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Abstract. In this paper, we present a numerical algorithm for computing products of the formR KRT, where
R, RT, andK are sparse matrices. By reformulating the problem into the simultaneous processing of a sequential
data and control stream, cache miss penalties are significantly reduced. Even though the algorithm increases memory
requirements, it accelerates sparse matrix products on recent processor architectures by a factor of up to 4 compared
to previous approaches. We apply the algorithm to compute consistent system matrices at different resolution levels
in a dynamic multigrid elasticity simulation, and we show its efficiency for nested and non-nested mesh hierarchies.
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1. Introduction. The core computations of many numerical simulation techniques are
based on sparse matrices, making it important to provide general purpose high performance
software libraries for such structures. The multiplication of two sparse matrices, in particular,
is often required when solving partial differential equations on unstructured finite element hi-
erarchies using geometric multigrid schemes. To ensure a consistent calculation of quantities
on different resolution levels, the coarse grid operator can be obtained by computing products
of the formR KRT. Here,R andRT are, respectively, the restriction and interpolation op-
erators used to transfer quantities between different resolution levels, andK is the fine grid
operator. It is said that coarse grid operators constructedin this way satisfy the Galerkin con-
dition, and it has been shown in previous work that such a construction is the natural choice
to define the coarse grid operator [5, 23].

In case of unstructured mesh hierarchies, the corresponding matrix representations of the
involved operators are sparse and non-zero entries are randomly scattered. If the non-linear
strain tensor is used in the dynamic simulation of the systemover time, these entries, and
thus the entire multigrid matrix hierarchy, have to be updated in every simulation time step.
As we will show later in this paper, the update of the matrix hierarchy dominates the overall
performance of multigrid methods, taking about an order of magnitude longer than the system
solver. The reason for this is that sparse matrix products operate significantly below the
CPU’s peak performance due to the bottleneck of data transfer in the CPU memory hierarchy.
A direct implication thereof is that standard algorithms for computing sparse matrix products
can hardly achieve real-time performance in dynamic simulations for reasonably sized grid
hierarchies.

To overcome this limitation, we focus on improving the memory access patterns of sparse
matrix operations in this paper. We present a linear layout of computational cores for sparse
matrix multiplication, which can effectively reduce the average memory access time. By re-
formulating the problem into the simultaneous processing of a sequential data and control
stream, the locality of memory access operations can be improved, resulting in consider-
ably less cache miss penalties. In addition, we present further improvements based on the
particular form of products to be computed in multigrid Galerkin methods. We include the
proposed matrix operation into a multigrid approach for deformable body simulation based
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on a non-linear elasticity model. By exploiting symmetry considerations and symbolic calcu-
lations to optimize in-place updates of matrix entries, we show a significant acceleration of
the multigrid method.

Our approach falls into the category of algorithmic techniques for efficient memory ac-
cess in matrix operations. In contrast to previous work on the optimization of dense matrix
operations [1, 6, 11], sparse matrix-vector operations [16], sparse-dense matrix products [9],
and sparse matrix transposition [7], in this work we focus on improving the compute-to-
memory ratio in sparse matrix multiplications. For such matrices, the Yale sparse matrix
format [10, 14, 19] was introduced in the early eighties, and specific variantswere developed
to exploit the density of subblocks of such matrices [3, 20]. Parallelization strategies of sparse
matrix operations have been discussed in [4, 22], and most recently the complexity of sparse
matrix algorithms has been analyzed theoretically [24]. It is worth noting here that, despite
all the different optimization strategies, sparse matrix products are still not standard in sparse
libraries such as PETSc [2].

2. Matrix data structure. The matrix data structure we use in the computation of
sparse matrix products is row-based (Yale or compressed rowformat [10]). For a sparse
matrix K, non-zero entries and their respective column indices are stored in two separate
arrays, row by row. In addition, for every rowi an index to the first non-zero element in
this row is stored as depicted in Figure2.1. We denote bySK

i the set of indices to non-zero
elements for rowi. In the following, we will refer to this format asrow-compressed(RC)
matrix format.

FIG. 2.1.Row-compressed matrix format.

We extend the RC matrix format in such a way that each entry in the data array can store a
block of non-zero data values instead of just one value. Thisis beneficial in the 3D simulation
we perform, where the system matrix consists of3 × 3 blocks of non-zero elements. In this
case, the memory that is required to store the column indicescan significantly be reduced.
In the following, we will refer to this format asblock-row-compressed(BRC) matrix format.
For the sake of clarity, we will restrict the following discussion to therow-compressedformat,
keeping in mind that the extension to the BRC format is straightforward.

3. Sparse matrix products. We now illustrate different algorithms for computing prod-
ucts of sparse matrices of the formR K RT. Both the matrixK and the matrixR are assumed
to be sparse, and they are stored using an RC matrix format. Webegin with a description of
the so called naı̈ve approach. Next, we introduce an optimized 1-step approach, which avoids
the intermediate representation of the naı̈ve approach. Finally, we improve the memory be-
havior of the 1-step approach by reformulating the problem into the processing of sequential
data and control streams, which significantly reduces cachemiss penalties.

Generally, we distinguish two settings for sparse matrix products. First, the algorithms
are required to construct the sparse matrix structure of theresult matrix in a pre-processing
step. This setting is referred to as the symbolic processing, since it constructs an entry in the
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result matrix for each potentially non-zero element. Second, the proposed algorithms allow
for efficient in-place updates after the data values ofK or R have been updated, which utilize
the pre-computed matrix structure to only update the potentially non-zero elements. In this
paper, we will focus on the in-place updates and analyse different algorithms in detail.

3.1. Naı̈ve approach.The naı̈ve approach to perform a multiplication of the form
R K RT, whereR andK are sparse matrices, first computes an intermediate representa-
tion F = R KT, which is then used to computeE = R FT. Splitting the product in this
way is best suited for the RC matrix format, because it requires only the calculation of sparse
dot products and therefore allows accessing the data structure in an optimal way. Note that in
both single products the second matrix is transposed, allowing the rows of the data structure
of the non-transposed matrix to be accessed one by one.

3.2. 1-step approach.To avoid storing and computing the intermediate matrixF , let
us have a closer look at the matrix product to be performed. Expanding the matrix product
E = R K RT yields

Eij =
∑

l∈SR
i

Ril





∑

k∈SK
l
∩SR

j

KlkRjk



 .

The outer sum is evaluated only for non-zero entries in the index setSR
i . The calculation

of the inner sum can be optimized by only considering indicesin the intersection of the two
index setsSK

l andSR
j , as in all other cases the resulting terms of the sum are zero.In the

calculation of all sums the data structures are now accessedrow-wise, resulting in cache-
friendly memory access patterns. To perform an in-place update of the matrixE (assuming
the structure ofE to be known), only indicesj ∈ SE

i have to be considered. Pseudo-code
for this operation is given in Algorithm1. To create the matrix structure ofE, the respective
loop is performed for all indicesj from 0 to E.numCols−1. An entry in the sparse matrix
structure is only created ifEij 6= 0.

On the downside, in the 1-step approach the inner sum in the product calculation might
have to be traversed several times because the same values ofj andl can occur for different
indicesi. Therefore, the in-place 1-step approach performs slightly worse than the in-place

Algorithm 1 1-step multiplication (in-place)
Require: MatricesK, R, matrix structure ofE
Ensure: E = RKRT

for i = 0 to E.numRowsdo
for j ∈ SE

i do
Eij = 0;
for l ∈ SR

i do
doublesum = 0;
for k ∈ SK

l ∩ SR
j do

sum = sum + Klk · Rjk;
end for
Eij = Eij + sum · Ril;

end for
end for

end for
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variant of the naı̈ve approach. These observations are validated in the result Section5. How-
ever, we use the 1-step approach as the initialization phasefor the streaming acceleration
approach we describe next.

We describe the design and implementation of an acceleration structure forin-place
sparse matrix multiplication. Although this approach comes at the expense of additional
memory requirements to store the acceleration structure, it achieves an acceleration of up to
a factor of 30 compared to the naı̈ve approach described in Section3.1.

3.3. 1-step stream acceleration.The performance of the 1-step approach is mainly
limited due to the following properties: First, to determine the intersectionsSK

l ∩ SR
j in

Algorithm 1, the entire (ordered) setsSK
l andSR

j have to be processed even though their
intersection is typically very small or even empty. Second,the indicesl andj themselves
are determined by processing sparse index sets. Accessing these sets, namelySK

l andSR
j ,

produces scattered read operations that can probably not beserved from cache. The matrix
products we focus on in this section have the property that the main matrixK is supposed
to be dynamic and thus subject to frequent changes. The matrix R, on the other hand, is
supposed to be static. These assumptions hold in applications to geometric multigrid ap-
proaches, where the transfer operations between differentresolutions levels do not change.
Although the algorithm presented is not strictly limited tothis setting, dynamic in the matrix
R introduces performance drawbacks.

To address the first issue, we propose a novel acceleration data structure that stores the
intersection of the index setsSK

l andSR
j for all indicesl andj. To address the second issue,

we construct a data and control stream that is aligned with the data structure of the matrix
K. Due to this particular layout, scattered memory read operations to access pre-computed
intersectionsSK

l ∩ SR
j can be avoided. Because the matricesR andRT are the same except

for transposition and do not change over time, their contributions to the product can also be
encoded into the stream.

In summary, we build a data stream that encodes data values ofR along with indices
into the destination matrix. Additionally, a control stream is used to encode how many pairs
of data values and indices have to processed for each non-zero entry of the matrixK. The
indices are used to scatter the multiplied entries fromK andR into the destination matrixE.
In this way, only the final write operation accesses the memory randomly. Due to the fact that
the destination matrixE is smaller in size than the source matrixK, memory access opera-
tions are reduced compared to the setting where we loop over the matrixE while randomly
accessing values ofK. An overview of the streaming approach is given in Figure3.1.

3.3.1. Stream design.The acceleration data structure is aligned with the sparse matrix
data structure ofK, and it consists of two different streams: Acontrol streamcontaining con-
trol flags and adata streamcontaining values ofR and respective indices toE. These streams
store the information required to scatter a single entry ofK into the respective positions ofE.
A single byte of the control stream is interpreted as follows: The first bit indicates whether
the next non-zero entry of the matrixK should be fetched or the previous entry ofK is used
in the current calculation. The remaining seven bits indicate the number of data value/index
pairs from the data stream that have to be processed. Note that with this scheme at most a
number of127 pairs can be encoded in one single control byte. If an entry ofK is scattered
into the result matrix more than127 times, an additional control byte has to be used with the
first bit set to 0. However, in all examples used throughout this paper we never exceeded the
limit of 127 scatter operations.

3.3.2. Stream construction.Stream construction can be performed analogously to a
1-step multiplication as described in Algorithm1. However, this approach performs the op-
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FIG. 3.1.Overview of the 1-step stream acceleration.

erations using a non-optimal memory layout, since the outerloops process the destination
matrixE rather than the matrixK. Therefore, we change the ordering of the loops. The outer
loops running over all entries of the destination matrix nowbecome the innermost loops,
yielding outer loops over all elements of the matrixK (using the indicesl andk). Then, for
each entry of the matrixK all productsRil · Rjk and indicesi, j into the destination matrix
E are determined and can be directly encoded into the data stream.

Algorithm 2 lists the pseudo-code for the stream construction phase. The method
E.getIndex(i, j) calculates the index of the element in the linearized data array of E. This
index is used to quickly access the respective element in thestream processing stage. The
stream’s push() operation stores the previous value and index into the data stream and incre-
ments the number of pairs stored in the last control byte. If the maximum number of127
is exceeded, a new control byte with the first bit set to 0 is appended to the control stream.
The stream’s setNext() operation creates a new control bytewith the first bit set to 1, thus
advancing to the next non-zero element ofK.

3.3.3. Stream processing.Processing the stream to update the destination matrixE is
performed in two steps. These steps are repeated until the entire stream has been processed,
i.e., until all non-zero entries ofK have been processed. In the following description of the
two steps, we denote byl andk the row and column indices of the first non-zero entry ofK:
Step 1: If the first bit of the control byte is 1, the indexk is advanced to the next non-zero

entry in row l. If no such entry is available, the row indexl is incremented to the
next non-empty row andk is set to the respective first non-zero column index. The
valueKlk is stored in a temporary registert. From the control byte, the numberp of
weight/index pairs that have to be processed next are determined.

Step 2: The following steps are performedp times:
A data valuew and an index valuei are read from the data stream. The productw · t

is added to the value at positionE(i), whereE(i) addresses thei-th position in the
linearized representation ofE.

3.3.4. Stream optimization. The constructed stream can be further optimized with re-
spect to the data values stored in the stream. If the same datavalue is repeated several times
in the stream, we can save memory by storing this value only once and by accompanying
it by the set of destination indices. For instance, this is the case in nested grid hierarchies.
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Algorithm 2 Stream construction (in-place)

Require: MatricesK, RT, structure of matrixE
Ensure: E = RKRT

for i = 1 to E.numRowsdo
for j ∈ SE

i do
Eij = 0;

end for
end for
for l = 0 to K.numRowsdo

for k ∈ SK
l do

for i ∈ SRT

l do
for j ∈ SE

i ∩ SRT

k do
Eij = Eij + Klk · RT

li · R
T
kj ;

stream.push(RT
li · R

T
kj , E.getIndex(i, j));

end for
end for
stream.setNext();

end for
end for

Since the hierarchy is generated by inserting the middle vertex on each edge, the values in
the matrixR are either1 or 0.5. Therefore, only three different types of values1, 0.5, and
0.25 may have to be stored in the stream. To allow for this kind of optimization, the data
value/index pairs are sorted with respect to their values after all pairs belonging to a single
entry ofK have been generated. Finally, the control stream needs to beadjusted to store for
each data valuew the number of destination indices to be considered.

3.4. Symmetry optimization. If the matrixK is symmetric, then the 1-step algorithm
and the stream acceleration can be performed nearly twice asfast. This is due to the fact that
only the upper triangular matrix ofE has to be computed, and the lower triangular part can
be determined from the respective mirrored entries. We do not introduce a symmetric row-
compressed format, as in this case matrix-vector products cannot be processed at full per-
formance rates due to the improper memory access patterns. Asymmetric row-compressed
format only stores the upper triangular matrix ofK. On average, a single row-vector product
then can only access half of the data values ofK efficiently, while the other half of the values
have to be fetched from different rows; see Figure3.2.

For this reason, we do not change the matrix format. Instead,the lower triangular matrix
is determined from the upper triangular part. If the block-row-compressed matrix format is
used, this step can be performed efficiently, as3 × 3 blocks can be copied at once. For the
pure row-compressed format, this symmetry optimization isnot as efficient since single data
values have to be copied.

3.5. Parallelization. The 1-step stream acceleration algorithm can be parallelized onN

compute nodes by partitioning the data and control stream into N disjoint parts, and by dis-
tributing these parts to the nodes. In the partitioning process, the stream is only split at control
bytes with the first bit equal to 1. To split the stream into disjoint parts for which approxi-
mately the same number of operations are performed, we first count the number of non-zero
entries ofK as well as the number of write operations (addresses into thematrix Ek). The
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FIG. 3.2. Matrix-vector products using a symmetric sparse matrix format: On average, a row-vector product
can only access half of the data values ofK memory-efficiently (black), while the other half of the values have to be
fetched from different rows (light grey).

stream is then partitioned by considering the resulting numbers.
Each node also stores a copy of the destination matrix,Ek. For the sake of clarity we

assume that the matrixK is duplicated on each node, even though only the non-zero elements
corresponding to the respective parts of the stream are required. Once the local computations
on every node have been finished, the matricesEk are joined into the result matrix by adding
the per-node contributions:E =

∑N

k=1
Ek. Since all matricesEk have the same structure,

this summation can be carried out in place.

4. Application to elasticity problems. The motion of a deforming volumetric object
can be simulated by a displacement field in an elastic solid. Given such a solid in the reference
configurationx ∈ Ω ⊆ R

3, the deformed solid is modeled using a displacement function
u(x), u : R3 → R

3.
Driven by external forces, the dynamic behavior of the deformed solid is governed by

the Lagrangian equation of motion,

(4.1) Mü + Cu̇ + Ku = f,

whereM , C, andK are, respectively, known as the system’s mass, damping, andstiffness
matrices. The vectoru consists of the linearized displacement vectors of all vertices andf is
the linearized force vectors applied to these vertices.

By discretization ofu,u̇ and ü with respect to time, the differential equation can be
transformed into a set of difference equations. Most commonly, either an implicit Euler
integration or a second order accurate Newmark scheme can beused for time integration.
Applying the integration scheme to equation (4.1) yields a system of linear equations,

K̃ut+dt = f̃ t+dt.

A rotational invariant formulation of the Cauchy strain tensor is obtained by using the
so-called co-rotated strain of linear elasticity [21]. In this formulation finite elements are first
rotated into their initial configuration before the strain is computed. In this way, although
strain is still approximated linearly, artificial forces asthey are computed for large deforma-
tions using the Cauchy strain are significantly reduced. Rotations are calculated per element
using a polar decomposition of the deformation gradient∇(x + u(x)) [12, 15] or an energy
minimization [13]. In particular, we show that an efficient computation of thesparse ma-
trix productR K RT is the most important step to obtain fast geometric multigrid methods
based on the Galerkin approach. This is due to the fact the resulting system of linear equa-
tions changes in every simulation time step and thus the coarse grid matrices of the multigrid
solver have to be re-computed at run time using the productR K RT.
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4.1. Multigrid method. We apply a geometric multigrid method to solve the system of
linear equations̃Kut+dt = f̃ t+dt in every simulation step. To transfer quantities from a finer
to a coarser grid and vice versa, geometry-specific restriction and interpolation operators are
established. These operators are described for nested and non-nested hierarchies of meshes.

Given a finite element mesh at the coarsest resolution level,a hierarchy can be generated
in a top-down fashion by uniformly splitting each finite element, yielding a nested hierarchy.
Although the transfer operators can be defined in a straight forward way, this approach fails
in precisely approximating the object’s boundaries at finerresolution levels. Furthermore,
subsequent subdivisions might lead to ill-shaped elementsthat can cause numerical problems
in the simulation. To avoid these disadvantages, we use linear transfer operators that do not
require a nested hierarchy of meshes. These operators establish geometric relations in a mul-
tilevel hierarchy of unstructured meshes by means of barycentric interpolation as proposed
by Georgii and Westermann [12].

A coarse grid correction performs as follows on the fine gridh. It requires a linear
transfer operatorRh, a coarse grid operatorKH , and an initial approximation̂uh of the
solution:

① Pre-Smoothing of̂uh

② Compute residual rh = fh − Khûh

③ Restrict residual to coarse gridrH = Rhrh

④ Solution on coarse grid KHeH = rH

⑤ Transfer correction eh = RT
h eH

⑥ Correction uh = ûh + eh

⑦ Post-Smoothing ofuh

By recursive application of the coarse grid correction to stage④ and by using any direct
solver to compute its solution on the coarsest grid, a full multigrid V-cycle is obtained.

4.2. Galerkin multigrid approach. Based on the geometric restriction and interpola-
tion operators, the coarse grid matrices are constructed using the Galerkin property [5]. In
particular, for all but the finest hierarchy level the systemmatrices are computed as

KH = RhKhRT
h .

This approach ensures consistent calculations on different resolution levels, and it is espe-
cially suited to construct black-box multigrid solvers [23].

5. Results. In this section, we analyze the performance and memory requirements of the
proposed algorithm for computing sparse matrix products. We use this algorithm to compute
consistent system matrices at different resolution levelsin a dynamic multigrid elasticity sim-
ulation (see Figure5.1 for some example models), and we give detailed timing statistics for
this particular application. All timings except for the parallelization timings were measured
on one CPU core of an Intel CoreTM 2 Duo 2.4 GHz equipped with 2 GB RAM.

In the following, we apply the 1-step stream acceleration approach to update the coarse
grid operators in a Galerkin multigrid approach. This requires the computation of matrix
products of the formR KRT, whereR andRT are, respectively, the restriction and interpo-
lation operator used to transfer quantities between different resolution levels in a mesh hier-
archy andK is the fine grid operator. We distinguish between nested and non-nested mesh
hierarchies to demonstrate how the performance depends on the fill rate of the restriction and
prolongation matrices.

Table5.1 shows the respective timings for a nested hierarchy of simulation grids. We
show timings for thein-placevariants of different algorithms that can be used at run time
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TABLE 5.1
Timings in [ms] for the update of the coarse grid operators ina nested mesh hierarchy using the BRC sparse

matrix format. The numbers in parentheses give the timings for the symmetric variants; see Section3.4. The last
columns are reference timings determined with the SuiteSparse library.
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bridge3k 2.46k 24 22 27 2 2.1 MB 7
3 levels 1.4% (13) (26) (1) (1.7 MB)

bridge24k 15.7k 229 180 233 12 16 MB 43
4 levels 0.25% (103) (207) (11) (13 MB)

bridge128k 111.8k 2073 1301 1797 107 118 MB 387
5 levels 0.25% (728) (1561) (98) (93 MB)

TABLE 5.2
Timings in [ms] for the update of the coarse grid operators ina non-nested mesh hierarchy using the BRC

sparse matrix format. The numbers in parentheses give the timings for the symmetric variants; see Section3.4. The
last columns are reference timings determined with the SuiteSparse library.
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liver3k 2.52k 158 212 180 7 15 MB 10
2 levels 1.4% (102) (131) (5) (9 MB)

bunny11k 9.00k 732 997 566 26 46 MB 47
2 levels 0.39% (514) (424) (17) (28 MB)

horse50k 36.7k 3347 6654 4198 167 300 MB 171
3 levels 0.10% (3646) (2664) (107) (179 MB)

once the matrix structures are known. For each example we give timings for the block-row-
compressed (BRC) matrix format. As this format benefits fromthe symmetry optimization
described in Section3.4, respective timings are given in parentheses if applicable.

Column three shows the time required by the naı̈ve approach,column four lists the time
for the 1-step approach. The next three columns show the initialization time, the update
time, and the memory requirement of the 1-step stream accelerated approach. Note that both
initialization and update are performedin-place, which implies that the structure of the result
matrix has already been determined. The last column gives reference timings determined with
the SuiteSparse library [8]. To the best of our knowledge this is the only library that supports
optimized sparse matrix products. Table5.2contains the same columns as Table5.1, but now
the models are hierarchically represented by a non-nested mesh hierarchy. From the given
performance measurements the following results can be concluded:

1. Thein-placevariant of the 1-step algorithm can only outperform the naı̈ve approach
if nested mesh hierarchies are used. In case of non-nested hierarchies, the naı̈ve
approach computes the results faster than the 1-step approach. However, the naı̈ve
approach requires additional memory to store the temporarymatrixF .

2. The stream-accelerated 1-step algorithm for thein-place update outperforms the
naı̈ve approach by a factor of 10–30. It comes at the expense of additional mem-
ory to store the data and control streams, but the data can be streamed efficiently
through the CPU memory hierarchy. The performance gain clearly compensates for
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the additional memory requirements.
3. In direct comparison to the optimized sparse matrix packageSuiteSparse, we still

can achieve a performance gain of up to a factor of 4. We found that our stream
acceleration approach is mainly beneficial in case of nestedhierarchies, where the
restriction matrixR contains fewer non-zero entries than in case of non-nested hi-
erarchies. However, theSuiteSparselibrary uses another sparse matrix format than
our approach. Therefore, operations, such as the Gauss-Seidel relaxation required
by the multigrid method, might induce performance issues with this library (the
library does not support Gauss-Seidel relaxation natively). On the other hand, the
proposed stream acceleration approach directly updates the RC or BRC matrix struc-
ture, which allows for very efficient matrix vector multiplication as well as Gauss-
Seidel relaxation, and the approach is always faster than the SuiteSparse library.

5.1. Cache analysis.We have analyzed our algorithms using Intel’s VTuneTM perfor-
mance analyzer [17]. It allows to directly read the CPU’s performance countersrelated to
single methods of the application. Especially, it allows usto count the cache misses in our
algorithms. In Table5.3, we list the number of cache misses reported by the VTuneTM as well
as the number of cache read operations for the level 1 data cache of the CoreTM 2 Duo pro-
cessor (32 KB). Although the streaming approach requires much more memory, the number
of memory read operations is significantly reduced comparedto the 1-step approach due to
the pre-computations. As a consequence, the number of cachemisses is significantly reduced
for all examples we considered. Furthermore, we observe that for non-nested hierarchies the
stream acceleration approach even increases the instructions per cycle the CPU can process.

TABLE 5.3
Cache analysis of a complete in-place multigrid hierarchy update for different models using nested and non-

nested hierarchies. We compare the 1-step algorithm with the optimized stream acceleration approach.

cache cache miss instructions
model algorithm misses read ops ratio per cycle instructions

horse50k 1-step (in-place) 74.8M 2691M 2.8 % 1.13 7800M
1-step stream accel. 0.9M 249M 0.3 % 1.72 673M

bridge128k 1-step (in-place) 3.9M 875M 4.4 % 1.29 2347M
1-step stream accel. 0.7M 199M 0.3 % 1.27 544M

5.2. Parallelization. In this section, we demonstrate that the proposed stream accel-
eration approach allows effective parallelization. We analyze the performance gain we can
achieve on a XeonTM1.8GHz Quad Core processor architecture. The implementation is real-
ized with the Threading Building Blocks library by Intel [18]. We achieve a speed-up of 1.7
on two cores, and a speed-up of 2.2-2.5 on four cores as shown in Table5.4. The limitation
of the speed-up achieved for four cores is mostly due to memory bottlenecks on the multicore
architecture. The computational overhead induced by the final reduce step is less than 20%
of the overall time.

TABLE 5.4
Parallelization of the stream acceleration approach on a XeonTM1.8GHz Quad Core processor.

model 1 thread 2 threads 3 threads 4 threads

horse50k 293 ms 175 ms 143ms 117ms
bridge128k 255ms 151ms 131ms 112ms
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5.3. Galerkin multigrid. In the following, we demonstrate the performance of the pro-
posed algorithm in a Galerkin multigrid finite-element approach. Our intention is to show the
performance of the algorithm in the interplay of matrix assembly and system solution, and
thus to demonstrate that in the particular scenario fast sparse matrix products are mandatory.

The implementation we analyze is based on the BRC matrix format. We use the symmet-
ric 1-step algorithm in the pre-processing stage and the respective stream accelerated in-place
variant to build or update the multigrid matrix hierarchy atrun time. Table5.5gives timing
statistics for the simulation of different deformable models based on nested and non-nested
tetrahedral mesh hierarchies. Column 8 summarizes the total time for one simulation step
using the co-rotational simulation. Columns 5 to 7 show the time that is required for the
calculation of element rotations and matrix assembly, the update of the multigrid hierarchy,
and the system solver. It can be observed that the multigrid update dominates the overall per-
formance of the entire simulation system if the naı̈ve approach is used; see Table5.1and5.2.
The time required by the stream accelerated approach, on theother hand, is of the same order
as the solution time and even falls below that time. Therefore, the stream acceleration ap-
proaches significantly improves the Galerkin multigrid approach in this specific application.
Some example models are shown in Figure5.1.

TABLE 5.5
Timing statistics for dynamic deformable body simulationsusing the co-rotated Cauchy strain. The simulation

times include the per-frame update of the system matrix including the computation of element rotations (Assem.),
the per-frame update of the multigrid matrix hierarchy using the BRC matrix format and symmetric 1-step stream
acceleration (Update), and the time required by the system solver (Solve).

model # level # tet # vert time [ms]
Assem. Update Solve Total

bridge3k 3* 3072 825 8 2 3 13
liver8k 3 8078 1915 16 10 12 38
bunny11k 2 11206 3019 25 17 19 61
bridge24k 4* 24576 5265 51 11 17 79
horse50k 3 49735 12233 153 107 58 318

It is worth noting that the presented multigrid hierarchy update can be used in settings
with the full Green strain tensor and non-linear material laws, too. The derived system of
non-linear equations is solved with a standard solver, e.g., a Multigrid Newton method [5].
However, each Newton step then requires to rebuild the matrix hierarchy of the appropriate
Jacobian matrix, which can be achieved efficiently with the proposed algorithm.

FIG. 5.1. Visualizations of the deformable bodies used to analyze theperformance of the proposed matrix
operation in a Galerkin multigrid scheme. From left to right: bridge24k, liver8k, bunny11k and horse50k.

6. Conclusion. In this paper, we have presented novel algorithms for the calculation of
sparse matrix products. By reformulating the problem into the simultaneous processing of
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a data and a control stream, cache miss penalties could be significantly reduced. The new
approach outperforms previous approaches to compute sparse matrix products.

In particular, we have shown that the proposed algorithm canbe used efficiently in
Galerkin multigrid approaches to update the hierarchy of system matrices. The 1-step stream
acceleration approach is especially designed to support the computation of matrix products
as they arise in such scenarios. It can thus be seen as a generic basis for constructing Galerkin
multigrid solvers.

The proposed matrix algorithms can be used in other applications as well. The streaming
approach can be easily modified to compute single matrix products if one of the matrices
is constant. Furthermore, it can be extended to account for dynamic in both matrices. By
parallelizing the approach on multiple compute nodes even large matrices can be handled
efficiently.
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