k|2)
H2

w−1,2

.

For the spectral norm, we have from (4.1) and (4.2) that

∆Aj :=

{
kAj

(xT k)(xxH) + zAj

[
(I − xxT )kxH + xkT (I − xxH)

]
+ Sj for evenj,

−zAj

[
−(I − xxT )kxH + xkT (I − xxH)

]
for oddj,
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whereSj := U1∆Dj,jU
H
1 =

zAj

P 2
xT k(I − xxT )kkT (I − xxH), andP 2 = ‖k‖2

2 − |xT k|2.

Now let

χ∆Aj
:=





√
|kAj

|2|xT k|2 + |zAj
|2(‖k‖2 − |xT k|2) for evenj,√

|zAj
|2(‖k‖2

2 − |xT k|2) for oddj.

Hence, by Corollary2.8 it follows that‖A‖2 = χ∆Aj
. Then

|||∆L|||w,2 =

√√√√
m∑

j=0

w2
j‖∆A‖2

2 =

√
|xT k|2
K2

w−1,2

+
‖k‖2 − |xT k|2

H2
w−1,2

,

and

ηS

w,2(λ, µ, x,L) =

√
|xT k|2
K2

w−1,2

+
‖k‖2 − |xT k|2

H2
w−1,2

.

We obtain the following relations between the structured and unstructured backward errors.
COROLLARY 4.3. LetL ∈ Lm(Cn×n) be aT -even matrix polynomial of the form(1.1),

let (λ, µ) ∈ C2 \ {(0, 0)}, let x ∈ Cn be such thatxHx = 1, and setk := −L(λ, µ)x.
1. If w := [1, 1, . . . , 1]T , |λ| = |µ| = 1 and ifm is odd, thenH2

w−1,2 = 2K2
w−1,2 and

for the Frobenius norm we get

ηS

w,F (λ, µ, x,L) =
√

2ηw,2(λ, µ, x,L).

Similarly, for the spectral norm we have

ηS

w,2(λ, µ, x,L) =

√
‖k‖2

2 + |xT k|2
Hw−1,2

.

2. If m is even or ifm is odd andλ 6= 0, then for the Frobenius and the spectral norm
we have

ηS

w,F (λ, µ, x,L) ≤
√

2ηw,2(λ, µ, x,L),

ηS

w,2(λ, µ, x,L) = ηw,2(λ, µ, x,L),

respectively.
Proof. Consider the case that|λ| = |µ| = 1, w = [1, 1, . . . , 1]T and thatm is odd. Then

H2
w−1,2 = 2K2

w−1,2. Substituting these in Theorem4.2 and then applying (2.2), we get for
the Frobenius norm that

ηS

w,F (λ, µ, x,L) =
√

2ηw,2(λ, µ, x,L)

and for the spectral norm that

ηS

w,2(λ, µ, x,L) =

√
‖k‖2

2 + |xT k|2
H2

w−1,2

.

If m is even andλ = 0, then we haveKw−1,2 = w−1
m |µ|m andHw−1,2 = w−1

m |µ|m and
hence

ηS

w,F (λ, µ, x,L) ≤
√

2ηw,2(λ, µ, x,L),

ηS

w,2(λ, µ, x,L) = ηw,2(λ, µ, x,L).
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Similarly, for µ = 0 we haveKw−1,2 = w−1
0 |λ|m andHw−1,2 = w−1

0 |λ|m, and hence

ηS

w,F (λ, µ, x,L) ≤
√

2ηw,2(λ, µ, x,L),

ηS

w,2(λ, µ, x,L) = ηw,2(λ, µ, x,L).

The assertion for the case thatλ 6= 0 andm is odd follows analogously.
As a corollary we obtain the results for non-homogeneous matrix polynomials with no

infinite eigenvalues of [2, 4], using the notationΛe := [1, µ2, . . . , µm]T if m is even and
Λe := [1, µ2, . . . , µm−1]T if m is odd.

COROLLARY 4.4. Let L ∈ Lm(Cn×n) be a T -even matrix polynomial of the form
L(s) =

∑m
j=0 sjAj ∈ Cn×n that has only finite eigenvalues. Letµ ∈ C, let x ∈ Cn be such

thatxHx = 1 and setk := −L(µ)x.
i) The structured backward error with respect to the Frobenius norm is given by

ηS

F (µ, x,L) =





√
|xT k|22
‖Λe‖2

2

+ 2
‖k‖2

2 − |xT k|2
‖Λ‖2

2

if µ ∈ C \ {0},
√

2‖k‖2
2 − |xT k|2 if µ = 0.

ii) The structured backward error with respect to the spectral norm is given by

ηS

2 (µ, x,L) =





√
|xT k|2
‖Λe‖2

2

+
‖k‖2

2 − |xT k|2
‖Λ‖2

2

if µ ∈ C \ {0},

η2(µ, x,L) if µ = 0.

In particular, if |µ| = 1 and m is odd, then we have‖Λ‖2
2 = 2‖Λe‖2

2. Moreover, for the
Frobenius norm we haveηS

F (µ, x,L) =
√

2η2(µ, x,L) and for the spectral norm we obtain

ηS
2 (µ, x,L) =

√
‖k‖2

2 + |xT k|2
‖Λ‖2

.

If we introduce the perturbation matrices

∆Aj :=





µj(xT k)(xxH)

‖Λe‖2
2

+
µj

‖Λ‖2
2

[
(I − xxT )kxH + xkT (I − xxH)

]
for evenj,

− µj

‖Λ‖2
2

[
−(I − xxT )kxH + xkT (I − xxH)

]
for oddj,

then∆L(s) =
∑m

j=0 sj∆Aj is the uniquely definedT -even matrix polynomial that satisfies

(L(µ) + ∆L(µ))x = 0 and|||∆L|||F = ηS

F (µ, x,L) for the Frobenius norm.
For the spectral norm, we introduce

∆Aj :=





∆Aj −
µjxT k(I − xxH)kkT (I − xxT )

‖Λe‖2
2(‖k‖2 − |xT k|2) for evenj,

∆Aj for oddj.

Then∆L(s) =
∑m

j=0 sj∆Aj is aT -even matrix polynomial such that(L(µ)+∆L(µ))x = 0

and|||∆L|||2 = ηS
2 (µ, x,L).
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Proof. The proof follows from Theorem4.2 usingw = [1, 1, . . . , 1]T , c = 1 and that
Hw−1,2 := ‖Λ‖2,Kw−1,2 := ‖Λe‖2.

Remark 4.5. Corollary4.3 implies that for|µ| = 1, and for the spectral norm we have
that

ηS

2 (µ, x,L) =

√
‖k‖2

2 + |xT k|2
‖Λ‖2

,

while in [2, Theorem 4.3.6] and in [4, Theorem 3.7] it is shown thatηS
2 (µ, x,L) = η2(µ, x,L)

whenw = [1, 1, . . . , 1]T andm is odd.
For complexT -even pencils we obtain the following result.
COROLLARY 4.6. Let L(c, s) = cA0 + sA1 ∈ L1(C

n×n) be aT -even matrix pencil.
Let (λ, µ) ∈ C2 \ {(0, 0)}, let x ∈ Cn be such thatxHx = 1, and setk := −L(λ, µ)x,
w := [1, 1]T .

i) The structured backward error with respect to the Frobenius norm is given by

ηS

F (λ, µ, x,L) =





√
|xT A0x|2 + 2

‖k‖2
2 − |λ|2|xT A0x|2
‖[λ, µ]T ‖2

2

=

√√√√
(

|µ|2

|λ|2 − 1
)
|xT k|2 + 2‖k‖2

2

‖[λ, µ]T ‖2
2

if λ 6= 0,

√
2ηw,2(λ, µ, x,L) if µ = 0,√
2ηw,2(λ, µ, x,L) if λ = 0,√
2ηw,2(λ, µ, x,L) if |λ| = 1, |µ| = 1.

ii) The structured backward error with respect to the spectral norm is given by

ηS

2 (λ, µ, x,L) =





√
|xT A0x|2 +

‖k‖2
2 − |λ|2|xT A0x|2
‖[λ, µ]T ‖2

2

=

√
|µ|2|xT A0x|2 + ‖k‖2

2

‖[λ, µ]T ‖2
2

if λ 6= 0,

η2(λ, µ, x,L) if µ = 0,

η2(λ, µ, x,L) if λ = 0,√
|xT A0x|2 + ‖k‖2

2

2
if |λ| = |µ| = 1.

Defining the perturbation matrices

∆A0 := −|sign(λ)|2xxT A0xxH + zA0

[
(I − xxT )kxH + xkT (I − xxH)

]
,

∆A1 := −zA1

[
−(I − xxT )kxH + xkT (I − xxH)

]
,

we have for the Frobenius norm that∆L(c, s) = c∆A0 + s∆A1 is the uniqueT -even matrix
polynomial that satisfies(L(λ, µ) + ∆L(λ, µ))x = 0 and|||∆L|||w,F = ηS

w,F (λ, µ, x,L).
For the spectral norm we introduce the perturbation matrices

∆A0 := ∆A0 −
sign(λ2)xT A0x(I − xxT )kkT (I − xxH)

(‖k‖2 − |xT A0x|2)
,

∆A1 := −zA1

[
−(I − xxT )kxH + xkT (I − xxH)

]
,
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then∆L(c, s) = c∆A0 + s∆A1 is T -even and satisfies(L(λ, µ) + ∆L(λ, µ))x = 0 and
|||∆L|||w,2 = ηS

w,2(λ, µ, x,L).
Proof. The proof follows as in Theorem4.1, usingm = 1 andw := [1, 1]T .
It follows that forλ = 0 in theT -even case we have∆A0 = 0 and

∆A1 := −zA1

[
−(I − xxT )kxH + xkT (I − xxH)

]
.

These perturbations are the same for the spectral and the Frobenius norm. Furthermore,
Corollary4.6shows that

ηS

F (λ, µ, x,L) ≤
{√

2η2(λ, µ, x,L) if |µ| < |λ|,
‖[λ, µ]T ‖2 η2(λ, µ, x,L) if |µ| > |λ|.

For a non-homogeneous pencilL(s) = A0 + sA1 ∈ L1(C
n×n) we then have

ηS

F (µ, x,L) ≤
{√

2η2(µ, x,L) if |µ| < 1,

‖[1, µ]T ‖2η2(λ, µ, x,L) if |µ| > 1,

which has been shown in Theorem 3.4 of [3] for the case thatµ 6= 0.

Example 4.7. Consider aT -even matrix pencil which has coefficientsA0 :=

[
2 1
1 ı

]
,

A1 :=

[
0 −ı
ı 0

]
, let x =

[
−ı/

√
2

ı/
√

2

]
and (λ, µ) = (1, 0). Then we obtain the following

perturbation matrices.
For the Frobenius norm we have

∆A0 =

[
−1 + 0.25ı 0 + 0.25ı
0 + 0.25ı 1 − 0.75ı

]
, ∆A1 =

[
0 0
0 0

]
,

A0 + ∆A0 =

[
1 + 0.25ı 1 + 0.25ı
1 + 0.25ı 1 + 0.25ı

]
, A1 + ∆A1 =

[
0 −ı
+ı 0

]
,

and|||∆L|||F = ηS

F (λ, µ, x,L).
For the spectral norm we obtain

∆A0 =

[
−1.2 + 0.10ı −0.20 + 0.10ı
−0.20 + 0.10ı 0.80 − 0.90ı

]
, ∆A1 =

[
0 0
0 0

]
,

A0 + ∆A0 =

[
0.80 + 0.10ı 0.80 + 0.10ı
0.80 + 0.10ı 0.80 + 0.10ı

]
, A1 + ∆A1 =

[
0 −ı
ı 0

]
,

andηS
2 (λ, µ, x,L) = |||∆L|||2 = 1.2247; see also Table4.1.

In a similar way we can derive the results forT -odd matrix polynomials.
THEOREM 4.8. LetL ∈ Lm(Cn×n) be aT -odd matrix polynomial of the form(1.1), let

(λ, µ) ∈ C2 \ {(0, 0)}, let x ∈ Cn be such thatxHx = 1 and setk := −L(λ, µ)x.
i) The structured backward error with respect to the Frobenius norm is given by

ηS

w,F (λ, µ, x,L) =





√
|xT k|2
N2

w−1,2

+ 2
‖k‖2

2 − |xT k|2
H2

w−1,2

if µ 6= 0 and m odd, or

if µ, λ 6= 0, and m even,√
2‖k‖2

2 − |xT k|2
H2

w−1,2

if λ = 0 andm odd.
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TABLE 4.1
Computed structured and unstructured backward errors for Example4.7.

(λ, µ) S ηS
2 (λ, µ, x,L) ηS

F (λ, µ, x,L) η2(λ, µ, x,L)
(1, 0) T -even 1.2247 1.6583 1.2247
(0, 1) T -even 1 1.414 1
(2, 1) T -even 1.0247 1.3601 1
(4, 3) T -even 0.9644 1.2689 0.9165
(2i, i) T -even 1.0247 1.3601 1

(2 + 3i, 1 + i) T -even 1.1255 1.5111 1.1106
(1, 2) T -even 0.9487 1.2450 0.8365
(1, 1) T -even 0.9354 1.2247 0.8660

ii) The structured backward error with respect to the spectral norm is given by

ηS

w,2(λ, µ, x,L) =





√
|xT k|2
N2

w−1,2

+
‖k‖2

2 − |xT k|2
H2

w−1,2

if µ 6= 0 and m odd, or

if λµ 6= 0, andm even,
‖k‖2

Hw−1,2

if λ = 0 andm odd.

For µ 6= 0 and oddm or for λ 6= 0, µ 6= 0 andm even, introduce the perturbation matrices

∆Aj :=

{
nAj

(xT k)(xxH) + zAj

[
(I − xxT )kxH + xkT (I − xxH)

]
for oddj,

−zAj

[
−(I − xxT )kxH + xkT (I − xxH)

]
for evenj.

Then, for the Frobenius norm,∆L(c, s) =
∑m

j=0 cm−jsj∆Aj is the uniqueT -odd matrix

polynomial such that(L(λ, µ) + ∆L(λ, µ))x = 0 and|||∆L|||w,F = ηS

w,F (λ, µ, x,L).
For µ 6= 0 and oddm or for λ 6= 0, µ 6= 0 and evenm and the spectral norm consider

the perturbation matrices

∆Ej :=





∆Aj −
nAj

xT k(I − xxH)kkT (I − xxT )

(‖k‖2 − |xT k|2) for oddj,

∆Aj for evenj.

Then∆L(c, s) =
∑m

j=0 cm−jsj∆Ej is T -odd, satisfies(L(λ, µ) + ∆L(λ, µ))x = 0 and

|||∆L|||w,2 = ηS
w,2(λ, µ, x,L).

Proof. The proof is analogous to that forT -even matrix polynomials.
We then obtain the following relations between structured and unstructured backward

errors of an approximate eigenpair.
COROLLARY 4.9. LetL ∈ Lm(Cn×n) be aT -even matrix polynomial of the form(1.1),

let (λ, µ) ∈ C2 \ {(0, 0)}, let x ∈ Cn be such thatxHx = 1, and setk := −L(λ, µ)x.
1. If λ = 0 andm is odd, then for the Frobenius norm we have

ηS

w,F (λ, µ, x,L) ≤
√

2ηw,2(λ, µ, x,L).

2. If λ = 0 andm is odd, then for the spectral norm we have

ηS

w,2(λ, µ, x,L) = ηw,2(λ, µ, x,L).
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3. Let w := [1, 1, . . . , 1]T and |λ| = |µ| = 1 for odd m. Then we have for the
Frobenius-norm

ηS

w,F (λ, µ, x,L) =
√

2ηw,2(λ, µ, x,L),

and for the spectral-norm

ηS

w,2(λ, µ, x,L) =

√
‖k‖2

2 + |xT k|2
Hw−1;2

.

Proof. The proof follows from the fact that ifw := [1, 1, . . . , 1]T and|λ| = |µ| = 1 and
m is odd, then we haveH2

w−1,2 = 2N2
w−1,2 and then applying (2.2) the results follow.

As a corollary we also obtain the results for the case of non-homogeneous matrix polynomials
with no infinite eigenvalues of [2, 4]. By introducing the notationΛo := [µ, µ3, . . . , µm−1]T

whenm is even andΛo := [µ, µ3, . . . , µm]T whenm is odd and by choosing the weight
vectorw := [1, 1, . . . , 1]T , we have the following result similar to Theorem 4.3.8 of [2].

COROLLARY 4.10. Let L ∈ Lm(Cn×n) be aT -odd matrix polynomial of the form
L(s) =

∑m
j=0 sjAj ∈ Cn×n with det(Am) 6= 0, let µ ∈ C \ {0} and letx ∈ Cn be such

thatxHx = 1 and setk := −L(µ)x.
i) The structured backward error with respect to the Frobenius norm is given by

ηS

F (µ, x,L) =

{ √
|xT k|2
‖Λo‖2

2

+ 2
‖k‖2

2 − |xT k|2
‖Λ‖2

2

.

ii) The structured backward error with respect to the spectral norm is given by

ηS

2 (µ, x,L) =

{ √
|xT k|2
‖Λo‖2

2

+
‖k‖2

2 − |xT k|2
‖Λ‖2

2

.

In particular, for oddm and |µ| = 1 we have for the Frobenius norm‖Λ‖2
2 = 2‖Λo‖2

2 and

ηS

F (µ, x,L) =
√

2η2(µ, x,L) and for the spectral normηS
2 (µ, x,L) =

√
‖k‖2

2 + |xT k|2
‖Λ‖2

.

Defining the perturbation matrices

∆Aj :=





µj(xT k)(xxH)

‖Λo‖2
2

+
µj

‖Λ‖2
2

[
(I − xxT )kxH + xkT (I − xxH)

]
for oddj,

− µj

‖Λ‖2
2

[
−(I − xxT )kxH + xkT (I − xxH)

]
for evenj,

then ∆L(s) =
∑m

j=0 sj∆Aj is the uniquely definedT -odd matrix polynomial such that

(L(µ) + ∆L(µ))x = 0 and|||∆L|||F = ηS

F (µ, x,L) in the Frobenius norm.
For the spectral-norm, we introduce the perturbation matrices

∆Ej :=





∆Aj −
µjxT k(I − xxH)kkT (I − xxT )

‖Λo‖2
2(‖k‖2 − |xT k|2) for oddj,

∆Aj for evenj.

Then∆L(s) =
∑m

j=0 sj∆Ej is aT -odd matrix polynomial such that(L(µ)+∆L(µ))x = 0

and|||∆L|||2 = ηS
2 (µ, x,L).
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Proof. The proof follows from Theorem4.8 using the fact thatHw−1,2 := ‖Λ‖2,
Kw−1,2 := ‖Λo‖2 whenw = [1, 1, . . . , 1]T andc = 1.

Remark 4.11.The case thatµ = 0 is not covered by the formulas in Corollary4.10for
the casem > 1. But it has been shown in Theorem 4.3.8 of [2] that for µ = 0, it hold that
ηS

F (µ, x,L) =
√

2η2(µ, x,L) andηS
2 (µ, x,L) = η2(µ, x,L), respectively, for the Frobenius

norm and the spectral norm. For|µ| = 1 and the spectral norm we have

ηS

2 (µ, x,L) =

√
‖k‖2

2 + |xT k|2
‖Λ‖2

,

while again it has been shown in Theorem 4.3.8 of [2] thatηS
2 (µ, x,L) = η2(µ, x,L).

For the pencil case we have the following Corollary.
COROLLARY 4.12. Let L(c, s) = cA0 + sA1 ∈ L1(C

n×n) be aT -odd matrix pencil,
let (λ, µ) ∈ C2 \ {(0, 0)}, let x ∈ Cn be such thatxHx = 1 and setk := −L(λ, µ)x.

i) The structured backward error with respect to the Frobenius norm is given by

ηS

F (λ, µ, x,L) =





√
|xT A1x|2 + 2

‖k‖2
2 − |µ|2|xT A1x|2
‖[λ, µ]T ‖2

2

=

√√√√
(

|λ|2

|µ|2 − 1
)
|xT k|2 + 2‖k‖2

2

‖[λ, µ]T ‖2
2

if µ 6= 0,

√
2η2(λ, µ, x,L) if λ = 0,√
2η2(λ, µ, x,L) if µ = 0,√
2η2(λ, µ, x,L) if |λ| = 1, |µ| = 1.

ii) The structured backward error with respect to the spectral norm is given by

ηS

2 (λ, µ, x,L) =





√
|xT A1x|2 +

‖k‖2
2 − |µ|2|xT A1x|2
‖[λ, µ]T ‖2

2

=

√
|λ|2|xT A1x|2 + ‖k‖2

2

‖[λ, µ]T ‖2
2

if µ 6= 0,

η2(λ, µ, x,L) if λ = 0, µ 6= 0,

η2(λ, µ, x,L) if λ 6= 0, µ = 0,√
|xT A1x|2 + ‖k‖2

2

2
if |λ| = 1, |µ| = 1.

iii) Introduce the perturbation matrices

∆A0 := −zA0

[
−(I − xxT )kxH + xkT (I − xxH)

]
,

∆A1 := −|sign(µ)|2xxT A1xxH + zA1

[
(I − xxT )kxH + xkT (I − xxH)

]
.

Then for the Frobenius norm we obtain the uniqueT -odd pencil∆L(c, s) = c∆A0 + s∆A1

such that(L(λ, µ) + ∆L(λ, µ))x = 0 and|||∆L|||F = ηS

F (λ, µ, x,L).
For the spectral norm, defining

∆E1 := ∆A1 −
sign(µ2)xT A1x(I − xxT )kkT (I − xxH)

(‖k‖2 − |xT A1x|2)
and∆E0 := ∆A0,

then we obtain aT -odd pencil∆L(c, s) = c∆E0 + s∆E1 with (L(λ, µ) + ∆L(λ, µ))x = 0
and|||∆L|||2 = ηS

2 (λ, µ, x,L).
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TABLE 4.2
Computed structured and unstructured backward errors for Example4.13.

(λ, µ) S ηS
2 (λ, µ, x,L) ηS

F (λ, µ, x,L) η2(λ, µ, x,L)
(0, 1) T -odd 1 1.2247 1
(1, 0) T -odd 2.2361 3.1623 2.2361
(2, 1) T -odd 2.2361 3.0822 2.1448
(4, 3) T -odd 2.0881 2.8671 2.0100
(2i, i) T -odd 2.2361 3.0822 2.1448

(2 + 3i, 1 + i) T -odd 2.3310 3.2197 2.2361
(1, 2) T -odd 1.5166 2.0248 1.4832
(1, 1) T -odd 1.9365 2.6458 1.8708

Proof. The proof is analogous to that of Theorem4.2usingm = 1 andw := [1, 1]T .
By the above results it is clear that ifµ = 0, then for theT -odd case we have∆A1 = 0

and∆A0 = −zA0

[
−(I − xxT )kxH + xkT (I − xxH)

]
. These perturbations are the same

for the spectral and Frobenius norm.
Furthermore, Corollary4.12shows that

ηS

F (λ, µ, x,L) ≤





√
2η2(λ, µ, x,L) when|µ| > |λ|,

‖[λ, µ]T ‖2η2(λ, µ, x,L) when|µ| < |λ|.

Now consider a pencilL(z) = A0 + zA1 ∈ L1(C
n×n). Then for givenµ ∈ C andx ∈ Cn

such thatxHx = 1, we have

ηS

F (µ, x,L) ≤





√
2η2(µ, x,L) when|µ| > 1,

‖[1, µ−1]T ‖2η2(λ, µ, x,L) when|µ| < 1,

which has been shown in [3].
As another corollary we obtain the results forT -odd matrix pencilsL(z) := A0 + zA1

presented in [2].
Let us illustrate these perturbation results with a few examples.

Example 4.13.Consider aT -odd matrix pencil with coefficientsA0 :=

[
0 −2 + ı

2 − ı 0

]

andA1 :=

[
1 + ı 0

0 0

]
. Let x =

[
−ı/

√
2

ı/
√

2

]
and(λ, µ) = (0, 1).

i) For the Frobenius norm we obtain the minimal perturbationcoefficients

∆A0 =

[
0 0
0 0

]
, ∆A1 =

[
−0.75 − 0.75ı 0.25 + 0.25ı
0.25 + 0.25ı 0.25 + 0.25ı

]
,

A0 + ∆A0 =

[
0 −2 + ı

2 − ı 0

]
, A1 + ∆A1 =

[
0.25 + 0.25ı 0.25 + 0.25ı
0.25 + 0.25ı 0.25 + 0.25ı

]
,

and|||∆L|||F = ηS

F (λ, µ, x,L).
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ii) For the spectral norm we obtain

∆A0 =

[
0 0
0 0

]
, ∆A1 =

[
−0.5 − 0.5ı 0.5 + 0.5ı
0.5 + 0.5ı 0.5 + 0.5ı

]
,

A0 + ∆A0 =

[
0 −2 + ı

2 − ı 0

]
, A1 + ∆A1 =

[
0.5 + 0.5ı 0.5 + 0.5ı
0.5 + 0.5ı 0.5 + 0.5ı

]
,

and|||∆L|||F = ηS

F (λ, µ, x,L) = 1; see also Table4.2

5. Conclusion. The structured backward errors for an approximate eigenpair and the
construction of minimal structured matrix polynomials have been introduced in [1, 2, 3, 4]
such that an approximate eigenpair ofL becomes exact forL + ∆L in the Frobenius and
the spectral norm. However, this theory has been based on thecondition that the polynomial
eigenvalue problem has no eigenvalue at∞. Also for T -odd matrix pencil case there is no
information on the backward error for the0 eigenvalue. In this paper we have extended these
results in the homogeneous setup of matrix polynomials which is a more convenient way to do
the general perturbation analysis for matrix polynomials in that it equally treats all eigenval-
ues of a regular matrix polynomial. We have presented a systematic general procedure for the
construction of appropriately structured minimal norm polynomials∆L ∈ Lm(Cn×n) such
that approximate eigenvector and eigenvalue become exact ones of the polynomialL + ∆L.
The resulting minimal perturbation is unique in the case of the Frobenius norm and there
are infinitely many solutions for the case of the spectral norm. Furthermore, we derived the
known results for matrix pencils and polynomials of [2, 3, 4] as corollaries and we have
illustrated the results with several examples.
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