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APPROXIMATE FEKETE POINTS
FOR WEIGHTED POLYNOMIAL INTERPOLATION  *

A. SOMMARIVAT AND M. VIANELLO !

Abstract. We compute approximate Fekete points for weighted polyabinterpolation by a recent algorithm
based on QR factorizations of Vandermonde matrices. Weideni particular the case of univariate and bivariate
functions with prescribed poles or other singularitiesjchitare absorbed in the basis by a weight function. Moreover,
we apply the method to the construction of real and compleaghted polynomial filters, where the relevant concept
is that of weighted norm.
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1. Introduction. Inthe framework of polynomialinterpolation, Fekete psiate points
that maximize the Vandermonde determinant (in any polyablyasis) on a given compact
set and thus ensure that the corresponding Lebesgue cbgstars (at most) algebraically,
being bounded by the dimension of the polynomial space. rTdmalytical properties and
their efficient computation are still essentially open ezsh problems in the multivariate
setting; see, e.g.l[L, 44] and references therein. In particular, the computatiofreiete
points requires solving large scale optimization problainsady at moderate degrees. Much
more is known in the univariate case, but the computationatblpm is still open in one
complex variable (where, however, good alternatives aosw like Fejer or Leja-like points;
see B, 27)).

In some recent paper§,[10, 39|, a greedy algorithm has been studied, that computes
(multivariate) approximate Fekete points by extracting<imaim volume submatrices from
rectangular Vandermonde matrices on suitable discraizameshes. It works on arbitrary
geometries and uses only optimized tools of numerical fimégebra (essentially QR-like
factorizations). There is a strong connection with the tiiexd admissible meshes for mul-
tivariate polynomial approximation, recently developgd@alvi and Levenbergl[]. There
are also good perspectives in the application to numeridadture and to the numerical so-
lution of PDESs by collocation and discrete least squarehoukst 45]. A renewed interest is
indeed arising in methods based on global polynomial appration; see, e.9.20).

The algorithm can be described in a very general functior@lnecessarily polynomial,
setting. Given a compact sat ¢ R? (or C%), a finite-dimensional space of linearly indepen-
dent continuous functions,

(1.1) Sn = spand;)i<;<n,

and a finite sef{&,, ..., én} C K, we can construct the Vandermonde-like matrix,

V(&1 8n) = o] == [8;(&)]-
If det(V'(&1,...,&n)) # 0, then the sef¢y, ..., En} is unisolvent for interpolation irby
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and
de(v(gla'"7£j*17x7§j+17'-'7§N)) .

1.2 i(x) = , j=1,...,N,
( ) 1/)]( ) de(v(gla'"7§j—17§j7§j+17"'7§]\7)) J
is a cardinal basis, i.ey; (k) = d;, and

N
(1.3) Ly f(x) =) f(&) j(x)

j=1
interpolates any functiof at{¢1,...,¢x}. In the case that such points maximize the (ab-

solute value of the) denominator df.@) in KV (Fekete points), thefi; || < 1 for every
j, and thus the norm of the interpolation operakgy, : C(K) — Sy is bounded by the
dimension of the interpolation space,

N
(1.4) Ay = |Lsyl = Imnea%z; ()] < N.
J=

Clearly, Fekete points, as well as the “Lebesgue constagt’are independent of the choice
of the basis inSy, since the determinant of the Vandermonde-like matricesighs by a fac-
tor independent of the points (namely the determinant ofrdmesformation matrix between
the bases).

The maximization iK™V is a nonlinear optimization problem WV real (or complex)
variables. The idea of the algorithm is to maximize on a $lgtaiscretization mesh df’,

(1.5) X={x;} CK, 1<i<M, M>N,
i.e., to construct the rectanguldf x N Vandermonde-like matrix

V(wy,. . 2n) = [vig] = (b (w4)],

and to extract from it a maximum volunié x N square submatrix. Observe that such a dis-
crete nonlinear optimization problem is known to be NP-Hafd[17]), but an approximate
solution can be obtained by the following greedy algorittpplaed toA = V.

Algorithm greedy (max volume submatrix oft € R¥N*M AT > N)
e ind=1];
e fork=1,...,N
— “select the largest norm columial;, (A)”"; ind = [ind, ix);
— “remove from every column ofl its orthogonal projection ontel;, ”;
end;

which works whend is full rank, and gives the set of indexiasl = (i1, ..., iy) correspond-
ing in our problem to the approximate Fekete points

X* = {:Ci],...,xm}.

The algorithm can be conveniently implemented by the webyn QR factorization
with column pivoting, originally proposed by Businger an@dl@ in 1965 [L2], and used
for example by the MATLAB “mldivide” or “\" operator in the solution of underdetermined
linear systems (via the LAPACK routine DGEQP3; &5]31]). The full algorithm proposed
in [39], applied in the present general setting, can be summainze¥ATLAB-like notation
as follows:
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Algorithm AFP (Approximate Fekete Points by iterative refinement)
e take a suitable discrete subsét= (z1,...,2p) C K, M > N;
[ VO == V(l‘l,...,w]u); PO = I;
e for k=0,...,5s—1
Vi = QrRi; Up = InV(Ry);
Vir1 = VieUk; Pry1 = PrpUs;
end
A=V b=(1,...,1)% (the choice ob is irrelevant in practice)
w = A\b; ind = find(w # 0); X, = X (ind);

The greedy algorithm above is implemented directly by ttst taw of Algorithm AFP (in
MATLAB), irrespectively of the actual value of the vectorThe for loop above implements a
change of polynomial basis fro(s, . . ., ¢ x ) to the nearly-orthogonal bagig, . . ., gn) =
(¢1,...,¢n)Ps with respect to the discrete inner prodi¢t g) = > f(z;)g(z;), whose
purpose is to overcome possible numerical rank-deficiendysgvere ill-conditioning aris-
ing with nonorthogonal bases (usually= 1 or s = 2 iterations suffice); for a complete
discussion of this algorithm we refer the reader3p1[0, 39].

REMARK 1.1. The effectiveness of Algorithm AFP in producing gootkeipolation
points depends on the distribution of the initial discratian points, which in turn should take
into account the geometry of the domain as well as the petyla the function space. Inthe
case of total-degree nonweighted polynomial interpotatityy = P2, N = dim(P4 (K)), it
is known that good starting meshes are the (weakly) adniéssibshes studied irL§], since
approximate Fekete points extracted from such meshes haa igterpolation properties
and the same asymptotic behavior of the true Fekete poifaf®,d 0, 39. In particular, the

J.Vzl 05, converges weak-to the equilibrium measure

associate discrete measute'N) 3 ;
of K in the sense of (pluri)potential theory][

REMARK 1.2. Observe that if we take = (mq,...,my)!Ps in the Algorithm AFP,
wherem; = [, ¢;(z)du are the “moments” of the original basis with respect a givaam
surep on K, thenw(ind) = (w;,,...,w;,) is an array of weights of a cubature formula
which is exact orSy = spar{¢,)1<,;<~. For example, in the total-degree polynomial case,
Sy = P¢(K), with du = dz, the moments of any polynomial basis can be computed over
arbitrary geometries by the Gauss-Green cubature fornbalsed on spline tracking of the

boundaries, developed id ().

2. Weighted polynomial interpolation. The literature on weighted polynomial inter-
polation is very extensive, since it concerns a variety ebtietical and applied topics, such
as rational interpolation with prescribed poles, weightetential theory, Gaussian quadra-
ture, numerical treatment of integral equations, desigweighted digital filters in signal
processing, and many others. Extensive references to suahtditerature are beyond the
scope of this work; we suggest that the interested readeutipifor example, 22, 26, 30, 36]
with the references therein.

In the present paper, which is mainly of a computational aqutemental character, we
focus on approximating Fekete points for weighted polyradimierpolation on compact sets,
in the following framework; cf. {.1)-(1.3). Let

Sy =wP(K) := spanwp;)i<j<n, w € C(K),
where K C R? (or C?) is a compact set an@,) is a basis of the total-degree polynomial
space,

Py, (K) = sparip;)i<j<n, N = dim(P}(K)) = (n ;r d>'
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We have in mind two distinct situations
e prescribed singularities: we interpolate inSy functions of the form

= wg,

whereg is regular and the weight function absorbs the singularivief, like, e.g.,
real or complex poles not belonging but possibly clos&to

e weighted norms: we interpolate directly a regular function by a polynomial
p € P(K), but the error is measured with a weighted norm,

llg = pllw = [lw(g —p)llx = max lw(z)(g(z) — p())],

where weights in different ways different parts of the domaig., the union of two
disjoint intervals, which is relevant to the design of dagfilters.

As will be shown in the examples, the important thing withgurébed singularities is
to adjust the basis according to the weight function. Onceitalse weighted basis for
interpolation is chosen, weighted approximate Feketetpgjive slightly better results than
nonweighted ones.

On the other hand, the two instances above are two faces sathe coin, as is shown
by the following observation. Let the sét;,...,{y} be unisolvent for interpolation in
Sx. Then, it is also unisovent for interpolation#{. (K'), in view of the following relation
between Vandermonde-like matrices,

(2.1) [w(&) p;(&)] = diagw(&:)) [p; (&)]-

Moreover, it is easy to see that the cardinal functions fterjpolation inSy arev;(x) =
(w(z)/w(&))li(z), 1 < j < N, where/; is the fundamental Lagrange polynomial for the
point ;. Observe that unisolvence implies that¢;) # 0 for all j. On the other hand,
the existence of unisolvent interpolation sets $ar, for example weighted Fekete points, is
guaranteed by continuity ab as soon as su@) N K is polynomial determining (i.e., any
polynomial vanishing there is identically zero).

Concerning the interpolation operators, it follows imnegdly by uniqueness that

Lsy f(x) = w(x)Lpa () 9(), f=wg,
and thus,
I f = Lsy fllx = [lw(g — Lpe ()9) | x = 19 — Lpa ()9l w-

Concerning convergence, it is worth observing that, attledth “exact” Fekete points for

SN,
I = Loy Sl < @+ 25y} _int fluls - Bl
< (1 +dim(Pd(K inf -
< (+dmELE) ol it o —pli
n+d
2.2 =(1 inf _
22 (1+ ("5 ) vl _int _lla = ol

i.e., convergence is certainly guaranteed as soon as

inf — =on %, n— oo
g =pllx = o(n ™)
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(we stress, however, that often the Lebesgue constant pfdgimate) Fekete points has a
much slower growth than that estimated ly4). In this regard, Jackson-like theorems on
the rate of convergence of best polynomial approximatiorikoare needed; cf., e.g.3J.

In one complex variable, for example, by a classical restilivalsh and Russell43], we
have convergence for every functigranalytic in a compact sdt” with connected comple-
ment, even whedk = |J", K; is a finite disjoint union of compacts with Jordan boundary,
andg|x, = g;, ¢ = 1,...,m, are possibly different analytic functions. Observe tfiabi

is analytic itself inK’, the maximum modulus of the determinant of the weighted ¥and
monde matrix 2.1) in K%, is attained on the product of boundar{@s )y C K" by the
maximum principle applied to each variable. Indeed, it caenebe proved that the Shilov
boundary of KV, i.e., the smallest subset of the topological boundai/¥ where every
holomorphic function ofV complex variables attains its maximum modulus, is conthine
(OK)V; cf., e.g., B7, §2.5]. Thus we can compute the Fekete points on the bouritfsrgf

K. This is an advantage, since also geometrically we dealavithe-dimensional instead of
a two-dimensional problem.

Before presenting the numerical examples, it is worth disimg briefly the following
problem: What is a reasonable distribution of the startiresimX, from which we can ex-
tract approximate Fekete points by algorithm AFP? In the @adsnonweighted polynomial
interpolation, a guideline is given by the theory of “adnitits meshes” for polynomial ap-
proximation recently developed by Calvi and Levenberglif].| The key feature of an ad-
missible meshX is a polynomial inequality like

(2.3) Ipllx < Cllpllx, » € Pp(K),

which ensures that the Lebesgue constant of Fekete poidfsoain be bounded proportion-
ally to that of exact Fekete points &f,

An = ||Lpa(x)ll < CN,

since for the fundamental Lagrange polynomials we havethmd||;||x < C ||¢;||x < C;
see [L5, §4.4]. Observe that necessarily cakd) > dim(P4 (K)).

Starting from @.3), a rough functional inequality can be obtained also in ffecsSy =
wP4(K), at least ifw # 0 in K. Indeed, if X is an admissible mesh for nonweighted
polynomial interpolation,

lwpll e = |w(@)p(@)] < [w(@)][[plx < lw(@)] Cllpllx = [w(@)|C p(n)],
for suitablet € K,n € X. Thus we get, itv # 0in K,
lw(2)|

Clwn)pn)| < —
(] 1Pl < S et
<O Jwplx, €l = lwlx I1L/wlx C,

max;ex |w(z)|

lwpllx < C |lwp||x

i.e., X is an admissible mesh also for weighted polynomial inteafioh. An estimate on the
growth of the Lebesgue constant of Fekete point& af the spaceSy now follows,

(2.4) Ay =||Lsy|l < C., N.

We observe, however, that.@) turns out to be largely an overestimate of the actual growth
of the Lebesgue constant. In order to get more suitable nsemhé more refined bounds
one should take into account the specific structure of thehtefunctionw, possibly by
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using Markov-like inequalities for weighted polynomiatis,mimick the construction ofl[5,
Thm. 5].

A possible refinement can be given when= J/_, K; andX = (J;_; X; with X; C
Ki, Ipllx; < Cillpllx:, 1 < i < v (the discrete subsefs; are not disjoint, in general). In
this case we obtain easily the estimate,

1/w]

i

(2.5) Iplx < Chllpllx, €y = max {|w]k
1<i<v

3. Numerical examples.The study ofrational interpolation and approximation of uni-
variate analytic functions witprescribed pole$dias a long history, dating back to the funda-
mental work by Walsh and successive extensions by Baghjz,ef2]. Also its computational
issues have been deeply investigated; see, &,t, 16, 34, 41] and references therein.

Here we begin by considering weighted polynomial interpotain the spaceSy =
wP, ([—1, 1]) with a weight function

1

m, Tm € P ([—1,1]),

w(z) =
where the real and complex zerosf do not belong (but possibly are close) to the interval.

In the literature computational methods have been studididd almost optimal points
for rational interpolation with prescribed poles. For exden one can compute and use as
interpolation points inSy the zeros of the monic polynomigl, € P,, such that the ratio
pn/mm has the smallest possible max-norm (a min-max approaclhideading to Cheby-
shev polynomials and Chebyshev points for polynomial péation). This can be done by
transforming the problem to a numerical eigenvalue problein e.g., 1] and references
therein.

The first four examples below show that the computation of@xmate Fekete points
for Sy is a natural and effective alternative approach to the @mbdf rational interpola-
tion with prescribed poles in one real variable. On the otferd, the algorithm is general
purpose, and is able to handle even complex or bivariatarists, as well as other kinds of
singularities. It can also be applied to the constructioweighted real or complex polyno-
mial filters useful in signal processing.

ExAMPLE 3.1.(real interval, one real pole)Ve interpolate the function

cos ()

= K=1]-1,1 0
which has a real pole of the second orderat 1 + .
In Figure 3.1 we compare polynomial interpolation at the Chebyshev-Iobgoints,

with interpolation inwP,, again at the Chebyshev-Lobatto points for
w(r) =w.(z) = (14— )72,

and at approximate Fekete points computed by Algorithm ABiRgithe Chebyshev poly-
nomial basis (i.e.¢;(z) = w.(x)T;(x), Tj(x) = cos(jarccosz), j = 0,...,n), with 2
refinement iterations and a starting mestof 1000 equispaced points; cf1(5). The density
of X ensures that it is an admissible mesh in the sens2. §ffor (nonweighted) polynomial
interpolation up to the highest degree-¢ 30), since it has stepsize < 2/n?. This result re-
lies on the classical Markov polynomial inequality'||—1,1] < n* ||p||;—1,1), p € Pn; cf. [€]
and the construction inlp, Thm. 5].

In this case, estimate2(d) has no practical usefulness, since it becomes
Ay = O(e7%)N = O(ne~2), which is several orders of magnitude above the actual growt
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FiG. 3.1. Interpolation errors (left) and Lebesgue constants (r)ghgrsus the interpolation degree, in Exam-
ple3.1for e = 1 (top) ande = 0.01 (bottom); the interpolation spaces akfg, with Chebyshev-Lobatto points (*),
weIP, with Chebyshev-Lobatto points (+);-IP,, with approximate Fekete points)(

To improve the construction, one should have at hand a tigirkb/-like inequality for ra-
tional functions of the fornp/7,,,, p € P,, andm fixed, whereas this subject seems to have
been studied in the literature for the case(ofn) rational functions (with denominator of
degree exactly).

Some improvement in the estimate of the Lebesgue constamgver, can obtained
following (2.5). Given the mestX with constant stepsize as above, let us tBke= [—1 +
ih, —=1+(i+n)hlandX; = {—1+4jh, i < j <i+n},i=1,...,v,where—1+(v+n)h = 1.
ThenK = |J K;, X = |J X;, and all theX; are admissible meshes with constafi{s< C.
On the other hand, it is not difficult to show thatx; {||we ||k, ||1/we| x,} = (1 +nh/e)?.
Sinceh = O(n~2), the meshX being an admissible mesh for nonweighted polynomial
interpolation, we get’], = O(1) + O((ne)~!) + O((ne)~?) and by @.4-(2.5), being
N =n+ 1, thefinal estimaté.y < C) N =0(n)+ O(c™ ') + O ?/n).

ExAmMPLE 3.2.(real interval, two conjugate pole§)e consider here the function
cos ()
f(I) - &_2 + (EQ’

which has two complex conjugate poles of the first order at +ie, taking

re K =[-1,1],

we(z) = (2 +2%) 7L

The numerical results are collected in Fig@r& Observe that, in both Exampl@sland3.2,
the choice of the interpolation space is much more relevzam the choice of the points.
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FIG. 3.2.As in Figure3.1for the function of Exampld.2.

FiG. 3.3. N = 16 interpolation points of degree = 15 in Example3.1 (left) and Example3.2 (right):
Chebyshev-Lobatto points (top), approximate Fekete pdant= = 1 (middle) and= = 0.01 (bottom).

Nevertheless, weighted polynomial interpolation at agjpnate Fekete points shows small
Lebesgue constants, close to those of nonweighted polyidnterpolation (growth like
O(logn)), and the best interpolation errors also for smallt is interesting to have a look
at the distribution of the interpolation points; see FigBe3and3.4. In Figure3.4we show
the distribution function of the interpolation points, tha the fraction of points which are
smaller than or equal to. Notice that forz: = 1 the approximate Fekete points distribute like
the Chebyshev-Lobatto points, whereas for smalldrey also tend to cluster at the point in
the interval nearest to the pole(s).

ExamMPLE 3.3. (two disjoint intervals, one real pole in betwedn)the case of a single
real interval, other algorithms exist to compute near+optipoints for rational interpolation
with prescribed poles, like that described #1]. On the other hand, one of the strengths of
Algorithm AFP is that it can work on quite general compacsseiith real or complex vari-
ables. We consider now the case of simultaneous interpalati two disjoint real intervals,

_ cos(x) . i
J@) = e vEK =L-06Ul0,1)
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FiG. 3.4.Distribution functions ofV = 31 approximate Fekete points of degree= 30 in Example3.1 (left)
and Example3.2 (right), for e = 1 (top) ande = 0.01 (bottom).

where f has a second order pole at = —¢, which lies between the two intervals for
0 < e < 0.6. We take

we(x) = (x+e)72,

and we discretize the first interval 290 and the second b§00 equispaced points, respec-
tively. This gives an admissible mesh for (nonweightedypomial interpolation ori up to
degreer = 30, as union of two admissible meshes; 5] and the discussion in Exampiel
The interpolation spaces dPg, with approximate Fekete points for nonweighted polynomial
interpolation,w.IP,, again with the latter points, and.PP,, with approximate Fekete points
for weighted polynomial interpolation (basig-T;} in Algorithm AFP). Figure3.5 collects
the numerical results, that are comparable to those of El@ainp

In Figures3.6and3.7we show the distribution of the interpolation points. In taese of
nonweighted interpolation, the physical interpretatisithiat we have computed an approxi-
mate equilibrium configuration a¥ repelling equal charges located on the two intervals. We
observe that there are more interpolation points in theelstrinterval, and that they tend to
cluster at the intervals endpoints, more rapidly at theregleones and in case of weighted
interpolation also at the endpoint nearest to the pole. Thsbeen confirmed in several
other numerical experiments (by increasimgnd decreasing), which are not reported for
brevity’s sake.

EXAMPLE 3.4. (complex disk, one real poléh order to show the flexibility of the
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FI1G. 3.5. Interpolation errors (left) and Lebesgue constants (rjghgrsus the interpolation degree, in Exam-
ple3.3for e = 0.3 (top) ande = 0.01 (bottom); the interpolation spaces aPg, with approximate Fekete points for
nonweighted polynomial interpolation (*y.P,, again with the latter points (+)w:P,, with approximate Fekete
points for weighted polynomial interpolation)(

method, we consider again the function of Exantple but now on the complex unit disk

fz) =

cos ()
(1+e—12)%

As already observed, since the weight functiar{z) = (1 +¢ — )2 is analytic in a neigh-
borhood ofK, we can compute the Fekete points on the boun8#fy= {z € C: |x| = 1}
by the maximum principle. Fekete points for nonweighted/pomial interpolation are one
of the few explicitly known cases, namely any sequenc® of n + 1 equispaced points on
the unit circle is a set of Fekete points for interpolatiogid®n. The approximate Fekete
points for weighted polynomial interpolation have been pated by Algorithm AFP using
the monomial basis and two refinement iterations, stariimmfa mesh ofl000 equispaced
points on the unit circle.

The numerical results are reported in Figl#@, and in Figure3.9 the approximate
Fekete points for degree = 15, corresponding tea = 1 ande = 0.01, are displayed.
Notice that for the smallest value efthe points tend to cluster at = 1, the point of the
circle nearest to the pole=1 + ¢.

ExAMPLE 3.5. (two real variables in the square, line of algebraic singitias) We give
now an example in two real variables, taking the function

reK={zxeC: |z| <1}, e>0.

cos (x(M) + z(2))
J@) = Ao 7 (,2®) € K = [-1,1] x [-1,1], £ > 0.
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FiIG. 3.6. N = 21 interpolation points of degree = 20 with K = [—-1 — 0.6] U [0, 1] and we(z) =
(x + )~ 2: approximate Fekete points for nonweighted polynomiaripblation (top), approximate Fekete points
for weighted polynomial interpolation with = 0.3 (middle) ande = 0.01 (bottom).

1 : : : : : : : : : 1 : : : : : : ! ! !
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08 _—_ 4 08f _—_ 4
07 _—_ 4 07 _—_ 4
06 _—_ 1 06 ___ 1
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03 - 4 03 - 4
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0if— — 0if— —
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FiG. 3.7. Distribution functions ofV = 31 approximate Fekete points of degree= 30 in Example3.3, for
e = 0.3 (left) ande = 0.01 (right).

FiG. 3.8. Interpolation errors (left) and Lebesgue constants (rjghgrsus the interpolation degree, in Exam-
ple3.4for e = 1 (top) ande = 0.01 (bottom); the interpolation spaces afg, with Fekete points for nonweighted
polynomial interpolation (*),w:IP,, again with the latter points (+)w<P, with approximate Fekete points for
weighted polynomial interpolatiorv}.



ETNA

Kent State University
http://etna.math.kent.edu

12 A. SOMMARIVA AND M. VIANELLO

1 1

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0¢

-0.2

0.4

-0.6

-0.8

- L L L 1 L L L
-1 -0.5 0 0.5 1 -1 -0.5 (] 0.5 1

FiG. 3.9. N = 16 approximate Fekete points of degree= 15 in the complex disk of Examp®4, with
e = 1 (left) ande = 0.01 (right).

This function is analytic up to an entire line of singulaitiatz(!) =1 + ¢.

In Figure3.10we show the interpolation errors and the Lebesgue constantsspond-
ing to different interpolation spaces and nodes, and inrfei§ulL1we plot the approximate
Fekete points corresponding to degree= 10. As a starting mesh to extract approximate
Fekete points we have taker 20 x 120 uniform grid, which is an admissible mesh for (non-
weighted) polynomial interpolation up to= 10 (being the product of two one-dimensional
admissible meshes; cfl}]). The comparison is with nonweighted interpolation at sloe
called “Padua points”, the first known example of nearlymgatli points for total degree poly-
nomial interpolation in two variables, with a Lebesgue ¢ansincreasing like log squared
of the degree; cf.7, 8, 14].

ExaMPLE 3.6. (two disjoint intervals, nonalgebraic singularitieg)gorithm AFP is
general purpose, and can handle without problems evengelmraic singularities, for exam-
ple singularities of derivatives inside the domain. A naidit example of this kind is given by
the following function, defined on the union of two disjointérvalsk = [-1, —0.6]U][0, 1],

sin (v1 + ), x € [-1,-0.6],

arctan (Jz — 0.5]), =z €[0,1].

fx) =

Taking as a weight function,

1+xz, 2x€[-1,-0.6],
w(z) =

lz—05], xzelo,1],

the functionf is factorizable asf = wg with g (separately) analytic in each of the two
intervals (since the Maclaurin series ©fi andarctan have only odd powers), whereas
absorbs the singularities gf (which is only Holder continuous). The numerical resuits a
collected in Figure8.12and3.13 Notice that the errors of weighted polynomial interpaati
are larger than in Exampk4, since here we deal with different analytic functions onaiig
intervals, and the convergence rates of best polynomiabajypations are different.
ExampLE 3.7.(real digital filters) Simply stated, in the design of weighted polynomial
digital filters of FIR (Finite Impulse Response) type, oneksea polynomigh of degreen that
approximates a functiog, termed the response of the filter, on a real or complex cotrggdc
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FiG. 3.10. Interpolation errors (left) and Lebesgue constants (rjglgrsus the interpolation degree, in Ex-
ample3.5for ¢ = 1 (top) ande = 0.01 (bottom); the interpolation spaces afg, with the Padua points for
nonweighted polynomial interpolation (*y.P, again with the latter points (+)w.P,, with approximate Fekete
points for weighted polynomial interpolation)(
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Fic. 3.11.N = 66 approximate Fekete points of degree= 10 in the real square of Exampke5, withe = 1
(left) ande = 0.01 (right).

K, inthe sense that the weighted nofm(p—g)|| x is small, wherev is a suitable continuous
and nonnegative weight function. In many applicatiéhs a finite union of disjoint intervals
or complex arcs (the frequency bands), and laihdw are piecewise constant functions (the
values 0 and 1 of corresponding to the so-called stopband and passbanéctasy).

We cannot even try to give an appropriate quoting of the ewositerature on this
important subject of signal processing. To give only songhlights, it is worth noting the
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FIG. 3.12.Interpolation errors (left) and Lebesgue constants (rjgharsus the interpolation degree, in Exam-
ple 3.6; the interpolation spaces ar@,, with approximate Fekete points for nonweighted polynornigrpolation
(*), and wP,, with approximate Fekete points for weighted polynomiaipblation ©).

(€3S SASASauS auS aaS4S I €5, 3D
[C:3S{SASASIS auS 2S5 €=, <9
FiG. 3.13. N = 31 interpolation points of degree = 30 with K = [—1,—0.6] U [0, 1] andw(z) as in

Example3.6: approximate Fekete points for nonweighted (top) and weigjifbottom) polynomial interpolation.

classical paperd2], where the popular Parks-McClellan algorithm for the desdf optimal

real equiripple filters, based on the Remez exchange aigoyivas originally proposed, as
well as the treatisel3]. The method has then been extended in various directiodgdb
also with complex filters; see, e.g2¢] and references therein. Other methods are based,
for example, on potential theory and conformal mapping; seg, 1, 23, 38]. The use of
polynomial filters is also interesting within numericaldiar algebra; see, e.g24, 35].

Since we use here for the first time algorithm AFP for the cartsion of polynomial
filters based on interpolation at approximate Fekete poivedegin by a simple nonweighted
case, an example of a high-pass filter. We consider the respioimction (this example is
taken from R1, §6]),

0, z€ Ky =[-1,-04],

g(x) =
1, z€Ky=[-03,1],

defined onK = K; U K, whereK is the stopband anéls is the passband (the interval
(—0.4,—0.3) is the transition band in signal processing terminologyg weight function we
takew = 1, and as initial discretization an admissible mesh obtayaghion of two uniform
admissible meshes @f; and K, respectively.

The numerical results are collected in Figigd4 The amplitude of the oscillations
near the internal endpoints (a sort of Gibb’s phenomenohsuadied in B8]) depends on the
length of the transition band. In Figugel5 for comparison, we show the filter of degnee=
30 with a transition band of double length, namely #6s = [—0.2, 1], and the interpolation
errors up to degree = 60.

We observe that the quality of the filters is lower than thabptfimal equiripple filters
(but not as much as could be predicted by the Lebesgue caesstar2.2)), and even slightly
lower than that of filters obtained via numerical conformalpping; cf. 1, §6]. This means
that interpolation at approximate Fekete points cannotdesidered a real competitor in
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standard instances of polynomial filtering. On the otherh@s strength consists in a higher
flexibility, that makes it applicable to quite general coroipsetsk’, response functiongand
weight functionsw, in one or even several real or complex variables.

In order to give an example of a weighted filter, we considerfthlowing multiband
response function on the union of three disjoint intervals- K U K> U K3,

0, zeki =[-1,-04],
glx)y=<¢ 1, ze€ Ky=[-0.2,0.2],

05, z€Ks=1[04,1],

with a piecewise constant weight function correspondin@ttriple of positive weights
(wl,w2,w3)

w(r) =w;, z€K;, 1=1,2,3.

This is only an illustrative example, but it is worth recadlithat multiband polynomial filters
are a standard tool in digital signal processing; t]

In Figure3.16we show four multiband filters, obtained by interpolatiorapproximate
Fekete points of degree = 30, corresponding to different choices of the weights. In Fégu
3.17 we plot the estimated Lebesgue constants, up to degree 30. Again, the start-
ing discretization mesh is obtained by taking the union oé¢hadmissible meshes for non-
weighted interpolation on the subintervals, which in viei{25) is also an admissible mesh
for weighted interpolation with the same bound, the weiginiction being piecewise con-
stant. Observe that the presence of a dominant weight foheesonweighted error to be
much smaller on the corresponding band than on the othersband

ExampLE 3.8.(complex digital filtersAlgorithm AFP can be easily adapted to produce
polynomial filters in the complex plane. We consider thedaihg example, taken forn2f],
of a nearly linear-phase low-pass filter on the unior= K; U K> of two disjoint arcs of the
complex unit circle,

e Ky ={e? |0 <0.127},

g(x) = ', w(z) =1,
r) =10, x€ Ky ={e, 0.247 <0 < 7}.

o(x) =0, w(z)

Again, we have chosen as starting mesh the union of two adi@seeshes of{; and K5,
which in view of 2.5) is also an admissible mesh for weighted interpolation it same
bound. As in Exampl&.4, we use the standard complex monomial basis to construct the
Vandermonde matrix, with two refinement iterations in Aligom AFP.

In Figure 3.18 we show the approximate Fekete points of degree 31 and the esti-
mated Lebesgue constants up to degree 35. The interpolation error in the weighted norm
atdegreer = 31is ||w(g — Lp,,(x)9)| x = 0.1, to be compared with an error of abdu04
obtained in 6] with the optimal polynomial filter of degregl, computed by the Remez
algorithm.

ExAMPLE 3.9. (two-dimensional digital filtersfwo-dimensional digital filters have im-
portant applications in the processing of images and oth@mdimensional signals; see, e.g.,
[1, 28]. Here we show two examples of two-dimensional filters cartded by interpolation
at approximate Fekete points. We begin with the followingpense function on a square
domain,

re K= {(zM,2®): min (|1 £2M|, |1 £23)|) <0.2},

g(x) =0,
(3.1) =1, z¢€K,=[-0.6,0.6] x [~0.6,0.6],

g(z)
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FiG. 3.14. Top: high-pass polynomial nonweighted filters f§r = [—1, —0.4] and K> = [—0.3,1] of
degreen = 30 (left), andn = 60 (right); the small circles ¢) indicate the approximate Fekete points. Bottom:
interpolation errors (left) and Lebesgue constants (rjghgrsus the interpolation degree.
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FiG. 3.15. High-pass nonweighted polynomial filter féf; = [—1, —0.4] and K2 = [—0.2,1] of degree
n = 30 (left), and interpolation errors up to degree= 60 (right).

with a square passband and a square frame as stopband; seesBiG33.2Q These kinds
of “rectangularly symmetric” two-dimensional filters ariscussed, e.qg., ir2p].

In order to compute approximate Fekete points of not smalteke by algorithm AFP,
already in two dimensions it begins to be important to staminfa weakly admissible mesh
instead of an admissible mesh; c¥, [L5]. Indeed, two-dimensional admissible meshes of
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FIG. 3.16. Multiband polynomial filters forky = [—1,—0.4], K2 = [-0.2,0.2] and K3 = [0.4,1] at
approximate Fekete points of degree= 30: nonweighted (top-left), weightsl00, 1, 1) (top-right), (1, 100, 1)
(bottom-left),(1, 1, 100) (bottom-right); the small circlesd indicate the approximate Fekete points.

degreen obtained by Markov inequalities ha¢®(n*) points, due to &(1/n?) spacing, and
this leads to a heavy computational load in algorithm AFP.

On the other hand, weakly admissible meshes are discresetsulif a compadt’, where
a polynomial inequality like Z.3) holds whereC' = (C,, is not constant but increases at
most algebraically witl. Such a relaxation of the polynomial inequality impliestttieeir
cardinality can be much lower than that of admissible mesResall that, for example, any
setX of cardinality N = dim(P4(K)), which is unisolvent for interpolation of degree
satisfies 2.3 with C = (), equal to the Lebesgue constant (thus, e.g., Fekete poirits of
form a weakly admissible mesh). As with admissible mesheskly admissible meshes can
be constructed by finite unions. All the relevant inequeaditstill hold withC,, replacingC.

In the present example we have used the weakly admissiblie aitained by union of
the Padua points of the internal square and of four rectargjiéng the square frame. We
recall that the Padua points are the first known example aingbpoints for total degree poly-
nomial interpolation in two variables, with a Lebesgue ¢ansincreasing like log squared
of the degree; cf.7, 8, 14]. This implies that in 2.3-(2.5 we haveC = C,, = O(log®n).

In Figure3.19we show the two-dimensional nonweighted polynomial file@stained by
interpolation at approximate Fekete points, extracteohfsoch weakly admissible meshes at
degreen = 20 andn = 30 (the interpolation errors o are about).13 and0.04, respec-
tively). In Figure3.20we see the approximate Fekete points of degree 20 with the
underlying weakly admissible mesh made of Padua points ladtowth of the estimated
Lebesgue constants.
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FiG. 3.17. Lebesgue constants versus the interpolation degree fomtiigband filters above: nonweighted
(top-left), weightg100, 1, 1) (top-right), (1, 100, 1) (bottom-left),(1, 1, 100) (bottom-right).

FiG. 3.18. N = 32 approximate Fekete points of degree= 31 for the complex low-pass weighted filter in
Example3.8 (left); Lebesgue constants versus the interpolation de@right).

In this simple example, a filter could have been construdtaas tensor-product of one-
dimensional filters (cf. 1]), but the difference is that the present is a total-degtts,fivhich
for the samen has roughly half the number of coefficients, namaly= dim(P? (K)) =
(n+1)(n +2)/2 instead of(n + 1)? = dim(P} (K) @ P.(K)) coefficients.
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Fic. 3.20.Left: N = 231 nonweighted approximate Fekete points (circles) of degree 20 extracted from a
weakly admissible mesh (dots) for Examplg-(3.1). Right: estimated Lebesgue constants versus the intipol
degree for the same example.

A more difficult example is given by the following weightedsponse function,

(3.2) g(x) =0, wx)=w, zeckK ={,2?): 204232 <08},
' g(@) =1, wx)=wy, zcKy={(zM 2®): M 4232 >1},

where the stopband and the passband are triangular. Agaiextract the approximate Fekete
points from the union of weakly admissible meshes of the temgles. In P], the concept of
“geometric” weakly admissible mesh has been developedehaome obtained by a suitable
geometric transformation from a known weakly admissiblesimen a reference domain. In
the case of a triangle, we can simply map the Padua pointsgréden in [—1,1]? to the
triangle by the well-known Duffy quadratic transformatipk®], obtaining a weakly admis-
sible mesh of degree for the triangle withC,, = O(log” 2n); see P] for a more complete
discussion.

In Figure 3.21 we show the corresponding nonweighted (left) and weighted €
1,wy = 10; right) filters of degreen = 20. The interpolation error of the nonweighted

filter is about0.11 on the passband afid)7 on the stopband, whereas the nonweighted error

of the weighted filter becomes abdu8 on the passband and is reduced to aliodit on
the stopband. The respective approximate Fekete pointslaited in Figure3.22, and the
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F1G. 3.21.Two-dimensional filters of degree = 20 for Example3.9-(3.2) with w; = 1, wo = 1 (left) and
wy = 10, w2 = 1 (right).

FiG. 3.22.N = 231 approximate Fekete points of degnee= 20 (circles) extracted from a geometric weakly
admissible mesh (dots) for Exam@é-(3.2) with wy = 1, wo = 1 (left) andw; = 10, we = 1 (right).

estimated Lebesgue constants in FigBuz3
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