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APPROXIMATE FEKETE POINTS
FOR WEIGHTED POLYNOMIAL INTERPOLATION ∗

A. SOMMARIVA† AND M. VIANELLO †.

Abstract. We compute approximate Fekete points for weighted polynomial interpolation by a recent algorithm
based on QR factorizations of Vandermonde matrices. We consider in particular the case of univariate and bivariate
functions with prescribed poles or other singularities, which are absorbed in the basis by a weight function. Moreover,
we apply the method to the construction of real and complex weighted polynomial filters, where the relevant concept
is that of weighted norm.
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1. Introduction. In the framework of polynomial interpolation, Fekete points are points
that maximize the Vandermonde determinant (in any polynomial basis) on a given compact
set and thus ensure that the corresponding Lebesgue constant grows (at most) algebraically,
being bounded by the dimension of the polynomial space. Their analytical properties and
their efficient computation are still essentially open research problems in the multivariate
setting; see, e.g., [11, 44] and references therein. In particular, the computation ofFekete
points requires solving large scale optimization problemsalready at moderate degrees. Much
more is known in the univariate case, but the computational problem is still open in one
complex variable (where, however, good alternatives are known, like Fejer or Leja-like points;
see [3, 27]).

In some recent papers [9, 10, 39], a greedy algorithm has been studied, that computes
(multivariate) approximate Fekete points by extracting maximum volume submatrices from
rectangular Vandermonde matrices on suitable discretization meshes. It works on arbitrary
geometries and uses only optimized tools of numerical linear algebra (essentially QR-like
factorizations). There is a strong connection with the theory of admissible meshes for mul-
tivariate polynomial approximation, recently developed by Calvi and Levenberg [15]. There
are also good perspectives in the application to numerical cubature and to the numerical so-
lution of PDEs by collocation and discrete least squares methods [45]. A renewed interest is
indeed arising in methods based on global polynomial approximation; see, e.g., [29].

The algorithm can be described in a very general functional,not necessarily polynomial,
setting. Given a compact setK ⊂ Rd (or Cd), a finite-dimensional space of linearly indepen-
dent continuous functions,

(1.1) SN = span(φj)1≤j≤N ,

and a finite set{ξ1, . . . , ξN} ⊂ K, we can construct the Vandermonde-like matrix,

V (ξ1, . . . , ξN ) = [vij ] := [φj(ξi)].

If det(V (ξ1, . . . , ξN )) 6= 0, then the set{ξ1, . . . , ξN} is unisolvent for interpolation inSN
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and

(1.2) ψj(x) =
det(V (ξ1, . . . , ξj−1, x, ξj+1, . . . , ξN ))

det(V (ξ1, . . . , ξj−1, ξj , ξj+1, . . . , ξN ))
, j = 1, . . . , N,

is a cardinal basis, i.e.,ψj(ξk) = δjk and

(1.3) LSN
f(x) =

N
∑

j=1

f(ξj)ψj(x)

interpolates any functionf at {ξ1, . . . , ξN}. In the case that such points maximize the (ab-
solute value of the) denominator of (1.2) in KN (Fekete points), then‖ψj‖∞ ≤ 1 for every
j, and thus the norm of the interpolation operatorLSN

: C(K) → SN is bounded by the
dimension of the interpolation space,

(1.4) ΛN := ‖LSN
‖ = max

x∈K

N
∑

j=1

|ψj(x)| ≤ N.

Clearly, Fekete points, as well as the “Lebesgue constant”ΛN , are independent of the choice
of the basis inSN , since the determinant of the Vandermonde-like matrices changes by a fac-
tor independent of the points (namely the determinant of thetransformation matrix between
the bases).

The maximization inKN is a nonlinear optimization problem indN real (or complex)
variables. The idea of the algorithm is to maximize on a suitable discretization mesh ofK,

(1.5) X = {xi} ⊂ K, 1 ≤ i ≤M, M > N,

i.e., to construct the rectangularM ×N Vandermonde-like matrix

V (x1, . . . , xM ) = [vij ] := [φj(xi)],

and to extract from it a maximum volumeN ×N square submatrix. Observe that such a dis-
crete nonlinear optimization problem is known to be NP-Hard(cf. [17]), but an approximate
solution can be obtained by the following greedy algorithm applied toA = V t:

Algorithm greedy (max volume submatrix ofA ∈ RN×M ,M > N )
• ind = [ ] ;
• for k = 1, . . . , N

– “select the largest norm columncolik
(A)”; ind = [ind, ik];

– “remove from every column ofA its orthogonal projection ontocolik
”;

end;

which works whenA is full rank, and gives the set of indexesind = (i1, . . . , iN ) correspond-
ing in our problem to the approximate Fekete points

X∗ = {xi1 , . . . , xiN
}.

The algorithm can be conveniently implemented by the well-known QR factorization
with column pivoting, originally proposed by Businger and Golub in 1965 [12], and used
for example by the MATLAB “mldivide” or “\” operator in the solution of underdetermined
linear systems (via the LAPACK routine DGEQP3; cf. [25, 31]). The full algorithm proposed
in [39], applied in the present general setting, can be summarizedin a MATLAB-like notation
as follows:
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Algorithm AFP (Approximate Fekete Points by iterative refinement)
• take a suitable discrete subsetX = (x1, . . . , xM ) ⊂ K,M > N ;
• V0 = V (x1, . . . , xM ); P0 = I;
• for k = 0, . . . , s− 1

Vk = QkRk; Uk = inv(Rk);
Vk+1 = VkUk; Pk+1 = PkUk;

end;
• A = V t

s ; b = (1, . . . , 1)t; (the choice ofb is irrelevant in practice)
• w = A\b; ind = find(w 6= 0); X∗ = X(ind);

The greedy algorithm above is implemented directly by the last row of Algorithm AFP (in
MATLAB), irrespectively of the actual value of the vectorb. The for loop above implements a
change of polynomial basis from(φ1, . . . , φN ) to the nearly-orthogonal basis(q1, . . . , qN ) =
(φ1, . . . , φN )Ps with respect to the discrete inner product(f, g) =

∑

f(xj)g(xj), whose
purpose is to overcome possible numerical rank-deficiency and severe ill-conditioning aris-
ing with nonorthogonal bases (usuallys = 1 or s = 2 iterations suffice); for a complete
discussion of this algorithm we refer the reader to [9, 10, 39].

REMARK 1.1. The effectiveness of Algorithm AFP in producing good interpolation
points depends on the distribution of the initial discretization points, which in turn should take
into account the geometry of the domain as well as the peculiarity of the function space. In the
case of total-degree nonweighted polynomial interpolation,SN = Pd

n, N = dim(Pd
n(K)), it

is known that good starting meshes are the (weakly) admissible meshes studied in [15], since
approximate Fekete points extracted from such meshes have good interpolation properties
and the same asymptotic behavior of the true Fekete points; cf. [9, 10, 39]. In particular, the
associate discrete measure(1/N)

∑N

j=1 δxij
converges weak-∗ to the equilibrium measure

of K in the sense of (pluri)potential theory [9].
REMARK 1.2. Observe that if we takeb = (m1, . . . ,mN)tPs in the Algorithm AFP,

wheremj =
∫

K
φj(x)dµ are the “moments” of the original basis with respect a given mea-

sureµ onK, thenw(ind) = (wi1 , . . . , wiN
) is an array of weights of a cubature formula

which is exact onSN = span(φj)1≤j≤N . For example, in the total-degree polynomial case,
SN = Pd

n(K), with dµ = dx, the moments of any polynomial basis can be computed over
arbitrary geometries by the Gauss-Green cubature formula,based on spline tracking of the
boundaries, developed in [40].

2. Weighted polynomial interpolation. The literature on weighted polynomial inter-
polation is very extensive, since it concerns a variety of theoretical and applied topics, such
as rational interpolation with prescribed poles, weightedpotential theory, Gaussian quadra-
ture, numerical treatment of integral equations, design ofweighted digital filters in signal
processing, and many others. Extensive references to such avast literature are beyond the
scope of this work; we suggest that the interested reader consult, for example, [22, 26, 30, 36]
with the references therein.

In the present paper, which is mainly of a computational and experimental character, we
focus on approximating Fekete points for weighted polynomial interpolation on compact sets,
in the following framework; cf. (1.1)-(1.3). Let

SN = w P
d
n(K) := span(wpj)1≤j≤N , w ∈ C(K),

whereK ⊂ R
d (or C

d) is a compact set and(pj) is a basis of the total-degree polynomial
space,

P
d
n(K) = span(pj)1≤j≤N , N = dim(Pd

n(K)) =

(

n+ d

d

)

.
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We have in mind two distinct situations
• prescribed singularities: we interpolate inSN functions of the form

f = wg,

whereg is regular and the weight function absorbs the singularities of f , like, e.g.,
real or complex poles not belonging but possibly close toK.

• weighted norms: we interpolate directly a regular functiong by a polynomial
p ∈ P

d
n(K), but the error is measured with a weighted norm,

‖g − p‖w := ‖w(g − p)‖K = max
x∈K

|w(x)(g(x) − p(x))|,

where weights in different ways different parts of the domain, e.g., the union of two
disjoint intervals, which is relevant to the design of digital filters.

As will be shown in the examples, the important thing with prescribed singularities is
to adjust the basis according to the weight function. Once a suitable weighted basis for
interpolation is chosen, weighted approximate Fekete points give slightly better results than
nonweighted ones.

On the other hand, the two instances above are two faces of thesame coin, as is shown
by the following observation. Let the set{ξ1, . . . , ξN} be unisolvent for interpolation in
SN . Then, it is also unisovent for interpolation inPd

n(K), in view of the following relation
between Vandermonde-like matrices,

(2.1) [w(ξi) pj(ξi)] = diag(w(ξi)) [pj(ξi)].

Moreover, it is easy to see that the cardinal functions for interpolation inSN areψj(x) =
(w(x)/w(ξj ))ℓj(x), 1 ≤ j ≤ N , whereℓj is the fundamental Lagrange polynomial for the
point ξj . Observe that unisolvence implies thatw(ξj) 6= 0 for all j. On the other hand,
the existence of unisolvent interpolation sets forSN , for example weighted Fekete points, is
guaranteed by continuity ofw as soon as supp(w) ∩K is polynomial determining (i.e., any
polynomial vanishing there is identically zero).

Concerning the interpolation operators, it follows immediately by uniqueness that

LSN
f(x) = w(x)LPd

n(K)g(x), f = wg,

and thus,

‖f − LSN
f‖K = ‖w(g − LPd

n(K)g)‖K = ‖g − LPd
n(K)g‖w.

Concerning convergence, it is worth observing that, at least with “exact” Fekete points for
SN ,

‖f − LSN
f‖∞ ≤ (1 + ‖LSN

‖) inf
p∈Pd

n(K)
‖w(g − p)‖K

≤ (1 + dim(Pd
n(K))) ‖w‖K inf

p∈Pd
n(K)

‖g − p‖K

=

(

1 +

(

n+ d

d

))

‖w‖K inf
p∈Pd

n(K)
‖g − p‖K ,(2.2)

i.e., convergence is certainly guaranteed as soon as

inf
p∈Pd

n(K)
‖g − p‖K = o(n−d) , n→ ∞
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(we stress, however, that often the Lebesgue constant of (approximate) Fekete points has a
much slower growth than that estimated by (1.4)). In this regard, Jackson-like theorems on
the rate of convergence of best polynomial approximation onK are needed; cf., e.g., [33].
In one complex variable, for example, by a classical result of Walsh and Russell [43], we
have convergence for every functiong analytic in a compact setK with connected comple-
ment, even whenK =

⋃m

i=1Ki is a finite disjoint union of compacts with Jordan boundary,
andg|Ki

= gi, i = 1, . . . ,m, are possibly different analytic functions. Observe that if w
is analytic itself inK, the maximum modulus of the determinant of the weighted Vander-
monde matrix (2.1) in KN , is attained on the product of boundaries(∂K)N ⊆ ∂KN by the
maximum principle applied to each variable. Indeed, it can even be proved that the Shilov
boundary ofKN , i.e., the smallest subset of the topological boundary∂KN where every
holomorphic function ofN complex variables attains its maximum modulus, is contained in
(∂K)N ; cf., e.g., [37, §2.5]. Thus we can compute the Fekete points on the boundary∂K of
K. This is an advantage, since also geometrically we deal witha one-dimensional instead of
a two-dimensional problem.

Before presenting the numerical examples, it is worth discussing briefly the following
problem: What is a reasonable distribution of the starting meshX , from which we can ex-
tract approximate Fekete points by algorithm AFP? In the case of nonweighted polynomial
interpolation, a guideline is given by the theory of “admissible meshes” for polynomial ap-
proximation recently developed by Calvi and Levenberg in [15]. The key feature of an ad-
missible meshX is a polynomial inequality like

(2.3) ‖p‖K ≤ C ‖p‖X , p ∈ P
d
n(K),

which ensures that the Lebesgue constant of Fekete points ofX can be bounded proportion-
ally to that of exact Fekete points ofK,

ΛN = ‖LPd
n(K)‖ ≤ CN,

since for the fundamental Lagrange polynomials we have the bound‖ℓj‖K ≤ C ‖ℓj‖X ≤ C;
see [15, §4.4]. Observe that necessarily card(X) ≥ dim(Pd

n(K)).
Starting from (2.3), a rough functional inequality can be obtained also in the spaceSN =

wP
d
n(K), at least ifw 6= 0 in K. Indeed, ifX is an admissible mesh for nonweighted

polynomial interpolation,

‖wp‖K = |w(x̂)p(x̂)| ≤ |w(x̂)| ‖p‖K ≤ |w(x̂)|C ‖p‖X = |w(x̂)|C |p(η)|,

for suitablex̂ ∈ K, η ∈ X . Thus we get, ifw 6= 0 in K,

‖wp‖K ≤ |w(x̂)|
|w(η)| C |w(η)p(η)| ≤ maxx∈K |w(x)|

minx∈X |w(x)| C ‖wp‖X

≤ C′
w ‖wp‖X , C′

w = ‖w‖K ‖1/w‖K C,

i.e.,X is an admissible mesh also for weighted polynomial interpolation. An estimate on the
growth of the Lebesgue constant of Fekete points ofX in the spaceSN now follows,

(2.4) ΛN = ‖LSN
‖ ≤ C′

w N.

We observe, however, that (2.4) turns out to be largely an overestimate of the actual growth
of the Lebesgue constant. In order to get more suitable meshes and more refined bounds
one should take into account the specific structure of the weight functionw, possibly by
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using Markov-like inequalities for weighted polynomials,to mimick the construction of [15,
Thm. 5].

A possible refinement can be given whenK =
⋃ν

i=1Ki andX =
⋃ν

i=1Xi with Xi ⊂
Ki, ‖p‖Ki

≤ Ci‖p‖Xi
, 1 ≤ i ≤ ν (the discrete subsetsXi are not disjoint, in general). In

this case we obtain easily the estimate,

(2.5) ‖p‖K ≤ C′′
w‖p‖X , C′′

w = max
1≤i≤ν

{‖w‖Ki
‖1/w‖Ki

Ci}, C′′
w ≤ C′

w .

3. Numerical examples.The study ofrational interpolation and approximation of uni-
variate analytic functions withprescribed poleshas a long history, dating back to the funda-
mental work by Walsh and successive extensions by Bagby; cf.[2, 42]. Also its computational
issues have been deeply investigated; see, e.g., [4, 5, 16, 34, 41] and references therein.

Here we begin by considering weighted polynomial interpolation in the spaceSN =
wPn([−1, 1]) with a weight function

w(x) =
1

πm(x)
, πm ∈ Pm([−1, 1]),

where the real and complex zeros ofπm do not belong (but possibly are close) to the interval.
In the literature computational methods have been studied to find almost optimal points

for rational interpolation with prescribed poles. For example, one can compute and use as
interpolation points inSN the zeros of the monic polynomialpn ∈ Pn such that the ratio
pn/πm has the smallest possible max-norm (a min-max approach likethat leading to Cheby-
shev polynomials and Chebyshev points for polynomial interpolation). This can be done by
transforming the problem to a numerical eigenvalue problem; cf., e.g., [41] and references
therein.

The first four examples below show that the computation of approximate Fekete points
for SN is a natural and effective alternative approach to the problem of rational interpola-
tion with prescribed poles in one real variable. On the otherhand, the algorithm is general
purpose, and is able to handle even complex or bivariate instances, as well as other kinds of
singularities. It can also be applied to the construction ofweighted real or complex polyno-
mial filters useful in signal processing.

EXAMPLE 3.1. (real interval, one real pole)We interpolate the function

f(x) =
cos (x)

(1 + ε− x)2
, x ∈ K = [−1, 1], ε > 0 ,

which has a real pole of the second order atx = 1 + ε.
In Figure 3.1 we compare polynomial interpolation at the Chebyshev-Lobatto points,

with interpolation inwPn again at the Chebyshev-Lobatto points for

w(x) = wε(x) = (1 + ε− x)−2,

and at approximate Fekete points computed by Algorithm AFP using the Chebyshev poly-
nomial basis (i.e.,φj(x) = wε(x)Tj(x), Tj(x) = cos (j arccosx), j = 0, . . . , n), with 2
refinement iterations and a starting meshX of 1000 equispaced points; cf. (1.5). The density
ofX ensures that it is an admissible mesh in the sense of (2.3) for (nonweighted) polynomial
interpolation up to the highest degree (n = 30), since it has stepsizeh < 2/n2. This result re-
lies on the classical Markov polynomial inequality‖p′‖[−1,1] ≤ n2 ‖p‖[−1,1], p ∈ Pn; cf. [6]
and the construction in [15, Thm. 5].

In this case, estimate (2.4) has no practical usefulness, since it becomes
ΛN = O(ε−2)N = O(n ε−2), which is several orders of magnitude above the actual growth.
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FIG. 3.1. Interpolation errors (left) and Lebesgue constants (right) versus the interpolation degree, in Exam-
ple 3.1for ε = 1 (top) andε = 0.01 (bottom); the interpolation spaces arePn with Chebyshev-Lobatto points (*),
wεPn with Chebyshev-Lobatto points (+),wεPn with approximate Fekete points (◦).

To improve the construction, one should have at hand a tight Markov-like inequality for ra-
tional functions of the formp/πm, p ∈ Pn andm fixed, whereas this subject seems to have
been studied in the literature for the case of(n, n) rational functions (with denominator of
degree exactlyn).

Some improvement in the estimate of the Lebesgue constant, however, can obtained
following (2.5). Given the meshX with constant stepsize as above, let us takeKi = [−1 +
ih,−1+(i+n)h]andXi = {−1+jh, i ≤ j ≤ i+n}, i = 1, . . . , ν, where−1+(ν+n)h = 1.
ThenK =

⋃

Ki, X =
⋃

Xi, and all theXi are admissible meshes with constantsCi ≤ C.
On the other hand, it is not difficult to show thatmaxi {‖wε‖Ki

‖1/wε‖Ki
} = (1 + nh/ε)2.

Sinceh = O(n−2), the meshX being an admissible mesh for nonweighted polynomial
interpolation, we getC′′

wε
= O(1) + O((nε)−1) + O((nε)−2) and by (2.4)-(2.5), being

N = n+ 1, the final estimateΛN ≤ C′′
wε
N = O(n) + O(ε−1) + O(ε−2/n).

EXAMPLE 3.2. (real interval, two conjugate poles)We consider here the function

f(x) =
cos (x)

ε2 + x2
, x ∈ K = [−1, 1],

which has two complex conjugate poles of the first order atx = ±iε, taking

wε(x) = (ε2 + x2)−1.

The numerical results are collected in Figure3.2. Observe that, in both Examples3.1and3.2,
the choice of the interpolation space is much more relevant than the choice of the points.
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FIG. 3.2.As in Figure3.1for the function of Example3.2.

FIG. 3.3. N = 16 interpolation points of degreen = 15 in Example3.1 (left) and Example3.2 (right):
Chebyshev-Lobatto points (top), approximate Fekete points for ε = 1 (middle) andε = 0.01 (bottom).

Nevertheless, weighted polynomial interpolation at approximate Fekete points shows small
Lebesgue constants, close to those of nonweighted polynomial interpolation (growth like
O(log n)), and the best interpolation errors also for smallε. It is interesting to have a look
at the distribution of the interpolation points; see Figures3.3and3.4. In Figure3.4we show
the distribution function of the interpolation points, that is the fraction of points which are
smaller than or equal tox. Notice that forε = 1 the approximate Fekete points distribute like
the Chebyshev-Lobatto points, whereas for smallerε they also tend to cluster at the point in
the interval nearest to the pole(s).

EXAMPLE 3.3. (two disjoint intervals, one real pole in between)In the case of a single
real interval, other algorithms exist to compute near-optimal points for rational interpolation
with prescribed poles, like that described in [41]. On the other hand, one of the strengths of
Algorithm AFP is that it can work on quite general compact sets, with real or complex vari-
ables. We consider now the case of simultaneous interpolation on two disjoint real intervals,

f(x) =
cos (x)

(x+ ε)2
, x ∈ K = [−1,−0.6] ∪ [0, 1],
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FIG. 3.4.Distribution functions ofN = 31 approximate Fekete points of degreen = 30 in Example3.1(left)
and Example3.2(right), for ε = 1 (top) andε = 0.01 (bottom).

wheref has a second order pole atx = −ε, which lies between the two intervals for
0 < ε < 0.6. We take

wε(x) = (x + ε)−2 ,

and we discretize the first interval by200 and the second by500 equispaced points, respec-
tively. This gives an admissible mesh for (nonweighted) polynomial interpolation onK up to
degreen = 30, as union of two admissible meshes; cf. [15] and the discussion in Example3.1.
The interpolation spaces arePn with approximate Fekete points for nonweighted polynomial
interpolation,wεPn again with the latter points, andwεPn with approximate Fekete points
for weighted polynomial interpolation (basis{wεTj} in Algorithm AFP). Figure3.5collects
the numerical results, that are comparable to those of Example 3.2.

In Figures3.6and3.7we show the distribution of the interpolation points. In thecase of
nonweighted interpolation, the physical interpretation is that we have computed an approxi-
mate equilibrium configuration ofN repelling equal charges located on the two intervals. We
observe that there are more interpolation points in the largest interval, and that they tend to
cluster at the intervals endpoints, more rapidly at the external ones and in case of weighted
interpolation also at the endpoint nearest to the pole. Thishas been confirmed in several
other numerical experiments (by increasingn and decreasingε), which are not reported for
brevity’s sake.

EXAMPLE 3.4. (complex disk, one real pole)In order to show the flexibility of the
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FIG. 3.5. Interpolation errors (left) and Lebesgue constants (right) versus the interpolation degree, in Exam-
ple3.3for ε = 0.3 (top) andε = 0.01 (bottom); the interpolation spaces arePn with approximate Fekete points for
nonweighted polynomial interpolation (*),wεPn again with the latter points (+),wεPn with approximate Fekete
points for weighted polynomial interpolation (◦).

method, we consider again the function of Example3.1, but now on the complex unit disk

f(x) =
cos (x)

(1 + ε− x)2
, x ∈ K = {x ∈ C : |x| ≤ 1}, ε > 0.

As already observed, since the weight functionwε(x) = (1+ ε−x)−2 is analytic in a neigh-
borhood ofK, we can compute the Fekete points on the boundary∂K = {x ∈ C : |x| = 1}
by the maximum principle. Fekete points for nonweighted polynomial interpolation are one
of the few explicitly known cases, namely any sequence ofN = n+ 1 equispaced points on
the unit circle is a set of Fekete points for interpolation degreen. The approximate Fekete
points for weighted polynomial interpolation have been computed by Algorithm AFP using
the monomial basis and two refinement iterations, starting form a mesh of1000 equispaced
points on the unit circle.

The numerical results are reported in Figure3.8, and in Figure3.9 the approximate
Fekete points for degreen = 15, corresponding toε = 1 and ε = 0.01, are displayed.
Notice that for the smallest value ofε the points tend to cluster atx = 1, the point of the
circle nearest to the polex = 1 + ε.

EXAMPLE 3.5. (two real variables in the square, line of algebraic singularities) We give
now an example in two real variables, taking the function

f(x) =
cos (x(1) + x(2))

(1 + ε− x(1))2
, x = (x(1), x(2)) ∈ K = [−1, 1]× [−1, 1], ε > 0.
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FIG. 3.6. N = 21 interpolation points of degreen = 20 with K = [−1 − 0.6] ∪ [0, 1] and wε(x) =
(x + ε)−2: approximate Fekete points for nonweighted polynomial interpolation (top), approximate Fekete points
for weighted polynomial interpolation withε = 0.3 (middle) andε = 0.01 (bottom).
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FIG. 3.7. Distribution functions ofN = 31 approximate Fekete points of degreen = 30 in Example3.3, for
ε = 0.3 (left) andε = 0.01 (right).
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FIG. 3.8. Interpolation errors (left) and Lebesgue constants (right) versus the interpolation degree, in Exam-
ple 3.4 for ε = 1 (top) andε = 0.01 (bottom); the interpolation spaces arePn with Fekete points for nonweighted
polynomial interpolation (*),wεPn again with the latter points (+),wεPn with approximate Fekete points for
weighted polynomial interpolation (◦).
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FIG. 3.9. N = 16 approximate Fekete points of degreen = 15 in the complex disk of Example3.4, with
ε = 1 (left) andε = 0.01 (right).

This function is analytic up to an entire line of singularities atx(1) = 1 + ε.
In Figure3.10we show the interpolation errors and the Lebesgue constantscorrespond-

ing to different interpolation spaces and nodes, and in Figure 3.11we plot the approximate
Fekete points corresponding to degreen = 10. As a starting mesh to extract approximate
Fekete points we have taken a120×120 uniform grid, which is an admissible mesh for (non-
weighted) polynomial interpolation up ton = 10 (being the product of two one-dimensional
admissible meshes; cf. [15]). The comparison is with nonweighted interpolation at theso-
called “Padua points”, the first known example of nearly optimal points for total degree poly-
nomial interpolation in two variables, with a Lebesgue constant increasing like log squared
of the degree; cf. [7, 8, 14].

EXAMPLE 3.6. (two disjoint intervals, nonalgebraic singularities)Algorithm AFP is
general purpose, and can handle without problems even nonalgebraic singularities, for exam-
ple singularities of derivatives inside the domain. A nontrivial example of this kind is given by
the following function, defined on the union of two disjoint intervalsK = [−1,−0.6]∪ [0, 1],

f(x) =







sin (
√

1 + x), x ∈ [−1,−0.6],

arctan (|x− 0.5|), x ∈ [0, 1].

Taking as a weight function,

w(x) =







√
1 + x, x ∈ [−1,−0.6],

|x− 0.5|, x ∈ [0, 1],

the functionf is factorizable asf = wg with g (separately) analytic in each of the two
intervals (since the Maclaurin series ofsin andarctan have only odd powers), whereasw
absorbs the singularities off (which is only Hölder continuous). The numerical results are
collected in Figures3.12and3.13. Notice that the errors of weighted polynomial interpolation
are larger than in Example3.4, since here we deal with different analytic functions on disjoint
intervals, and the convergence rates of best polynomial approximations are different.

EXAMPLE 3.7. (real digital filters)Simply stated, in the design of weighted polynomial
digital filters of FIR (Finite Impulse Response) type, one seeks a polynomialp of degreen that
approximates a functiong, termed the response of the filter, on a real or complex compact set
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FIG. 3.10. Interpolation errors (left) and Lebesgue constants (right) versus the interpolation degree, in Ex-
ample3.5 for ε = 1 (top) andε = 0.01 (bottom); the interpolation spaces arePn with the Padua points for
nonweighted polynomial interpolation (*),wεPn again with the latter points (+),wεPn with approximate Fekete
points for weighted polynomial interpolation (◦).
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FIG. 3.11.N = 66 approximate Fekete points of degreen = 10 in the real square of Example3.5, with ε = 1
(left) andε = 0.01 (right).

K, in the sense that the weighted norm‖w(p−g)‖K is small, wherew is a suitable continuous
and nonnegative weight function. In many applicationsK is a finite union of disjoint intervals
or complex arcs (the frequency bands), and bothg andw are piecewise constant functions (the
values 0 and 1 ofg corresponding to the so-called stopband and passband, respectively).

We cannot even try to give an appropriate quoting of the enormous literature on this
important subject of signal processing. To give only some highlights, it is worth noting the
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FIG. 3.12.Interpolation errors (left) and Lebesgue constants (right) versus the interpolation degree, in Exam-
ple 3.6; the interpolation spaces arePn with approximate Fekete points for nonweighted polynomialinterpolation
(*), and wPn with approximate Fekete points for weighted polynomial interpolation (◦).

FIG. 3.13. N = 31 interpolation points of degreen = 30 with K = [−1,−0.6] ∪ [0, 1] andw(x) as in
Example3.6: approximate Fekete points for nonweighted (top) and weighted (bottom) polynomial interpolation.

classical paper [32], where the popular Parks-McClellan algorithm for the design of optimal
real equiripple filters, based on the Remez exchange algorithm, was originally proposed, as
well as the treatise [13]. The method has then been extended in various directions todeal
also with complex filters; see, e.g., [26] and references therein. Other methods are based,
for example, on potential theory and conformal mapping; see, e.g., [21, 23, 38]. The use of
polynomial filters is also interesting within numerical linear algebra; see, e.g., [24, 35].

Since we use here for the first time algorithm AFP for the construction of polynomial
filters based on interpolation at approximate Fekete points, we begin by a simple nonweighted
case, an example of a high-pass filter. We consider the response function (this example is
taken from [21, §6]),

g(x) =







0, x ∈ K1 = [−1,−0.4],

1, x ∈ K2 = [−0.3, 1],

defined onK = K1 ∪ K2, whereK1 is the stopband andK2 is the passband (the interval
(−0.4,−0.3) is the transition band in signal processing terminology). As weight function we
takew ≡ 1, and as initial discretization an admissible mesh obtainedby union of two uniform
admissible meshes ofK1 andK2, respectively.

The numerical results are collected in Figure3.14. The amplitude of the oscillations
near the internal endpoints (a sort of Gibb’s phenomenon well studied in [38]) depends on the
length of the transition band. In Figure3.15, for comparison, we show the filter of degreen =
30 with a transition band of double length, namely forK2 = [−0.2, 1], and the interpolation
errors up to degreen = 60.

We observe that the quality of the filters is lower than that ofoptimal equiripple filters
(but not as much as could be predicted by the Lebesgue constants, cf. (2.2)), and even slightly
lower than that of filters obtained via numerical conformal mapping; cf. [21, §6]. This means
that interpolation at approximate Fekete points cannot be considered a real competitor in
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standard instances of polynomial filtering. On the other hand, its strength consists in a higher
flexibility, that makes it applicable to quite general compact setsK, response functionsg and
weight functionsw, in one or even several real or complex variables.

In order to give an example of a weighted filter, we consider the following multiband
response function on the union of three disjoint intervalsK = K1 ∪K2 ∪K3,

g(x) =























0, x ∈ K1 = [−1,−0.4],

1, x ∈ K2 = [−0.2, 0.2],

0.5, x ∈ K3 = [0.4, 1],

with a piecewise constant weight function corresponding toa triple of positive weights
(w1, w2, w3)

w(x) = wi, x ∈ Ki, i = 1, 2, 3.

This is only an illustrative example, but it is worth recalling that multiband polynomial filters
are a standard tool in digital signal processing; cf. [13].

In Figure3.16we show four multiband filters, obtained by interpolation atapproximate
Fekete points of degreen = 30, corresponding to different choices of the weights. In Figure
3.17 we plot the estimated Lebesgue constants, up to degreen = 30. Again, the start-
ing discretization mesh is obtained by taking the union of three admissible meshes for non-
weighted interpolation on the subintervals, which in view of (2.5) is also an admissible mesh
for weighted interpolation with the same bound, the weight function being piecewise con-
stant. Observe that the presence of a dominant weight forcesthe nonweighted error to be
much smaller on the corresponding band than on the other bands.

EXAMPLE 3.8. (complex digital filters)Algorithm AFP can be easily adapted to produce
polynomial filters in the complex plane. We consider the following example, taken form [26],
of a nearly linear-phase low-pass filter on the unionK = K1 ∪K2 of two disjoint arcs of the
complex unit circle,

g(x) = x12, w(x) = 1, x ∈ K1 = {eiθ, |θ| ≤ 0.12π},
g(x) = 0, w(x) = 10, x ∈ K2 = {eiθ, 0.24π ≤ |θ| ≤ π}.

Again, we have chosen as starting mesh the union of two admissible meshes ofK1 andK2,
which in view of (2.5) is also an admissible mesh for weighted interpolation withthe same
bound. As in Example3.4, we use the standard complex monomial basis to construct the
Vandermonde matrix, with two refinement iterations in Algorithm AFP.

In Figure3.18we show the approximate Fekete points of degreen = 31 and the esti-
mated Lebesgue constants up to degreen = 35. The interpolation error in the weighted norm
at degreen = 31 is ‖w(g − LP31(K)g)‖K ≈ 0.1, to be compared with an error of about0.04
obtained in [26] with the optimal polynomial filter of degree31, computed by the Remez
algorithm.

EXAMPLE 3.9. (two-dimensional digital filters)Two-dimensional digital filters have im-
portant applications in the processing of images and other two-dimensional signals; see, e.g.,
[1, 28]. Here we show two examples of two-dimensional filters constructed by interpolation
at approximate Fekete points. We begin with the following response function on a square
domain,

(3.1)
g(x) = 0, x ∈ K1 = {(x(1), x(2)) : min (|1 ± x(1)|, |1 ± x(2)|) ≤ 0.2},
g(x) = 1, x ∈ K2 = [−0.6, 0.6]× [−0.6, 0.6],
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FIG. 3.14. Top: high-pass polynomial nonweighted filters forK1 = [−1,−0.4] and K2 = [−0.3, 1] of
degreen = 30 (left), andn = 60 (right); the small circles (◦) indicate the approximate Fekete points. Bottom:
interpolation errors (left) and Lebesgue constants (right) versus the interpolation degree.
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FIG. 3.15. High-pass nonweighted polynomial filter forK1 = [−1,−0.4] and K2 = [−0.2, 1] of degree
n = 30 (left), and interpolation errors up to degreen = 60 (right).

with a square passband and a square frame as stopband; see Figures3.19-3.20. These kinds
of “rectangularly symmetric” two-dimensional filters are discussed, e.g., in [28].

In order to compute approximate Fekete points of not small degree by algorithm AFP,
already in two dimensions it begins to be important to start from a weakly admissible mesh
instead of an admissible mesh; cf. [9, 15]. Indeed, two-dimensional admissible meshes of
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FIG. 3.16. Multiband polynomial filters forK1 = [−1,−0.4], K2 = [−0.2, 0.2] and K3 = [0.4, 1] at
approximate Fekete points of degreen = 30: nonweighted (top-left), weights(100, 1, 1) (top-right), (1, 100, 1)
(bottom-left),(1, 1, 100) (bottom-right); the small circles (◦) indicate the approximate Fekete points.

degreen obtained by Markov inequalities haveO(n4) points, due to aO(1/n2) spacing, and
this leads to a heavy computational load in algorithm AFP.

On the other hand, weakly admissible meshes are discrete subsets of a compactK, where
a polynomial inequality like (2.3) holds whereC = Cn is not constant but increases at
most algebraically withn. Such a relaxation of the polynomial inequality implies that their
cardinality can be much lower than that of admissible meshes. Recall that, for example, any
setX of cardinalityN = dim(Pd

n(K)), which is unisolvent for interpolation of degreen,
satisfies (2.3) with C = Cn equal to the Lebesgue constant (thus, e.g., Fekete points ofK
form a weakly admissible mesh). As with admissible meshes, weakly admissible meshes can
be constructed by finite unions. All the relevant inequalities still hold withCn replacingC.

In the present example we have used the weakly admissible mesh obtained by union of
the Padua points of the internal square and of four rectangles giving the square frame. We
recall that the Padua points are the first known example of optimal points for total degree poly-
nomial interpolation in two variables, with a Lebesgue constant increasing like log squared
of the degree; cf. [7, 8, 14]. This implies that in (2.3)-(2.5) we haveC = Cn = O(log2 n).

In Figure3.19we show the two-dimensional nonweighted polynomial filtersobtained by
interpolation at approximate Fekete points, extracted from such weakly admissible meshes at
degreen = 20 andn = 30 (the interpolation errors onK are about0.13 and0.04, respec-
tively). In Figure3.20 we see the approximate Fekete points of degreen = 20 with the
underlying weakly admissible mesh made of Padua points and the growth of the estimated
Lebesgue constants.
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FIG. 3.17. Lebesgue constants versus the interpolation degree for themultiband filters above: nonweighted
(top-left), weights(100, 1, 1) (top-right), (1, 100, 1) (bottom-left),(1, 1, 100) (bottom-right).
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FIG. 3.18.N = 32 approximate Fekete points of degreen = 31 for the complex low-pass weighted filter in
Example3.8(left); Lebesgue constants versus the interpolation degree (right).

In this simple example, a filter could have been constructed also as tensor-product of one-
dimensional filters (cf. [1]), but the difference is that the present is a total-degree filter, which
for the samen has roughly half the number of coefficients, namelyN = dim(P2

n(K)) =
(n+ 1)(n+ 2)/2 instead of(n+ 1)2 = dim(P1

n(K)
⊗

P1
n(K)) coefficients.
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FIG. 3.19.Nonweighted polynomial filters of degreen = 20 (left) andn = 30 (right) for Example3.9-(3.1).
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FIG. 3.20.Left: N = 231 nonweighted approximate Fekete points (circles) of degreen = 20 extracted from a
weakly admissible mesh (dots) for Example3.9-(3.1). Right: estimated Lebesgue constants versus the interpolation
degree for the same example.

A more difficult example is given by the following weighted response function,

(3.2)
g(x) = 0, w(x) = w1, x ∈ K1 = {(x(1), x(2)) : x(1) + x(2) ≤ 0.8},
g(x) = 1, w(x) = w2, x ∈ K2 = {(x(1), x(2)) : x(1) + x(2) ≥ 1},

where the stopband and the passband are triangular. Again, we extract the approximate Fekete
points from the union of weakly admissible meshes of the two triangles. In [9], the concept of
“geometric” weakly admissible mesh has been developed, namely one obtained by a suitable
geometric transformation from a known weakly admissible mesh on a reference domain. In
the case of a triangle, we can simply map the Padua points of degree2n in [−1, 1]2 to the
triangle by the well-known Duffy quadratic transformation[19], obtaining a weakly admis-
sible mesh of degreen for the triangle withCn = O(log2 2n); see [9] for a more complete
discussion.

In Figure 3.21 we show the corresponding nonweighted (left) and weighted (w1 =
1, w2 = 10; right) filters of degreen = 20. The interpolation error of the nonweighted
filter is about0.11 on the passband and0.07 on the stopband, whereas the nonweighted error
of the weighted filter becomes about0.28 on the passband and is reduced to about0.01 on
the stopband. The respective approximate Fekete points areplotted in Figure3.22, and the
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FIG. 3.21.Two-dimensional filters of degreen = 20 for Example3.9-(3.2) with w1 = 1, w2 = 1 (left) and
w1 = 10, w2 = 1 (right).
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FIG. 3.22.N = 231 approximate Fekete points of degreen = 20 (circles) extracted from a geometric weakly
admissible mesh (dots) for Example3.9-(3.2) with w1 = 1, w2 = 1 (left) andw1 = 10, w2 = 1 (right).

estimated Lebesgue constants in Figure3.23.
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[6] P. BORWEIN AND T. ERDÉLYI , Polynomials and Polynomial Inequalities, Springer, New York, 1995.
[7] L. B OS, M. CALIARI , S. DE MARCHI, M. V IANELLO , AND Y. X U, Bivariate Lagrange interpolation at the

Padua points: the generating curve approach, J. Approx. Theory, 143 (2006), pp. 15–25.
[8] L. B OS, S. DE MARCHI, M. V IANELLO , AND Y. X U, Bivariate Lagrange interpolation at the Padua points:

the ideal theory approach, Numer. Math., 108 (2007), pp. 43–57.
[9] L. B OS, J.P. CALVI , N. LEVENBERG, A. SOMMARIVA , AND M. V IANELLO , Geometric weakly admissible

meshes, discrete least squares approximation and approximate Fekete points, preprint, 2009. Available

http://etna.math.kent.edu/vol.7.1998/pp124-140.dir/pp124-140.html


ETNA
Kent State University 

http://etna.math.kent.edu

APPROXIMATE FEKETE POINTS FOR WEIGHTED POLYNOMIAL INTERPOLATION 21

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

FIG. 3.23. Estimated Lebesgue constants versus the interpolation degree for the two filters of Example3.9-
(3.2) with w1 = 1, w2 = 1 (left) andw1 = 10, w2 = 1 (right).

online at:http://www.math.unipd.it/∼marcov/publications.html.
[10] L. BOS AND N. LEVENBERG, On the approximate calculation of Fekete points: the univariate case, Electron.

Trans. Numer. Anal., 30 (2008), pp. 377–397.
http://etna.math.kent.edu/vol.30.2008/pp377-397.dir/pp377-397.html.

[11] L. BOS, N. LEVENBERG, AND S. WALDRON, On the spacing of Fekete points for a sphere, ball or simplex,
Indag. Math., 19 (2008), pp. 163–176.

[12] P. A. BUSINGER ANDG. H. GOLUB, Linear least-squares solutions by Householder transformations, Numer.
Math., 7 (1965), pp. 269–276.

[13] C. S. BURRUS, Digital Signal Processing and Digital Filter Design, (Draft), Sept. 14, 2009. Available at
Connexions Web site:http://cnx.org/content/col10598/1.5/.

[14] M. CALIARI , S. DE MARCHI, AND M. V IANELLO , Bivariate polynomial interpolation in the square at new
nodal sets, Appl. Math. Comput., 165 (2005), pp. 261–274.

[15] J. P. CALVI AND N. LEVENBERG, Uniform approximation by discrete least squares polynomials, J. Approx.
Theory, 152 (2008), pp. 82–100.
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