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A GRADIENT RECOVERY OPERATOR BASED ON AN OBLIQUE PROJECTION *

BISHNU P. LAMICHHANET

Abstract. We present a construction of a gradient recovery operateed@n an oblique projection, where
the basis functions of two involved spaces satisfy a camlibf biorthogonality. The biorthogonality condition
guarantees that the recovery operator is local.
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1. Introduction. One reason for the success of the finite element method fengpol
partial differential equations is that a reliable a postérérror estimator can be applied to
measure the approximation of the finite element solutionnip lacal region [, 2. The
a posteriori error estimator uses the finite element saluitieelf to assess the accuracy of
the numerical solution. Based on this assessment, the &@taent mesh can be locally
refined resulting in an adaptive process of controling thubal error. The adaptive refine-
ment process is much more efficient than the uniform refineérpestess in finite element
computation.

One of the most popular a posteriori estimators is based aovesy of the gradient of
the numerical solution. If the recovered gradient appratis the exact gradient better than
the gradient computed directly by using the finite elemehttam, the comparison gives
an a posteriori error estimator. The asymptotic exactnéfiseoestimator is based on some
superconvergence results p, 9, 15, 18, 19].

One can compute the orthogonal projection of the computadignt of the finite element
solution onto the actual finite element space to recondtineajradient3, 7, 11]. As the mass
matrix is not diagonal, the recovery process is not locathédigh one can use a mass lumping
procedure to diagonalize the computed mass matrix, thegiiop property is not valid and
the superconvergence property is, in general, lost aftargdthe mass lumping procedure.
Therefore, in this paper we focus on an oblique projectiotihefdirectly computed gradient
of the numerical solution. The oblique projection is ob&alrby using two different finite
element spaces, where these two spaces satisfy a biortaldggmoperty. The trial and test
spaces for projecting the finite element gradient are cheseh that arising Gram matrix is
diagonal. The biorthogonality property allows the locaiguutation of the recovery operator.
We show that the error estimator obtained by using the oblfgojection is equivalent to the
one obtained by using the orthogonal projection. We intoadour oblique projection in the
next section and prove some properties of the recoveredegriad

2. Construction of the gradient recovery operator. Let @ c R?, d € {2,3}, be a
bounded region with polygonal or polyhedral boundary. Wesider a locally quasi-uniform
triangulation7;, consisting of simplices od-parallelotopes of the domaid, where each
elementl” € 7,, can be transformed affinely to a reference simplex, squarelm. \We denote
the mesh-size of elemefitby i, and the global mesh-sizeis given byh = maxrer;, hr.
As the mesh is assumed to be locally quasi-uniform, we alsdd$o measure the mesh-size
of elements in the local neighborhoodBf
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Let S, be the space of finite elements defined on the triangul&fian
Sh = {’l}hECO(Q): ’Uh|T€'Pp(T), Te%}, pEeN,

whereP,(T') is the space of polynomials of total degree less than or equein 7" if 7' is a
reference simplex an@,(7") is the space of polynomials of degree less than or equalrio
each variable if" is ad-parallelotope.

As mentioned in the introduction, we use oblique projectmicompute the projection
of the gradient onto the finite element spate The projection process can be thought of
as a Petrov—Galerkin formulation for the gradi&nt, where the trial space is5;]9, and
the basis functions of the test space are constructed in@aspeay. Let the space of the
standard finite element functios$ be spanned by the badis, . .., ¢, }. We construct the
basis{ui,...,u,} of the spacell;, of test functions so that the basis functionsSafand
M, satisfy a biorthogonality relation

(2.1) / pi @5 dx = c¢;jdij, ¢; #0, 1 <1, <n,
Q

wheren := dim M}, = dim S, J;; is the Kronecker symbol, ang a scaling factor, and is
always positive. This scaling facter can be chosen proportionally to the ateapp ¢;|.

It is easy to show that a local basis on the reference eleffieren be easily constructed
so that equationZ( 1) holds. In the following, we give these basis functions foeér finite
elements in two and three dimensions. Since we do not reguaiepproximation property of
these basis functions, the construction is only based ofeeerece element. Therefore, it is
easy to construct these basis functions for any finite eléspace. For the reference triangle
T:={(x,y): 0<z,0<y,z+y <1}, wehave

1 :=3 —4x — 4y, [1o :=4x — 1, andjg =4y — 1,

where the basis functions, ji> and/i3 are associated with three verticgs 0), (1,0
(0,1) of the reference triangle. For the reference tetrahedfon= {(z,y, z) :
0<y,0<z,x+y+2<1}, wehave

o -
|/\\/
8

1 :=4—5x — 5y —5z, fio:=5r— 1, andjz :=5y — 1, f1g := 5z — 1,

where the basis functions,, fi2, i3 and/i4 associated with four vertic€®, 0,0), (1,0, 0),
(0,1,0) and(0, 0, 1) of the reference tetrahedron.

If we start by constructing these biorthogonal basis fuilocally, and they span the
same polynomial space as the finite element basis functmadly, these basis functions are
unique up to a scaling factor. The global basis functiongtertest space are constructed by
glueing the local basis functions together following ekattie same procedure of construct-
ing global finite element basis functions from the local on€kese global basis functions
then satisfy the condition of biorthogonality.() with global finite element basis functions,
andsupp ¢; = supp u;, 1 < i < n. The stability requirement for the biorthogonal system is
that

fQ d)h,uh dx

(2.2) = inf sup > 0.
61€Sn uen, 1BnllL2llpnll 2@

We will see that this constant enters into the error estimate

REMARK 2.1. Biorthogonal basis functions are very popular in thetext of mortar
finite elements]2, 13, 17], where these basis functions should also satisfy an apiatep-
proximation property13, 14], and therefore, difficult to construct for higher order giigial
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meshes in three dimensions. However, here these basisdnsetre used only as test func-

tions to compute the projection, and so we do not need theoappation property of these

basis functions. This allows an easy construction of logatfions in a reference element.
Our gradient recovery technique is based on the obliqueptiojn operator

Qn : L*(2) — Sy, which is defined as

(2.3) / Qnv pp, dr = / vpp dz, v € L3(Q), un € My,
Q Q

Itis easy to verify that);, is well-defined and is the identity if restricted $¢. HenceQ}, is
a projection onto the spac®,. We note that);, is not the orthogonal projection onf, but
an oblique projection onto it. Oblique projectors are stddéxtensively in10], and different
proofs on an identity on the norm of oblique projections axevjaed in [L6].

REMARK 2.2. If we use trial and test functions from the same sgggeve obtain an
orthogonal projection. Then, the locality of the operafr can be obtained only by mass
lumping. After mass lumping, the projection property of tgeeratorQ);, in terms ofL2-inner
product is lost.

Now we analyze the approximation property of the operadgrin the L?- and H'-
norms. For an arbitrary elemefit € 7, S(T”) denotes the patch &. The closure of
S(T") is defined as

(2.4) S(T") = J{T € T : 0T N OT' # 0}
Let Q;, be the vector version of the operat@y, so thatQy, : [L?(22)]? — [S,]? and

Quu = (Quuy, -+ ,Quug) for wue [L*(Q)]%

ThenQy, is our gradient recovery operator. We show that the ope@jpsatisfies the prop-
erties R2)—(R3) stated for a gradient recovery opera®y in [1, pp. 72—73]:
(R2) If zp € T, then the value of the recovered gradient depends only aresafVv
sampled on the patch(7').
(R3) Gx : S, — S, x S, is alinear operator, and there exists a constaitdependent
of h such that

|Gxvl|lLe(r) < Cllvllwice(scry), T € Tn, v € S

SinceS);, andM;, form a biorthogonal system, we can wrifg, as
- Jqmivda
(2.5) Q=3 BT

which shows that the operat@);, is local, and henc@),, satisfies the propertyR2) of oper-
atorGx statedin [, p. 73].
By using the above representation, we can show@hgais stable in thel.2-norm.
LEMMA 2.3.Forv € L?(2), we have

1QnvllLz(ry < CllvllL2(s(ry)s

and hence

(2.6) 1Qnrvllz2(0) < Cllvl|L2q)-
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Proof. Using the definition of);, as given in 2.5), we have

_ Jopivdz
IQnollioan =| > T@

1<i<n
T’ Csupp ¢ L2(T")

Sincesupp ¢; = supp u; for 1 < i < n, we have

/uivda::/ ;v de.
Q supp ¢

Denoting the support af; by S; and applying the Cauchy—Schwarz inequality yields to

’/ i v dx
S,

i

< lwillzzesy llvlizzcs,)

so that

[pill L2si vl L2 s,
lQullzze < Y- CEZEE il .

1<i<n v
T/Csi,

Sincec; is proportional to the aregs;|, we estimate thé.>-norm by theL>*-norm and use
the local quasi-uniformity to obtain

il L2(spyll@ill ey < Ce,

whereC' is independent of the mesh-size. Thus

1Qnvll2cry <C Y vllLacs,)-
1<i<n
T'CS;

Noting that the elemertt’ is fixed and summation is restricted to thésefor whichT’ C S;,
we have

1Qnvllz(rry < CllvllL2(s(ry),

where S(T") is as defined in4.4). The L2-stability (2.6) then follows by summing this
estimate over all elements € 7;,.0

In the following, P, : L%(2) — S, denotes thd.2-orthogonal projection onts),. It
is well-known that the operatd?, is stable in thel.?- and H'-norms. Using the stability of
the operator);, in the L2-norm, and of operataP, in the H'-norm, we can show thad, is
also stable in théZ'-norm. We refer to 13] for the proof of this result.

LEMMA 2.4.Forw € H(Q), we have

|Qrw| 1 (o) < Clw|g (-

The following lemma establishes the approximation propefthe operator),, for a func-
tionv € H*(£2). We refer to B, 8] for the interpolation theory of functions i (Q2).
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LEMMA 2.5.For a functionv € H5T1(Q2), s > 0, there exists a constantindependent
of the mesh-sizk so that

Ch™* vl grea (),

2.7 ||’U - QhU”L2(Q)
( ) ChT|U|H7'+1(Q)7

<
v —Qnvllai@) <

wherer := min{s, p}.
Proof. We start with a triangle inequality

[v—@Qnvllz2(0) < llv = Prvlr2@) + [[Prv — Quollr2(a)-
Since@)y, acts as an identity o6y, we have
[v—Qnvlz2(0) < llv = Prvllzze) + [|Qn(Pav — v)| L2
Now we use the equatioR () to get
[v — QnvL20) < Cllv — Puvllz2(0)-

The first inequality of 2.7) now follows by using the approximation property of the aglo-
nal projectionP;, ontoS},; see fi]. The second inequality o2(7) is proved similarly using the
stability of Q;, in the H'-norm and the approximation property of the orthogonalgctipn
P, ontoS),. 0

LEMMA 2.6.Letv, € Sy, andu € H*(2) with s > g. Then for allT" € 73,

(2.8) 1QrVn L1y < ClIVUnll Lo (s(ry)
and
(2.9) 1QrV Inull oo (1) < ClVullLos(s(1))s

wherel}, is the Lagrange interpolation operator.
Proof. The formula 2.5) for Qv yields

ivd
y ot

7

Qnoll Lo () = i
1<i<n
T’ Csupp ¢; L= (T)

As Vo, € L*(S(T)), we can follow the arguments of the proof of Lem&&, and obtain
the estimateZ.8). To obtain the estimate?(9), we start with the mean value theorem as in

(3],
IVIhull Lo (scry) < IVl Lo sy

and apply the estimat@). O

We note that Lemma.6 corresponds to propertR@) of the operatofz x stated in [L,
pp. 72—73]. We show that the opera@y, has the same approximation property as e
projection operator. We note that tié-projection operator is not local, whereas our new
projection operatoQ;, is local. Hence, it is ideal to use this operator as a gradezuvery
operator for a posteriori error estimation.

THEOREM2.7.We have
(2.10)

1
IV Ipu — thIhUHL2(Q) < ||VIpu — QhVIhUHLz(Q) < BHVI}LU — PhVIhu||L2(Q),
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where3 > 0 is given in @.2), andP}, is the vector version of the?-projection operator?, .

Proof. Due to the property of orthogonal projection, it is wellekmn that
IV Ipu — thIhUHL2(Q) < |IVIpu— QhVIhuHLz(Q).
The second part of the inequality is obtained by using

[Qnll = IT—-Qxll, seeld],

where the norm of the operator is taken with respect tofiheorm, andI is the identity
operator. Leip,, be an arbitrary element iil. Applying

[VInu — QuVInullL20) = (T - Qu)(Vinu — ép)l 20
< I = QullllVInu — ¢yl 2 ) < 1QlIVInu — ¢yl L2 (0)-

Furthermore, fom € L?(2)?, we have

d d
l sup fgzuthu $< fgzp’hu xgl

1
=5 [allz2(0)-
B ens lmnllae Blleplle) ~— 8 @)

Qrul| < 0

Since the error estimator based b-projection is asymptotically exacB[7, 11] even
for mildy unstructured meshes, the error estimator basethisnoblique projection is also
asymptotically exact for such meshes. However, EReprojection is not local and hence
expensive to compute. Our new oblique projection gives allgcadient recovery operator,
which is easy and cheap to compute.

The error estimator on the elemeéhis defined as

nr = |QnVun — Vup| 21y,

whereuy, is the finite element solution of some boundary value probléthe finite element
solutionu;, and the Lagrange interpolanhiu of the true solution: satisfies

|up — Ihu|H1(Q) < C(u)hp+T

for somer € (0,1] andC(u) > 0 independent of, then the error estimator can be proved
to be asymptotically exact as iy, [3, 5, 9, 11].
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