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NEW QUADRILATERAL MIXED FINITE ELEMENTS ∗

YUNKYONG HYON † AND DO Y. KWAK ‡

Abstract. In this paper, we introduce a new family of mixed finite element spaces of higher order (k ≥ 1)
on general quadrilateral grids. A typical element has two fewer degrees of freedom than the well-known Raviart-
Thomas finite elementRT[k], yet enjoys an optimal-order approximation for the velocity in L2-norm. The order of
approximation in the divergence norm is one less than the velocity, as is common to all other known elements, except
for a recent element introduced by Arnold et al. [SIAM J. Numer.Anal., 42 (2005), pp. 2429–2451]. However, we
introduce a local post-processing technique to obtain an optimal order inL2-norm of divergence. This technique can
be used to enhance the result ofRT[k] element as well, and hence, can be easily incorporated into existing codes.

Our element has one lower order of approximation in pressure than theRT[k] element. However, the pressure
also can be locally post-processed to produce an optimal-order approximation. The greatest advantage of our finite
element lies in the fact that it has the fewest degrees of freedom among all the known quadrilateral mixed finite
elements and thus, together with the post-processing techniques, provides a very efficient way of computing flow
variables in mixed formulation. Numerical examples are in quitegood agreement with the theory even for the case
of almost degenerate quadrilateral grids.
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1. Introduction. The mixed finite element method has been widely used as a tool to
obtain a direct approximation of physical quantities such as fluxes and velocities for flow
problems. In this method, one introduces a new variableu = −κ∇p and designs a finite
element method which approximatesu andp simultaneously. For this purpose, one needs
to define finite-dimensional subspacesVh of H(div ; Ω) andWh of L2(Ω) which satisfy
some stability condition. A variety of optimal-order methods, such asRT[k], BDM[k+1], or
BDFM[k], have been developed for triangular and rectangular grids [4, 5, 6, 10] since its
introduction by Raviart and Thomas [15]. Among these,BDM[k] has the fewest degrees of
freedom and has the same order of accuracy for velocity. For some other aspects of mixed
finite elements, we refer to [1, 2, 7, 8, 9, 11].

However, for quadrilateral grids,BDM[k] or BDFM[k+1] suffers from a loss of accu-
racy, unless the grids are almost parallel, which arise as a result of repeated refinements of a
coarse grid, are assumed [3, 9]. So far, the only mixed finite element for general quadrilater-
als having optimal order for velocity isRT[k], as shown recently by Arnold, Boffi, and Falk
[3]. In fact, they showed that a necessary and sufficient condition for any finite element space
Vh of H(div ; Ω) to have an optimal order in velocity is for it to contain (in the reference
space) a subspaceSk of the Raviart-Thomas element space of orderk, where the two ele-
ments(x̂k+1ŷk, 0)T , (0, x̂kŷk+1)T are replaced by the single element(x̂k+1ŷk,−x̂kŷk+1)T .
This is a proper subspace ofRT[k] but properly containsBDM[k] andBDFM[k+1]. Their
idea of obtaining such a condition is this: in order to have anoptimal order in the mapped
space, the reference space must contain the inverse image ofPk, the space of polynomials up
to degreek, under the Piola map. The resulting condition is the one mentioned earlier.

On the other hand,RT[k] does not have enough polynomials to have optimal order in
divergence norm. A necessary and sufficient condition is that the divergence of the local
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velocity space contains (again in the reference space) the spaceRk defined as the space of
all polynomials in each variable up to degreek + 1 except constant multiples of the term
x̂k+1ŷk+1. However, the pressure space ofRT[k] is a proper subspace ofRk. Thus, one
has to enrich the pressure space and this, in turn, necessitates the enrichment of the velocity
space to satisfy the stability condition:div V̂(K̂) = Ŵ (K̂). Hence, Arnold, Boffi, and Falk
introduced a new element, calledABF[k], which has significantly more degrees of freedom
thanRT[k]: ABF[0] has six for velocity and three for pressure, andABF[1] has sixteen and
eight, respectively, for each element.

The purpose of this paper is to propose a new mixed finite element space which lies
betweenBDFM[k+1] andRT[k] (k ≥ 1), yet has an optimal order for velocity on general
quadrilateral grids. Obviously, this element has the smallest number of degrees of freedom
among all possible mixed finite elements having optimal order for velocity on general quadri-
lateral grids. Our element fork = 1 has eleven degrees of freedom for velocity and three for
pressure, and a total of4k + 6 fewer degrees of freedom thanABF[k] on each element.

Next we introduce a local post-processing of pressure variable to have optimal order,
after which we show how this post-processed pressure solution can be used to find optimal
divergence.

The organization of this paper is as follows. In the next section, we introduce some basic
material for mixed methods, focused on quadrilateral grids. Our new element is introduced
and analyzed in Section 3. In Section 4, post-processing techniques to obtain an optimal order
in pressure and divergence are presented. Finally, numerical results for our new elements
together with the post-processing of pressure and divergence are presented in Section 5.

2. Mixed finite element for quadrilateral grids. Let Ω be a bounded polygonal do-
main inR2 with the boundary∂Ω. We consider the following second-order elliptic boundary
value problem:

− div (κ∇p) + cp = f, in Ω,
(2.1)

p = 0, on∂Ω,

whereκ = κ(x) is a symmetric and uniformly positive definite matrix, andc andf are any
reasonable functions that guarantee the existence of a unique solution. Let us introduce a
vector variableu = −κ∇p and rewrite the problem (2.1) in the mixed form

u + κ∇p = 0, in Ω,

div u + cp = f, in Ω,(2.2)

p = 0, on∂Ω.

We need to describe some function spaces. For any domainΩ, we letL2(Ω) be the space
of all square integrable functions onΩ equipped with the usual inner product(·, ·)Ω. Let
Hi(Ω) = W i,2(Ω) be the Sobolev spaces of orderi = 0, 1, · · · , with obvious norms. Now,
let Hi(Ω) be the space of vectorsu = (u, v) whose components lie inHi(Ω), i = 0, 1, · · · .
For both of the spacesHi(Ω) andH

i(Ω), i = 0, 1, 2, · · · , we shall denote their norms(semi-
norms) by‖·‖i,Ω(|·|i,Ω), and the subscriptΩ will be dropped when it is clear from the context.
Also, letV = H(div ; Ω) = {v ∈ (L2(Ω))2 : div v ∈ L2(Ω)} with norm‖v‖2

H(div ;Ω) =

‖v‖2
0+‖div v‖2

0, and letW = L2(Ω). Then we have the following variational form for (2.2):

(κ−1
u,v) − (div v, p) = 0, ∀v ∈ V,

(2.3)
(div u, q) + (cp, q) = (f, q), ∀q ∈ W.
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This problem is well-posed by the theory of Brezzi [16], since the form(κ−1·, ·) is coercive
and the form(div u, q) satisfies the inf-sup condition. Let(u, p) ∈ V × W be the unique
solution pair for which we would like to find an approximationusing finite element spaces.
For eachh > 0, let Th = {K} be a triangulation of the domain̄Ω into closed triangles,
rectangles, or convex quadrilaterals whose diameters are bounded byh. Assume that we
have some approximating spacesVh ⊂ V andWh ⊂ W based on these grids. Then the
corresponding finite dimensional problem becomes: Find(uh, ph) ∈ Vh × Wh such that

(κ−1
uh,vh) − (div vh, ph) = 0, ∀vh ∈ Vh,

(2.4)
(div uh, qh) + (cph, qh) = (f, qh), ∀qh ∈ Wh.

First, we assume a triangular or rectangular grid. If the spacesVh andWh are chosen to sat-
isfy a certain compatibility condition known as discrete inf-sup condition together with a cer-
tain approximation property, then it is well-known [15, 16], under a certain shape-regularity
of Th, that

‖u − uh‖0 + ‖div (u − uh)‖0 + ‖p − ph‖0 ≤ Chk+1(‖u‖k+1 + |div u|k+1),(2.5)

wherek is the order of approximation of the spaceVh andWh.
Next, we consider quadrilateral grids. LetK be a quadrilateral with diameterhK whose

vertices areai = (xi, yi), i = 1, 2, 3, 4. Also, let K̂ be the unit square reference element
with verticesâi = (x̂i, ŷi), i = 1, 2, 3, 4. Then there exists a unique bilinear mapFK from
K̂ ontoK satisfying

FK(âi) = ai, i = 1, . . . , 4.

We let DFK denote its derivative and letJK be the Jacobian determinant. LetSi be the
subtriangle ofK with verticesai−1, ai, andai+1, i = 1, . . . , 4, whereai+4 = ai.

We assume the usual shape regularity ofTh in the sense of [12]: There exists a positive
constantσ such that

hK ≤ σρK , ∀K ∈ Th,

whereρK is the minimum of the diameters of the circles inscribed inSi, i = 1, · · · , 4.
Now, we need to define the spacesVh andWh. Assuming thatV̂(K̂) andŴ (K̂) are

given, we let

Vh(K) = {v = PK v̂ : v̂ ∈ V̂(K̂)},

and define

(2.6) Vh = {v ∈ V : v|K ∈ Vh(K)},

wherePK : H(div ; K̂) → H(div ;K) is the Piola transform defined by

v = PK v̂ =
DFK

JK
v̂ ◦ F−1

K .

This transformation preserves the divergence and flux in thefollowing sense (cf. [6]): Let
q = q̂ ◦ F−1

K , whereq̂ is any scalar function on̂K. Then

div v =
1

JK

ˆdiv v̂,
∫

K

∇q · vdx =

∫

K̂

∇̂q̂ · v̂dx̂ for q ∈ H1(K),

∫

∂K

v · n qds =

∫

∂K̂

v̂ · n̂ q̂dŝ for q ∈ H1/2(∂K).
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Finally, we define the finite element spaceWh. First, let

Wh(K) = {q = q̂ ◦ F−1
K : q̂ ∈ Ŵ (K̂)}

and then define

(2.7) Wh = {q ∈ L2(Ω) : q|K ∈ Wh(K)}.

A most common example of a mixed element isRT[k], which is defined as

V̂(K̂) = Qk+1,k(K̂) × Qk,k+1(K̂), Ŵ (K̂) = Qk,k(K̂).

Here,Qi,j(Ω) for any domainΩ is the space of polynomials of total degreei andj in each
variable. For later use, we shall denote byPk(Ω) the space of polynomials of total degreek
on Ω. TheRT[k] element, as mentioned earlier, does not have optimal order in divergence:
one has an estimate similar to (2.5), but one order lower in divergence [15]. Here, we present
a slightly improved form given by Arnold et al. [3]:

‖u − uh‖0 ≤ Chk+1‖u‖k+1,

‖div (u − uh)‖0 ≤ Chk‖div u‖k,

‖p − ph‖0 ≤

{

Chk+1‖p‖k+1 k ≥ 1,
Ch‖p‖2 k = 0.

One of the reason why one does not have optimal order in divergence is thatdiv Vh does
not contain enough polynomials. So, in order to improve thissituation, one has to add more
terms in the definition of̂V(K̂). As a result, Arnold et al. introduced a new space, called
ABF[k](k ≥ 0), where

V̂(K̂) = Qk+2,k(K̂) × Qk,k+2(K̂), Ŵ (K̂) = Rk,

whereRk is the subspace ofQk+1,k+1(K̂) which is spanned by all the polynomialsxiyj ,
1 ≤ i, j ≤ k + 1, except for̂xk+1ŷk+1.

The degrees of freedoms are2(k+3)(k+1) and(k+2)2−1, respectively. In this case, it
is shown thatVh(K) ⊃ Pk(K), W (K) ⊃ Pk(K) anddiv V̂(K̂) ⊃ Ŵ (K̂), and therefore,

(2.8) ‖div (u − uh)‖0 ≤ Chk+1‖div u‖k+1.

3. A new mixed finite element. In this section, we introduce a new mixed finite el-
ement, inspired by the study of Arnold et al. [3]. They introduced necessary and sufficient
conditions for the optimalvelocity and divergenceapproximations, hence designed a new
element-ABF to incorporate those conditions fully. But we have found thecondition for
optimal velocity approximation is good enough to determine a new space. Basedon this
observation, we shall introduce a new space.

For this purpose, let us present necessary and sufficient conditions for optimal velocity
and divergence approximations. LetSk (k ≥ 1) be the subspace ofQk+1,k(K̂)×Qk,k+1(K̂),
where(x̂k+1ŷk, 0) and(0, x̂kŷk+1) are replaced by the single element(x̂k+1ŷk,−x̂kŷk+1).
Then we have [3]:

THEOREM 3.1. Suppose that̂V(K̂) containsSk. Then there exists a constantC inde-
pendent ofu such that

inf
v∈Vh(K)

‖u − v‖0 ≤ Chk+1|u|k+1, for all u ∈ H
k+1(K).
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THEOREM 3.2. Suppose that̂W (K̂) containsRk(k ≥ 0). Then there exists a constant
C independent ofu such that

inf
v∈Vh

‖div u−div v‖0 ≤ Chk+1|div u|k+1, for all u ∈ H
k+1(K) with div u ∈ H

k+1(K).

Our new element is based on the pair(Sk,Rk−1) for k ≥ 1. Define

V̂(K̂) = Sk, Ŵ (K̂) = Rk−1

as reference spaces for our new element, and defineVh andWh through (2.6) and (2.7).
Then we see that the stability condition̂div V̂(K̂) = Ŵ (K̂) holds. Note that our pair has the
degrees of freedoms2(k + 2)(k + 1)− 1 and(k + 1)2 − 1, respectively, hence a total of two
fewer thanRT[k] and4k + 6 fewer thanABF[k].

We will now show the unisolvence of this element. LetΨk(K̂) be a subspace of
Qk−1,k(K) × Qk,k−1(K̂) where(x̂k−1ŷk, 0) and (0, x̂kŷk−1) are replaced by the single
element(x̂k−1ŷk,−x̂kŷk−1).

LEMMA 3.3 (Unisolvence).For anyû = (û, v̂) ∈ Sk, the conditions

∫

ê

û · n̂ q̂ dŝ, q̂ ∈ Pk(ê), for each edgêe of K̂,(3.1)
∫

K̂

û · v̂ dx̂, v̂ ∈ Ψk(K̂)(3.2)

uniquely determinêu.
Proof. Since the number of conditions,4(k+1)+(k+1)2−2+k2 = 2(k+2)(k+1)−1

equals the dimension ofSk, it suffices to show that if the degrees of freedom (3.1) – (3.2) are
all zero then̂u = 0. The first degree of freedom (3.1) implies thatû ≡ 0 for each edgêe of
the reference element̂K, that is,û = (u, v) satisfiesu = x(1− x)u1, v = y(1− y)v1 where
(u1, v1) ∈ Ψk(K̂). Immediately, the degree of freedom (3.2) gives the desired result.

For the error estimate we need to define a projection operatorΠ̂K̂ : H
k+1(K̂) → V̂(K̂)

satisfying
∫

ê

(û − Π̂K̂ û) · n̂ q̂ dŝ = 0, q̂ ∈ Pk(ê), for each edgêe of K̂,(3.3)
∫

K̂

(û − Π̂K̂ û) · v̂ dx̂ = 0, v̂ ∈ Ψk(K̂).(3.4)

This operator has the following property:
LEMMA 3.4.

( ˆdiv (û − Π̂K̂ û), q̂) = 0, ∀û ∈ V̂(K̂), ∀q̂ ∈ Ŵ (K̂).(3.5)

Proof. First, note that̂q|ê ∈ Pk(ê) for q̂ ∈ Rk−1, ∇̂Rk−1 ⊂ Ψk(K̂). Hence we see by
(3.3) and (3.4)

( ˆdiv Π̂K̂ û, q̂) =

∫

∂K̂

Π̂K̂ û · n̂ q̂ dŝ −

∫

K̂

Π̂K̂ û · ∇̂q̂ dx̂

=

∫

∂K̂

û · n̂ q̂ dŝ −

∫

K̂

û · ∇̂q̂ dx̂ = ( ˆdiv û, q̂).
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Define the projection operatorsΠK : H
k+1(K) → Vh(K) andΠh : H

k+1(Ω) → Vh

by

ΠK(u|K) = PK(Π̂K̂(û|K̂))

and

(Πhu)|K = ΠK(u|K).

We also need an operatorΦh : L2(Ω) → Wh. First, we letΦ̂K̂ be the localL2-projection onto
Ŵ (K̂) = Rk−1. Then defineΦKp = (Φ̂K̂ p̂) ◦ F−1

K . Finally, we let(Φhp)|K = ΦK(p|K).
Now sinceV̂(K̂) ⊃ Sk, the approximation property ofΠK follows from [3, Theorem 4.1]:

‖u − ΠKu‖0,K ≤ Chk+1|u|k+1,K , ∀u ∈ H
k+1(K).(3.6)

LEMMA 3.5. We have the following approximation property of the projection opera-
tor Πh:

(3.7) ‖u − Πhu‖0 ≤ Chk+1|u|k+1, ∀u ∈ H
k+1(Ω).

Also, the following is valid:

(div (u − Πhu), q) = 0, ∀u ∈ V, q ∈ Wh,(3.8)

‖div (u − Πhu)‖0 ≤ Chk|div u|k, ∀u ∈ H
k(Ω) with div u ∈ Hk(Ω).(3.9)

Proof. The estimate (3.7) is a result of (3.6). For (3.8), we see from (3.5) that for eachK,

(3.10)
(div ΠKu, q)K = ( ˆdiv Π̂K̂ û, q̂)K̂

= ( ˆdiv û, q̂)K̂

= (div u, q)K , q ∈ Wh.

The estimate (3.9) now follows along the lines of [3, Theorem 4.2].
REMARK 3.6.
1. The operatorΦh defined above is different from theL2-projectionPh onto Wh,

which is defined as((Php)|K , q)K = (p, q)K = (p̂, q̂JK)K̂ , q ∈ Wh(K). In fact,
((Φhp)|K , q)K = (Φ̂K̂ p̂, q̂JK)K̂ .

2. Note that since the divergence ofVh is not equal toWh, the relation (3.10) does
not imply the relationdiv ΠK = ΦKdiv , even though ˆdiv Π̂K̂ = Φ̂K̂

ˆdiv holds.
However, one can verify thatdiv ΠK = Phdiv holds.

Now we have the following error estimates.
THEOREM 3.7. Let u ∈ H

k+1(Ω) andp ∈ Hk+1(Ω) be the solution of(2.3) anduh

andph be the solution of(2.4). Then

‖u − uh‖0 ≤ Chk+1‖u‖k+1,

‖div (u − uh)‖0 ≤ Chk‖div u‖k,(3.11)

‖Φhp − ph‖0 ≤ Chk+1‖u‖k+1,

‖p − ph‖0 ≤ Chk‖p‖k+1.(3.12)

Proof. These estimates essentially follow along the same lines as[3, Theorem 6.1, 6.2]
using Theorems3.1, 3.2and Lemma3.5. However, the estimates (3.11), (3.12) are not opti-
mal. Note that the loss of order results from the fact thatRk−1 ( Qk,k.
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4. Post-processing.In this section, we present some post-processing techniques that
produce an optimal-order error for pressure and divergence.

4.1. Local post-processing for the pressure.In order to enhance the convergence order
in pressure, we apply a simple local postprocessing scheme using the pressure space ofRT[k].
We first define the pressure space,WRT

h , related toRT[k],

WRT
h (K) = {w = ŵ ◦ F−1

K , ŵ ∈ Qk,k}.

Given the solution(uh, ph) of (2.4), we define a new pressure solutionp#
h ∈ WRT

h

locally on each elementK ∈ Th as follows:
∫

K

κ∇p#
h · ∇q dx = −

∫

K

uh · ∇q dx, ∀q ∈ WRT
h (K),(4.1)

∫

K

p#
h dx =

∫

K

ph dx.(4.2)

This technique has been suggested by Stenberg in the case of BDM on affine elements [17].
Since the spaceWh contains non-polynomials on quadrilateral element, the proof needs a
modification. Here we present a modified proof which also handles the general coefficients.

THEOREM 4.1. If p ∈ Hk+1(Ω) andu ∈ H
k+1(Ω) are the solutions of(2.2) (k ≥ 1)

andp#
h is given by(4.1) and(4.2), then we have

(4.3) ‖p − p#
h ‖0 ≤ Chk+1|u|k+1.

Proof. Let ΦRT
K : L2(K) → WRT

h (K) be the local projection operator defined by
ΦRT

K p = (Φ̂RT
K̂

p̂) ◦ F−1
K , where Φ̂RT

K̂
is the L2-projection ontoŴRT (K̂), and put

q = ΦRT
K p − p#

h ∈ WRT
h . Then using the weighted norm‖ · ‖0,κ,K := (κ·, ·)

1/2
K and

weighted semi-norm| · |1,κ,K := (κ∇·,∇·)
1/2
K , we have

|q|21,κ,K =

∫

K

κ∇((ΦRT
K p − p#

h ) · ∇q dx

=

∫

K

κ∇(ΦRT
K p − p) · ∇q dx +

∫

K

κ∇(p − p#
h ) · ∇q dx

=

∫

K

κ∇(ΦRT
K p − p) · ∇q dx +

∫

K

(−u + uh) · ∇q dx,

where (4.1) was used. Now by the Cauchy-Schwarz inequality, we have

|q|1,κ,K ≤ C1|p − ΦRT
K p |1,κ,K + C2‖u − uh‖0,κ,K ,

whereCi, i = 1, 2, are constants. By the norm equivalence, we have

|q|1,K ≤ C|p − ΦRT
K p |1,K + C‖u − uh‖0,K .

Next, we letq̇ = q− q̄, whereq̄ = 1
Area(K)

∫

K
q dx is the average ofq overK. Then we have

by the Poincaŕe inequality

‖q̇‖0,K ≤ Ch|q̇|1,K = Ch|q|1,K

≤ Ch(|p − ΦRT
K p |1,K + ‖u − uh‖0,K).(4.4)
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Also, by (4.2) and the fact that(ΦRT
K p, 1)K = (ΦKp, 1)K , we have

‖q̄‖∞ =

∣

∣

∣

∣

1

Area(K)

∫

K

(ΦRT
K p − p#

h )dx

∣

∣

∣

∣

=

∣

∣

∣

∣

1

Area(K)

∫

K

(ΦKp − ph)dx

∣

∣

∣

∣

≤ Ch−1‖ΦKp − ph‖0,K .

Hence,

(4.5) ‖q̄‖0,K ≤ Ch‖q̄‖∞ ≤ C‖ΦKp − ph‖0,K .

Finally, using (4.4) and (4.5), we have

‖p − p#
h ‖0,K

= ‖p − ΦRT
K p + ΦRT

K p − p#
h ‖0,K = ‖p − ΦRT

K p + q̇ + q̄‖0,K

≤ ‖p − ΦRT
K p‖0,K + ‖q̇‖0,K + ‖q̄‖0,K

≤ ‖p − ΦRT
K p‖0,K + Ch(|p − ΦRT

K p |1,K + ‖u − uh‖0,K) + C‖ΦKp − ph‖0,K .

Now the estimate follows from the approximation property ofΦRT
K , the estimates (3.11),

(3.12), and summation over allK ∈ Th.

4.2. Local post-processing for divergence.According to the discussion in the previous
sections, one has to enricĥV(K̂) in order to obtain optimal order in divergence norm, so that
ˆdiv V̂(K̂) ⊃ Rk. The result isABF[k] mentioned earlier, for which an improved estimate

(3.9) holds, withk + 1 in place ofk, at the cost of extra degrees of freedom. However, if one
wants an optimal divergence, there is a simple way as we show below. First, we introduce
some notations:

V
ABF
h (K) = {v = PK v̂, v̂ ∈ ABF[k]},

WABF
h (K) = {w = ŵ ◦ F−1

K , ŵ ∈ Rk}.

The corresponding global spacesV
ABF
h andWABF

h are defined in an obvious manner.
The notationVRT

h is used for the velocity space ofRT[k]. We consider the following problem:
Finddiv e

∗

h ∈ V
ABF
h such that

(div e
∗

h, qh) = (f, qh) − (cp#
h , qh) − (div uh, qh), ∀qh ∈ WABF

h .(4.6)

Let div u
#
h = div uh + div e

∗

h. Then, we see that (4.6) is equivalent to solving

(div u
#
h , qh) = (f − cp#

h , qh), ∀qh ∈ WABF
h .

In other words,

div u
#
h = PABF

K (f − cp#
h ),(4.7)

wherePABF
K : L2(K) → WABF

h (K) is the localL2 projection operator defined by

(PABF
K p, q)K = (p, q)K = (p̂, q̂JK)K̂ , for all q̂ ∈ ŴABF = Rk.

For the analysis, subtract (4.7) from the second equation of (2.4) to see

div (u − u
#
h ) = f − cp − PABF

h (f − cp#
h )

= (I − PABF
K )f − (cp − PABF

K (cp#
h ))

= (I − PABF
K )(f − cp) − PABF

K (cp − cp#
h ).
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Hence,

‖div (u − u
#
h )‖0,K ≤ ‖(I − PABF

K )(f − cp)‖0,K

+ |||PABF
K ||| · ‖c‖0,K‖p − p#

h ‖0,K

≤ Chk+1|div u|k+1,K + Chk+1|||PABF
K ||||u|k+1,

(4.8)

where|||PABF
K ||| is the operator norm. Let us divert briefly and show that|||PABF

K ||| ≤ 1.
For anyφ ∈ L2(K), we have

‖PABF
K φ‖2

0,K = (PABF
K φ, PABF

K φ)K = (φ̂, P̂ABF
K φJK)K

≤ (φ̂, φ̂JK)
1/2
K · (P̂ABF

K φ, P̂ABF
K φJK)

1/2
K = ‖φ‖0,K‖PABF

K φ‖0,K .

Thus,|||PABF
K ||| ≤ 1.

Now the following result follows from (4.3), (4.8), the approximation property, and the
boundedness ofPABF

K .
PROPOSITION4.2. Letu be the solution of problem(2.1) such thatu ∈ H

k+1(Ω) and
div u ∈ H

k+1(Ω), anddiv u
#
h be defined as in(4.7). Then we have:

‖div (u − u
#
h )‖0 ≤ Chk+1|div u|k+1.

REMARK 4.3.
1. To computediv u

#
h , we do not solve (4.6). Instead, we obtain it as a projection of

f − cp#
h as in (4.7). In particular, whenc = 0, div u

#
h can be obtained without

computinguh.
2. This procedure can be easily incorporated into the existing codes written usingRT -

element.
3. It would be interesting to consider the three-dimensional case, but the 3D Raviart-

Thomas-Nedelec element space [14] does not achieve optimalL2 approximation as
numerical experiments show [13]. In fact, one can verify with tedious calculation
that the Raviart-Thomas-Nedelec element does not containPk under the Piola map
even fork = 0. Further investigations are needed for three-dimensionalproblems.

5. Numerical results. In this section, we report some numerical simulations to confirm
our theoretical results. We solve problem (2.4) with κ = I andc = 1 on the unit square
Ω̄ = [0, 1] × [0, 1]. The functionp(x, y) = log(x3 + y2 + 4) sin(πx)(y2 − y) is chosen as
the exact solution. Whenk = 1, there are eleven degrees of freedom for the velocity space
S1, and three for the pressure spaceR0, on each element. Grids are distorted as in Figure5.1,
whereα (0 ≤ α < 1) is the measure of distortion. The results forα = 0, 0.2, 0.6 and
α = 0.99 are reported. In all cases, the discreteL2-norm is measured at nine Gauss points.

Our new element has second order accuracy for all variables in case of a rectangular
element (α = 0). As the element becomes distorted, only the velocity showssecond order
accuracy, while the post-processing shows second order forthe other variable. The odd num-
bered tables show the results without post-processing (ph, uh, anddiv uh), while the even
numbered tables show those with post-processing (p#

h anddiv u
#
h ). Note that our scheme

works even when the element almost degenerates into a triangle and the shape regularity does
not hold (α = 0.99). As a comparison, we test theRT[1] element. The results are listed in
Tables5.9 (for α = 0) and5.10(for α = 0.99). The orders of convergence are exactly as
predicted by the theory, and post-processing increases pressure and divergence orders by one.
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h

h

αh

FIGURE 5.1. An example : trapzoidal grid withα factor.

Alternatively, the divergence can be obtained from theL2-projection off − cp#
h as indicated

by the remark above.
It would be interesting to compare the total cost of the new element andRT[1]. The new

element has11 + 3 = 14 unknowns per element, while theRT[1] has12 + 4 = 16. Thus, the
total number of unknowns are roughlyN1 = 14/h2 versusN2 = 16/h2 whereh is the grid
size. The exact comparison is not possible, but the cost to solve the saddle point system inN
unknown is at leastO(N2). So we can save relatively about(N2

2 −N2
1 )/N2

2 = (1−72/82) ≈
12.5%. Instead, the added cost for local post-processing is at most proportional toN1, which
is negligible.

TABLE 5.1
Results withα = 0.0.

‖p − ph‖0 ‖u − uh‖0 ‖div (u − uh)‖0

n error order error order error order
4 1.1668e-02 2.1495e-02 1.1806e-01
8 2.9998e-03 1.95 5.3625e-03 2.00 2.9998e-02 1.97

16 7.5518e-04 1.98 1.3401e-03 2.00 7.5309e-03 1.96
32 1.8912e-04 1.99 3.3501e-04 2.00 1.8846e-03 1.99
64 4.7301e-05 1.99 8.3752e-05 2.00 4.7129e-04 1.99

TABLE 5.2
Post-processed results withα = 0.0.

‖p − p#
h ‖0 ‖div (u − u

#
h )‖0

n error order error order
4 6.7860e-03 6.9514e-03
8 1.6974e-03 2.00 1.7048e-03 2.02

16 4.2445e-04 2.00 4.2487e-04 2.00
32 1.0612e-04 2.00 1.0614e-04 2.00
64 2.6532e-05 2.00 2.6532e-05 2.00
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TABLE 5.3
Results withα = 0.2.

‖p − ph‖0 ‖u − uh‖0 ‖div (u − uh)‖0

n error order error order error order
4 1.2990e-02 2.4174e-02 2.2704e-01
8 3.9874e-03 1.70 6.1410e-03 1.97 1.0397e-01 1.12

16 1.4835e-03 1.42 1.5494e-03 1.98 5.0588e-02 1.03
32 6.6133e-04 1.16 3.8912e-04 1.99 2.5111e-02 1.01
64 3.1977e-04 1.04 9.7495e-05 1.99 1.2533e-02 1.00

TABLE 5.4
Post-processed results withα = 0.2.

‖p − p#
h ‖0 ‖div (u − u

#
h )‖0

n error order error order
4 7.7270e-03 8.0530e-03
8 1.9349e-03 1.99 1.9653e-03 2.03

16 4.8417e-04 1.99 4.8922e-04 2.00
32 1.2108e-04 1.99 1.2219e-04 2.00
64 3.0274e-05 1.99 3.0542e-05 2.00

TABLE 5.5
Results withα = 0.6.

‖p − ph‖0 ‖u − uh‖0 ‖div (u − uh)‖0

n error order error order error order
4 2.1076e-02 4.4702e-02 6.4683e-01
8 8.4839e-03 1.31 1.1927e-02 1.90 3.3039e-01 0.96

16 3.9115e-03 1.11 3.0764e-03 1.95 1.6580e-01 0.99
32 1.9113e-03 1.03 7.8044e-04 1.97 8.2979e-02 0.99
64 9.5004e-04 1.00 1.9647e-04 1.98 4.1500e-02 0.99

TABLE 5.6
Post-processed results withα = 0.6.

‖p − p#
h ‖0 ‖div (u − u

#
h )‖0

n error order error order
4 1.3710e-02 1.7683e-02
8 3.4603e-03 1.98 4.1843e-03 2.07

16 8.6822e-04 1.99 1.0325e-03 2.01
32 2.1730e-04 1.99 2.5733e-04 2.00
64 5.4342e-05 1.99 6.4283e-05 2.00
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TABLE 5.7
Results withα = 0.99.

‖p − ph‖0 ‖u − uh‖0 ‖div (u − uh)‖0

n error order error order error order
4 3.2052e-02 8.4730e-02 1.3579e-00
8 1.3586e-02 1.23 2.4275e-02 1.80 7.1167e-01 0.93

16 6.3981e-03 1.08 6.4658e-03 1.90 3.5943e-01 0.98
32 3.1466e-03 1.02 1.6648e-03 1.95 1.8017e-01 0.99
64 1.5666e-03 1.00 4.2207e-04 1.97 9.0150e-02 0.99

TABLE 5.8
Post-processed results withα = 0.99.

‖p − p#
h ‖0 ‖div (u − u

#
h )‖0

n error order error order
4 2.1044e-02 3.4112e-02
8 5.3703e-03 1.97 7.6588e-03 2.15

16 1.3507e-03 1.99 1.8551e-03 2.04
32 3.3822e-04 1.99 4.5992e-04 2.01
64 8.4590e-05 1.99 1.1473e-04 2.00

TABLE 5.9
Results withα = 0 for RT[1].

‖p − ph‖0 ‖u − uh‖0 ‖div (u − uh)‖0

n error order error order error order
4 6.7709e-03 2.1413e-02 9.7288e-02
8 1.6966e-03 1.99 5.3582e-03 1.99 2.4330e-02 2.00

16 4.2441e-04 1.99 1.3399e-03 2.00 6.0836e-03 2.00
32 1.0611e-04 1.99 3.3500e-04 2.00 1.5209e-03 2.00
64 2.6530e-05 1.99 8.3751e-05 2.00 3.8025e-04 2.00

TABLE 5.10
Results withα = 0.99 for RT[1].

‖p − ph‖0 ‖u − uh‖0 ‖div (u − uh)‖0

n error order error order error order
4 1.8171e-02 7.1774e-02 6.7905e-01
8 4.6367e-03 1.97 1.9508e-02 1.87 3.3798e-01 1.00

16 1.1652e-03 1.99 5.0727e-03 1.94 1.6870e-01 1.00
32 2.9163e-04 1.99 1.2929e-03 1.97 8.4357e-02 1.00
64 7.2927e-05 1.99 3.2636e-04 1.98 4.2191e-02 1.00
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