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A PRECONDITIONER FOR A FETI-DP METHOD FOR MORTAR ELEMENT
DISCRETIZATION OF A 4TH ORDER PROBLEM IN 2D

�
LESZEK MARCINKOWSKI

�
Abstract. In this paper a parallel preconditioner for a FETI-DP formulation for a mortar discretization of a

fourth order problem is presented and analyzed. We show that the condition number of the preconditioned FETI-DP
operator is proportional to �������
	������������� , where � and � are mesh sizes.
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1. Introduction. Many technical problems are modeled by partial differential equa-
tions. A way of constructing an effective approximation of the differential problem is to
introduce a global conforming mesh and then to set up an approximate discrete problem.
However it is often required to use different approximation methods or independent local
meshes in some subregions of the original domain. Then one can make adaptive changes of
the local mesh in a substructure without modifying meshes in the other subdomains. This
type of technique requires matching conditions on the interfaces between adjacent substruc-
tures to ensure some type of weak continuity of the solution. One possible way of enforcing
such matching conditions is to impose some integral conditions on the jumps of the traces
of finite element functions across subdomain interfaces. This approach is taken by a mor-
tar method which is an effective method of constructing approximation on nonconforming
triangulations, cf. [6].

In this paper we extend the results of Kim and Lee [22], where the case of a FETI-
DP method for mortar discretization for a second order problem is analyzed, to a mortar
discretization of a fourth order problem. We present and analyze a preconditioned FETI-DP
(dual primal Finite Element Tearing and Interconnecting) method for solving the system of
equations arising from the mortar element discretization of a model fourth order problem in
2D. In each subdomain a reduced Hsieh-Clough-Tocher (RHCT) conforming finite element
space on an independent local mesh is defined, and then a discrete mortar problem of saddle
point type is introduced.

The original problem is reduced to a smaller dual FETI-DP problem. We eliminate first
the unknowns associated with the degrees of freedom at interior nodal points, and then the
unknowns related to the degrees of freedom at the interface nodes. The resulting dual FETI-
DP problem is solved iteratively using a fully parallel preconditioner. We prove that our
method is almost optimal, i.e., the polylogarithmic bound with respect to the local number
of degrees of freedom holds for the condition number of the preconditioned problem. There
are many papers in which the mortar method was studied for coupling nonmatching meshes
for discretizations of second order problems; see, e.g., [4, 5, 7, 36]. The mortar technique
for discretizations of fourth order problems is considered in [2, 21, 29]. The domain de-
composition methods and especially the FETI-DP methods form a class of fast and efficient
iterative solvers for algebraic systems of equations arising from the finite element discretiza-
tions of PDEs of second and fourth order, cf. [20, 24, 26, 27]. There are many works about
iterative solvers for mortar method for second order problem; see, e.g., [1, 8, 9, 15, 23] and�
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the references therein. But there are only few papers investigating fast solvers for mortar
discretizations of fourth order elliptic problems, cf. [28, 31, 37]. Recently a few FETI-DP
type algorithms have been presented for mortar discretization of second order problems, cf.
[12, 14, 16, 17, 18, 19, 22, 33].

The formulation of the FETI-DP system of equations for the same discrete problem was
presented in a proceedings paper [32]. Some condition number estimates for another precon-
ditioner were also given there without proofs under very restrictive assumptions, e.g., the ratio���������

remain constant for the mesh sizes on the edge � ���! #"%$&�&'("%$�� . To our knowledge
there are no FETI type algorithms for solving systems of equations arising from a mortar
discretization of a fourth order problem in the literature.

The remainder of the paper is organized as follows. In Section 2 the mortar discretization
of a model problem is presented. The FETI-DP method is presented in Section 3. In Section 4
we present a Neumann-Dirichlet preconditioner, and finally in Sections 5 and 6 we prove our
main theorem.

In this paper the following notation is used. )+*-, , .0/21 and 35476 mean that there
exist positive constants 8 and 9 independent of the parameter of the fine triangulation of any
substructure and the number of subdomains, such that8:)<;=,2;>9?):@A.<B?8!1DC�EGFH32;I906�@KJMLONQP�LSRUTMVXW�LSY[Z]\

2. Discrete problem. Let
$

be a bounded polygonal domain in 2D. We assume that we
have a geometrically conforming decomposition of

$
into polygonal subdomains, i.e.,$0 _^`��acb $&�

with
$ � ' $ �  ed @fCgRih�j�j�h�E�LSFlk�Lmh�JnCgRUh�j�joh�EpW�LiJMTMLiq�\ The decomposition will be further

referred to as the coarse triangulation and we assume its shape regularity in the sense of [10,
Section 2, page 5]. The interface � is defined as the sum of all open edges of substructures
which are not contained in

"%$
.

Our model problem is to find ) �sr(t<uv]w $&x , such thaty w ) � @M, xn ez w , x|{ , r(t uv%w $&x @
where

z r#}~u w $&x , t<uv]w $&x� �� , r2t<u w $&x(� ,  ="�� ,  =� h�E "%$�� @ and y w ):@Q, x� � ^ ��acb y � w )c@M, x withy � w ):@Q, xn e�l�G�c� �m� )]��������,������f�?��)�����O�U,�����O����)]�S�Q�S��,��O���S������.�\
Here

�l�
are positive constants,

"l�
represents the outward normal derivative to

"%$
, and) �S���S� �  ¡ �M¢¡ � � ¡ � � , for £�@�¤  2¥ @�� .

From the Lax-Milgram theorem, the continuity and ellipticity of the bilinear form y w�¦ @ ¦ x
yield the existence and uniqueness of the solution; see, e.g., [11] or [13].

We introduce in each subdomain
$§�

a quasiuniform triangulation made of triangles¨ª© w $&��x with parameter
���« j¬C�ql�®�¯°± � ��² FlV³C�jµ´ (e.g., cf. [11]) and let

t �o FlV³C�j w $&��x .
On each

$§�
we introduce local reduced Hsieh-Clough-Tocher (RHCT) macro finite element

spaces (see [13]) as follows: let the local RHCT space ¶ © w $&��x�· t<u w $&��x be formed by 9 b
continuous functions, such that , r ¶ © w $&��x , where for each triangle ´ r¸¨�© w $&��x ,

(i) ,º¹  � r¼»c½ w ´i¾ x for three subtriangles ´S¾ · ´º@�£  ¿¥ @��º@MÀ , formed by connecting the
vertices of ´ to its centroid; see Figure 2.1,
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FIG. 2.1. RHCT macro element.

(ii)
"Á� , are linear 1D polynomials on each edge Â r " ´ ,

(iii) ,  I" � ,  Ã� on
"%$ � '�"%$

.
The degrees of freedom of RHCT macro elements are given by� , w Ä ¾ x @Q,��� w Ä ¾ x @Q,��O� w Ä ¾ x�� @ £  #¥ @��º@MÀº@(2.1)

for the three vertices Ä ¾ of any ´ r+¨ © w $ � x ; see Figure 2.1. We further call all vertices the
nodal points or nodes.

Next we introduce an auxiliary global space

¶ © w $&x� Å^Æ�Uacb ¶ © w $&��x \
We define Ç¶ © w $&x as the subspace of ¶ © w $&x formed by all functions which are con-

tinuous at the crosspoints (i.e., the common vertices of the subdomain) and have continuous
gradients at the crosspoints.

Since the triangulations of two adjacent subdomains
$��

and
$��

are independent, their
common edge, denoted by � ��� , inherits two independent one dimensional meshes

¨ �© w � ���Èx
induced by

¨ © w $ � x and
¨ �© w � �[� x induced by

¨ © w $ � x ; see Figure 2.2. Thus we have to distin-
guish between the two sides (or meshes) of the interface � ��� . According to the rule

� � B � � ,
we name the side on the

� �
mesh as the mortar (master) side and denote it by É ��� , and name

the other side associated with the
� �

mesh the slave (nonmortar) side denoted by Ê �[� . Let É ����Ë ©
be the set of all nodal vertices of elements of the

¨ �© w � ��� x on the open edge � ��� , and É ����Ë © be
the set of nodes of the same triangulation on � ��� , respectively. Similarly, the sets Ê �[�OË © andÊ �[�OË © consist of nodes of the

�G�
triangulation of � �[� and � �[� , respectively.

We also introduce two test function spaces associated with
¨ �© w Ê �[��x : Ì �Í w Ê �X��x represents

the space of 9 b smooth functions that are piecewise cubic on
¨ �© w Ê �[��x and are piecewise linear

on the two end elements of
¨ �© w Ê �[� x , and Ì �� w Ê �[� x represents the space formed by continuous

functions that are piecewise linear on
¨ �© w Ê �[� x and are piecewise constant on the two end

elements of
¨ �© w Ê �[� x .

Our discrete space Î © is defined as the subspace of Ç ¶ © w $&x which satisfy two mortar
conditions on each interface � �[� · � with Ê �[� its slave side and É ��� master side:�lÏ�Ð � w ) ��Ñ ) �ÒxQÓ �ÁÔ  Õ�Ö{ªÓ r Ì �Í w Ê �[��x @(2.2a)

�lÏ�Ð � w "�� ) �×ÑØ"�� ) �Òx�Ù ��Ô  Ã�Ö{�Ù r Ì �� w Ê �X��x \(2.2b)
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FIG. 2.2. Nonconforming meshes.

We can now formulate our discrete problem: find ) �© r Î © , such thaty w ) �© @M, x~ Õz w , xH{ , r Î © \(2.3)

We see that y w ):@Q) xn Õ� implies that ) is linear over each subdomain. Then the continuity of) and Úp) at crosspoints yields that ) is linear over
$

. Finally, the boundary conditions yields
that )  Ã� . Hence the discrete problem has a unique solution.

We introduce the space Ì  ÜÛ Ï�Ð �OÝGÞ Ì �[� , where Ì �X�  Ì �Íw Ê �[� xàß Ì �� w Ê �[� x , and
define the bilinear form á w ):@ Ù�x on Ç ¶ © w $&x�ß Ì by: let )  w ) b @i\S\i\U@M) ^ x r Ç¶ © w $&x andÙ? w Ù �[� x Ï�Ð �  w Ù �[��Ë b @ Ù �X�OË u x Ï�Ð � r Ì ,á w ):@ Ù�xn _âÏ�Ð �OÝ�Þ âã acb�Ë u á �[��Ë ã w ):@ Ù �[�OË ã x @á �[��Ë b w )c@ Ù:�X�OË bixn ��Ï�Ð � w ) ��Ñ ) �Òx�Ù:�X�OË b ��Ô�@á �[��Ë u w )c@ Ù �X�OË u xn µ� Ï�Ð � w " � ) � ÑØ" � ) � x�Ù �[��Ë u ��Ô�\

We can rewrite (2.3) as the following saddle point problem (cf. [30]): find a pairw ) �© @�ä � x r Ç¶ © w $&xmß Ì , such thaty w ) �© @Q, x �åá w ,�@�ä � xÅ z w , x { , r Ç¶ © w $&x @á w ) �© @ Ó]xÅ � {%Ó r Ìµ\(2.4)

We see that ) �© is a solution of (2.3), cf. [30]. In this paper we use the same notation to
represent both a function and the vector containing the values of degrees of freedom of this
function.

3. FETI-DP systems of equations. In this section, we formulate a FETI-DP operator
for problem (2.4). We follow the approach taken in [22] and [26] for the formulation of the
FETI-DP problem and the construction of the preconditioner.
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3.1. Trace spaces. In this subsection we introduce the trace (in
tæu

sense) of functions
in ¶ © w $ � x . For any ) r ¶ © w $ � x , let

¨×ç ¹ ¡ � � ) be a linear trace operator mapping ¶ © w $ � x
onto the triple

}~u w "%$&��x�ß }~u w "%$&��x�ß }~u w "%$&��x , defined by
¨§ç ¹ ¡ � � )  w )!¹ ¡ � � @�Ú«)!¹ ¡ � � x ,

where ,�¹ ¡ � � is the trace of , r0t b w $&��x onto the boundary of
$§�

. Note that Ú«)!¹ ÞÁ� Ð w Ô xà w " Í ) w Ô x @ "�� ) w Ô xMx over an edge � ���!·?"%$&� , thus we get
¨§ç ¹ ¡ � � ) w Ô xn w ) w Ô x @ " Í ) w Ô x @ "�� ) w Ô xQx

for Ô r � ��� . Because
" Í ) w Ô x along this edge is uniquely defined by ) , we can define the trace

onto an edge � ��� by
¨§ç ¹ Þ�� Ð )  w )!¹ Þ�� Ð @ "�� )!¹ Þ�� Ð x�· }~u w � ���Èx�ß }�u w � ���Èx .

We also define the spaces¶ � w � ��� x��
 ¨§ç ¹ ÞÁ� Ð ¶ © w $ � x C�E�F ¶ � �
 5è ¨×ç ¹ � �é ¶ © w $ � x @
and ¶  ¶ bsß \i\S\ ß ¶ ^ \

Note that ¶ � w � ��� xê ¶ b�Ë ½� w � ��� xgß ¶ v Ë b� w � ��� x , where ¶ b�Ë ½� w � ��� x is the space of 9 b
continuous piecewise cubic functions on the 1D triangulation

¨ �© w � ��� x , and ¶ v Ë b� w � ��� x is a
space of continuous piecewise linear functions on

¨ �© w � ��� x . Thus a function in ¶ � is defined
by all degrees of freedom associated with all nodal points, i.e., vertices on

"%$ �
, cf. (2.1).

We also introduce¶ b�Ë ½v Ë � w � ����x~ ¶ b�Ë ½� w � ���Èx�' t uv%w � ���Èx @Å¶ v Ë bv Ë � w � ����x� ¶ v Ë b� w � ����x%' t bv%w � ����x @(3.1)

i.e., the subspaces of the trace spaces with zero boundary conditions in
tæu

and
t b

sense,
respectively.

3.2. Matrix form of mortar conditions. We introduce matrix forms of mortar condi-
tions. On a slave Ê �[� ·0"%$ � , ) Ï�Ð � and

" � ) Ï�Ð � are split into two vectors representing tangential
and normal traces ) Ï�Ð �  ) ±[ë ²Ï�Ð � �+) ±Xì ²Ï�Ð � @(3.2) "Á� ) Ï�Ð �  Õ"�� ) ±[ë ²Ï�Ð � � "�� ) ±³ì ²Ï�Ð � @
where ) ±[ë ²Ï�Ð � represents the respective degrees of freedom of the tangential trace function at

interior nodal points (interior to Ê �[� ) and ) ±Xì ²Ï�Ð � four degrees of freedom at the ends of this
slave. We have also an analogous splitting of two vectors representing tangential and normal
traces onto the master É ��� .

We can now rewrite (2.2a) and (2.2b) in a matrix form using nodal basis functions así Í Ë î � Ð ) î � Ð Ñ í Í Ë Ï�Ð � ) Ï�Ð �  Ã� @(3.3) ís��Ë î � Ð " � ) î � Ð Ñ ís��Ë Ï�Ð � " � ) Ï�Ð �  Ã� \
Using the splitting (3.2) we getí ±[ë ²Í Ë î � Ð ) ±[ë ²î � Ð � í ±³ì ²Í Ë î � Ð ) ±Xì ²î � Ð Ñ í ±[ë ²Í Ë Ï�Ð � ) ±[ë ²Ï�Ð � Ñ í ±³ì ²Í Ë Ï�Ð � ) ±³ì ²Ï�Ð �  I� @(3.4) í ±[ë ²��Ë î � Ð "�� ) ±[ë ²î � Ð � í ±Xì ²�lË î � Ð "Á� ) ±Xì ²î � Ð Ñ í ±[ë ²��Ë Ï Ð � "�� ) ±[ë ²Ï Ð � Ñ í ±³ì ²��Ë Ï Ð � "�� ) ±³ì ²Ï Ð �  I� @
where the matrices

í Í Ë Ï Ð � @ ís��Ë Ï Ð � are mass matrices resulting by substituting standard nodal
basis functions of ¶ b�Ë ½� w Ê �[��x @�¶ v Ë b� w Ê �[��x and Ì �Í w Ê �[��x @�Ì �� w Ê �[��x into (2.2a) and (2.2b), respec-
tively, i.e.,í Í Ë Ï�Ð �  #� w Ó � Ë ã @ Ùfï�Ë ë x���ðUñ ò�óUô Ð � ñ °ã Ë ë a v Ë b Ó � Ë ã r ¶ b�Ë ½� w Ê �[��x @ Ùfï�Ë ë r Ì �Í w Ê �[��x @í ��Ë Ï�Ð �  #� w Ó � @ Ùfï�x�� � Ë ï ® Ï�Ð � ñ ° Ó � r ¶ v Ë b� w Ê �[��x @ Ù!ï r Ì �� w Ê �[��x @
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where
Ó � Ë ã and

Ù � Ë ã are nodal basis functions of ¶ b�Ë ½� w Ê �[� x and Ì �Í w Ê �[� x , respectively, as-
sociated with a node . of Ê �[�OË © . They represent a value degree of freedom if Ô  A�

, or a
derivative degree of freedom if Ô  7¥ , i.e., e.g.,� ë��õ ë Ó � Ë ã w 1 xn ÷ö ¥ @øV[ù ç  Ô×C�E�Fo1  .�@� @ h�TMúºLSJMû&V³NML�@ for

ç  Ã� @ ¥ @D1 r Ê �[��Ë © @Ó � r ¶ v Ë b� w Ê �[��x and
Ù � r Ì �� w Ê �[��x are nodal basis function of these respective spaces,

which equal one at the node . and zero at all remaining nodal points of Ê �X�OË © . The matri-
ces

í Í Ë î � Ð @ ís��Ë î � Ð are defined analogously by replacing the basis functions of ¶ b�Ë ½� w Ê �X� x by
the nodal basis of ¶ b�Ë ½� w É ���Èx and the basis of ¶ v Ë b� w Ê �[��x by the basis of ¶ v Ë b� w É ����x , respec-
tively. The matrices with superscripts w 8 x and w ç x are submatrices of respective mass matrices
corresponding to the splitting (3.2).

Note that
í ±[ë ²Í Ë Ï�Ð � @ í ±[ë ²�lË Ï�Ð � are positive definite square matrices, cf. [29]. But in generalí¬±Xë ²Í Ë î � Ð @ í¬±Xë ²��Ë î � Ð and all other matrices in (3.3) and (3.4) are rectangular. Then we can define

block-diagonal matricesí ±[ë ²Ï Ð �  ýü í¬±Xë ²Í Ë Ï�Ð � �� í ±[ë ²��Ë Ï�Ð �Kþ @ í ±Xë ²î � ñ Ð  ÿü í ±[ë ²Í Ë î � ñ Ð �� í ±[ë ²��Ë î � ñ Ð þ @(3.5)

and analogously
í ±³ì ²Ï Ð �

and
í ±Xì ²î � ñ Ð replacing w ç x by w 8 x , and

í Ï�Ð �
and

í î � ñ Ð removing the super-
script w ç x .

For a mortar É ��� let 3 ���� denote the vector representing all degrees of freedom related to
nodes in É ����Ë © and 3 �[�� in Ê �X�OË © . Then (3.3) can be rewritten así×î � Ð 3 ���� Ñ í Ï�Ð � 3 �X��  Õ� \

Let us define � ���� � ¶ ��� ¶ � w � ��� x as the restriction operator, and � ��� � Ì � Ì ��� the
extension by zero operator, andí ¾  âî � � Ý ¡ � � � ¾�� í×î � � � ¾¾�� Ñ âÏ � ��Ý ¡ � � � ¾ ��í Ï � � � ¾¾ � \(3.6)

The matrices
í�±[ë ²¾ and

í¬±Xì ²¾ are defined analogously by adding respective superscripts.

3.3. Elimination of variables. Here we eliminate all variables related to degrees of
freedom of the ) �© component in the solution of (2.4) and obtain a FETI-DP system of equa-
tions.

We split any function ) r ¶ © w $&x into two parts)  �� )o�
	à)c@
where 	à)  w 	 b )c@S\i\S\U@�	 ^ ) x with 	 � ) r(t uv w $&��xª' ¶ © w $&��x , such thaty � w 	 � ):@Q, xn w z @Q, xH{ , r¸t uv w $&��x�' ¶ © w $&��x @
and

� )  ) Ñ � ^ �Uacb 	 � ) , which is a discrete biharmonic part of ) , equivalently defined by� )  w �¸b )c@S\i\S\U@ � ^ ) x , where
�¸� ) r ¶ © w $&��x satisfiesö y � w �ê� )c@M, xn Ã� { , r(t<uv%w $&��xª' ¶ © w $&��x @¨§ç ¹ ¡ � � �ê� )  ¨§ç ¹ ¡ � � ) h�E "%$&� \(3.7)
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We also have the so called the minimal property of discrete biharmonic functions, i.e.,� � � ) �  � ± � �i²  j�V[E � � , �  � ± � �U² � , r ¶ © w $ � x @ ¨§ç ¹ ¡ � � ,  ¨§ç ¹ ¡ � � ) � \
Thus we split the solution ) � of (2.3) into the discrete biharmonic part and the local

solutions: ) �©  ) �� © ��	à) �© \
where ) �� ©  �� ) �© .

Note that a discrete biharmonic function 3  �� 3 is uniquely defined by the values of
all degrees of freedom at nodes in � . Thus it remains to find the values degrees of freedom of) �� © related to the nodes on � .

If we represent a local matrix of the local bilinear form y � w )c@M, x in the standard basis of
RHCT as � ± � ² and reorder the unknowns into interior and boundary unknowns, i.e.,� ± � ²  ýü � ± � ²¾[¾ � ± � ²¾ �� ± � ²� ¾ � ± � ²��� þ @
then we can define a Schur complement matrix � ± � ² by� ± � ²  � ± � ²��� Ñ � ± � ²� ¾ w � ± � ²¾X¾ x�� b � ± � ²¾ � \

For any vector 3 r ¶ � w "%$&��x we can write 3  �� 3 ë3 ì�� @ where 3 ì represents the

values of degrees of freedom associated with the crosspoints and 3 ë the remaining degrees of
freedom related to nodes interior to edges on

"%$×�
. We order the matrix � ± � ² in the following

way: � ± � ²  ü � ± � ²ëMë � ± � ²ë�ì� ± � ²ì�ë � ± � ²ì�ì þ \
Next we introduce Ç¶ · ¶

formed by functions with continuous degrees of freedom at crosspoints. Equivalently we can
say that Ç¶ is the space formed by all local traces of functions from Ç¶ © w $&x . We can split a

vector 3 r Ç ¶ into 3  � 3 ë3 ì � where 3 ë  w 3 b�Ë ë @S\i\i\S@Q3 ^ Ë ë x and 3 ì represents the values

of degrees of freedom at crosspoints (global vertices of subdomains). Here 3�¾ Ë ë represents
the values of degrees of freedom related to nodes in

"%$ ¾ which are not vertices of
$ ¾ .

Let
} ¾ ì represents a matrix made of zeros and ones, such that

} ¾ ì 3 ì restricts the values
of degrees of freedom of 3 ì to the respective degrees of freedom at the vertices of

"%$ ¾ ,
i.e., for any 3 r Ç¶ we can write 3  w 3 b @i\i\S\U@Q3 ^ x with 3 �µr ¶ � w "]$ � x , such that3 �  �� 3 �OË ë} �ì 3 ì � \

We equip the space Ç¶ with the norm� 3 � u �  ^â��acb � 3 � � u ��� � � \
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Taking
í ì  � ^¾ acb í ±Xì ²¾ } ì¾ and

í ë  w í ±[ë ²b @S\i\S\U@ í ±[ë ²^ x , the second equation in (2.4) has
the following matrix form (cf. (3.6)):í ë 3 ë � í ì 3 ì  Õ� \

Thus we can rewrite the system (2.4) as� ëMë 3 ë �!� ë�ì 3 ì � í ¯ë ä  #" ë @� ì�ë 3 ë �$� ì�ì 3 ì � í ¯ì ä  #" ì @í ë 3 ë � í ì 3 ì  I� @
where 3 r Ç¶ is the vector representing the degrees of freedom of ) �� © corresponding to
all nodal points on � . The vectors

" ë @ " ì are the respective Schur complement right hand
side vectors, � ë�ë  FlV³C�k �Uacb�Ë�%�%�% & w � ± � ²ë�ë x , � ¯ë�ì  � ì�ë  wQw } ì b x ¯ � ± b ²ì�ë @S\i\i\i@ w } ì^ x ¯ � ± ^ ²ì�ë x , and� ì�ì  � ^ ��acb w } ì� x ¯ � ± � ²ì�ì } ì� .

Since � ëMë is block diagonal and positive definite, we can eliminate 3 ë and obtain the
new system ' ì�ì 3 ì � ' ì)( ä  � ì @' (�ì 3 ì � ' (*( ä  � ( @
where

' (+(  í ë � � bëMë í ¯ë ,

' ì)(  ' ¯(�ì  � ì�ë � � bëMë í ¯ë Ñ í ¯ì ,

' ì�ì  � ì�ë � � bë�ë � ë�ì Ñ � ì�ì ,� ì  7Ñ," ì �$� ì�ë � � bë�ë " ë , and � (  í ë � � bë�ë " ë . Finally, we eliminate 3 ì and get'.-0/ ä  � ( Ñ ' (�ì ' � bì�ì � ì @(3.8)

where

' -0/  ' (*( Ñ ' (�ì ' � bì�ì ' ì)( is the FETI-DP operator.

4. Preconditioner. Before defining the preconditioner we introduce some auxiliary spaces
and operators. For a slave Ê �[� we define ¶ v Ë � w Ê �[��xn ¶ b�Ë ½v Ë � w � ����xmß ¶ v Ë bv Ë � w � ���Èx , cf. (3.1), let¶21  43 Ï�Ð ��Ý�Þ ¶ v Ë � w Ê �[� x
and let Ç¶21 · Ç¶ be the space of functions extended from functions in ¶51 by zero onto the
trace spaces corresponding to mortars. Note that the dimensions of both ¶ 1 and Ç¶ 1 are the
same as the dimension of Ì . We equip ¶ 1 with the norm� 3 � �76 �
 �8 � 1 3à@M3:9  �<;3 � � @
where �=1  FlV³C�k � w � ± � ²1 x

, and � ± � ²1 is the matrix built locally from � ± � ² by proper restrictions
and extensions and

;3 r Ç¶ is the extension of 3 by zero onto the trace spaces associated with
mortars. We could equivalently define Ç¶ 1 as the subspace of Ç¶ of all functions, which equal
zero on both master nodes and vertices of subdomains. Note that �.1 is block diagonal with
nonsingular blocks due to the fact that functions in Ç¶>1 equal zero on the vertices.

We also define, cf. (3.5), í 1 �
 FlV³C�k Ï�Ð ��ÝGÞ w í ±[ë ²Ï�Ð � x \
Note that for any ä  w ä b @�ä u x r Ì �[� and 3  w 3 b @Q3 u x r ¶ v Ë � w Ê �[��x we have8 3à@ w í�±[ë ²Ï�Ð � x ¯ ä?9  �8 í�±[ë ²Ï�Ð � 3«@�ä?9  |â� a:b�Ë u � Þ Ð � 3 � ä � ��Ô�\(4.1)
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Hence,
í 1s@ í ¯1 are block diagonal matrices with invertible blocks, cf. [29], Finally, we

introduce the inverse of the preconditioner as:@ - ^ �  í 1A� � b1 í ¯1 @
which is nonsingular, and thus we choose@B� b- ^  í � ¯1 � 1 í � b1
as the preconditioner for problem (3.8). Note that

@C� b- ^ is a fully parallel preconditioner;
application of

@ � b- ^ to a vector involves solving D local independent Dirichlet type prob-
lems.

5. Technical tools. In this section we present some technical results needed for the
proof of the main theorem. For the analysis we need an equivalent definition of the precondi-
tioner defined in the terms of a dual norm in ¶ 1 .

LEMMA 5.1. For any ä r Ì we have8 @ - ^ äª@�äE9 bGF u  N HºPI ®KJ 6=L�M vON âÏ�Ð �OÝGÞ â¾ acb�Ë u %QP Ï Ð � 3&¾�ä�¾º��Ô� 3 � �76  N HºPI ®KJ 6RLSM vSN á w ;3p@�ä x�T;3 � � \ @
where w ä b @�ä u x r Ì �[� and w 3 b @Q3 u x r ¶ v Ë � w Ê �[� x are the respective restrictions of ä r Ì
and 3 r ¶21 to the slave Ê �[� , cf. (4.1), and

;3 r Ç ¶ is an extension of 3 by zeros.
Proof. The second equality follows from the definition of á w�¦ @ ¦ x . The proof of the first

equality follows from the definitions of
í 1 and � 1 , (4.1), and a standard algebraic argument;

see, e.g., [35].
The formula in the next lemma is analogous to the one in [22, Lemma 4.2], and it can be

proved similarly; see, e.g., the proof of [34, Lemma 37].
LEMMA 5.2. For any ä r Ì , we have8 ' -</ ä�@�ä?9 b F u  N HºPI ®RUJ LSM vON á w 3à@�ä x� 3 � � \
The next three lemmas are well known. The first lemma is a discrete analog of the

extension theorem for Sobolev spaces.
LEMMA 5.3. Let , r ¶ � w "%$&��x . Then there exists �g.Gõ w , x r ¶ © w $&��x , such that¨§ç ¹ ¡ � � �g.Gõ w , x� , C�E�F � �g.Gõ w , x �  � ± � �U² 4 � Úp, �  �WV�� ± ¡ �G� ² @

where
¨×ç ¹ ¡ � � ,  w ,º¹ ¡ � � @�Úp,º¹ ¡ � � x for , r¼t<u w $&��x .

Proof. See [25, Theorem 4.4].
LEMMA 5.4. For any 3  w 3 Ï �Ò� x r ¶ 1 , we have� 3 � u �76 4 ^â� a:b � � âÏ � ��Ý ¡ � �TX � " Í 3 b � u �YV��ZYZ ± Þ�� � ² � � 3 u � u �WV��ZWZ ± ÞÁ� � ²)[ @

where 3 Ï �Ò�  w 3 b @M3 u x r ¶ b�Ë ½v Ë � w � ��� x&ß ¶ v Ë bv Ë � w � ��� x is the restriction of 3 onto a slave Ê �M¾ ·� .
Proof. Let

;3 r Ç¶ 1 be an extension of 3 to Ç¶ by zero. Then by the definition
� 3 � u � 6  �<;3 � u �

. Let ) r Ç¶ © w $&x be a discrete biharmonic function, such that
¨§ç ¹ ¡ �G� ) �- ;3
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on
"%$ �

for \  Å¥ @i\i\S\U@ D . Here
;3 is the unique function corresponding to the vector;3 (denoted by the same symbol). Thus by the definition of Schur complement we have�T;3 � � � � �G�  � b F u� � ) � �  � ± � �U² \ Next by Lemma 5.3 and the minimal property of the discrete

biharmonic functions we get� 3 �iu � 6  �T;3 �iu �  Å^â� acb � � � ) � u � ± � � ² 4 ^â� a:b � � � Úp) � u �WV�� ± ¡ � � ²4 ^â� a:b � � âÏ � �Ý ¡ � � w � " Í 3 b � u �WV��ZWZ ± Þ�� � ² � � 3 u � u �YV��ZYZ ± Þ�� � ² x \
The following lemma gives an estimate of the

t bGF uv�v norm over an edge by
t b F u

and
}^]

norms; see [25, Lemma 4.1].
LEMMA 5.5. If ) r(t b F uv�v w � ��� x satisfies

� " Í ) �`_Ea ± Þ�� Ð ² 4 � � b� � ) �O_Ea ± Þ�� Ð ² , then� ) � u �WV��ZWZ ± Þ�� Ð ² 4 � ) � u �WV�� ± Þ�� Ð ² � w ¥ �+Y[h�k w � � ��� � �����xQx � ) � u_ a ± Þ�� Ð ² @
where � ��� is an edge of

$ �
.

The next result is a Sobolev like inequality; see, e.g., [38, Lemma 4.2.2].
LEMMA 5.6. For any function ) r ¶ © w $ � x , we have� ) � u J � ñ a ± � �U² 4 w ¥ ��YXh�k w t �����G��xMx X t � u� � ) � u � ± � �i² � � ) � u � ± � �U² [ \
Next we introduce two auxiliary operators and show their stability properties in the trace

norms. We first define an operator associated with a slave Ê �[�+· � �[� , which is a common
edge of

$&�
and

$�� y , and show its stability property which is crucial for the analysis of our
preconditioner.

DEFINITION 5.7. Let b Í�X� � }�u w Ê �[��x � ¶ b�Ë ½v Ë � w � ����x , cf. (3.1), be defined by��Ï�Ð � b Í�[� ) Ó �ÁÔ  ��Ï�Ð � ) Ó ��Ô {ªÓ r Ì �Íw Ê �X��x \(5.1)

The following lemma states the stability of b Í�[� ; see the proof of [29, Lemma 6].
LEMMA 5.8. The following estimate holds for the operator b Í�[� :� " Í b Í�[� ) �  �YV��ZWZ ± Ï Ð � ² 4 � " Í ) �  �WV��ZWZ ± Ï Ð � ² { ) r¸t ½ F uv�v w Ê �[��x \
We also introduce another operator b ��X� � }�u w Ê �X� x ��t bv w Ê �[� x , cf. [3].
DEFINITION 5.9. Let b ��[� � }~u w Ê �[� x � ¶ v Ë bv Ë � w � ��� x , be a linear operator defined by, cf.

(3.1), ��Ï�Ð � b ��[� ) Ù ��Ô  ��Ï�Ð � ) Ù ��Ô {�Ù r Ì �� w Ê �[��x \(5.2)

The stability of b ��[� is stated in the following lemma, cf. [3, Lemma 1].
LEMMA 5.10. For the operator b ��X� , we have� b ��[� ) �  �YV��ZWZ ± Ï�Ð �i² 4 � ) �  �YV��ZWZ ± Ï�Ð ��² { ) r¼t bGF uv�v w Ê �X� x \



ETNA
Kent State University 

http://etna.math.kent.edu

FETI-DP MORTAR 4TH ORDER 11

We also need the following technical lemmas. For any ) r ¶ © w $ � x , we define a cubic
interpolant c  Ë ½ ) rØ}~u w � ����x , by c  Ë ½ ) w . xs ) � w . x and

" Í c  Ë ½ ) w . x� ¿" Í ) w . x , for . being
an end of � ��� . Note that

" Í w )!¹ Þ�� Ð Ñ c  Ë ½ ) �x r(t bGF uv�v w � ���Èx .
LEMMA 5.11. For any ) r ¶ © w $ � x , we have� " Í w ):¹ Þ�� Ð Ñ c  Ë ½ ) x �  �WV��ZYZ ± Þ�� Ð ² 4ed ¥ ��YXh�kfd t���G�Aghg � ) �  � ± � �i² \
Proof. Let 3  ) Ñ c  Ë ½ ) . Note that if we replace ) by )f� Ä b , for any linear polynomialÄ b , then 3 is unchanged since c  Ë ½ Ä b  Ä b . Lemma 5.5 yields that� " Í 3 �Uu �YV��ZYZ ± Þ�� Ð ² 4 � " Í 3 � u �YV�� ± ÞÁ� Ð ² � w ¥ ��YXh�k w t¬� ��� � xQx � " Í 3 �iu_ a ± Þ � Ð ² \

Note that by a scaling argument we have� " Í c  Ë ½ ) �  �WV�� ± Þ�� Ð ² � � c  Ë ½ ) � J � ñ a ± Þ�� Ð ² 4 t � u� � ) �O_ a ± � �U² � � ) � J � ñ a ± Þ�� Ð ² \
Hence using a triangle inequality we get� " Í 3 �iu �WV��ZWZ ± Þ�� Ð ² 4 � " Í ) � u �YV�� ± Þ�� Ð ²� w ¥ �+Y[h�k w t �����G�xMx X t �?i� � ) � u_?a ± � ��² � � ) � u J � ñ a ± � �U² [ \

We estimate the first term by the trace theorem, the second one by the embedding
tØuhj �}T]

and a scaling argument, and the last term by Lemma 5.6 and again a scaling argument,
which all together gives� " Í 3 � u �YV��ZYZ ± Þ�� Ð ² 4 w ¥ �+Y[h�k w t �Á�����xQx ulk uâ ã a v t �Ei�m u ã� � ) � u^n ± �G� ²�o \
Finally, a scaling argument and a quotient space argument yield that� " Í 3 � u �WV��ZWZ ± Þ�� Ð ² 4 w ¥ �+Y[h�k w t �����G�xMx u � ) � u � ± �G� ² \

The next lemma can be shown following the lines of the proof of the previous lemma, cf.
also [26, Lemma 5.1].

LEMMA 5.12. For any ) r ¶ © w $&��x , we have� "�� )!¹ Þ�� Ð Ñ c  "�� ):¹ ÞÁ� Ð �  �YV��ZYZ ± Þ�� Ð ² 4 d ¥ �+Y[h�k d t �� � ghg � ) �  � ± � �U² @
where c  "�� ):¹ Þ�� Ð is a linear interpolant of

"l� )!¹ Þ�� Ð r ¶ v Ë b� w � ���Èx defined by the values of the
function at the ends of � ��� .

The following lemma is crucial for our analysis.
LEMMA 5.13. For any 3 r Ç¶ and any slave Ê �[�o· � , we have�Á� X � " Í 3 ± �

²b ¹ î � Ð Ñæ" Í 3 ± � ²b ¹ Ï�Ð � � u �YV��ZYZ ± Þ�� � ² � � 3 ± � ²u ¹ î � Ð Ñ 3 ± � ²u ¹ Ï�Ð � � u �WV��ZWZ ± ÞÁ� � ²)[4pd ¥ ��YXh�kQd t � ghg u â� a��OË � � 3T� � u ��� � � @
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where w 3 ± � ²b ¹ î � Ð @M3 ± � ²u ¹ î � Ð x r ¶ � w � ����x is the restriction of 3 � r ¶ � to the mortar É ��� , andw 3 ± � ²b ¹ Ï�Ð � @Q3 ± � ²u ¹ Ï�Ð � x r ¶ � w � �[��x is the restriction of 3 � r ¶ � to the slave Ê �[� . Here
t  j¬Cq �!���

and
�  joVXE � � � .
Proof. Let ) r Ç¶ © w $&x be a discrete biharmonic function, such that

¨§ç ¹ ¡ � � )]¾  3&¾ on"%$ ¾ , for any subdomain
$ ¾ . Then, in particular, we have¨§ç ¹ î � Ð ) �  w ) � ¹ î � Ð @ "�� ) � ¹ î � Ð xn w 3 ± � ²b ¹ î � Ð @M3 ± � ²u ¹ î � Ð x @¨§ç ¹ Ï�Ð � ) �  w ) � ¹ Ï�Ð � @ " � ) � ¹ Ï�Ð � x� w 3 ± � ²b ¹ Ï�Ð � @M3 ± � ²u ¹ Ï�Ð � x

and
� 3T� � u � � � �  ÷� � � )q� � u � ± � � ² @ cf. the definition of Schur complement and (3.7). Note that" Í ) � ¹ î � Ð ÑØ" Í ) � ¹ Ï�Ð � r¼t bGF uv�v w � ��� x and

" � ) � ¹ î � Ð ÑØ" � ) � ¹ Ï�Ð � r¼t bGF uv�v w � ��� x .
By the continuity of all degrees of freedom of ) at the ends of this edge we also havec  Ë ½ ) �¸ c  Ë ½ ) � and c  "�� ) �ê c  "Á� ) � on � ��� . Here c  Ë ½ is defined as in Lemma 5.11,

and c  is from Lemma 5.12.
We first estimate the first term:

��� � " Í 3 ± � ²b ¹ î � Ð Ñæ" Í 3 ± � ²b ¹ Ï Ð � � u �YV��ZYZ ± Þ�� � ² . We have� � � " Í 3 ± � ²b ¹ î � Ð Ñæ" Í 3 ± � ²b ¹ Ï�Ð � �  �YV��ZYZ ± Þ�� � ²  I� � � " Í ) � ÑØ" Í ) � �  �WV��ZWZ ± Þ�� Ð ²; â� a���Ë � ��� � " Í w )r� Ñ c  Ë ½ )q� x �  �WV��ZYZ ± Þ � Ð ² \
Then Lemma 5.11 and the assumption

� � ; � � , for the master É ��� and the slave Ê �[� , yield that��� � " Í ) ��Ñæ" Í ) � � u �WV��ZYZ ± Þ�� Ð ² 4 d ¥ ��YXh�k d t � ghg u â� a��OË � � � � )r� � u � ± � � ² \(5.3)

Next we estimate the term corresponding to the normal derivative and get��� � 3 ± � ²u ¹ î � Ð Ñ 3 ± � ²u ¹ Ï Ð � �  �YV��ZWZ ± Þ � � ²  I�Á� � "�� ) ��Ñæ"�� ) � �  �YV��ZYZ ± Þ � Ð ²; â� ac�OË � �Á� � "�� )r� Ñ c  "Á� )q� �  �WV��ZWZ ± ÞÁ� Ð ² \
Applying twice Lemma 5.12 to the two terms on the right-hand side of this inequality

and using the assumption
��� ; �l� , we have�Á� � "Á� ) ��Ñæ"�� ) � � u �YV��ZYZ ± Þ�� Ð ² 4pd ¥ �+Y[h�kfd t � ghg u â� a��OË � � � � )r� � u � ± � � ² \

This and (5.3) completes the proof.
We define a projection

» 1 � Ç¶ � ¶ 1 byw » 1 3 x Ï �Ò� �  w b Í�M¾ w 3 ± ¾ ²b ¹ î � � Ñ 3 ± � ²b ¹ Ï �Ò� x @ b ��M¾ w 3 ± ¾ ²u ¹ î � � Ñ 3 ± � ²u ¹ Ï �Ò� xMx h�E Ê��M¾M@(5.4)

where w 3 ± ¾ ²b ¹ î � � @M3 ± ¾ ²u ¹ î � � x r ¶K¾ w É�¾�� x and w 3 ± � ²b ¹ Ï �Ò� @Q3 ± � ²u ¹ Ï ��� x r ¶s� w Ê��M¾ x are the restriction of 3 r Ç¶
to the mortar É ¾�� and the slave Ê �M¾ of an interface � ¾�� .

LEMMA 5.14. For all 3 r Ç¶ , we have� » 1 3 � �76 4 w ¥ ��YXh�k w t ��� xMx � 3 � � @
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where
t  j¬Cq � � � and

�  j�VXE � � � .
Proof. Take any 3 r Ç¶ and consider its components associated with an interface� ¾�� · � . We have four trace functions 3 ± ¾ ²¹ î � �  w 3 ± ¾ ²b ¹ î � � @M3 ± ¾ ²u ¹ î � � x and 3 ± � ²¹ Ï �Ò�  w 3 ± � ²b ¹ Ï �Ò� @Q3 ± � ²u ¹ Ï �Ò� x .

By the continuity of degrees of freedom at crosspoints, we have 3 ± ¾ ²b ¹ î � � Ñ 3 ± � ²b ¹ Ï ��� ræt<uv%w �c¾�� x
and 3 ± ¾ ²u ¹ î � � Ñ 3 ± � ²u ¹ Ï ��� r(t bv w �c¾�� x .

Let
;3 r Ç¶ be the extension of

» 1 3 by zero, and let the pair w ;3 b @ ;3 u x denotes the
restriction of

;3 to a slave ÊS�M¾ . By Lemma 5.4 we get� » 1 3 �Uu � 6  �T;3 �Uu � 4 ^â� acb âÏ �Ò� Ý ¡ � � � � w � " Í ;3 b ¹ Ï �Ò� �iu �WV��ZWZ ± Þ � � ² � �T;3 u ¹ Ï �Ò� �Uu �WV��ZWZ ± Þ � � ² x \
By the definition of

;3 and Lemmas 5.8 and 5.10 we get�<;3 �iu �76 4 ^â� acb âÏ �Ò� Ý ¡ � � � � w � " Í ;3 b ¹ Ï �Ò� �Uu �YV��ZYZ ± Þ � � ² � �0;3 u ¹ Ï �Ò� �iu �WV��ZYZ ± Þ � � ² x âÏ �Ò� Ý�Þ � � X � " Í b Í¾�� w 3 ± ¾
²b ¹ î � � Ñ 3 ± � ²b ¹ Ï �Ò� x �Uu �WV��ZWZ ± Þ � � ² �� � b �¾�� w 3 ± ¾ ²u ¹ î � � Ñ 3 ± � ²u ¹ Ï �Ò� x � u �YV��ZWZ ± Þ � � ² [4 â Ï �Ò� � � X � " Í 3 ± ¾

²b ¹ î � � ÑØ" Í 3 ± � ²b ¹ Ï �Ò� � u �WV��ZWZ ± Þ � � ² � � 3 ± ¾ ²u ¹ î � � Ñ 3 ± � ²u ¹ Ï �Ò� � u �WV��ZYZ ± Þ � � ² [ \
Finally, using Lemma 5.13 and summing over all slaves we conclude that� » 1�3 � � 6  �0;3 � � 4td ¥ �+Y[h�kfd t � ghg � 3 � � \

6. Condition number bounds. In this section we give the condition number estimate
of the preconditioned operator in the following main theorem of this paper.

THEOREM 6.1. For any ä r Ì , we have8 @ - ^ äª@�äE9&; 8 '.-</ äª@�äE9m4 d ¥ �+Y[h�k d t � g:g u 8 @ - ^ ä�@�ä?9�@
where

t  j¬Cq �f��� and
�  j�VXE �!��� .

Proof. Lower bound. For any nonzero 3 r ¶ 1 , define
;3 r Ç ¶ 1 as the extension of 3

by zero. Then we have
� 3 � �76  �0;3 � �

. Thus by Lemmas 5.1 and 5.2, we have8 @ - ^ ä�@�ä?9 b F u  N HºPI ®KJ 6 LSM vSN á w ;3p@�ä x� 3 � �76  NGHºPuI ® UJ 6 LSM vSN á w ;3p@�ä x�0;3 � �
; N HºPI ®RUJ LSM vON á w 3à@�ä x� 3 � �  v8 ' -0/ äª@�äE9 bGF u \

Upper bound. For any 3 r Ç¶ , we have four trace functions associated with the in-
terface ��¾�� · � : 3 ± ¾ ²¹ î � �  w 3 ± ¾ ²b ¹ î � � @Q3 ± ¾ ²u ¹ î � � x and 3 ± � ²¹ Ï ���  w 3 ± � ²b ¹ Ï �Ò� @M3 ± � ²u ¹ Ï �Ò� x . Then by (5.4), and
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Definitions 5.7 and 5.9 we haveá w 3à@�ä x� âÞ � � ÝGÞ â��a:b�Ë u � Þ � � w 3 ± ¾
²� ¹ î � � Ñ 3 ± � ²� ¹ Ï �Ò� x ä � ¹ Ï �Ò� ��Ô âÞ � � ÝGÞ � Þ � � b Í�M¾ w 3 ± ¾

²b ¹ î � � Ñ 3 ± � ²b ¹ Ï �Ò� x ä b �ÁÔm� � Þ � � b ��M¾ w 3 ± ¾ ²u ¹ î � � Ñ 3 ± � ²u ¹ Ï ��� x ä u ��Ô âÞ � � ÝGÞ â��a:b�Ë u �ÁÞ � � w » 1~3 x � ¹ Ï �Ò� ä � ¹ Ï �Ò� ��Ô�\
Hence by Lemmas 5.2 and 5.1 we conclude that8 'w-</ ä�@�ä?9 b F u  N HºPI ®xUJ L�M vON á w 3à@�ä x� 3 � �

 N HºPI ®xUJ L�M vON âÞ � � ÝGÞ â��acb�Ë u P Þ � � w » 1�3 x � ¹ Ï �Ò� ä � ¹ Ï ��� �ÁÔ� 3 � �
; 8 @ - ^ ä�@�ä?9 b F u N HºPI ® UJ LSM vON � » 1~3 � � 6� 3 � �
4 w ¥ ��YXh�k w t ��� xMxO8 @ - ^ ä�@�ä?9 b F u \

The last estimate follows from Lemma 5.14.
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