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FOR THE BIHARMONIC PROBLEM *
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Abstract. We study a weakly over-penalized symmetric interior penaltthoefor the biharmonic problem that
is intrinsically parallel. Botha priori error analysis ane posteriorierror analysis are carried out. The performance
of the method is illustrated by numerical experiments.
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1. Introduction. Recently, it was noted irf] that the Poisson problem can be solved by
a weakly over-penalized symmetric interior penalty (WOPBShethod 10, 12, 25] with high
intrinsic parallelism. The WOPSIP method satisfies the sama estimates as the standard
P, finite element method and also the same condition numbenat&s after precondition-
ing. Furthermore, there exist two orderings (edge-wiseelathent-wise) of the degrees of
freedom (dofs) so that the stiffness matrix for the WOPSIRhoet is the sum of two matri-
ces, each of which is block diagonal with respect to one cféhte/o orderings. In fact, the
matrix representing the piecewise Dirichlet form I3ag 3 diagonal blocks with respect to
the element-wise ordering of the dofs, while the matrix espnting the jumps across edges
hasl x 1 or 2 x 2 diagonal blocks in the edge-wise ordering. The simple prditmner is
also block diagonal with x 1 or 2 x 2 blocks in the edge-wise ordering of the dofs. These
properties of the WOPSIP method make it an attractive caelir iterative solvers for the
Poisson problem.

In this paper, we extend the WOPSIP approach to fourth onddslgms and develop a
method that also has high intrinsic parallelism. For sigiplji we consider the biharmonic
problem on a bounded polygonal dom&inc R2.

Let f € L2(£2). A weak form of the biharmonic problem is to finde HZ(Q2) such that

(1.1) a(u,v) = (f,v) Vv € HF(Q),
where
a(w,v) = / D*w: D*vdx  Vov,w € H3(Q),

’U

Z axzaxj 8ac i0x;’

4,j=1

D?*w : D*v =

and(-, -) denotes thd.» inner product. Here and throughout the paper, we follow thedard
notations for Sobolev spacek [L6].
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Conforming finite element methods fot.() require C* finite elements 3, 15 that
involve higher order polynomials and hence are quite corafgid. Alternatively, one can
solve (L.1) by nonconforming finite elements that involve only low argelynomials. The
WOPSIP method in this paper is based on the Morley elen&ht26]. By removing the
continuity conditions of the Morley element through wealelepenalization, we obtain an
intrinsically parallel finite element method fat.().

Our goal is to demonstrate theoretically and numericalbt the performance of the
WOPSIP method is similar to the performance of the Morleytdiriement method (in terms
of the magnitudes of the discretization errors), and thaeféinient adaptive algorithm is
available for the WOPSIP method. This is an important stéprbehe intrinsic parallelism
of the WOPSIP method is further exploited.

The rest of the paper is organized as follows. We introduceesbasic definitions in
Section2. The WOPSIP method is defined in Secti®rSectiond contains some preliminary
estimates. The priori analysis anda posteriori analysis of the WOPSIP method in the
energy norm are carried out in Sectidnand6. Some extensions of the WOPSIP method are
discussed in Section Results of numerical experiments are reported in Se&j@nd we
end with some concluding remarks in Secttbn

2. The set-up. Let 7;, be a simplicial triangulation af2. We adopt the following nota-
tion:
hy = diameter ofl' (h = maxyecr, hr)
h. = the length of the edge
|T'| = the area of the triangl&
m. = the midpoint of the edge
&} =the set of all the interior edges of (the trianglesBf)
&} = the set of all the boundary edges of (the trianglesZpf)
En = E;Z U 82
V;, = the set of all the vertices of (the triangles &f)
Vr = the set of the three vertices 6f
Er = the set of the three edgesbf
7. = the set of the triangle(s) i, such that € Ep
&, = the set of edges ifi;, that share the common vertgxc V),
V. = the set of the two endpoints of the edge
vy = v|7, the restriction of the function on the trianglel’
Let k be a nonnegative integer. We define the piecewise Sobolee 4 (2, 7;,) asso-
ciated with the triangulatiof;, by

HYQ, 7)) = {v € Ly(Q) : v, € HYT) VY T €Ty},

and the semi-norm- | g (o7, ) by

TeT)

Lete € & be a common edge of the triangl€s € 7,. Forv € H'(Q,7,), we define
the jump[v]. of v across (in the sense of trace) by

[[Uﬂe =U4 — V-,

wherevy = ’U‘Ti. If v € H%(Q,7;,) andp belongs to the closure ef we define

[v(@)]e = [v]e(p) = vi(p) — v-(p)-
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Let n. be the unit normal of pointing from7_ to 7, andt. be the unit tangent vector
of e obtained by rotating.. through a counterclockwise right angle (cf. Fig@ré). For any
v € H*(Q,Ty), we define the jumps and means of the normal and tangentightiees ofv

across by
vl Ovy|  Ove and Qv _ 1 [ 0vy ov_
onll,  One|, On.|, onff, 2\ 0n.|, on|)’
vl _ dvy|  Ov and v _1/[0vy Jv_
otll,  Ote|, Ote|, otff, 2\ ot |, ot )’

If v € H3(Q,75), the pointwise values of the jumps and means of the derastive well-
defined. Similarly, for any € H3(Q2,7},), we define the jumps and means of the second
order derivatives of across by

@ _ vy _ 0%v_ and @ 1 0%v, . 0%v_
on2|,  on2|, om?|, om2ff. 2\ on2|, om2|)’
9% 0%y B 0?v_ and 0 1 v, 0?v_
onot |, T On.Ot, . Ongot.|, onot Jf , T2\ On.ot, . Oncot. '

Pt

Ty

Ne

A = T B
te e
T
-

FIGURE 2.1. Two neighboring triangle§”_ andT'; that share the edge with the unit normak.. pointing
fromT_ intoT'y.

Lete € & be an edge of the trianglE € 7;,. We define
[v]e = _UT’e Yo e HY(Q,Ty),

@ _ Ovp ov OV
on|, T One

and — | =-

e |:|: ot :|:| e at@
2 2 2 2
@ _ 0%vyp and 0%v _ 0%vyp

on? |, on? |, onot f) . Oneot.
wheren, is the unit normal ot pointing towards the outside 6f andt. is the unit tangent
vector ofe obtained by rotating.. through a counterclockwise right angle.
The finite element spadg, for the WOPSIP method is the space of discontinuous piece-
wise quadratic polynomials associated with The Morley finite element spadg’ asso-

ciated with7j, is a subspace df},. A functionv € V}, belongs tof/hM if and only if (i) v is

Yo e HX(Q,T;),

e

Yo e H3(Q,Th),

e
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continuous at the vertices W, and (i) Ov/0n is continuous at the midpoints of the edges
in &,. The dofs forf/,j"f are the values of a function at the vertices and the meanwaltits
normal derivative on the edges. The interpolation operdtor H2(Q) — V, is defined
by the following conditions:

(2.2) (Zrn¢)(p) = ¢(p) Vp €V,
(2.3) Hea(zho =1I, 9¢ Ve €&,
one Oone

where the projection (mean value) operdiiar: Lo(e) — Py(e) is defined by
II.v = hie/evds.
It follows from (2.2)—(2.3) and integration by parts that
(2.4) / D?¢: D*vdx = / D*(T¢) : D*vdx V(€ H*(Q), veV,, TET,.
T T

Moreover, the Morley interpolation operator satisfies ttamdard 6] error estimate

(2.5) ¢ = ZnCll oy + helC = Tnlmr(ry + h2IC = Tndl 2y < ChSIC

forall¢ € H°(T),2 < s <3andT € 7.

ReEMARK 2.1. Throughout this paper we ugk(with or without subscriptsto denote a
generic positive constant that depends onlyoand/or the shape regularity @f,. To avoid
the proliferation of constants, we also use the notatlort B to represent the inequality
A < (constant- B, where the constant only depends{@and/or the shape regularity @f,.

Note thatZ, mapsHZ(Q) into V; = {v € V;M : v vanishes at the vertices @}, along
09 anddv/0n vanishes at the midpoints on the boundary egiges

Finally, we recall the definition of the Hsieh-Clough-Toclfieite element spac,”"
associated with a triangulatidh, [13, 16]. A function v belongs toV,*“" if and only if
(i) v € CHQ) N HZ(Y) and(ii) v is piecewise cubic on each € 7;, with respect to the
partition generated by connecting the three verticeg & the center off’. The degrees of
freedom of a function iV,*“" are the values of the function and its first order derivatates
the interior vertices and the mean values of its normal dévig on the interior edges.

3. A Weakly Over-Penalized Interior Penalty Method. The WOPSIP method for
(1.1 is to finduy, € V}, such that

He#(T)

(3.1) ap(up,v) = (f,v) Yo eV,

where

32 an(w,v)= ) /TD2w:D2v dz+ Y h.* ([ow/dn].) (T[0v/0n].)

TeT, ec&p

+ Z Z he_4[[w(p)]]e[[v(p)]]e'

pEV) eeg,,

REMARK 3.1. The bilinear formu, (-, ) is independent of the choices @f. in the
definitions of the jumps.
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REMARK 3.2. Note that, by the midpoint rule, we have

ov ov
II. [[871]]9 = [[%(me)ﬂe Vv eV, e €&

REMARK 3.3. We refer to this method as a weakly over-penalized nietiezause the
over-penalized terms are well-defined &%(Q2), the Sobolev space where the weak form
(1.1) of the biharmonic problem is posed.

REMARK 3.4. Forv € V, andw € V;M + HZ(Q), we have

ap(v,w) = Z / D?*v : D*w dz.
T

TeT)

Thus, the WOPSIP method becomes the Morley nonconformirtgadevhen restricted to
the Morley finite element space.

We will use the function values at the vertices and the vatifeke normal derivatives
at the midpoints of the edges as dofs for the finite elemerntesga There are two natural
orderings for the dofs. In the first ordering, where the defsoaiated with a triangl€ € 7;,
are always consecutive, the bilinear form

Z / D?w : D*>v dx
T

TeT)

is represented by a block-diagonal matrix withx 6 diagonal blocks. We will refer to this
ordering of the dofs as the element-wise ordering.

In the second ordering, where the dofs associated with aware always consecutive
and the dofs associated with a midpoint are always consegtitie bilinear form

> e (Me[ow/on]e) (Melov/on]e) + Y > b Tw®)]elo®)]e

ecéy pEV) EE.’SP

is represented by a block-diagonal matrix. The diagonatibtmrresponding to a midpoint
is eitherl x 1 (boundary midpoint) o2 x 2 (interior midpoint), while the diagonal block
corresponding to a vertex is x m, wherem is the number of triangles i, that share the
vertex as a common vertex. We will refer to this ordering &f dofs as the vertex-edge-wise
ordering.

In view of this splitting of the stiffness matrix, the opecat of multiplying a vector
representing the dofs of a finite element function by théngtffs matrix can be easily paral-
lelized. Thus the WOPSIP method is intrinsically parallel.

The ill-conditioning of the WOPSIP method due to over-peraion can be remedied
by a simple preconditioner. Let the bilinear fobm(-, -) onV}, x V}, be defined by

b (w,v) = Z [ Z wr(p)vr(p) + b Z (Heaa%) (Hpaal;jﬂ
ecér

TeT, “pEVr

+ 3" (e[ow/on].) (L [0v/0n].)

eely

+ 303 2w lo )]

PEV) e€Ep
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The following lemma shows that the discrete problem resgftiom the WOPSIP method
behaves like a typical fourth order problem after precaoding by the operator associated
with bh(, )

LEMMA 3.5. Let the operatorsd;,, By, : Vi, — V}/ be defined by

(Apw,v) = ap(w,v) and (Bpw,v) = by(w,v) Yo,we Vp,

where(-, -) is the canonical bilinear form of; x V},. Then the following condition number
estimate holds for a quasi-uniform triangulati@p :

)\max (B}ZlAh)

o h 0 < optt
)\min(B}ZlAh) - ¢ ’

(3.3)

where .. (B;, ' An) (resp. Amin(Bj, ' Ar)) is the maximungresp. minimumeigenvalue of
Byt Ay.

Proof. First we note that all the eigenvaluesB)leh are positive since bothy, (-, )
andby, (-, -) are symmetric positive definite bilinear forms Bj. From scaling, we have

|U|§{2(T) S hﬁ{ Z

v\ 2
2 2 ov
V(p) + 12y (H‘fan) } Vv e Py(T),
pEVT ecEr
and hence
(Apv,v) = ap(v,v) < h ™ 2by(v,v) = h™2(Bpw,v) Vo eV,

which together with the Rayleigh quotient formula implies

(3.4) N (B ' Ap) = max SAR0:0)

< Ch™2.
veVi\{0} (Bpv,v) —

In the other direction, it follows from a Poin@#Friedrichs inequality for piecewisé? func-
tions [14] that

35 Ioliue S (the@n + Y / (h2* ]2 + e (T [0v/0n].)* | ds)
ecéy, €

for all v € V. Furthermore, we have, by scaling and a standard intefpolatror estimate
[13, 18],

3 /h;3[[v]]§ds <2y /h;3([[v —o' 2+ [[v’}]g)ds

ec&, ¢ e€&y, V¢

(3.6) (X [ nte-vras X S alpn)

TeT), PEV) e€E,

S (Wheamy + 20 2 A @I2)  VveVa,

PEVL e€Ep

wherev’ is the piecewise linear polynomial such thatagrees withv,. at the vertices of’
forall T € 7. Note also that (again from scaling)

Ov\ 2
2 2 2 2
(3.7) hT{ E v2(p) + hi E (Hean) } S llz, e Vv e Py(T), T €Ty

pEVT ecér
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Combining the estimate8.(6)—(3.7), we find

#3E aw e T (1505 X ik

T€T, ~pEVT e€Er T€eT,
S W@ + Y0 2 @) + Y (Wefov/on].)?]  vvei,
PEVH e€&)p ecéy,

which implies
h*(Bpv,v) = h?bp(v,v) < ap(v,v) = (Apv,v) Vv e Vg,
and hence by the Rayleigh quotient formula

_ . Apv,v)
3.8 Amin (B YAR) = {Anv, v) > Ch2.
(3.8) (Bi'4s) = min Bro) 2

The estimate3.3) follows from (3.4) and (3.9). a

REMARK 3.6. Note that the matrix representing the bilinear fdm-, -) is block-
diagonal(with small diagonal blocksin the vertex-edge-wise ordering of the dofs. Therefore
the preconditioning can also be easily performed in pdralle

4. Preliminary estimates. In this section we establish several results that are ugaful
the error analysis of the WOPSIP method.

We begin by constructing a linear operafoy : V;, — V,"“" by averaging. LetV be
any (global) degree of freedom ®f/“", i.e., N(w) is either the value of a functiom or its
first order derivatives at an interior vertexhf or the mean value of the normal derivative of
w on an interior edge. Far € V},, we define

(4.2) N(Epv) =

2N

|N|TeT

where 7y is the set of triangles iff;, that share the degree of freeda¥hand |7y| is the

number of elements dfy .
LEMMA 4.1. The operatorE;, has the following properties

(4.2) > bt = Enolli o <C Y /(h;?’ﬂv]]g + hy ' [Ov/0n]?)ds

TeT), SIS
@3 0= Buofipnny <C 3 [ (Wl + 0 ou/onl?)ds
ecéy,
forall v € V},.

Proof. Letv € V}, be arbitrary andv = v — Ejv. From scaling, we have

(4.4) Z hetllo = Enoll7, o)
TeT),

S S (X (i) + R Ve ()P) + 3 2 ((Gwr/0n) (o)),

TeTy pEVT eelr
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It follows from (4.1), scaling, and a standard inverse estimag; 16] that

@s) Yty uie < Yt Y YRS Y [n bk

TeT, pEVT T€eTh pEVr e€é) e€lh
2 P 2
> Y iwnors XY 3 ([w] [Ee])
T€T, peEVr T€eT), peEVr e€&)y €
(4.6) <> n / (uav/atﬂz+ ﬂav/anﬂz)ds
ec&y
TP]? + by t[ov/0on]? )ds,
sZ Ll )
@) Y S @ufonmP s 3 Y Ha“ m]] S hs /[[av/an]} 2s.
TeT), e€€r TeT), ec€r € ec&y

The estimate4.2) follows from (4.4)—(4.7). The estimate4.3) in turn follows from @.1),
(4.2), and an inverse estimate. 0O

COROLLARY 4.2.We have

3™ (bt o = Bl ) + helo — Bnol3 )

TeT),
(4.8) + v = Envliz .1,y + |1 Envli2 ()
2 _
< C (1B + > (Mfov/on])* + > S h2l®)?),
eely pEV) 665,,
forall v € V},.

Proof. Letv € V}, be arbitrary and’ be the piecewise linear polynomial such thatand
vl agrees at the vertices @ffor all 7' € 7,,. It follows from scaling, a standard interpolation
error estimate and the trace theorem that

Z /h;1 [ov/on]?ds

ecéy
Z/h 1L [0v" /0n].) ds+2/h 0w — v')/on]2ds

ec&p ec&p
(4.9) Z / I1.[0v/On].) ds + Z / SHo(v — ") /on]2ds
ecé&, ecéy
S Z (IL.[Ov/On].) Z hy / v—v’)/an)st
ecéy, TeT;,
S (eov/onle)” + > [l
ec&h TeTh

The estimate fob- ., hz*|lv — Epvl|7, 1 follows from 3.6), (4.2) and @.9). The rest of
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the estimates then follow from inverse estimates and thadte inequality. O
COROLLARY 4.3. We have

(4.10) > h;l/ V(v — Eypo)|?ds
T

TET, 9

S (WBegam) + Y (Wlov/onl)* + 32 3 h2l))

ecly PEVL GESP

forallv € V},.
Proof. From scaling, we have

St [ S0 Bl S - Bl

TeTn TeT),

which together with4.8) implies @.10). 0
The following result shows thdf, Z;, can be treated as a quasi-interpolation operator.
LEMMA 4.4, Let¢ € H*(Q) for 2 < s < 3andZ,( € V; be the Morley interpolant
of ¢. We have

. — LplpCllLy @) — LnlnClH () — LplpCla2(n) <
(4.11) (| — EnZnd]| + h|¢ — EnZi(| +h?|¢ — EnZid| < Ch*I¢

H.s(Q) .

Proof. Since¢ — E»Z,¢ = 0 if ¢ is a quadratic polynomial, the estimate 1) follows
from the Bramble-Hilbert lemma6g] 19] applied to element patches. (Details for similar
results can be found ir8]). a

REMARK 4.5. The construction af;, and the derivation of its properties exploit the fact
that the Hsieh-Clough-Tocher element i§'arelative of the Morley element. Suemriching
operators appeared in the analysis of domain decompositgihods and multigrid methods
for nonconforming finite element3,[8] and in the a posteriori error analysis of4 interior
penalty method for the biharmonic problef].

Next, we recall two estimates fromi ], 22] that generalize the local efficiency estimates
in thea posteriorianalysis. They are derived by the technique of bubble fanstp, 29.

LEMMA 4.6. Letu be the solution of1.1). We have

2
(4.12) > el < Clu—vluz@z,) + Osc(f, Tn)) Vv € Vp,
TG’]-}E

(4.13) Zh / @ 2ds<C(|u—v| +Osc(fT))2 YoeV

. P e . On2 . = H2(Q,Th) s +h hs
where

4 7112 1/2
(4.14) Ose(f,T) = (3 Willf = Fllbr)
Te%l

and f is the piecewise constant function that takes the mean wlfi®n eachl” € 7;,, i.e.,

- 1
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Finally, we observe that, by replacingvith © — v in (3.6) and ¢@.9), we have

(4.15) > b /[[v]]st—Zh /[[ufv]]ds

e€ly e€&y
sc(|u—v\m,7h)+ S Y nPw- @) veev,
peEV) 865
ov I(u—v) v)
4.16) > h nl ds =Y h; o ds
ec&y e€&, e
<C(|u—v\H2(QT,)+Z IL.[0(u — v)/On].) ) Yo € V.
ey

A standard inverse estimate ard1(6) immediately yield the following estimate:

@17) S h /Ha mﬂ ds<C’(| 0oy + > ([0(u— v)/on].) )
ec&) ec&,

forallv € Vj,.

5. A priori error analysis. We measure the error in the energy norm

(6.1 lvlln = Van(v,v)

= (IWsomy + 30 h (Wov/onl* + 3 3 o )2)

ee&y, PEVHL e€Ep

Following the ideas in42], we will show that the WOPSIP method is quasi-optimal in the
energy norm up to terms that are of ordefh), using only the weak probleni (1) and the
tools developed in Sectioh Thus, the proof of the theorem below does not rely on any
elliptic regularity theory for the biharmonic problem.

THEOREMbS.1. Letu anduy, be the solution of1.1) and(3.1) respectively. We have

1/2
(62 lu—unln<C| inf ||u—v||h+( S |u\H2(T)) +osc(f,7h)].
TeT;,

Proof. Letv € V}, be arbitrary. First, by duality, we have

ap(v — up,w)
(5.3) w—upllp < lu—2olp+ lv—uplln < ||lu—2o|p + max ———"—2
e R L I e T

Next we write, using1.1) and @.1),
ah(v — Uh, w) = ah(va ’LU) - (f7w)

(5.4) = ap(v,w — Epw) + ap(v, Epw) — (f, w)
=ap(v,w — Epw) — ap(u — v, Epw) — (f,w — Epw)
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and record the obvious estimates
(5.5) |an(u—v, Epw)| = ‘ Z / D*(u —v) : D*(Epw) dx‘
TET,
<|u-— U|H2(Q,Th)\Ehw|H2(Q) S llu = vl[nlwlln,

66 [ Ew) S (X W) (3 ke - Bl)

TeT) TeT,
< (lu = vlie@.m) + Ose(f, T) ) lewlln

that follow immediately from4.8), (4.12), and 6.1).
It remains to estimate the term (v, w — Ejw). We have

ap(v,w — Epw) = D%y : D*(w — Epw) dx
T
(5.7) + Y b (T [0v/0n] ) (T [0(w — Epw)/On].)
ecéy,
+ > > h @]l - Eyw)(p)]e.
PEVL e€E)p

Using (6.1), the two last terms on the right-hand side Bffj can be easily estimated:

Z h 2 (I [0v/0n].) (1. [0(w — Eyw)/on].)

ecly

+ Z Z h  v(®)]el(w — Enw)(p)]e

pEV, e€E)p
(5:8) = 3 W2 [0 — u)/On].) (TL.[0w/dn].)
ecéy,
+ 303 w0 - w))]e[w)].

PEV) 5651,

< lu = vl|nllwl[n-

For the first term on the right-hand side &f7), we find from integration by parts that

/D2v D?*(w — Epw) da

T ) [ -
(5.9) - ; / [[anzﬂ {{ wanEhw)}}eds
Zg/ {{anat}} S

-3 [loa] {5}

=51+ 5 + Sg‘+'52,
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and we can estimate the four sums as follows.
From direct calculations, scaling, arél {), we have

> /{{W}} [{gﬂ]ed‘s

e€€y

Z A5 5,

oo ({5 (S0 5]
ecéy, ecéy,
< (X 2 lelany) Tl
TeT,
S ( Z hi““‘“ﬁ{z(m + |u‘%12(T)])1/2Hthv
T€Tn
and
=3 ) 5]
et
(5.11) g(Zh { nat}} ) (ZQh‘ 3 [w()] )1/2
ecéy, ecEp pEV,
< (X w2l ol
TeTh
< (3 Pl = ol + ) ol
TeTh

From Corollary4.3, (4.13), (4.17), and 6.1), we have

RN e S B

e€ly e€&y €
S (|U - ’U‘HZ(Q,T;L) + OSC(f; 771)) ||w||h7

and

(5.13) (Zh/ﬂaatﬂ ) (

e€éy

R

e€ép
S llw = vllnlfwlln-
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It follows from (5.9)—(5.13 that
Z / D?*v : D*(w — Ejpw) dx
T

TeTy

1/2
S =+ (X 2lutery) " + 0sel, 7

TeT),
which together with%.4)—(5.8) implies

1/2
S = olho+ (3 #lulery)” + 0se(1, )|

TeT,

ap(v — up, w)
weVL\{0} l|w]|n

and, in view of 6.3), the estimateq.2). a

We now invoke the elliptic regularity theory for nonsmootbnaains p, 17, 20, 21] to
obtain a concrete error estimate. According to the regyldneory there exists a number
a € (1/2,1] such that the solution ofl(1) satisfies

(5.14) [ull r2+a () < Coll fllr-2+0(q)

when the right-hand sidg € H~27%(Q) (<« Ly(Q)). We shall refer tax as the index of
elliptic regularity for the biharmonic problem.

THEOREM5.2. Let« be the index of elliptic regularity for the biharmonic preih. We
have

(5.15) Ju—unl[n < Ch¥| | Lo)-

Proof. LetZ;u be the Morley interpolant of. From @.5), (4.14), (5.2), and 6.14), we
deduce

hu—unl? < Ol = Tullp + 37 b [[ulzery + 1f = Flun))
TeT,
< C (R |ulfzsa(qy + W uldz) + P, @) < CRN1flT,0) O

6. A posteriori error analysis. We will use the following residual-based error estimator
in our analysis:

IS

6.1) = (Zn§)1/2,

where

. 5 o\ 1/2
h, [Oun/On]z ds) ,

ho 2 (T [Ouy, /an]]e)Q)l/ g

m= (2 3 )
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THEOREM®G6.1. Letu anduy, be the solution of1.1) and (3.1) respectively. We have
(6.2) [lu — up|ln < Cnp.

Proof. From the definition.1), we see that
(6.3) lu—unll = lu = unlF2(o,7,) + 13 + 13-
Furthermore we have, from Lemndal,
(6.4) lu —un|g20,7,) < [u— Epun|gz) + [Evun — unlg20,15)

S |lu— Epun|g2@) +m + 12,

and by duality,

a(u — Epup, §)

(6.5) u— Epup|g2) = max
‘ hUnh| (Q) GEH2(Q) |¢|H2(Q)

Let¢ € HZ(S2) be arbitrary. We write, usingL(1) and @.1),
(6.6) a(u — Epup, ) = (f, ¢) — an(un, @) + an(un — Epup, ¢)
= (f, ¢ — Ino) — an(un, ¢ — Ino) + an(un — Enun, @).
From 2.4), (2.5, (3.2), and Lemmat.1, we find
an(un, ¢ —Tnd) = > /TDQuh : D*(¢ — Tpo) da =0

TeT,

(f,6=Znd) < D I fllzaeryllé — ZndllLacr)

TeTh
1/2 B 1/2
< (X W Rry) (D hatlle - Tdly)
TeT), TeT,
S noldlaz )
an(up — Epup, ¢) = / D*(up, — Epup) : D*¢ da
TeT, ' T

< |un — Epunluz.z)|dla20) S (1 +n2)19]H2(0),

which together with§.5—(6.6) implies
(67) |u — Ehuh|H2(Q7Th) s No + 11+ N2

The estimateq.2) follows from (6.1), (6.3—(6.4), and 6.7). 0

Theorem6.1 shows thaty, is a reliable error estimator. The next theorem, which state
thatny, is also an efficient error estimator, follows immediatelyrir (4.12), (4.15), (4.16),
(5.1, and 6.1).

THEOREM®6.2. Letu anduy, be the solution of1.1) and (3.1) respectively. We have

mn < C(llw = unlln + Osc(f, Tn)).-
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7. Extensions. Letu;, € Vj, be the solution of&.1). We can viewE}u;, € V" as a
C'" solution of (L.1) obtained by post-processing.

THEOREM 7.1. The following error estimate holds for the post-processeltiton
Ehuh :

|u — Epun| g2y < ChY|| L)

Proof. This is a direct consequence @f%), (4.9), (4.11), (5.14), and £.15.

lu — Epun| g2 ) < [u— EnZyulgz) + |En(Znu — un)| g2 o)
S Ju— ExZpulgz(o) + | Znu — un|ln
S v = EnThulpz o) + 1Znu — ulln + llu — un||n
ShNfllzae O

Following the ideas ing], we can also derive other error estimatesfr.,. The key is
to understand the adjoint operatlf : H3(2) — V}, defined by

(7.1) an(Byd,v) = a(¢, Bpv) V¢ € Hi(Q), v e V.

REMARK 7.2. It follows from (L.1) and (7.1) that £} v € V), satisfies
an(Epu,v) = (f, Epv) Yo e V.

Therefore ;v is the solution of a modified version of the WOPSIP method tzat be
applied to (.1) for a general right-hand sidec H~*(Q2), where—2 < s < 0.

We begin with a technical lemma.

LEMMA 7.3. Let« be the index of elliptic regularity for the biharmonic prebh. We
have

(7.2) > /D2§ D2(w — Eyw) dz| < CRICl| 2+ oy 1l
TeT),
13 | ¥ [ D D@6~ BiTid) da] < OHCl o olaseo
TeT,

forall ¢ € H>T*(Q),w € V,, and¢ € H?>T(Q) N HZ(Q).
Proof. Letw € V}, be arbitrary. We have, by Corollady2and 6.1),

(7.4) ‘ > /D2< D?(w — Epw) dx‘ < ¢l a2 (9)|w — Erw| g2,
TeT)

< Cllm@llwlln V(e HA(Q).
For¢ € H3(Q), it follows from integration by parts that

/DQC D?*(w — Epw) d
TeT),

(7.5) :—Z/VAg (w — Epw d:c—Z/anz[{ ﬂ

TeTy ecéy,

_Z/aneat H ]]ds?
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and the three terms on the right-hand side can be estimafeticaegs.
We apply Corollaryt.2and 6.1) to bound the first term:

(7.6) ‘ 3 / V(AC) - V(w — Byw) dz| < [¢lgs e lw — Buw|i .,
TET)

< Chl¢lms ) llwlln-

For the second term, we write

Z/W[{ ﬂ

ecéy,

where

1 0%C
We = — —ax
\T| Jo On?

is the mean value a#2¢/9n? over a trianglel’ € 7.. We then find by using49), (5.1), the
trace theorem, and a standard interpolation error estithate

\Z/W [[ﬂ |

(7.7) S bl (D2 h(;l/ [[g:]] ds) + 3 helwel - [T [0w/0n].|

el ¢ ecEy
S hlclmslln+ (3 pe?) (3 n2 M fow/onl.)?)”
e€&y ec&p

S il as@ llwlln + Rl a2 @) lwlln S PICHTES @) llw k-

For the third term, we write

*Z/aneat [[ ﬂ o

ecéy

ow dw
= — Z / anpat — Te |:|:(9t:|:| dS — EZE LTE |:|:6t:|:| . dS,
eely

eclp

where

_ Lo,
=T )y oneat,

is the mean value a#?¢/dn.0t. over atrianglél’ € 7.. We then obtain by using(6), (5.1),
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the trace theorem, and standard interpolation error aretsevestimates that

‘Z/ﬁneﬁt [[]] d‘

S Wl (3 1z /[[ ﬂds ) Sl Y ol

ecly el pEVe
(7.8) Shlclamcy (3 h® [ olids)’
ecly,
B 1/2
+(Zh§7) (Zh S [w(p )
e€ly, ecy PEVe

S bIClas@l[wlln + ¢ 2@ llwlln < RIS as @)l [wln-
Combining {.5—(7.8), we have
7.9 | S [ D¢:DPw— By da] < OblCleyllull V¢ e Q)
TET;,

The estimateq.2) follows from (7.4), (7.9), and interpolation between Sobolev spadeg!|
27, 29).

Next, we derive 1.3) by a similar approach. Let € H>t*(Q) N H3(Q) be arbitrary.
We have, by 2.5 and @.11),

/ D*C: D*(In¢ — EnZno) da

TGT
(7.10) < [Cla2@)|Znd — EnIndl a2, 1)

< Cluz0) (1Zh¢ — dlu2(,70) + |6 — EnZnd|m2))

< Ch®[Clm2(o) |9l H2+e (@) V¢ e H(Q).

For¢ € H3(Q), it follows from integration by parts that

/D2C D*(In¢ — EpIie) dx

TeT),

== /v AC) - V(Tno — EnIno) dx
TeT,
82 OIno 9*°¢C [0Zno
H an ﬂe+8n68te [[ ot ﬂe)ds

. / V(AC) - V(Tht — EnTnd) da

(7.11)

TeT,
2 _
-3 [ G [P e

2 _
5 ) [0
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Using .5, (4.11), the trace theorem, and a standard interpolation erronat#, we obtain
from (7.17)

(7.12) ‘ 3 /TD2<:D2(Ih¢—EhIh¢) d

TeTy
< CRY™C sy l| @ r2+e V(€ H*(Q).

The estimateq.3) now follows from (7.10), (7.12), and interpolation between Sobolev spadés.
We are now ready to establish the propertie&pf
LEMMA 7.4. Let o be the index of elliptic regularity for the biharmonic prebh. We
have

(7.13) 1€ = EiClln < CR[Cllmzsa(e) V¢ € H*F*(Q) NH(Q).

Proof. We have the following standard estimate for nonconfornmireghods:

1€ = Erclin < [I€ = vlln + [[v = ExClin
an(v — Ej¢,w)

(7.14) <|[¢=vln+ sup
weVi\{0} [[wlln
iE*
weVi\{0} |lw]|

Letw € V}, be arbitrary. Sinc€ € HZ(f2), we have
an(C — Ep¢,w) = ap((,w — Epw) = z / D?¢ : D*(w — Epw)dz.
TeT), T
It then follows from {7.2) that
an(C = By w) < Ch%|[Cll2+e (o lwlln,
which implies

sup ah(c - EZva)

< OhY|| ¢l e (q)-
weVi\{0} llwl|n

Finally, by takingv = Z,,¢, we obtain from 2.5

(7.15) € —=vln = I = ZnClln = |€ = ZnCla2(@,70) < ChICI 2o ()

The estimateq.13 follows from (7.14—(7.15). a
LEMMA 7.5. Let a be the index of elliptic regularity for the biharmonic prebh. We
have

lan(¢ — E;¢,Ind)| < CR** (¢l 2o )0l mrz+e 0y
forall ¢,¢ € H?>T(Q) N HZ(Q).
Proof. In view of the fact that

an(C = E;¢, Tne) = an($, Tnd — EnTng) = > /T D*¢: D*(Tno — EnIng) dz,

TeT),
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the estimate follows immediately fron7.@). a
Next, we will derive error estimates in the norm of the SobapaceH?~*(2). The
following duality formula is useful:

(7.16) [l g2y = o)

= — P Wy e HETYQ).
peH=2+(O\{0} [|@]| -2+ (q) 0 ()

Given anyp € H=2+(Q), let¢ € H2 () satisfy
(7.17) a(€,v) = ¢(v) Yo € H3(Q).
Then elliptic regularity (cf. $.14) implies

(7.18) €l z2re @) < Calldll g—2+e(q)-

LEMMA 7.6. Let « be the index of elliptic regularity for the biharmonic prebh. We
have

(7.19)  [I¢ — Eu(E;Q)lm2-o() < CR**|Cllg2vaqy YV € H*TH(Q) N H(Q).

Proof. Let¢ € H=27%(Q) be arbitrary and € H3(Q) satisfy (7.17). It follows from
(2.9, (7.1), Lemma7.4, Lemma7.5 and (/.18 that

(¢ — EnERC) = a(§, ¢ — EpEj(Q)
= a(&, ) — an(ERE, ERQ)
= an(§ — B¢, Q) + an(ERE, ¢ — ERQ)
= an(§ — ER€,Q) + an(§, ¢ — EpQ) — an(§ — ERE.¢ — ERQ)
= an(§ — Ej&,TnC) + an(€ — ER€, ¢ — Tin()
+an(Zn€, ¢ — ERC) + an(§ — Iné, ¢ — E4()
—an(§ — ER¢, ¢ — EpQ)

S B¢ e () |8l 240 (0

which together with7.16) implies (7.19. a

THEOREM 7.7. The following error estimate holds for the post-processeldition
Ehuh :

lu = Brup|| gz-a(0) < CR**|| f|l Lo

where« is the index of elliptic regularity for the biharmonic pravh.
Proof. Let¢ € H~2+2(Q) be arbitrary and € HZ(12) satisfy (.17). It follows from
(1.9, (2.9, 3.1, (4.1, (5.19, (5.19, (7.1), Lemma7.4, and (.18 that

¢(En(un — Equ)) = a(§, En(un — Eju))
= an(ERE — Iné,un — Epu) + an(Zn€, up — Eju)
= ap(Eré — Inp&,up — Eju) 4+ ap(Tné, un) — a(ErZré, u)
= ap(ER€ — In&,un — Eyu) + (f, Zné — EnZié)
S Rl v ) | f | Lage) + B2 NEN e (o) 1 f L Lo (o)
S P2l r-2ra @) 1 f 1229
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which together with7.16) implies
| En(un — Exu)|| mrz-o ) < CB*|| fll La0),
and hence, in view ofy(14) and Lemma/ .6,
Hu — Ehuh||H2—a(Q) S ||u — EhE;uHH‘z—a(Q) + ||Eh(uh — E;u)”Hz—a(Q)
< Ch?**||fllLy- O

The following corollary is immediate.
COROLLARY 7.8. Let a be the index of elliptic regularity for the biharmonic preih.
The following error estimate holds for the post-processddt®on £y u :

lu = EpunllLy@) < CP* | £ La(e)-
REMARK 7.9. Sincenr = 1 when{2 is convex, we have
(7.20) lu = Enullp,0) < llu— Erullgio) < CR?|fll L0

for a convex domaiif.

REMARK 7.10. We see from Theorem1, Theorem7.7, and Corollary7.8 that the
post-processed solutidry, u;, satisfies all the correct error estimates. Therefore the BIPDP
method is also relevant for computing solutions of (.1).

We can now establish aly, error estimate for the solutiom, of (3.1).

COROLLARY 7.11.Leta be the index of elliptic regularity for the biharmonic preiph.
We have

[ = unlLy) < CR*| fll Lo
Proof. Using Corollary4.2, (5.1), Theorenb.2, and Theoren?.7, we find
lu—unllr,0) < llu— Epunlr,0) + llun — Epunll,9)
S BN Fllzacey + B2 {lunlln
S P2 fll Loy + B2 [l = unlln + [ulgo)]
S fll o o)- a

Finally, we have a convergence theorem for the modified WOR®thod (Remark.2)
when the right-hand sidgis in H =2+ (Q).
THEOREM 7.12.The following error estimates hold for the modified WOP S| khog:

(7.21) lu - Efully < ChOIfla-2+a (0.
(7.22) lu = BuBgullsre-o o) < CR2 S ir-2ve ),
(7.29) lu = Biull sy < O fllg-2ve ),

whereq is the index of elliptic regularity for the biharmonic pravh.
Proof. The estimates7(21) and (7.22 follow directly from (5.14), Lemma7.4, and
Lemma7.6. Together with Corollaryt.2, these estimates imply 23):
lu = EpullLyo) < llu = EnEpullL,@) + | EnERu — Equll 1,0
< llu = BnEjullgra-a o) + h?[| Ejulln
< h2“||u||Hz+a(Q) + hQ(HE,’:u —ulln + |ulp2(0))
S I fl -2t () o
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8. Numerical results. In this section we report the results of several numericpeex
ments. For the first set of numerical experiments, we tat@be the unit squar@, 1) x (0, 1)
and the exact solution of (1) to be

u(z,y) = 1002%(1 — z)%y*(1 — y)*

We compute the solutiony, of (3.1) on several uniform grids with mesh sizes= 1/2 for

i =1,2,---5. The errors in the energy norm and the norm together with their orders of
convergence are presented in Table These numerical results clearly match the theoretical
results in Theoremd.2and Corollary7.11

TABLE 8.1
Errors and orders of convergence for the WOPSIP method.

ho| llw = unlln | order | |lu—upnllp, | Order
1/2 | 17.19724755943720] - 1.716371062750963 —

1/4 | 7.101544418782296| 1.2759 | 0.277965054420832 2.6263
1/8 | 3.201633853279419| 1.1493 | 0.05803785490434Q 2.2598
1/16 | 1.537650668307142| 1.0580 | 0.013567912004911 2.0967
1/32 | 0.758213520169036 1.0200 | 0.003314694892577 2.0332

For comparison, we compute the solutions of the Morley nofaroning method on the
same grids and tabulate the errors and their orders of cgernee in Table3.2. It is evident
that the magnitudes of the errors of these two methods atiasim

TABLE 8.2
Errors and order of convergence for the Morley nonconforgnimethod.

h ‘ [lu —up||n ‘ order ‘ lu —unllz, ) ‘ order
1/2 | 6.97722906289096 - 0.32343932920439 -
1/4 | 4.774226099723017 0.5474 | 0.141179892106251 1.1960
1/8 | 2.628590625177154 0.8610 | 0.041796714441572 1.7561
1/16 | 1.354472363700791 0.9566 | 0.011013849766270 1.9241
1/32 | 0.682957077321058 0.9879 | 0.00279536581491(0 1.9782

We also compute the post-processed solulign;, and present thé, error and the order
of convergence in Tablg.3. These numerical results match the theoretical estinTagg)(
Table8.4 contains the condition number of the preconditioned sys_’a{rﬁAh and its order

TABLE 8.3
Error and order of convergence for the post-processed smiut

h ' \|u—EhuhHL2(Q) ' Order
1/2 | 1.69540729010434 -
1/4 | 0.276528870979329 2.6161
1/8 | 0.058428415656511 2.2427

1/16 | 0.013603479656276 2.1027
1/32 | 0.003317111091565% 2.0360

of growth (in terms ofv—!). The order of growth is clearly 4, as predicted by Lenfiria

For the second set of numerical experiments we @k® be theL-shaped domain
(=1,1)%\ ([0,1) x (—1,0]), and consider the model probleth 1) on 2 with the following
singular solution?1, p.107]:

u(r,0) = (1% cos? 0 — 1)2(r? sin? 6 — 1)2r(1F2) g(6),
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TABLE 8.4
Condition numbers of the preconditioned system and ordegsoovth.

h Condition number oB,leh Order of growth
1/2 2.127683603246884e+001 -

1/4 4.501699323404198e+001 1.0812
1/8 2.910422778240135e+002 2.6927
1/16 3.526267672393217e+003 3.5988

1/32 5.927291290250981e+004 4.0712

wherez = 0.544483736782464 is a noncharacteristic root efn?(zw) = z%sin?(w) with
3m

W= 5

1 1
1 sin ((z — w) — .

T sin ((z + l)w)}
X [cos((z — 1)8) — cos((z + 1)8)]

— L i 1 sin((z —1)0) —

x [cos ((z — 1)w) — cos ((z + Dw)],

1.
1 sin((z + 1)9)}

Z+

and(r, ) are the polar coordinates. We compute the discrete solutjamn a sequence of
adaptive mesheg, generated by bisecting the marked triangles and edg&s_qf, where
the triangles and edges are marked according to the buéciariof Dorfler [18]. The error
estimator captures the singularities of the solution thhmut the mesh refinement process;
cf. Figure8.1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

PR
_, BB ‘
1 -05 0 0.5 1

FIGURE 8.1. Adaptive mesh after 30 refinement steps.

The energy error and the error estimator are plotted agdiestumber of dofs in the log-
log plot in Figure8.2, which demonstrates that the error estimator is reliable¢fem6. 1)
and that the performance of the adaptive algorithm is optima
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FIGURE 8.2. Error and estimator for the problem on the-shaped domain.

The efficiency index given by, /||u — w5 IS computed as a function of the number of
dofs and then plotted in Figui&3, which shows that the error estimator is efficient (Theo-
reme6.2).

1.9 T T T

= = — L
~ 34 o ~
L L L L

Efficiency Index

=
w
L

12¢ 1

11 1

1 1 1 1
10° 10° 10 10° 10°

Degrees of freedom

FIGURE 8.3. Efficiency of the error estimator for the problem on theshaped domain.
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9. Concluding remarks. Even though the number of dofs of the WOPSIP method is
three times the number of dofs of the classical Morley nofmoning method, the intrinsic
parallelism of the WOPSIP method can potentially be exptbib result in a much faster
algorithm. As a first step, we have shown in this paper thapgréormance of the WOPSIP
method is similar to the performance of the Morley methodmis of the magnitudes of the
discretization errors, and that reliable and efficientreesiimators are available for adaptive
solvers.

The WOPSIP method developed in this paper can be appliedrtergjefourth order
problems. It can also be applied to a fourth order singulatupeation problem of the
form e2A%u — Au = f, provided the second order term is correctly discretizeih §30].
The WOPSIP approach can also be used to construct an intilysparallel version of the
Nilssen-Tai-Winther finite element metho#¥] that is designed to handle fourth order singu-
lar perturbation problems. Research in this direction lélreported elsewhere.
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