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ANALYSIS OF THE FINITE ELEMENT METHOD FOR TRANSMISSION/MIXED
BOUNDARY VALUE PROBLEMS ON GENERAL POLYGONAL DOMAINS *

HENGGUANG LIf, ANNA MAZZUCATO ¥, AND VICTOR NISTOR

Abstract. We study theoretical and practical issues arising in theemghtation of the Finite Element Method
for a strongly elliptic second order equation with jump distiouities in its coefficients on a polygonal domaélrthat
may have cracks or vertices that touch the boundary. We cemisicparticular the equation div(AVu) = f €
H™~1(Q) with mixed boundary conditions, where the matrixhas variable, piecewise smooth coefficients. We
establish regularity and Fredholm results and, under somigi@tal conditions, we also establish well-posedness
in weighted Sobolev spaces. When Neumann boundary condérenisnposed on adjacent sides of the polygonal
domain, we obtain the decomposition= ureg + o, into a functionu,.g with better decay at the vertices and
a functiono that is locally constant near the vertices, thus proving-pesedness in an augmented space. The
theoretical analysis yields interpolation estimates thatlzen used to construct improved graded meshes recovering
the (quasi-)optimal rate of convergence for piecewise pmiyials of degreen > 1. Several numerical tests are
included.

Key words. Neumann-Neumann vertex, transmission problem, augmented te@i§lobolev space, finite ele-
ment method, graded mesh, optimal rate of convergence
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1. Introduction. In this paper we study second-order, strongly elliptic apas in di-
vergence formP = —div AV on generalized polygonal domains in the plane, where the
coefficients are piecewise smooth with possibly jump ditiooities across a finite number
of curves, collectively called thiaterface

Let Q2 be a bounded polygonal domain that may have curved bousdarecks, or ver-
tices touching the boundary. We refer to such domaindoasains with polygonal structure
(see Figure2.1 for a typical example). We assume tHat= UQ;, where(; are disjoint
domains with a polygonal structure such that the interface- U0S2; ~ 02 is a union of
disjoint, piecewise smooth curvés. The curved', are allowed to intersect transversely.
We are interested in theon-homogeneous transmission/mixed boundary valuegmobl

1.1 Pu=f inQ, DPu=gyondnQ, u=gpondpQ,
. uy =u_  and DYtu=DP~u onT,

and the convergence properties of its Finite Element digettéons. Here, A = (4;;) is
the symmetric matrix of coefficients df, D/ := >2i; V' Aij0; is the conormal derivative
associated td@”, and the boundaryf? is partitioned into two disjoints set,2, dx 2 with
0pQ a union of closed sides &f).

Transmission problems of the form in Equatidnlj (also called “interface problems” or
"inclusion problems” in the engineering literature) appieamany practical applications, in
particular they are likely to appear any time that more thaa type of material (or medium)
is used. Therefore, they have been studied in a very largebeunf papers devoted to
applications. Among those, let us mention the paper by Rd8l, LeVeque and Li p1],

Li and Lubkin [B5], Yu, Zhou, and Wei §0]. See also the references therein. By contrast,
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relatively fewer papers were devoted to these problems thenpoint of view of qualitative
properties of Partial Differential Equations. Let us néweless mention here the papers of
Kellogg [44], Kellogg and Aziz p], Mitrea, Mitrea, and Shig1], Li and Nirenberg 53],

Li and Vogelius p4], Roitberg and Sheftel7[l, 72], and Schechter7p]. Our paper starts
with some theoretical results for transmission problend #ien provides applications to
numerical methods. See also the papers of Kelldghdnd Nicaise and &dig [67], and the
books of Nicaise§6] and Harutyunyan and Schulz&(].

The equationPu = f in Q has to be interpreted in a weak sense and then the disconti-
nuity of the coefficientsd” leads to “transmission conditions” at the interfaceSincer is
a union of piecewise smooth curves, we can locally chooseditey of the non-tangential
limits . andwu_ of u at the smooth points of the interfate We can label similarlyDZ"+
andDZ~ the two conormal derivatives associatedtat the two sides of the interface. Then
the usual transmission conditions = «~ and DX+u = D=« at the two sides of the
smooth points of the interface are a consequence of the weatdifation, and will always be
considered as part of Equatioh {). This equation does not change if we switehto “ —,"
so our choice of labeling is not essential. At tien-smoottpoints ofl", we assign no mean-
ing to the interface conditio®?'*u = DX ~w. The more general conditions” — u~ = hg
andDF+vu — DP~u = h; can be treated with only minor modifications. We also alloe th
cracks to ramify as part @if2.

It is well-known that wherndS2 is not smooth there is a loss of regularity in elliptic
boundary-value problems. Because of this loss of regylaiquasi-uniform sequence of
triangulations orf2 doesnot give optimal rates of convergence for the Galerkin apprexim
tionswy, of the solution of {.1) [78]. One needs to considgradedmeshes instead (see for
example , 12, 70]). We approach the probleni () using higher regularity in weighted
Sobolev spaces. For transmission problems, these reselltew (see Theorends1-3.3).

We therefore begin by establishing regularity results fot)(in the weighted Sobolev
spacesC™ (), where the weight may depend on each verteXXafsee Definition 2.7)).
We ident?fy the weights that maki Fredholm following the results of Kondratiex] and
Nicaise p€]. If no two adjacent sides are assigned Neumann boundaditoams (i. €., when
there are no Neumann—Neumann vertices), we also obtainlgposgdness result for the
weight parameten close to 1. In the general case, we first compute the Fredhalexiof
P, and then we use this computation to obtain a decompositienu,., + o of the solution
of u of (1.1) into a function with good decay at the vertices and a fumctlmat is locally
constant near the vertices. This decomposition leads tevanedl-posedness result if there
are Neumann—Neumann vertices.

Our main focus is the analysis of the Finite Element MethadEguation (.1). We are
especially interested in obtaining a sequence of meshegithndes quasi-optimal rates of
convergence. For this reason, in this paper we restrict toadfts in the plane. However,
Theorems3.1, 3.2, and3.3 extend to 3D (see5B] for proofs in the absence of interfaces and
[16] for a proof of the regularity in the presence of interfacesidimensions). We assume
that(2 has straight faces and consider a sequéhaef triangulations of2. We let

S, C HH(Q) := HY(Q) N {u=00ndpQ}

be the finite element space of continuous functionQ dimat restrict to a polynomial of degree
m > 1 on each triangle of,,, and letu,, € S,, be the Finite Element approximation of
defined by equatiorb(1). We then say that,, providesquasi-optimal rates of convergence
for f € H™~1(Q) if there existsC > 0 such that

(1.2) [t — g < C dim(Sy) ™™ 2| f]| gm—1,
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forall f € H™1(Q). We donot assumeu € H™(Q). (In three dimensions, the
powerm /2 has to be replaced with:/3.) Hence the sequencg, provides a quasi-optimal
rate of convergence if it recovers the asymptotic order efvecgence that is expected if
u € H™TH(Q) and if quasi-uniform meshes are used. See the papers of @redui, and
Sung R€], Brannick, Li, and ZikatanovZ4], and Guznan [38] for other applications of
graded meshes. Corner singularities and discontinuouficieets have been studied also
using “least squares method<21] 22, 29, 50, 49]. Here we concentrate on improving the
convergence rate of the usual Galerkin Finite Element Mektkm approximate singular so-
lutions in the transmission problerh.(). Thenewa priori estimates in augmented weighted
Sobolev spaces developed in Sectibplay a crucial role in our analysis of the numerical
method.

The problem of constructing sequences of meshes that grauidsi-optimal rates of
convergence has received much attention in the literatwe mention in particular the work
of Apel [2], Babuska and collaboratorg[11, 12, 13, 37], Bacuta, Nistor, and Zikatanof],
Bacuta, Bramble, and X fi], Costabel and Daug&8|, Dauge B4], Grisvard B6], Lubuma
and Nicaise $6], Schatz, Sloan, and Wahlbir74]. Let us mention the related approach
of adaptive mesh refinements, which also leads to quasiraptates of convergence in two
dimensions?3, 59, 63]. Similar results are needed for the study of stress-initiefactors P25,
28). However, the case of hyperbolic equations is more diffipgd]. Cracks are important
in Engineering applications, se84 and the references therein. Transmission problems are
important in optics and acoustic3(]

We exploit the theoretical analysis of the operatdto obtain ana priori bound and
interpolation inequalities. These in turn allow us to vwetifat the sequence of graded meshes
we explicitly construct yields quasi-optimal rates of cergence. For transmission problems,
we recover quasi-optimal rates of convergence if the data i$™~!((2;) for eachj. To
account for the pathologies 1, we work in weighted Sobolev spaces with weights that
depend on a particular vertex a more general setting thanribeconsidered inlg]. The
use of inhomogeneous norms allows us to theoreticallyfjuite use of different grading
parameters at different vertices when constructing gradeshes. A priori estimates are a
well-established tool in Numerical Analysis; see e.4,. 5 8, 10, 20, 27, 31, 39, 45, 62, 77].

At the same time, we address several issues that are ofshiereoncrete applications,
but have received little attention. For instance, we carsidacks and higher regularity for
transmission problems. Regularity and numerical issugsdnsmission problems were stud-
ied before by several authors; see for example Nic&6egnd Nicaise and &dig [67] and
references therein. As in these papers, we use weightedeésyalgaces, but our emphasis is
not on singular functions, but rather on well-posednessltesThis approach leads to a uni-
fied way to treat mixed boundary conditions and interfacesingission conditions. In particu-
lar, there is no additional computational complexity iratieg Neumann—Neumann vertices.
Thus, although the theoretical results we establish aferdiit in the case of Neumann—
Neumann corners than in the case of Dirichlet—-Neumann golgidirichlet boundary con-
ditions, the numerical method that resultshe samen all these cases, which should be an
advantage in implementation.

The paper is organized as follows. In Sectiynve introduce the notion of domain with
polygonal structure and discuss the precise formulatioth@ftransmission/boundary value
problem (.1) in the weighted Sobolev spag&” ({?). In Section3, we state and prove pre-
liminary results concerning regularity and so?vabilitytbé problem {.1) when the interface
is smooth and no two adjacent sides{bfire given Neumann boundary conditions (Theo-
rems3.1, 3.2, 3.39). In Section4, we consider the more difficult case of Neumann-Neumann
vertices and non-smooth interfaces. We exploit thesetseanll spectral analysis to obtain
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Types of singularities

Geometric verex

Artificial vertex (b.c. changes)
Dirichlet boundary condition
Neumann boundary condition
Interface or crack

D Rl Ramified interface

—Z0x e

FiG. 2.1. A domain with a polygonal structure.

a new well-posedness result in a properly augmented siﬁégg(ﬂ) + W, andarbitrarily

high regularity of the weak solution in each subdomaif; (Theorems4.5and4.7). For
simplicity, we state and prove these results for the modairgpte of P = div(AVu), A a
piecewise constant function, which will be used for nunartests. By contrast, when in-
terfaces cross, compatibility conditions on the coeffitsereed be imposed to obtain higher
regularity inH*(Q2), 1 < s < 3/2[69]. In Section5, we tackle the explicit construction of
graded meshes giving quasi-optimal rates of convergendadéd-EM solution of the mixed
boundary/transmission problerii.{) in the case of a piecewise linear domain, and derive
the necessary interpolation estimates (TheorBriid and5.12). In Section6, we test our
methods and results on several examples and verify the alptate of convergence.

We hope to extend our results to three dimensional polyhedraains. The regularity
results are known to extend to that cad€]] The problem is that the space of singular
functions is infinite dimensional in the three dimensiorede. Further ideas will therefore
be needed to handle the case of three dimensions.

2. Formulation of the problem . We start by describing informally the class of “do-
mains with a polygonal structuré?, a class of domains introduced (with different names and
slightly different definitions) by many authors. Here weldal most closely 34]. Next we
describe in more detail the formulation of the transmisgiored boundary value problem
(1.1) associated t@ and interfacd’. The coefficients of” may have jumps dt.

2.1. The domain. The purpose of this section is to provide an informal desiorip
of the domains under consideration, emphasizing their sichcture and their suitability
for transmission/mixed boundary value problems. In Figuife we exemplify the various
types of singularities, some of geometric nature, othemmsting from solving the transmis-
sion/mixed boundary value probler.{). These singularities are discussed in more detail
below.

We consider bounded polygonal-like domainghat may have cracks or vertices that
touch a smooth part of the boundary. Recall that polygonadains are not always Lipschitz
domains, however, the outer normal to the boundary is wedilhdd except at the vertices. If
cracks are present, then the outer normal is not well-defimeo(2 # 5. In order to study
cracks, we model each smooth part of a crack as a double ngvara smooth curve. We then
distinguish the two normal directions in which we approauh boundary. This distinction
is also needed when we study vertices that touch the bound&hen cracks ramify, we
need further to differentiate from which direction we apgrb the point of ramification. This
distinction will be achieved by considering the connecteighborhoods oB(x, r)NS2, when
x is on the boundary, as in Daug@4]. More precisely, we will distinguish for each point
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of the boundary the side from which we approach it. This dsfimdormally, the “unfolded
boundary”0“Q) of Q2. What is most important for us in this concept, is that eachamo
crack pointp of Q will be replaced in0“€2 by two points, corresponding to the two sides of
the crack and the two possible non-tangential limitg af functions defined of.

We really need the distinction between the usual bound&rsind the unfolded boundary
0", since it plays arole in the implementations. Moreover, aedefine the “inner-pointing
normal” vector consistently at every smooth point a?“{2, even at crack points (but not
at vertices). Theouter normalto 9“2 is defined byyr = —». Similarly, we defined the
“unfolded closure™Q) := Q U 9“Q. The test functions used in our implementation will be
defined or*Q andnot on € (this point is especially relevant for the difficult and inmfznt
case of cracks that are assigned Neumann boundary corsddiorach side). More details
will be included in a forthcoming papebf).

When considering mixed boundary conditions, it is well kndaat singularities appear
at the points where the boundary conditions change (frontidat to Neumann). These
singularities are very similar in structure to the singitiles that appear at geometric vertices.
We therefore view “vertices” simply as points on the bougdaith special properties, the
geometric vertices being “true vertices” and all othersgéfrtificial vertices.” The set of
artificial vertices includes, in particular, all points whethe type of boundary conditions
change, but may include other points as well (coming frominiterface for example). This
choice allows for a greater generality, which is convenieistudying operators with singular
coefficients.

We therefore fix a finite set C 9“<), which will serve as the set where we allow
singularities in the solution of our equation. We shall ¢h# setV the set of verticesf ().
The set of vertice$’ will contain at a minimum all non-smooth points of the bourydar
of the interface, all points where the boundary conditionange, and all points where the
boundary intersects the interface, but there could be gihiets in) as well. In particulary
is such that all connected component®®f) \. )V consist of smooth curves on which a unique
type of boundary condition (Dirichlet or Neumann) is givémparticular, the structure an
determined by is not entirely given by the geometry and depends also ongéeifics of
the transmission/boundary value problem. This structargyrns, when combined with the
introduction of the unfolded boundary, gives rise to theasgt of adomain with a polygonal
structure introduced in 4] and discussed at length iB§| (except the case of a vertex
touching a smooth side).

2.2. The equation. We consider a second ordscalar differential operator with real
coefficientsP : C° () — C&°(Q)

2
(2.1) Pu:=—div (AVu) = - Y 9;A70;u.

4,J=1

We assume, for simplicity, that”’/ = A7¢. The model example, especially for the numerical
implementation, is the operatd? = div AV, where A is a piece-wise constant function.
Under some mild assumptions on the lower-order coefficighésresults in the paper extend
also to operators of the forl® = — ijzl 9;AUd; + 52 b'9; + ¢. Our methods apply
as well to systems and complex-valu’ed operators, but weatet the scalar case for the
sake of clarity of presentation. 15§, we studied the system of anisotropic elastidity=
—divo Co Vin 3 dimensions (in the notation abov& ), A = [C,,]¥).
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We assume throughout the paper tRas uniformly strongly elliptici.e.,

2

(2.2) > A(@)gg; = Ollel?,

ij=1

for some constant’ > 0 independent of: € 2 and¢ € R2.
We also assume that we are given a decomposition

(2.3) Q=L 9,
where(2; are disjoint domains with a polygonal structure, and defiegrtterface
(2.4) I':= (U, 09;) \ 09,

whichwe assume to be the union of finitely many piecewise smootbesity. We allow the
curvesl';, to intersect, but we require these intersections to beveass, i. e., not tangent. We
take the coefficients of the differential operafdrto bepiecewise smootim 2 with possible
jumps only along’, that is, the coefficients aP on §2; extend to smooth functions dn;.
Also, we assume that all the vertices of the domains with ygoolal structure?; that are
on the boundary of? are already included in the st of vertices of.

To formulate our problem, we introdugghomogeneouseighted Sobolev spaces, where
the weight depends on the vertex, considered beforgdn Let d(x, Q) be the distance from
xto Q € V, computed using paths iff2 and let

(2.5) I(x) =[] d(= Q).

QeV

Let a = (ag) be a vector with real components indexed®ye V. We denotet + a =
(t + ag), but writet instead ofa if all the components of are equal td. We then set

(2.6) 92 (2) = [] dlz, Q)0 = 0" ()9 (x),
Qev

and define thenth weighted Sobolev space with weighby
2.7) K2(Q) == {f : Q — C, 9°I=20°f € L2(Q), forall |a| < m}.

The distance function is continuous ot} but it is not smooth at the vertices. Whenever
derivatives ofi} are involvedwe implicitly assume that has been replaced by a more regular
weight function-q. This weight function is comparable tband induces an equivalent norm
on IC%”. One can describe the spadé%(Q) also using certain dyadic partitions of unity.
See [L, 33, 47, 58] for example. Such patrtitions of unity allow also to definasgs on the
(unfolded) boundary of?, IC%,(G“Q), s € R, for which the usual interpolation, duality, and
trace properties still apply.

Our first goal is to study solvability of the probler.{) in £™*(Q), m > 0. The
boundary conditions are given each siden the unfolded bounda@“ﬂ, where we assume
that

QU =0nyQUIpN, IpQNINQ = @,
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such that)p {2 a union of closed sides ¢f. We impose Neumann daga; € IC’S:%?(@NQ)

and Dirichlet datay, € ICT:;;(E)DQ), m > 0. By the surjectivity of the trace map, we can

reduce to the casg, = 0 (in trace sense).
Form = 0, the problem {.1) must be interpreted in an appropriate weak (or variatjonal
sense, which we now discuss. For each € H'(Q), we define the bilinear fornp (u, v)

(2.8) Bp(u,v) = Z A" 9pu 0jv de, 1<4,5<2,
ij Q
and denote byD”” theconormal derivativeoperator associated @, given by

(2.9) (DFu) = ZyiAijaj.
i

The definition of D'w is understood in the sense of the trace at the boundary. ticylar,
whenu is regular enougtb?’v is defined almost everywhere as a non-tangential limit, con-
sistently withr being defined only almost everywhere @2. We recall that is defined on
0" except at the vertices because the smooth crack poiai® afre doubled i ().

Since is a finite union of Lipschitz domains, Green’s Lemma holdsftmctions in
H?(Q) [36], that is,

(2.10) (Pu,v)r2(0) = Bp(u,v) — (DFu,v) 12(5u0), u,v € H*(Q).
Hence, we let

o 1 _
(2.11) H = {ue K1+Z(Q)’ u=00ndpQ},

and we define the weak solutianof equation {.1) with gp = 0 as the uniqueu € H_
satisfying

(2.12) Bp(u,v) = ®(v) forall veH .

where® € (H__)* is defined by®(u) = [, fudz + [, o gyvudS(z), the integrals being
duality pairings ‘between d|str|but|ons and (sunable)cmms

Whenu is regular enough, problen. () is equivalent to the following mixed boundary
value/interface problem

Pu = f in €,
(2 13) u =gp=~0 onopf2 C 8“Q,
' DPu = gn onoy C 9“9,

ut =v"andDF*u = DP~u onT,

where it is crucial thaby 2 anddp <) are subsets of thenfolded boundary (Recall that
the unfolded boundary is defined by doubling the smooth pafithe crack. In particular,
one can have Dirichlet boundary conditions on one side ofthek and Neumann boundary
conditions on the other side of the crack.) hi(3, »+ andu~ denote the two non-tangential
limits of u at the two sides of the interfadé This choice can be done consistently at each
smooth point of". Similarly, DI+ andDP’~ denote the two conormal derivatives associated
to P and the two sides df. Note that the singularities in the coefficientsdfre taken into
account in the definitions @0+ and DI~ If w is only in IC%H(Q) and satisfy2.12), then
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the differenceDI*u — DP~w may be non-zero (s®(13 is not strictly satisfied), but may
be included as a distributional term jin

Thus the usual transmission conditian's = u~ andD*+u = D'~ at the two sides of
the interface are a consequence of the weak formulationydiaways be considered as part
of equation {.1). The slightly more general conditions —u~ = hg andDl+u—DP~u =
hy can be treated with only minor modifications, as explainefbif). More precisely, the
termhg can be treated using extensions similarly to the tegmThe termh, can be treated
by introducing in the the weak formulation the tejlinhluds, whereds is arc length o

In order to establish regularity and solvability &.13), under the hypothesis th#t is
uniformly strongly elliptic, we shall use coercive estiesit We say thaP is coercive on
Ho :="H_, if there exists) > 0 and~y € R such that

(214) Bp(u, u) > H(VU, VU)L2(Q) — 7(19_2’[1, ’U)Lz(Q), for all u,v € Hp.

If this inequality holds for some < 0, we say thatP is strictly coercive oriH (or strictly
positivg and writeP > 0. The operato in (2.1) is always coercive ofty. If there are no
Neumann—Neumann vertices and the interfaéesmooth, therP is strictly coercive ori,
as it will be discussed in the next section.

3. Preliminary results. Our approach in studying singularities for problethl@ is
based on solvability in weighted spaces rather than on Endunctions expansions. We
begin with three results on regularity and well-posednesdte boundary-value problem
(2.13, which we first state and then prove. S@&&,[18, 42, 43, 44, 6, 46, 47, 65, 66, 67
for related results. In particular our result should be carad with 6], especially Theorem
3.12. By “well-posedness” we mean “existence and unigqueagsolutions and continuous
dependence on the data.” Recall that for transmission @nabive assume that all the vertices
of the domains with a polygonal structuty that are on the boundary 6f are included in
the set of vertices df2. Below, if no interface is given, we take = ;. WhenQ # Q4 # 0,
we have groper transmission problem.

We first deal with the general case of an interface that is ti@uof finitely manypiece-
wise smooth curves with transverse intersecti@ml establish that the transmission/mixed
boundary probleml(.1) satisfies a regularity property. We assume that the norenpmints
of the interfacd are included in the vertices of the adjacent dom&ingthe self-intersection
points, which are assumed to be transverse, are also icindee set of vertices). This reg-
ularity result is crucial in obtaining the necessarpriori estimates for quasi-optimal rates of
convergence in Sectidnfor transmission problems.

We first state our main results on regularity and well-posedrand then we prove them.

THEOREM 3.1. Assume that” = —div AV is a uniformly strongly elliptic, scalar
operator in divergence form of2 with piecewise smooth coefficients. Also, assume that
u: Q — Rwith v € IC%H(Q) is a solution of the transmission/mixed boundary problem
(1.1). Letm > 0, and suppose thajy €< /c’;j;;(aNQ), gp € KSEZ(@DQ), and
[+ Q — Ris such thatf|o, € IC%?j(Qj). Thenulg, € IC%?E(QJ-), for eachj, and we
have the estimate

N
luller, @+l @,y < O( 0 17 lient @ + llow]

K2 oy T
1 a—1/2

lgnllriirz o+ lellco. @)
M2 @
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for a constant that is independent of and the dataf, gn, andgp.
Note that, in the above result, the spalﬂi;é:(ﬂk) are defined intrinsically, i. e., with-

out reference tdCT:(Q), using as weight the distance to the set of verticeQ gfwhich

includes also the points 6f; wherel is not smooth or where it ramifies.

The next two results deal with solvability of the probleini], in the case of a smooth
interface and whefi“{2 contains no adjacent sides with Neumann boundary conditi@e
condition thatl” is smooth in particular implies thatis a disjoint union of smooth curves.)
These results are also the basis for the analysis in Seétinrthe presence of Neumann-
Neumann vertices and general interfaces (TheoreBend4.7, where an augmented domain
for the operator is required). Recall that the weak solutigs given in equation4.12) with
®=(f,gn) €H" - (because we takgp = 0).

THEOREM 3.2. Assume thaf is a uniformly strongly elliptic, scalar operator of.
Assume also that no two adjacent side€oére given Neumann boundary conditions and
that the interfacd” is smooth. Ther® is strongly coercive oft{y and for each vertex) of
Q2 there exists a positive constan with the following property: for anyd> < Hiz with

lag| < ng, there exists a unique weak solutiane ICLH(Q), u = 0 on dp? of equation
a
(2.13, and we have the estimate

lullict, (@) < Cl2]
a-+1

for a constaniC' = C/(a) that is independent ab.

When the data is more regular, we can combine the above twoetinsanto a well-
posedness result for the transmission/mixed boundarylgarob We note that continuous
dependence of the solution on the data immediately folloamfthe estimate below since
the boundary-value problem is linear.

THEOREM 3.3. Letm > 1. In addition to the assumptions of Theor@2, assume

m—1/2 m+1/2 . .
thatgy € ]CZ—l/z (ONQ), gp € IC;+1/2(8DQ), and thatf : Q@ — R is such thatf|q, €
ICT:(QJ.). Then the solution € IC%H(Q) of equation(2.13 satisfiesu|q, € KTji(Qj),
for all 7, and we have the estimate

lull st 0, < C(Z £ =1 @) +lgnllicm=172 5 ) + 9D /cL't““(aDsz))'
a+1 k a—1 a—1/2 a+1/2

If P =—37 _ 0;AU0;4Y7 | b'0i+c, thatis, if lower order coefficients are included,

our results extend to the case witer-V-b > 0in Q andv-b > 0ondy 2, whereb = (b%).
Let us denote byPv = (& P|q,. D))v == (Pvlq,, ..., Pvla,, DY v), decorated with
various indices. As a corollary to the theorem, we estalttistfollowing isomorphism.
COROLLARY 3.4. We proceed as ing8]. Let m > 1. Under the assumptions of
Theoren®.3 the map

D L Py . 1 m—+1 ) _
Poa= (®Plo,,D,) : {ue ’CZH(Q)’ ula, € ICZH(QJ)’ u=00ndpl,
uT =wu" andDFtu =D~ uonT} — @ﬂCg:i(Qj) ® /Cg:ig(@NQ)
is an isomorphism fofug | < 71¢. See b8 for more details of this method.

We next turn to the proofs of Theorerfdl, 3.2, and3.3. We will only sketch proofs and
concentrate on the new issues raised by the presence daaesy referring for more details
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to [1, 17, 58], where similar results were established for mixed bouydaiue problems in
homogeneouk’" spaces.

Proof of TheorenB8.1 Using a partition of unity, it is enough to prove the result on
the model problem2.13 with Q@ = R™ andI" = {z,, = 0}, that is, no boundary and one
interface. We can assume without loss of generalitydhss compact support on a fixed ball
B centered at the origin. Then by known regularity result§ [see also§6] and references
therein), ifu € H}(B) andPulg, € H™ Y(R%}), ulg, € H™TY(R%}). O

We next turn to the proof of well-posedness for the transioigsiixed boundary prob-
lem (2.13, namely, to the proofs of Theorends2 and3.3. As before, we denoté{_. :=
{u e ICL;(Q)?u = 00ndpN}, wheredp is assumed non empty, and we 8&ft = HS'
Strict coercivity of P on H, then ensues in the standard fashion from a weighted form of
Poincaé inequality, which we now recall.

LEMMA 3.5. LetQ C R? be a domain with a polygonal structure. L#tz) be the
canonical weight function of2 and letdp <) be a non-empty closed subset of the unfolded
boundaryd“Q such thatoyQ = 9“Q \ Ip<2 is a union of oriented open sides @f no two
of which are adjacent. Then there exists a constamnt> 0 such that

" u(2)]?
Julfgy = [ ﬁgziL oo [Ivue)ra:
Q Q

for anyu € H'(Q) satisfyingu = 0 ondp Q.

In particular, anyu € H'(Q) satisfying the assumptions of the above theorem will be
automatically inkC(€2). This estimate is a consequence of the corresponding dstimnea
sector, which can be proved in the usual way, given that alsefmitely many vertices and
that near each verte®, “Q is diffeomorphic to a sector of angle< o < 27 [17, 65 (the
angle is27 at crack tips).

Proof of Theorem8.2and3.3. We first observe that

Bp(u,u) = /Z AY (2)0pu(x) Oju(z) dv > Cp / |Vu(z)|? da, u € Ho,
Q U Q

using the strong ellipticity condition, equatio.?). By Lemma3.5, —A is strictly coercive
on'Hy, given the hypotheses @i ). Therefore, ifu € Hy

Bp(u,u) = /ZA”(m)alu(x) dju(z)dr > Cp /|Vu(a:)|2dx > Cpo ||“||12c?(9)-
Q W Q

The first part of Theorer3.2is proved.
Next, we employ the maps

p = Py . 1
Pm,; = (®Plo,,D;) : {ue K?{H

ut =u” andD[Fu= D) TuonT} — &;K"1(Q)) & /CTjZ(@NQ)

(), ulg, € /cgﬁ(ﬂj), u = 00ndps,

of Corollary 3.4. To prove the rest of the Theorer@s2 and3.3, we will show that15m 2 is

an isomorphism forn > 0 and|ag| < ng. SinceBp is strictly coercive orfH, it satisfies
the assumptions of the Lax-Milgram lemma, and heBge: Ho — Hg is an isomorphism,
whereB},(u)(v) = Bp(u,v). Thatis,FPy o is an isomorphism. Hence, Theoref18and3.3

are established fon, = 0 anda = 0.
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To extend the results to the case# 0 with lag| < ng, we exploit continuity. Letq be
a smoothing ot outside the vertices. As ii[58], the family of operators, * P ;rg act

on the same space and depend continuouslﬁoSincePo,o is an isomorphism, we obtain
that /) — is an isomorphism fom close to0. In particular, there existgy > 0 such that for
lag] < Qs Po,; is an isomorphism. The proof of Theorei®£ and3.3 are complete for
m = 0.

It only remains to prove Theoreth3for m > 1. Indeed, Theorer.1gives thatl5m 2
is surjective forlag| < nq, since it is surjective forn = 0. This map is also continuous and
injective (because it is injective fan = 0), hence it is an isomorphism. Consequet| =
lag| < ng, is an isomorphism by the open mapping theorem. 7

The above three theorems extend to the case of polyhedraidomthree dimensions
using the methods obp] and [16]. The case of three dimensions will be however treated
separately, because the 3D Neumann problem is significanaitg complex, especially when
it comes to devising efficient numerical methods. The caséeafmann—Neumann adjacent
faces in 3D cannot be treated by the methods of this papee ghonvever.

4. Neumann-Neumann vertices and nonsmooth interfacedn this section, we obtain
a new type of well-posedness for the problelnd) in the space&’™ that applies also to gen-
eral interfaces and to Neumann-Neumann vertices. Ourtresuibines the singular function
decompositions with more typical well-posedness res@liisgular function decompositions
for interface problems have been discussed alsé3r42, 66, 67] and more recentlyq9], to
give just a few examples.

We restrict to a special class of operatétsfor which the spectral analysis is amenable.
Specifically, we consider the case of the Laplace operAtowhen there are Neumann-
Neumann vertices but no interface, and the case dfv AV, with A piecewise constant,
when there are interfaces. In this last case, the operastitlia multiple of the Laplacian on
each subdomain. Except for the explicit determination efdbnstantg, our results extend
to variable coefficients. In both cases, we can compute @itplithe values of the weight
ag for which the operatof” is Fredholm. These values will be used to construct the grade
meshes in Sectioh

4.1. The Laplace operator. When P = —A, the Laplace operator, it is possible to
explicitly determine the values of the constamtsappearing in Theoreng&2and3.3. In this
subsection, we therefore assume tRat — A and there are no interfaces, that i8,= ;.

Recall that to a Fredholm operatdr: X — Y between Banach spaces is associated a
unique number, called thadex defined by the formulawd(7") = dim ker(7') — dim(Y/X).

For a discussion of Fredholm operators, see €/§], [

For each vertex) € V, we letag be theinterior angle of9“Q at ). In particular,

ag = 2m if @ is the tip of a crack, andq = = if @ is an artificial vertex. We then define

(4.1) g ={kr/aqg},

wherek € Z if Q € V is a Neumann—Neumann vertéxec Z ~ {0} if Q € V is a Dirichlet—
Dirichlet vertex, and: € 1/2 + Z otherwise. The operator penéth (7) (or indicial family)
associated te-A atQ is Po(7) := (1 —1€)? — 93, where(r, §) are local polar coordinates at
Q. The operatof’; (7) is defined on functions it ([0, ag]) that satisfy the given boundary
conditions, and is obtained by evaluating

(4.2) —AETEG0) = 17 (7 —1e)? = 33 ) 0(0).
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P(r)isinvertible for allr € R, aslong as ¢ 3.
We are again interested in the well-posedness of the probleih when Neumann—
Neumann vertices exist. We therefore consider the operator

(43)  Ag=(A.0,): KZTH) N {ulpe = 0} — K27HQ) © KL V2(On9),

which is well defined form > 1. Recall that we can exterrbi; to the casen = 0 as
(4.4) A; tHo — (H,;)*a (Au,v) :== —(Vu, Vv),

whereu € ‘H_ andv € H__ (recall thatH_ is defined in 2.11)). For transmission prob-
lems, a similar formula allows to extend the operdtBro%) to the casen = 0.

Following Kondratiev {16] and Nicaise (for the case of transmission probler§) \ve
can prove the result below, using also the regularity thede.

THEOREM4.1. LetP = —A, m > 0, anda = (ag). Also, IetA; be the operator

defined in equation$4.3) and (4.4) for the case when there is no interface. Th&g is
Fredholm if, and only ifag ¢ 3. Moreover, its index is independentiof

Proof. The Fredholm criterion is well knowrtf, 48, 76]. (The casen = 0 was not
treated explicitly, but it is proved in exactly the same Wwawe prove that the index is in-
dependent ofn. Indeed, ifu € H_ is such thatA_u = 0, then the regularity theorem,
Theorem3.1, implies thatu € IC%O+1(Q). The same observation for the adjoint problem

shows that the index is independentof a
See also32, 48, 76] and references therein.
The casen = 0 is relevant because in that case
(4.5) (Ag)" =25,

a

an equation that does not make sense (in any obvious way)tfier @alues ofm. It is
then possible to determine the index of the operaforsby the following index calculation.

Recall that in this subsection we assume the interface tonfye Leta — (ag) and

b = (bg) be two vectorial weights that correspond to Fredholm opesdh Theorem#.1
Let us assume that there exists a verfgsuch thatag < bg butar = br if R # Q.
We count the number of values in the $et), bg) N X¢, with the values corresponding to
k = 0in the definition of¥(, equation 4.1), counted twice (because of multiplicity, which
happens only in the case of Neumann—-Neumann boundary mngjit Let NV be the total
number. The following result, which can be found B8] (see also 32, 46, 47, 64, 65)),
holds.

THEOREM4.2. Assume the conditions of Theordm are satisfied. Also, let us assume
thatag < bg butar = bg if R # Q, and letN be defined as in the paragraph above. Then

ind(AE) - ind(A;) = —N.

This theorem allows to determine the indexz&f;. For simplicity, we compute the
index only forag > 0 and small. Let be the minimum values of € ¥ N (0, 00). Then
dg = m/aq, if both sides meeting &P are assigned the same type of boundary conditions,
and by26g = 7/« otherwise.

THEOREM 4.3. Assume the conditions of Theordm are satisfied and leivy be the
number of verticeg) such that both sides adjacent € are assigned Neumann boundary

conditions. We assume the interface to be empty. Theis Fredholm for0 < ag < dg
with index

ind(A_) = —No.
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Consequentlyd - has index—N for 0 < ag < dq.

For transmission problems, we shall countNp also the points where the interfate
is not smooth. Each such point is counted exactly once. Oottier hand, a point where a
crack ramifies is counted as many times as it is covered ik tlasure*(, so in effect we
are counting the vertices 2 and not in(.

Proof. Since the index is independent:af > 0, we can assume that = 0. A repeated
application of Theorerd.2 (more precisely of its generalization for = 0) for each weight
ag gives thatind(Ag) — ind(AfZ) = —2N, (each time when we change an index from
—aq to ag we lose a 2 in the index, because the value- 0 is counted twice). Since
A = A*;, we haveind(A_~) = —ind(A ), and therefore the desired result. O

We now proceed to a more careful study of the invertibilitggerties ong. In partic-
ular, we will determine the constanjg appearing in Theoren&2and3.3.

For each vertex) € V we choose a functiorg € C>(2) that is constant equal to 1 in
a neighborhood of) and satisfied, xyo = 0 on the boundary. We can choose these functions
to have disjoint supports.

Let W, be the linear span of the functiong, that correspond to Neumann—-Neumann
vertices. (For transmission problems, we have to take into accountthks points where
the interfacel’ is not smooth. This is achieved by including a function of fiien x for
each point) of the interface where the interface is not smooth. The dmmd, xo = 0
on the boundary becomes, of course, unnecessary.) We stealthe following version of
Green’s formula.

LEMMA 4.4. Assume albgp > 0 andu,v € ICQQH(Q) + Ws. Then

(Au,v) + (Vu, Vo) = (9,u,v) 0.

Proof. Assume first: andv are constant close to the vertices, then we can apply thé usua
Green’s formula after smoothing the vertices without cliagghe terms in the formula. In
general, we notice that (u, v) := (Au,v) + (Vu, Vo) = (9, u, v)sq depends continuously
onwu andwv (since by hypothesisy > 0 V() ) and we can then use a density argument. [

Recall that we assume the interface to be empty. Then we haveltowing solvability
(or well-posedness) result.

THEOREM4.5.Leta = (ag) With0 < ag < dg andm > 1. Assumeép§) # 0. Then

forany f € ICT‘;(Q) and anygy € ICT?Z(Q), there exists a unique = e + ws,
a— a—

Ureg € ICTE(Q), w, € W, satisfying—Au = f, v = 00ndpQ, andd,u = gn onIn.
Moreover,

||Ureg||1c”§:11(9) + Hwa” < O(Hf”;cg:ll(g) + HQN‘ K;:ll//z(g))7
for a constantC' > 0 independent of andgy. WherdpQ = () (the pure Neumann problem),
the same conclusions hold if constant functions are fadtord.

Proof. Using the surjectivity of the trace map, we can reduce tocsegp, = 0 and
gy =0. LetV = {u ¢ IC’;E(Q), ulop,0 = 0, Oyulayo = 0} +Ws. Sincem > 1, the map

(4.6) AV — ICT:(Q)

is well defined and continuous. Then Theorér@implies that the map of equatiod.¢) has
index zero, given that the dimensiondf, is Ny. When there is at least a sidedp 2, this
map is in fact an isomorphism. Indeed, it is enough to show ibjective. This is seen
as follows. Letu € V be such that\u = 0. By Green’s formula (Lemma&.4), we have
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(Vu,Vu) = (—Au,u) + (d,u, u)sq = 0. Thereforeu is a constant. If there is at least one
Dirichlet side, the constant must be zero, tie= 0. In the pure Neumann case, the kernel
of the map of equatior4(6) consists of constants. Another application of Green’'snida
shows thatAu, 1) = 0, which identifies the range ak in this case as the functions with
mean zero. a

The same argument as in the above proof givesﬁshaats injective, provided all compo-

nents ofa are non-negative, a condition that we shall writeaas 0). From equation4.5),
it then follows thatA - is surjectivewhenever it is Fredholm. This observation implies

Theorem3.2for a = 0. Note thatA, is Fredholm precisely when there are no Neumann—
Neumann faces. For operators of the formaliv AV with A piecewise smooth, we have to
assume also that the interfatdés smooth, otherwise the Fredholm property for the critical
weighta = 0 is lost.

We can now determine the constanisin Theorems3.2and3.3.

THEOREM4.6. Assume&” = —A. Then we can takgg = d¢ in TheorenB.2

Proof. Assume thatag| < n¢. ThenA; is Fredholm of index zero, sincz&z depends

continuously ona and it is of invertible fora = 0 as observed above in the context of
Theorem3.2 Assume them\—u = 0 for someu € ‘H_.. The singular function expansion

of u close to each vertex implias € Hg for all b — (bg) with 0 < by < ng [47, 66],
wherery, is the exponent of the first singular functiom®¢(#), in polar coordinates centered
atQ. SinceAE is injective forbg > 0, A is injective for|ag| < nq. Hence it must be an
isomorphism, as it is Fredholm of index zero. 0

4.2. Transmission problems.The results of the previous section remain valid for gen-
eral operators and transmission problems Wits USQ;, with a different (more complicated)
definition of the set&. We consider only the cageé = — div AVu = A4, whereA is a
piecewise constant functioifhen, on each subdomatity, A 4 is a constant multiple of the
Laplacian and the associated conormal derivative is a antstultiple ofd,,, v the unit outer
normal. We assume all singular points @f2; on the boundary of2 are in the set of ver-
tices of the adjacent domaitis;. Moreover, we assume that the points where the interfaces
intersect are also among the vertices of séipe

Then for each verteg), the set:(, is determined by{4++v/\}, where) ranges through
the set of eigenvalues efdy A9y on H%([0, ag]) with suitable boundary conditions. When
@ aninternal singular pointwe consider the operaterd, A9y on H? ([0, 27]) with periodic
boundary conditions. We still takg, > 0 to be the least value iBg N (0, c0).

We define again&g = (A4, 0,) butonly form = 0 or 1. Form = 0, it is given as
in equation ¢.4) with (A 4u,v) = —(AVu, Vo). Form = 1, the transmission conditions
ut = u” and AT u = A9, u must be incorporated. Herd™ and A~ are the limit
values ofA at the two sides of the interfade(notice thatA is only locally constant oi’). In
view of Corollary3.4, we set

4.7) A.:=(A9,) : D. — K%_I(Q)@/cg:/z(am),

D_ :={u:Q—R, ulg, € IC%.H(QJ'), ulop0 =0,

ut =u", andAT9 u = A"0, u}.

For higher values ofn, additional conditions at the interface are needed. (Thesditions
are not included in4.13.) We will however obtain higher regularity on each subdoma
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The theorems of the previous section then remain true farémsmission problem with
the following changes. In Theoreml, we take onlym = 0 orm = 1. In Theoren¥.3, we
again assume only, = 0 orm = 1 and inNy we also count the number of internal vertices
(that is, the vertices on the interface that are not on thentbary). The proofs are as in
Kondratiev's paper46]. Theorend.2is essentially unchanged. In particular, we continue to
counttwicel € (ag,bg)NEq, so thatlVy is the number of Neumann—Neumann vertices plus
the number of internal vertices. The points where the boynctanditions change (Dirichlet-
Neumann pointsdre notincluded in the calculation a¥.

Let us state explicitly the form of Theore#n5, which will be needed in applications. In
the following statementiV’; is the linear span of the functiong, with () corresponding to
Neumann—-Neumann verticaadinternal vertices. We require that all the functiopg have
disjoint supports. Also, recall that for each Neumann—Naumvertex(, the functionyg
satisfiesyy = 0 ondpf2 andd, xg = 0 ondn§2. However, the functiong, corresponding
to internal vertices) need not satisfy any boundary conditions.

THEOREM 4.7. Leta = (ag) with 0 < ag < dg andm > 1. Assume that
OpQ # (. Then for anyf : Q — R such thatf|o, < IC%”:;(Qj), for all j, and any

gN € IC’S://;@NQ), we can find a unique: = Ureg + Wy, Ureg : L — R, Uregla; €
ICTE(QJ-), wg € Wy satisfying— div AVu = f,u = 00ndp, d,u = gy 0ndx2, and
the transmission conditions™ = v~ and A*9;fu = A~9; v on the interfacd’. Moreover,

||ureg||)C1:+1(Q)+Z [|treg| }C%ill(ﬂj)"'HwSH < O(Z [ f]
J J

k=t (o) HIaNlem=172 5,0)):
51 a—1/2

for a constantC > 0 independent of and g5. The same conclusions hold for the pure
Neumann problem if constant functions are factored.

Proof. Assume firstn = 1. Then the same proof as that of Theorérd applies, since
in this case we can restrict to the boundary and apply Grdéemisula. For the other values
of m we use the case: = 1 to show the existence of a solution and then use the regularit
result of Theoren3.1in each(};. 0

We conclude this section with a few simple observationsstFf all, any norm can
be used on the finite-dimensional spdég, as they are all equivalent. Secondly;s N
IC%H(Q) = 0, wheneverag > 0 for any Neumann—Neumann vertéx or internal Q.

Finally, the conditionag € (0,7¢) can be relaxed tdug| < n¢ for the vertices that are
either Dirichlet-Dirichlet or Dirichlet-Neumann. We caffsa increaseu, provided that
we include more singular functions. Most importantly, &/t N IC%H(Q) C HYQ), it
follows that the solution provided by the Theorédn7 is the same as the weak solution of the
Neumann problem provided by the coercivity of the foBp on H'(Q).

5. Estimates for the Finite Element Method. The purpose of this section is to con-
struct a sequence of (graded) triangular meshesn the domainS that give the quasi-
optimal rate of convergence for the Finite Element appraxionm of the mixed boundary
value/interface problen®(13).

For this and next section we make the following conventidis.assume that the bound-
ary of (2 and the interfacé&” are piecewise linear and we fix a constamtc N corresponding
to the degree of approximation. For simplicity, we also assuor the theoretical analysis
that there are no cracks or vertices touching the boundargt ts thatQ = “Q. The case
when( # “Q can be addressed by using neighborhoods and distant€s in

5.1. A note on implementation. We include a numerical test on a domain with a crack
in SectionG. In these tests, the “right” space of approximation funtdioonsists of functions
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defined ort*Q), and not o) (we need different limits according to the connected congpon
from which we approach a crack point). Therefore the noded iursthe implementation will
include the vertices df(2, countecas many times as they appear in that §é¢te same remark
applies to ramifying cracks, where even more points havestodmsidered where the crack
ramifies.

5.2. Approximation away from the vertices. We start by discussing the simpler ap-
proximation of the solution, far from the singular points. We recall that all estimates in the
spacesC™ localize to subsets @b.

Let7 be a mesh of. By a mesh or a triangulation 6f we shall mean the same thing.
We denote by5(7,m) the Finite Element space associated to the meshat is,S(7, m)
consists of all continuous functions: Q@ — R such thaty coincides with a polynomial of
degree< m on each triangld” € 7. Eventually, we will restrict ourselves to the smaller
subspace(7,m) C S(7,m) of functions that are zero on the Dirichlet part of the bougda
dp€). To simplify our presentation, we assumg = 0 in this section although our results
extend to the casgy # 0. Then, the Finite Element solutiary € S(7,m) for equation
(2.13 is given by

2 .
5.1)  alus,vs) = Y /Aij&:unajvndx = (f,vs),  Vus € S(T,m).

1,j=1 Q

We denote byu; = ur7.m € S(T, m) the Lagrange interpolant of € C(Q2). We
recall its definition for the benefit of the reader. First,ggiwa triangleT’, let [to, t1, t2] be the
barycentric coordinates df. The nodes of the degree Lagrange triangld” are the points
of T' whose barycentric coordinatéf, t1,t,] satisfymt; € Z. The degreem Lagrange
interpolantuy 7, of u is the unique functiom; 7 ,,, € S(T, m) such thatw = u; 7, at
the nodes of each triangle € 7. The shorter notation; will be used when only one mesh
is understood in the discussion (recall thais fixed). The interpolant; has the following
approximation propertyg, 27, 31, 77).

THEOREM5.1. Let 7 be a triangulation of2. Assume that all triangle¥; in 7 have
angles> a and sides of lengtk< h. Letu € H™+(Q) and letu; := ur. 7., € S(T,m)
be the degreen Lagrange interpolant of:.. Then, there exist a constant§a, m) > 0
independent ofi such that

lu —ur| 1) < Cla, m)R™ ||ul| gmsr(q)-

The following estimate for the interpolation error on a pgopubdomain of? then fol-
lows from the equivalence of thE™ (2)-norm and thelC"(2)-norm on proper subsefs.
Recall the modified distance functighdefined in equatiSnZ(.S). If G is an open subset of
Q, we define

(5.2) K2(G;9) = {f: Q- C, glel=29e f e L2(@), forall ja| < m}.

and we let|u[x» (¢,9) denote the corresponding norm.

PROPOSITION5.2. Fix a > 0 and0 < ¢ < I. LetG C Q be an open subset such that
¥ > ¢onG. LetT = (Tj;) be atriangulation of2 with angles> « and sides< h. Then for
each given weighd, there exists” = C(a, £, m, a) > 0 such that

().

+
lu = urllkr () < ChmHuH}C%ill(G;qy)v Vue K2
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The next step is to extend the above estimates to hold neaettiees. To this end, we

consider the behavior of twé%1 under appropriate dilations. Let us denote B{Q, ¢) the
ball centered at a verte® with radius/. We choose a positive numbésuch that

(i) the setsV; := QN B(Q;, /) are disjoint,

(i) I(x) = |z — Q:| onV;,
(iiiy ¥(x) > ¢/2 outside the se¥ := UV,.
We note that the spadég(vi; ¥) depends only on the weight,,. Hence we will denote it
simply by ' (V;; ) with a = ag, .

For the rest of this subsection, we fix a ver@x= @;, and with abuse of notation we
setV := V; = QN B(Q,I). We then study the local behavior with respect to dilatiohs o
a functionv € ICg/(Q) with support in the neighborhood of a vertex@. Therefore, we
translate the origin to agree with Q and call againy) the new coordinates. L&t be a
subset ofV such thatt < J(x) < lonG. For any fixedd < A < 1, we setG’ := \G =
{\z | = € G} . Then, we define the dilated functien(z) := v(A\z), for all (z,y) € G.
We observe that sinc@ is a (straight) sector, i ¢ V thenG’ C V. The following simple
dilation lemma can be proved by direct calculation.

LEMMA 5.3. LetG € VandG' = AG, 0 < A < 1. If ux(z) := u(Az), then
[unllcm @0y = A Hlullm (ar) for anyu € K71 (V;9).

Lemmab.3 and Propositiorb.2 easily give the following interpolation estimate near a
vertexq.

LEMMA 5.4.LetG’ C 'V be a subset such thdt> ¢ > 0onG’. Let7 be triangulation
of G’ with angles> « and sides< k. Givenu € K11 (V,0), a > 0, the degreen Lagrange
interpolantu; 7 of u satisfies

s = s 2l o) < Ol @ m)E (/)™ il o

with C(k, o, m) independent of, h, a, andu.
This lemma will be used fof — 0, while Propositiorb.2 will be used with a fixed.

5.3. Approximation near the vertices. We are now ready to address approximation
near the singular points. To this extent, we work with the lfndinite Element Space
S(T,m) defined for any mesfi of 2 as

(5.3) S(T,m) = S(T,m)NH, ={x € S(T,m), x =00ndpQ},

whereH_ = {u € ICi Z(Q)’ u = 00ndpQ}. This definition takes into account that the
variational space associated to the mixed boundary valeeface problemi(1) is H ..
REMARK 5.5. We recall that when the interface is not smooth or thezNumman-
Neumann vertices, by Theore®2 for any |ag| < 7¢ the variational solutior of (1.1) can
be writtenu = uyeq + ws With g : Q@ — R, treglo, € ICSE(QJ-), andws € W,. The
spacelV; is the linear span of functiong; € C2°(V;), one for each Neumann-Neumann or
interface vertexQ;, such thaty; equals 1 onV; and satisfied”y; = 0 on 0f2. For each
vertex @, we therefore fixag € (0,7¢), and we lete = min{ag}. With this choice, we
have thatu,, € H'*<(2) C C(f2), so that the interpolants afcan be defined directly, since
W, consists of smooth functions. Moreover, the condition that'*<)u,., be integrable
in a neighborhood of each vertex shows that, must vanish at each vertex. Therefore
u(Q) = w(Q) for each Neumann-Neumann or interface verfex
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L

Or Or

FIG. 5.1.0ne refinement of the trianglE with vertexQ, x = 11 /l2.

We now ready to introduce the mesh refinement procedure.gebnesrtex, we choose
anumbersg € (0,1/2] and setk = (kq).

DEFINITION 5.6. Let 7 be a triangulation of2 such that no two vertices 6f belong
to the same triangle of . Thex refinement of7, denoted by:(7) is obtained by dividing
each sideA B of 7 in two parts as follows. If neithed nor B is a vertex, then we dividé B
into two equal parts. Otherwise, A is a vertex, we dividel B into AC and C'B such that
|AC| = kg|AB].

This procedure will divide each trianglE into four triangles. (See Figurg.1). Let
us notice that the assumption that no two vertice$§2dielong to the same triangle of the
mesh is not really needed. Any reasonable division of aralrtiifangulation will achieve this
condition. For instance, we suggest that if two verticeS)dfelong to the same triangle of
the mesh, then the corresponding edge should be divideetal parts or in a ratio given
by the ratio of the correspondingconstants.

DEFINITION 5.7. We define by inductioff,,+1 = x(7,,), where the initial mesH is
such that every vertex 61 is a vertex of a triangle ir7; and all sides of the interfacé
coincide with sides in the mesh. In addition, we chafgsuch that there is no triangle that
contains more than one vertex and each edge in the mesh lgh igrf/2 (with 7 chosen as
in Section5.2).

We observe that, near the vertices, this refinement coiscidlé the ones introduced in
[3, 12, 17, 70] for the Dirichlet problem. One of the main results of thisnwas to show
that the same type of mesh gives optimal rates of convergenceixed boundary value and
interface problems as well.

We denote byu;,, = ur 7, .m € S, := S(7,,m) the degreen Lagrange interpolant
associated ta € C(Q2) and the mesH,, on (2, and investigate the approximation properties
afforded by the triangulatioff,, close to a fixed vertex). The most interesting cases are
whenQ is either a Neumann-Neumann vertex or a vertex of the interfé/e shall therefore
assume that this is the case in what follows. With abuse ddtioot we leta = ag and
K = kg With kg € (0,27™/92). We also fix a triangld” € 7, that hagy) as a vertex. Then
Theoren¥.7 gives that the solution of our interface problem decomposes@as ;¢ +ws,
With wreg € K3t (T50) andw, € Wi, if f € K271(Q;) andT € Q;.

We next letT,.. = ™1 € 7, be the triangle that is similar t&' with ratio ™, has
@ as a vertex, and has all sides parallel to the sideés.oThenT,» C T,n-1 forn > 1
(with T, = T). Furthermore, since < 1/2 and the diameter df" is < /2, we have
T., CV=DB(0,f)nQforalln > 0. Recall that we assume all functionsliry are constant
on neighborhoods of vertices. We continue tofixe Ty with vertex@. The following
interpolation estimate holds.

LEMMA 5.8. Let0 < xk = kg < 27"/ and0 < a = ag < 7q. Let us denote by
T.~ = kNT C T the triangle with vertex) obtained fronil" after N refinements. Letr N
be the degreen Lagrange interpolant ofi associated t&@y. Then, ifu € (IC;"jll (V;9) +
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W) N{ulo,o =0} onT,~ € Ty, we have
e = wr Nkt (7, 0) < C27 " Vltiregllcrts 7,y 20,

whereC' depends omn and x, but not onlV.

Proof. By hypothesis: = u,e + w, With u.e, € K24 (Q) andw € W;. To simplify
the notation, we let) = u,.,. By Remark5.5, if N is large enough we can assume that
w = u(Q) a constant of,~. We again denote the dilated function(z,y) = ¢(A\z, \y),
where(z,y) are coordinates & and0 < A < 1. We choose\ = xkV~1. Then,¢,(z,y) €
ICZZ:T (T,;9) by Lemmab.3. We next introduce the auxiliary function = x¢, on T},
wherey : T, — [0,1] is a smooth function that depends only @érand is equal to 0 in a
neighborhood o), but is equal to 1 at all the nodal points different frgim Consequently,

HU”?C;”JH(TN;&) = ||X¢)‘||I2C§"+1(T,‘.;19) < CHQS/\HZ;HJH(TN;@?

whereC depends onn and the choice of the nodal points. Moreover, sig¢€) = 0 by
Remark5.5, the interpolant ob if given by v; = (¢x)r = (¢1)x onT,,. We also observe
that the interpolant ofv on T,.~ is equal tow, because they are both constants, and hence
u—u; = ¢ — ¢r. Therefore

lu—urllkrr vy = ¢ = Grllcrr n0) = 103 — Oatllkr (7,00
= [l¢xr —v+v—darllcrmm) < dx — vl +1Iv — darllr(z,.0)
= llox = vllcr(r0) + v = vrllci(70) < Clioallcr(rao + Cllvlier+r 0
< Clloallcy oy + Clloaller+r 1,10y = Cllellictr, o) + Clellier o1y 0

N —mN —mN
<Ck a||¢||}cgfll(TﬁN;19) <c2 ™ H(b”’CZﬁI(TKN;ﬁ) =Cc2 ||Ureg||;c;”++]1(TK,N;19)v

which gives the desired inequality. The second and the leigklations above are due to
Lemma5.3, and the sixth is due to Propositiémn. a

We now combine the bounds @i~ of the previous lemma with the bounds on sets of
the formT,.; \.T,.;+1 of Lemmab.4to obtain the following estimate on an arbitrary, but fixed,
triangleT € 7, that has a verte®) in common withQ2 (the more difficult case not handled
by Propositiorb.2).

PROPOSITIONS.9. LetT' € 7 such that a vertex) of 7" belongs toV. Let0 < kg <
2-m/9Q () < ag < 1g. Then there exists a constafit> 0, such that

l[u— uI,N”IC}(T;ﬂ) < C2_mN||urengc:’f11(Tn9)a

for all u = u,eq +w, Wherew € W, andu,e, € KL, () is such thatu,e, € K" (),
for all 5.
Proof. As before, we setg = s andag = a. As in the proof of Lemm&.8, we have
U— U = Ureg — Ureg,7- WE May thus assume that= u,.,. The restis as ini[7, 18]. 0
REMARK 5.10. If T denotes the union of all the initial triangles that contaéntices of
, thenT is a neighborhood of the set of verticegInFurthermore, the interpolation error on
T is obtained aflu — ur|[xc1 (1.9) < O2*mN||ureg|\,CZn,++11(Tﬂ,) by summing up the squares of
the estimates in Propositian9 over all the triangles, as long asg) is chosen appropriately.
We now combine all previous results to obtain a global irdéation error estimate of.
THEOREM 5.11. Letm > 1 and for each vertex) € V fix0 < ag < ng and
0 < kg < 27™/9a. Assume that the conditions of Theoréri are satisfied and let:
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be the corresponding solution problef@.13 with f : © — R such thatf € IC’;?(QJ»)
for all j. Let7, be the n-th refinement of an intial triangulatiafy as in Definition5.7.
LetsS,, := S, (7,,m) be the associated Finite Element space given in equéfich and let
u, = ug, €S, be the Finite Element solution defined1). Then there exist§' > 0 such
that

u—unlx1@) < C27™" Z Hf”)c%l:ll(ﬂj)'

J

Proof. LetT; be the union of initial triangles that contain a given verigx Recall from
Theorem?.7that the solution of problen2(13 can be written ag = wuyeq +w With w € Wi
and||lwl| +>_; ||uregH,C3+1(Qj) <03 ||f\\,cﬁ71(97). Because: — u; = Uyeg — Ureg,7 ON

a+1 N a—1 N

V;, we use the previous estimates to obtain

[u —unllkr (@) < Cllu —urllx1 )

< CZ (||u - u1||lq(Qj “UT;9) T Z [treg — urng”IC}(QjmTi;ﬂ))
J
<027y (lullgp o, urawy + D ltreellicm+t (o, r,i0))
. . a+1
J J
< Cz_mn(z ||Ureg|‘;c’ﬁ+1(§zj) + [|wl) < €27 Z ||f||1c’jj1(9j)~
- a+1 - a—1

J J

The first inequality is based oné@’s Lemma and the second inequality follows from Propo-
sitions5.2and5.9. 0

We can finally state the main result of this section, namegtiasi-optimal convergence
rate of the Finite Element solution computed using the meghe

THEOREM 5.12. Under the notation and assumptions of Theofl, u,, = ug, €
Sy := S(7,,m) satisfies

[w = unllk1(@) < C dim(S,,)""/? Z ”fH’CE:(Qj)’
J

for a constantC' > 0 independent of andn.

Proof. Let again7,, be the triangulation of2 aftern refinements. Then, the number of
triangles is0(4™) given the refinement procedure of Definitior. Thereforelim(S,,) ~ 4™
so that Theorerb.11gives

lu = i1 @) < C27"™ > |||

J

krte,) < CAm(S) T2y N fller-ie,)-
J
The proof is completdl]
Using thatH™~1(2;) C Icg*i(ﬂj) if ag € (0,1) for all verticesq, we obtain the
following corollary.
COROLLARY 5.13.Let0 < ag < min{l,7g} and0 < kg < 27™/a< for each vertex
Q@ € V. Then, under the hypotheses of Theokef?,

lu = tnlls 0y < Cllu— tallcsoy < € dim(Sn) ™21 |,

for a constanCC' > 0 independent of € H™~ () andn.
Note that we do not claim that € X} (£2) (which is in general not true).
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TABLE 6.1
Convergence history for a crack domain.

Ak |e:k=01 e:k=02 e:xk=03 e:k=04 e:x=05
3 0.76 0.79 0.79 0.83 0.77
4 0.88 0.90 0.89 0.82 0.76
5 0.94 0.95 0.91 0.79 0.70
6 0.97 0.97 0.92 0.76 0.63
7 0.99 0.98 0.91 0.73 0.57
8 0.99 0.98 0.91 0.71 0.54
9 1.00 0.99 0.90 0.69 0.52

6. Numerical tests. In this section, we present numerical examples which testhi®
quasi-optimal rates of convergence establisagudliori in the previous section. The conver-
gence history of the Finite Element solution supports osults. Recall the Finite Element
solutionu,, € S,, is defined by

2
a(Up, vy) = Z /Aijaiunajvndx = (f,vn), Vv, € S,.

1,j=1 QO

To verify the theoretical prediction, we focus on the morallgnging problem where
Neumann-Neumann vertices and interfaces are present. aifebgttesting different con-
figurations of mixed Dirichlet/Neumann boundary condipbut no interface, on several
different domains for the simple model probleéi),

(6.1) —Au=1inQ, u=0o0ndpQ, Jd,u=0 on IyQ.

In particular, we consider non-convex domaihgvith a crack. In this case, the optimal grad-
ing can be computed explicitly beforehand. We then perfotes&for the model transmission
problem

(6.2) —div(a(z,y)Vu) =1 in Q, w =0 on 99,

whereq is a piece-wise constant function. We have run also a fews teith m = 2, which
also seem to confirm our theoretical results. However, mefieement steps seem to be
necessary in this case to achieve results that are as conyyias in the case» = 1. Thus
more powerful (i. e., faster) algorithms and codes will neede used to test the case= 2
completely.

6.1. Domains with cracks and Neumann-Neumann verticesWe discuss the results
of two tests for the mixed boundary value problednly. In the first test, we impose pure
Dirichlet boundary conditions, i. e., we takg 2 = 9, but on a domain with a crack. Specifi-
cally, we letQ2 = (0,1) x (0, 1)~ {(z,0.5),0 < = < 0.5} with a crack at the poin{0.5, 0.5);
see Figures.1. The presence of the crack forces a singularityfior solutions at the tip of
the crack. By the arguments in Sectidnany mesh grading < a < n = 7/27 = 1/2
should yield quasi-optimal rates of convergence as londgp@slécay ratio: of triangles in
subsequent refinements satisfies= 2~1/¢ < 2-1/7 = (.25 near the crack tip. In fact, in
this case the solution iE? away from the crack, but is only iff*, s < 1 + 7 = 1.5, near
the crack (following £6]). Recall that the mesh siZe after j refinements ig)(27). Thus,
quasi-uniform meshes should give a convergence rate ner tlesin/.0-> [78].
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FIG. 6.2. Initial triangles for a Neumann-Neumann vertéx(left); the triangulation after one refinement,
K = 0.2 (right).

In the second test) is the non-convex domain of Figu&@?2 with a reentrant vertex
Q. The interior angle a is 1.657. We impose Neumann boundary conditions kmth
sides adjacent to the vert&x, and Dirichlet boundary conditions on other edges. Again,
an H? solution will have a singularity at the reentrant cornerhistcase, the arguments of
Sectiongt and5 imply that we can také < a < n = 7/1.657 =~ 0.61 for the mesh grading,
and consequently, the quasi-optimal rates of convergemmalc be recovered as long as the
decay ratios of triangles in subsequent refinements satisfies 2-1/¢ < 2-1/7 ~ (.32
nearqQ.

The convergence history for the FEM solutions in the twostesé given respectively in
Table6.1 and Table6.2. Both tables confirm the predicted rates of convergence. |&fte
most column in each table of this section contains the nurobefinements from the initial
triangulation of the domain. In each of the other columnslistéhe convergence rate of the
numerical solution for the problens (l) computed by the formula

63) e = log, (1=t —ulit )

|uj — ujpa]m
whereu; is the Finite Element solution aftgmesh refinements. Therefore, since the dimen-
sion of the spacé),, grows by the factor of 4 with every refinement for linear firelement
approximationse should be very close to 1 if the numerical solutions yield Sipogtimal
rates of convergence, an argument convincingly verifiethénttvo tables. In Tablé.2, for
example, we achieve quasi-optimal convergence rate wkeerteg decay ratie: < 0.32,
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FIG. 6.3. The numerical solution for the mixed problem with a Neumblenimann vertex.

TABLE 6.2
Convergence history in the case of a Neumann-Neumann vertex

Nk le:k=01 e:6k=02 e:xk=04 e:xk=05
3 | 091 0.93 0.95 0.94
4 | 0.96 0.97 0.97 0.96
5 |0.98 0.99 0.98 0.95
6 | 0.99 1.00 0.98 0.93
7 | 1.00 1.00 0.97 0.89
8 | 1.00 1.00 0.96 0.84

sincee — 1 after a few refinements. On the other hand; it 0.32, the convergence rates
decrease with successive refinements due to the effect @irigalarity atQ. In fact, for

k = 0.5 we expect the values efto approacty.61, which is the asymptotical convergence
rate on quasi-uniform meshes for a functionfn-6*.

6.2. Domains with artificial vertices. We discuss again a test for the model mixed
boundary value problent(l), but now we test convergence in the presence of an artificial
vertex, where the boundary conditions change on a given Bigeake the domain to be the
unit square®? = (0,1) x (0,1) and we impose the the mixed boundary conditioRs? =
{(2,0),0 < z < 0.5}, 9pQ2 = Q ~ In (see Figures.4). In this case, the solution >
near all geometric vertices, as the interior angle & , but it does possess a singularity at
the artificial vertex) = (0.5, 0), where the boundary conditions change. Near such a vertex,
the maximum mesh grading from Sectidnis no = 0.57/7 = 0.5. Then, quasi-optimal
rates of convergence can be obtained on graded meshes iéthg catiox of triangles in
subsequent refinements satisfies: x = 2-1/¢ < 2-1/7 = (.25 near the singular point
(0.5,0). The optimal rate is again supported by the convergencerhist the numerical
solution in Tables.3.

6.3. Transmission problems.We discuss finally a test for the model transmission prob-
lem (6.2), The singularities in the solution arise from jumps in tefficienta across the in-
terface. As discussed in Sectibpquasi-optimal rates of convergence can be achievedt
ori by organizing triangles in the initial triangulation sotleach side on the interface is a side
of one the triangles as well. We verifyposteriorithat this construction yields the predicted
rates of convergence. We choose the domain again to be theestju= (—1,1) x (—1,1)
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FiG. 6.4. The domain with an artificial vertex: initial triangles (f the triangulation after four refinements,
k = 0.2 (right).

TABLE 6.3
Convergence history in the case of an artificial vertex.

J\kle:k=01 e:k=02 e:5=03 e:xk=04 e:xk=0.5
3 084 0.87 0.87 0.84 0.81
4 | 091 0.93 0.91 0.85 0.77
5 |0.95 0.95 0.91 0.82 0.70
6 | 0.97 0.96 0.91 0.78 0.63
7 | 0.99 0.97 0.90 0.75 0.57
8 | 0.99 0.98 0.90 0.72 0.54
9 | 1.00 0.98 0.89 0.70 0.52

with a single, but nonsmooth, interfateas in Figures.5, which identifies two subdomains
5,7 =1,2. We also pick the coefficieni(x, y) in (6.2) of the form

a(z,y) = 1 on Qq,
7Y 30 on Q.

The large jump across the interface makes the numericaysinahore challenging. The
solution of 6.2 may have singularities if/? at the point€); = (—1,1), Q2 = (1,0) where
the interface joins the boundary, andiaf = (0, 0), which is a vertex for the interface (there
are no singularities again iH? at the square geometric vertices).

Again based on the results of Sectighand5, for each singular poin®;, i = 1,2, 3,
there exists a positive numbsy, depending on the interior angle and the coefficients, such
that, if the decay rate; of triangles in successive refinements satidfiesx; < 2~/ near
each vertexQ, quasi-optimal rate of convergence can be obtained for tiite lement so-
lution. We observe that the solution belongs#d in the neighborhood of a vertex, whenever
n; > 1, and therefore, a quasi-uniform mesh near that vertex fciuft in this case.

Instead of computing; explicitly, as a formula is not readily available, we tedtatient
values ofx; < 0.5 near each singular points until we obtain values approaching. This
limit signals, as discussed above, that we have reachedopt@wal rates of convergence for
the numerical solution. The value ofs given in equation@.3). Once again, the convergence
history in Table6.4 strongly supports the theoretical findings. In particutarspecial mesh
grading is needed near the poifisl, 1) and(1, 0). Near the internal vertef0, 0), however,
we found the optimal grading ratio to bg < (0.3,0.4), in agreement with the results of
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FiG. 6.5. The transmission problem: initial triangles (left); theangulation after four refinements, = 0.2
(right).

FIG. 6.6. The numerical solution for the transmission problem.

Theorem4.7 and Theorenb.12 Figure 6.5 shows the mesh refinement negar0) when
Kk =0.2.

We notice that our tests involve valuesrothat are very small, yet the optimal conver-
gence rate is preserved. We expect, however, thatbécomes even smaller, it may take
longer to observe the optimal rate of convergence. On therdtand, the angle condition
is not an issue, by the results of B&lka and Aziz, who have shown that the problem arises
when some angles of the triangles become laggdi fact, in our refinement, the maximum
size of the resulting angles does not increase with eacteraént. This maximum size can
also be chosen not to be too large in the initial triangutgtemnd hence in all triangulations.
However, asc becomes smaller, our procedure leads to smaller and sraaliges, although
the minimum size of these angles do not decrease with eademaint. Even the smallness
of the angles can be dealt with by choosing a different metiiatividing the triangles close
to the singularities, leading to a slightly different gredaesh, as ing2]. The constant
associated to each singular poiptwill be the same in the new family of graded meshes.
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TABLE 6.4
Convergence history for the transmission problem.

A\ le:k=01 e:k=02 e:x=03 e:x=04 e:xk=0.5
3 0.82 0.83 0.84 0.83 0.78
4 0.91 0.91 0.91 0.90 0.83
5 0.97 0.97 0.96 0.94 0.86
6 0.99 0.99 0.98 0.95 0.85
7 1.00 0.99 0.99 0.95 0.82
8 1.00 1.00 1.00 0.95 0.80

The methods used in this paper can be generalized to deapwalighedral domains in
three dimensions. Seé&q] and the references therein. However, the resulting &lyoris
significantly more complicated and it leads to meshes thatadatisfy the minimum angle
condition. On the other hand, for point singularities sushttee ones arising in the study
of Schibdinger operators, this procedure simplifies and is alnt#sitical to the one in two
dimensions presented hetis| 41].

6.4. Conclusion. It is well known that the singular solutions of elliptic edigeas in
polyhedral domains can be conveniently studied using thighted Sobolev spaces].
However, the classical results on solvability (i. e., watlsedness) in weighted spadé€g
do not extend to the case of boundary-value problems whgaeext sides of a corner are
endowed with Neumann boundary conditions, or to transworisproblems. In this paper,
we succeed to establish new a priori estimates (well-passgmegularity and the Fredholm
property) for the solution of the transmission probleiril) in augmented weighted Sobolev
spaces (see Sectial) in the presence of non-smooth interfaces and Neumann—aleaum
vertices. Using these theoretical results, we construtass ©f graded meshes that recover
the optimal rate of convergence of the Finite Element apgpration. Our numerical tests for
different problems give convincing evidence of the improeat in the convergence rate on
these graded meshes. The use of augmented weighted Sopat@s$n the analysis of other
numerical methods for these transmission problems, fangiain the study of the adaptive
Finite Element Method, is a promising future direction of cesearch9, 63].
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