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Abstract. We study the convergence ofP -regular splitting iterative methods for non-Hermitian positive definite
linear systems. Our main result is thatP -regular splittings of the formA = M −N , whereN = N∗, are convergent.
Natural examples of splittings satisfying the convergence conditions are constructed, and numerical experiments are
performed to illustrate the convergence results obtained.
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1. Introduction. Many problems in scientific computing give rise to a system ofn linear
equations inn unknowns,

(1.1) Ax = b, A = [aij ] ∈ C
n×n nonsingular, and b, x ∈ C

n,

whereA is a large, sparse non-Hermitian matrix. In this paper we consider the important
case whereA is non-Hermitian positive definite; i.e., the Hermitian partH = (A + A∗)/2 is
Hermitian positive definite, whereA∗ denotes the conjugate transpose of the matrixA. We note
that the phrasenon-Hermitian positive definite, while widely used, is a bit misleading sinceA

could actually be Hermitian. The expressionpossibly non-Hermitian, positive definite matrixis
more precise, but also too cumbersome. The expressionstrictly accretiveis also used, but is not
widely adopted. Large, sparse systems with non-Hermitian positive definite coefficient matrix
arise in many applications, including discretizations of convection-diffusion problems [17],
regularized weighted least-squares problems [13], real-valued formulations of certain complex
symmetric systems [9], and so forth. In order to solve system (1.1) by iterative methods, it is
useful to construct splittings of the coefficient matrixA. Such splittings are associated with
stationary iterative methods, and are frequently used as preconditioners for Krylov subspace
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methods or as smoothers for multigrid or Schwarz-type schemes; see, e.g., [20, 31, 38]. In
general, the coefficient matrixA ∈ C

n×n is split into

(1.2) A = M − N,

whereM ∈ C
n×n is nonsingular andN ∈ C

n×n. Then, the general form of stationary
iterative methods for (1.1) can be described as follows:

(1.3) x(i+1) = M−1Nx(i) + M−1b, i = 0, 1, 2, . . . .

The matrixT = M−1N is called the iteration matrix of the method (1.3). It is well known
[34] that (1.3) converges for any givenx(0) if and only if ρ(T ) < 1, whereρ(T ) denotes the
spectral radius of the matrixT . Thus, to establish convergence results for stationary iterative
methods, we need to study the spectral radius of the iteration matrix in (1.3).

Next, consider the general class of alternating iterative methods for the solution of (1.1)
of the form

(1.4)

{

x(i+1/2) = M−1Nx(i) + M−1b

x(i+1) = P−1Qx(i+1/2) + P−1b
, i = 0, 1, 2, . . . ,

whereA = M − N = P − Q are splittings of the coefficient matrixA. Many well known
iterative schemes such as the symmetric Gauss-Seidel method [1], the SSOR method [33],
alternating-direction and implicit (ADI) methods [26, 34, 38], the Hermitian/skew-Hermitian
splitting (HSS) methods [4, 8] and several others belong to this class of methods. To analyze
the convergence of the general scheme (1.4), Benzi and Szyld [14] construct a single splitting
A = B − C associated with the iteration matrix as follows. Eliminating x(i+1/2) from (1.4),
we obtain the iterative process

(1.5) x(i+1) = P−1QM−1Nx(i) + P−1(QM−1 + I)b, i = 0, 1, 2, . . . ,

which is of the form (1.3), where nowT = P−1QM−1N is the iteration matrix. IfA is
nonsingular and 1 is not an eigenvalue ofT , then there exists a unique splittingA = B − C

such thatT = B−1C = I − B−1A. It is not difficult to see thatM + P − A is necessarily
invertible and thatB = M(M + P − A)−1P . The splittingA = B − C is said to beinduced
by T ; see [14] for details.

There have been several studies on the convergence of splitting iterative methods for non-
Hermitian positive definite linear systems. In [15, pages 190–193], some convergence condi-
tions for the splitting of non-Hermitian positive definite matrices have been established. More
recently, [35] and [36] give some conditions for the convergence of splittings forthis class of
linear systems.

Recently, there has been considerable interest in the Hermitian and skew-Hermitian split-
ting (HSS) method introduced by Bai, Golub and Ng for solvingnon-Hermitian positive def-
inite linear systems, see [4]; we further note the generalizations and extensions of this basic
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method proposed in [5, 7, 8, 3, 6] and [25]. Furthermore, these methods and their convergence
theories have been shown to apply to (generalized) saddle point problems, either directly or
indirectly (as a preconditioner); see [5, 2, 3, 7, 6, 35, 36, 25, 11, 12].

Continuing in this direction, in this paper we establish newresults on splitting methods
for solving system (1.1) iteratively, focusing on a particular class of splittings. For a given
matrixA ∈ C

n×n, a splittingA = M −N with M nonsingular is called aP -regular splitting
if the matrixM∗ + N is non-Hermitian positive definite; see [29]. It is a well-known result
[37, 29] that if A is Hermitian positive definite andA = M − N is aP -regular splitting, then
the splitting iterative method is convergent:ρ(M−1N) < 1. In this paper, we examine the
spectral properties of the iteration matrix induced byP -regular splittings of a non-Hermitian
positive definite matrix. Based on these properties, we construct various SOR-type methods
for non-Hermitian linear systems and prove their convergence under appropriate restrictions
on the choice of the relaxation parameter. While convergenceresults have been known for
many years for Hermitian positive definite matrices, monotone matrices andH-matrices (see,
e.g., [15, 20, 31, 38, 29, 21, 34]), very little appears to be known in the non-Hermitian positive
definite case. Among the few studies known to us we mention [15, pages 194–195], [27],
[28], and [24]. Our results are more general than the few results found in literature, and they
complete the SOR theory for non-Hermitian matrices. It is our hope that these results will
prove useful in the study of convergence of more sophisticated iterative schemes, including
Schwarz-type and algebraic multilevel methods; see, e.g.,[19] and [10].

For convenience, some of the terminology used in this paper will be given. The symbol
C

n×n will denote the set of alln×n complex matrices. LetA, B ∈ C
n×n. We use the notation

A ≻ 0 (A � 0) if A is Hermitian positive (semi-)definite. IfA andB are both Hermitian, we
write A ≻ B (A � B) if and only if A − B ≻ 0 (A − B � 0). If A is Hermitian all the
eigenvalues ofA are real, and we denote byλmin(A) andλmax(A) the smallest (i.e., leftmost)
and largest (rightmost) eigenvalues, respectively. LetA ∈ C

n×n with H = (A + A∗)/2

andS = (A − A∗)/2 its Hermitian and skew-Hermitian parts, respectively; then A is non-
Hermitian positive (semi-)definite if and only ifH ≻ 0 (H � 0). Throughout the paper,I will
denote then × n identity matrix.

The paper is organized as follows. Some convergence resultsfor P -regular splittings of
non-Hermitian positive definite linear systems are given insection2. In section3 we construct
some SOR-type methods and use the general theory of section2 to study their convergence. In
section4 a few numerical examples are given to demonstrate the convergence results obtained
in this paper. Some conclusions are given in section5.

2. General convergence results forP-regular splittings. In this section we establish
some convergence results forP-regular splitting methods for non-Hermitian positive definite
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linear systems. First, some lemmas will be presented to be used in the sequel.

LEMMA 2.1. Let H, B ∈ C
n×n be Hermitian and letS ∈ C

n×n be skew-Hermitian. If
H ≻ 0, thenρ[(H + S)−1B] ≤ ρ(H−1B).

Proof. SinceH ≻ 0, H−1 ≻ 0 andH−1/2 ≻ 0, it follows thatH−1B is similar to the
Hermitian matrixH−1/2BH−1/2. As a result,

(2.1) ρ(H−1B) = ρ(H−1/2BH−1/2) = max
‖x‖2=1

|x∗H−1/2BH−1/2x|.

Similarly, (H + S)−1B is similar to the matrix

H1/2(H + S)−1BH−1/2 = (I + H−1/2SH−1/2)−1H−1/2BH−1/2.

Hence,(H + S)−1B and(I + H−1/2SH−1/2)−1H−1/2BH−1/2 have the same eigenvalues
and therefore

ρ((H + S)−1B) = ρ[(I + H−1/2SH−1/2)−1H−1/2BH−1/2].

Let λ be an eigenvalue of(I + H−1/2SH−1/2)−1H−1/2BH−1/2 satisfying|λ| = ρ((H +

S)−1B) and letx (with ‖x‖2 = 1) be a corresponding eigenvector. Then, one has

(I + H−1/2SH−1/2)−1H−1/2BH−1/2x = λx

and consequently

H−1/2BH−1/2x = λ(I + H−1/2SH−1/2)x

and

λ =
x∗H−1/2BH−1/2x

x∗(I + H−1/2SH−1/2)x
=

x∗H−1/2BH−1/2x

1 + x∗(H−1/2SH−1/2)x
.

SinceS is skew-Hermitian, so isH−1/2SH−1/2. As a result,x∗(H−1/2SH−1/2)x is either
purely imaginary. Thus,

|1 + x∗(H−1/2SH−1/2)x| =
√

1 + |x∗(H−1/2SH−1/2)x|2 ≥ 1.

Therefore,

(2.2)

ρ((H + S)−1B) = |λ| =
|x∗H−1/2BH−1/2x|

|1 + x∗(H−1/2SH−1/2)x|
≤ |x∗H−1/2BH−1/2x| ≤ max

‖x‖2=1
|x∗H−1/2BH−1/2x|

= ρ(H−1B),
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which completes the proof.

LEMMA 2.2. (See Ortega [29, page 123].)LetA ≻ 0, and letA = M−N be aP -regular
splitting. Thenρ(M−1N) < 1.

THEOREM 2.3. Let A ∈ C
n×n be non-Hermitian positive definite, and letA = M − N

be aP -regular splitting withN Hermitian. Thenρ(M−1N) < 1.

Proof. Let H(A) = (A + A∗)/2 andS(A) = (A − A∗)/2 be the Hermitian and skew-
Hermitian parts ofA, respectively, and letH(M) = (M + M∗)/2 be the Hermitian part of
M . Non-Hermitian positive definiteness ofA gives thatH(A) ≻ 0. SinceN is Hermitian, the
skew-Hermitian part ofM coincides with the skew-Hermitian part ofA:

S(M) =
1

2
(M − M∗) =

1

2
[(M − N) − (M − N)∗] =

1

2
(A − A∗) = S(A),

and H(A) = H(M) − N ≻ 0. Again, A = M − N is a P-regular splitting and thus
M∗ + N is positive definite, consequentlyH(M) + N ≻ 0. Therefore,H(M) ≻ 0 and
H(A) = H(M) − N is aP-regular splitting. Lemma2.2showsρ[(H(M))−1N ] < 1. Since
H(M) ≻ 0, N is Hermitian andS(M) is skew-Hermitian, it follows from Lemma2.1that

(2.3) ρ(M−1N) = ρ[(H(M) + S(M))−1N ] ≤ ρ[(H(M))−1N ] < 1.

This completes the proof.

COROLLARY 2.4. LetA ∈ C
n×n be non-Hermitian positive definite, and letA = M −N

be a splitting withN � 0. Thenρ(M−1N) < 1.

REMARK 2.5. In the last two results, the condition thatN be Hermitian is essential and
cannot be relaxed. An obvious example isA = I − S whereS = −S∗ and ‖S‖2 ≥ 1.
SettingM = I andN = S leads to aP -regular splitting whereN is non-Hermitian positive
semidefinite andρ(M−1N) ≥ 1.

REMARK 2.6. In the Hermitian case, Lemma2.2 has the following converse: ifA =

A∗ = M −N is aP -regular splitting andρ(M−1N) < 1, thenA is positive definite; see [30,
page 255]. It is therefore natural to ask whether the converse of Theorem2.3 holds. That is,
given aP -regular splittingA = M − N with N = N∗ andρ(M−1N) < 1, is it true that

H(A) =
1

2
(A + A∗) is positive definite? The answer is negative, as is shown by the splitting

A = M − N where

A =

[

0 −4

4 −1

]

, M =

[

2 −4

4 0

]

, N =

[

2 0

0 1

]

.

This splitting isP -regular,N = N∗, andρ(M−1N) < 1; the Hermitian part of the matrixA,
however, is not positive definite.
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Next, we consider the convergence of the iterative scheme (1.4) or (1.5) for non-Hermitian
positive definite linear systems. In [14] the following convergence result for symmetric positive
definite linear systems is proved.

THEOREM 2.7. (See [14].) Let A ∈ R
n×n be symmetric positive definite, and letA =

M − N = P − Q be bothP -regular splittings. Thenρ(T ) < 1, whereT = P−1QM−1N ,
and therefore the sequence{x(i)} generated by(1.4) converges to the unique solution of(1.1)
for any choice of the initial guessx(0). Furthermore, the unique splittingA = B −C induced
byT is P -regular.

In what follows, we partially generalize this result to non-Hermitian positive definite linear
systems. First, some useful lemmas are introduced.

LEMMA 2.8. (See Corollary 7.6.5 in [22].) Let A,B ∈ C
n×n be Hermitian withA ≻ 0.

Then there exists a nonsingular matrixC ∈ C
n×n such thatA = C∗C and B = C∗DC,

whereD ∈ R
n×n is diagonal.

LEMMA 2.9. Let B = C∗DC ∈ C
n×n with C ∈ C

n×n nonsingular and
D = diag(d1, . . . , dn) ∈ C

n×n, and letB̃ = C∗|D|C ∈ C
n×n with |D| = diag(|d1|, . . . , |dn|).

Then the Hermitian matrixB =

[

B̃ B

B∗ B̃

]

is positive semidefinite.

Proof. Observe thatB can be decomposed as

(2.4)
B =

[

B̃ B

B∗ B̃

]

=

[

C∗ 0

0 C∗

] [

|D| D

D∗ |D|

] [

C 0

0 C

]

= C ∗

[

|D| D

D∗ |D|

]

C ,

whereC =

[

C 0

0 C

]

is nonsingular sinceC is. Writing D =

[

|D| D

D∗ |D|

]

, (2.4) shows

that the Hermitian matricesB andD are congruent, and therefore they must have the same
inertia. Hence, all we need to show is thatD is positive semidefinite. LettingP denote the
odd-even permutation matrix of order2n, it is immediate to see that

P∗DP =

[

|d1| d1

d̄1 |d1|

]

⊕ · · · ⊕

[

|dn| dn

d̄n |dn|

]

.

Hence,P∗DP is just a direct sum ofn two-by-two Hermitian matrices, each of which is
obviously positive semidefinite. This shows thatD � 0, and the proof is complete.

LEMMA 2.10.LetAi, Bi ∈ C
n×n be Hermitian and such thatAi ≻ Bi � 0 for i = 1, 2.

Then there exist positive real numberse1, e2 such that2e1A1 ≻ e1B1 + e2B2 and2e2A2 ≻

e1B1 + e2B2.

Proof. Let L =

[

A1 −B1

−B2 A2

]

. SinceAi ≻ Bi � 0 for i = 1, 2, it follows that
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L is a generalizedM -matrix in the sense of Elsner and Mehrmann; see [18, Notation 2.3]
and [23] for details. Therefore,L ∗ is also a generalizedM -matrix, and consequently, [18,
Notation 2.3] implies that there exist positive real numbers e1, e2 such thate1A1 − e2B2 ≻ 0

ande2A2 − e1B1 ≻ 0. Observe thatAi ≻ Bi � 0 implies eiAi − eiBi ≻ 0 for i = 1, 2.

Therefore, we have2e1A1 ≻ e1B1 + e2B2 and2e2A2 ≻ e1B1 + e2B2. This completes the
proof.

LEMMA 2.11. Let A ∈ C
n×n be non-Hermitian positive definite, and letA = M −

N = P − Q be bothP -regular splittings withN andQ Hermitian. Then the matrixHµ =
[

M N

µQ P

]

is nonsingular for allµ ∈ C with |µ| ≤ 1.

Proof. Let H(M) andH(P ) be the Hermitian parts ofM andP , respectively. SinceA is
non-Hermitian positive definite andA = M − N = P − Q are bothP -regular splittings with
N andQ Hermitian, one has

(2.5)
H(M) + N ≻ 0, H(M) − N ≻ 0;

H(P ) + Q ≻ 0, H(P ) − Q ≻ 0.

Clearly, (2.5) implies thatH(M) ≻ 0 andH(P ) ≻ 0. Also, N andQ are both Hermitian. It
follows from Lemma2.8 that there exist two nonsingular matricesC1, C2 ∈ C

n×n such that
H(M) = C∗

1C1, N = C∗
1D1C1 andH(P ) = C∗

2C2, Q = C∗
2D2C2, whereD1,D2 ∈ R

n×n

are diagonal matrices. Following (2.5), we have

(2.6)
C∗

1 (I + D1)C1 ≻ 0, C∗
1 (I − D1)C1 ≻ 0;

C∗
2 (I + D2)C2 ≻ 0, C∗

2 (I − D2)C2 ≻ 0.

Consequently,

(2.7)
I + D1 ≻ 0, I − D1 ≻ 0;

I + D2 ≻ 0, I − D2 ≻ 0,

which shows that

(2.8) I − |D1| ≻ 0, I − |D2| ≻ 0.

Let Ñ = C∗
1 |D1|C1 andQ̃µ = C∗

2 |µD2|C2 for µ ∈ C with |µ| ≤ 1. ThenÑ � 0 andQ̃µ � 0.
Furthermore,

(2.9)
H(M) − Ñ = C∗

1 (I − |D1|)C1 ≻ 0;

H(P ) − Q̃µ = C∗
2 (I − |µD2|)C2 ≻ 0.

This leads toH(M) ≻ Ñ � 0 andH(P ) ≻ Q̃µ � 0. It then follows from Lemma2.10that
there exist positive real numberse1, e2 such that

(2.10)
2e1H(M) ≻ e1Ñ + e2Q̃µ � 0;

2e2H(P ) ≻ e1Ñ + e2Q̃µ � 0.
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LettingE = diag(e1I, e2I), we have

(2.11) E Hµ + (E Hµ)∗ =

[

2e1H(M) e1N + e2µ̄Q

e1N + e2µQ 2e2H(P )

]

.

Let K1 = 2e1H(M) − (e1Ñ + e2Q̃µ), K2 = 2e2H(P ) − (e1Ñ + e2Q̃µ) and K =

diag(K1,K2). Then (2.10) yields K1 ≻ 0 and K2 ≻ 0. As a result,K ≻ 0. Letting

N =

[

Ñ N

N Ñ

]

andQµ =

[

Q̃µ µ̄Q

µQ Q̃µ

]

, Lemma2.9shows thatN � 0 andQµ � 0.

Therefore,

(2.12)
E Hµ + (E Hµ)∗ =

[

2e1H(M) e1N + e2µ̄Q

e1N + e2µQ 2e2H(P )

]

= K + e1N + e2Qµ

≻ 0,

i.e.,E Hµ is non-Hermitian positive definite and thus nonsingular. SinceE is nonsingular,Hµ

is nonsingular. This completes the proof.

THEOREM 2.12. Let A ∈ C
n×n be non-Hermitian positive definite, and letA = M −

N = P − Q be bothP -regular splittings withN andQ Hermitian. Thenρ(T ) < 1, where
T = P−1QM−1N , and therefore the sequence{x(i)} generated by(1.4) converges to the
unique solution of(1.1) for any choice of the initial guessx(0).

Proof. The proof is by contradiction. We assume thatλ is an eigenvalue ofT with |λ| ≥ 1.
ThenλI−T = λI−P−1QM−1N is singular. As a result,P−(λ−1Q)M−1N is singular. Let
µ = λ−1, then|µ| ≤ 1 andP − (µQ)M−1N = P − (λ−1Q)M−1N is singular. Observe that

S = P − (µQ)M−1N = Hµ/M , the Schur complement of the matrixHµ =

[

M N

µQ P

]

with respect to the matrixM . It follows from the block LU decomposition [39]

Hµ =

[

I 0

µQM−1 I

] [

M N

0 S

]

that Hµ must be singular. This contradicts Lemma2.11, according to which matrixHµ is
nonsingular for|µ| ≤ 1. ThereforeT has no eigenvalueλ with |λ| ≥ 1; that is,ρ(T ) < 1 and
T = P−1QM−1N is convergent. This completes the proof.

REMARK 2.13. It remains an open question whether the unique splittingA = B − C

induced byT in Theorem2.12is P -regular.

3. SOR methods for non-Hermitian positive definite systems.In this section we apply
the general theory developed in the previous section to study the convergence of SOR-like
methods applied to non-Hermitian positive definite systems.
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Without loss of generality, we write

(3.1) A = I − L − U = (I − L + U∗) − (U + U∗) = (I − U + L∗) − (L + L∗),

whereL and U are strictly lower and strictly upper triangular matrices,respectively. The
successive over-relaxation method (SOR method) is defined by the iteration matrix

(3.2) Lω = [I − ω(L − U∗)]−1[ω(U + U∗) + (1 − ω)I],

while the unsymmetric SOR method (USSOR method) is given by the iteration matrix

(3.3) Iω,ω̄ = Uω̄Lω,

where

(3.4) Uω̄ = [I − ω̄(U − L∗)]−1[ω̄(L + L∗) + (1 − ω̄)I].

As a special case, whenω = ω̄ we have the symmetric SOR method (SSOR method), defined
by the iteration matrix

(3.5) Jω = UωLω.

THEOREM 3.1. LetA ∈ C
n×n be non-Hermitian positive definite withH = (A + A∗)/2

its Hermitian part, and letA = I − L − U be defined by(3.1). Also, letη = λmin(B) be the
smallest eigenvalue ofB := H + 2(U + U∗).

(i) If η ≥ 0, then the SOR method is convergent forω ∈ (0, 1);

(ii) If η < 0, then the SOR method is convergent forω ∈ (0, 2
2−η ).

Proof. LetM =
1

ω
I − (L−U∗) andN =

(

1

ω
− 1

)

I +(U +U∗). ThenLω = M−1N

andA = M −N is a splitting ofA sinceM is nonsingular. LetH(M) = (M +M∗)/2. Since
N is Hermitian,

(3.6)
H(M) + N = H + 2N =

2 − 2ω

ω
I + H + 2(U + U∗)

=
2 − 2ω

ω
I + B.

(i) If η ≥ 0 andω ∈ (0, 1), then we haveB � 0 and
2 − 2ω

ω
> 0. Identity (3.6) shows

H(M)+N =
2 − 2ω

ω
I +B ≻ 0; that is,M +N is positive definite. Therefore,A = M −N

is aP-regular splitting ofA. Hence, Theorem2.3 yields thatρ(Lω) = ρ(M−1N) < 1, i.e.,
the SOR method is convergent.
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(ii) If η < 0 andω ∈ (0, 2
2−η ), then we have with (3.6) that

(3.7)
H(M) + N =

2 − 2ω

ω
I + B

≻ −ηI + B � 0,

which shows thatM + N is positive definite. As a result,A = M −N is aP-regular splitting
of A. It follows again from Theorem2.3 thatρ(Lω) = ρ(M−1N) < 1, i.e., the SOR method
is convergent. This completes the proof.

REMARK 3.2. Theorem3.1 becomes Theorem 1 in[27] if A = I − L + LT ∈ R
n×n;

hence, Theorem3.1generalizes the convergence result of Niethammer and Schade.

THEOREM 3.3. LetA ∈ C
n×n be non-Hermitian positive definite withH = (A + A∗)/2

its Hermitian part, and letA = I − L − U be defined by(3.1) andη = λmin(B) andµ =

λmin(C) be the smallest eigenvalues ofB := H + 2(U + U∗) andC := H + 2(L + L∗),
respectively.

(i) If η ≥ 0 andµ ≥ 0, then the USSOR method is convergent forω, ω̄ ∈ (0, 1);

(ii) If η < 0 and µ ≥ 0, then the USSOR method is convergent forω ∈ (0, 2
2−η ) and

ω̄ ∈ (0, 1);

(iii) If η ≥ 0 and µ < 0, then the USSOR method is convergent forω ∈ (0, 1) and
ω̄ ∈ (0, 2

2−µ );

(iv) If η < 0 and µ < 0, then the USSOR method is convergent forω ∈ (0, 2
2−η ) and

ω̄ ∈ (0, 2
2−µ ).

Proof. Let M =
1

ω
I − (L − U∗), N =

(

1

ω
− 1

)

I + (U + U∗) andP =
1

ω̄
I −

(U − L∗), Q =

(

1

ω̄
− 1

)

I + (L + L∗). ThenM andP are nonsingular,N andQ are

Hermitian,Lω = M−1N , Mω̄ = P−1Q, andA = M − N = P − Q are splittings ofA. Let
H(M) = (M +M∗)/2 andH(P ) = (P +P ∗)/2. SinceN andQ are Hermitian, (3.6) holds.
Furthermore,

(3.8)
H(P ) + Q = H + 2Q =

2 − 2ω̄

ω̄
I + H + 2(L + L∗)

=
2 − 2ω̄

ω̄
I + C.

It is easy to prove that bothH(M) + N ≻ 0 andH(P ) + Q ≻ 0 when (i) η ≥ 0, µ ≥ 0

andω, ω̄ ∈ (0, 1); (ii) η < 0, µ ≥ 0 andω ∈ (0, 2
2−η ), ω̄ ∈ (0, 1); (iii) η ≥ 0, µ < 0 and

ω ∈ (0, 1), ω̄ ∈ (0, 2
2−µ ); and (iv)η < 0, µ < 0 andω ∈ (0, 2

2−η ), ω̄ ∈ (0, 2
2−µ ). Therefore,

bothM + N andP + Q are positive definite and consequentlyA = M − N = P − Q are
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P-regular splittings withN andQ Hermitian. Then Theorem2.12shows that

ρ(Iω,ω̄) = ρ(Uω̄Lω) = ρ(P−1QM−1N) = ρ(T ) < 1,

i.e., the USSOR method is convergent. This completes the proof.

THEOREM 3.4. LetA ∈ C
n×n be non-Hermitian positive definite withH = (A + A∗)/2

its Hermitian part, and letA = I − L − U be defined by(3.1) andη = λmin(B) andµ =

λmin(C) be the smallest eigenvalues ofB := H + 2(U + U∗) andC := H + 2(L + L∗),
respectively.

(i) If η ≥ 0 andµ ≥ 0, then the SSOR method is convergent forω ∈ (0, 1);

(ii) If either η ≤ µ < 0 or η < 0 ≤ µ, then the SSOR method is convergent forω ∈

(0, 2
2−η );

(iii) If either µ ≤ η < 0 or µ < 0 ≤ η, then the SSOR method is convergent forω ∈

(0, 2
2−µ ).

Proof. The proof can be immediately obtained from Theorem3.3.

4. Numerical experiments. In this section we describe the results of some numerical
experiments with the SOR method on a set of linear systems arising from a finite element
discretization of a convection-diffusion equation in two dimensions. The purpose of these
experiments is not to advocate the use of SOR as a solver for this particular type of problem,
but to illustrate the theory developed in this paper, in particular Theorem3.1.

The model problem is the partial differential equation

(4.1) − ε∆u + w · ∇u = f ,

whereε > 0, ∆ is the 2D Laplacian,∇ is the gradient,w is a prescribed vector field (the
‘wind’), and f is a given scalar field (the ‘source’). The solutionu is sought on the unit square
Ω = [0, 1] × [0, 1], and is subject to suitable boundary conditions. Here we consider the
problem given as Example 3.1.3 in [17]: zero source (f ≡ 0), constant wind at a30o angle
to the left of vertical (w = (− sin π

6 , cos π
6 )), and boundary conditions such that the solution

exhibits a downstream boundary layer and an interior layer;see [17, page 118] for details.

Equation (4.1) is discretized on a uniform square grid of size32 × 32 using Q1 Galerkin
finite elements with SUPG stabilization. The resulting matrix A is nonsymmetric and has
complex eigenvalues. Its symmetric partH is positive definite, for allε > 0. We note thatA
has some positive off-diagonal entries and therefore it is not anM -matrix. Prior to forming
the SOR splitting, the coefficient matrixA is diagonally scaled so that its diagonal entries are
all equal to 1, henceA = I − L − U with L strictly lower andU strictly upper triangular.

We consider three problem instances, corresponding toε = 10−1, 10−2 and10−3, re-
spectively. The problems becomes increasingly convection-dominated asε decreases. In Table
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TABLE 4.1
Values ofη, 2/(2 − η) and GMRES iterations for different values ofε.

ε = 10−1 ε = 10−2 ε = 10−3

η -2.033 -2.406 -2.646
2

2−η 0.496 0.454 0.430

ωbest 0.57 0.55 0.51
GMRES 53 48 52

4.1 we report the value ofη = λmin(B), with B = H + 2(U + UT ), together with the cor-
responding value of2/(2 − η) for the three values ofε considered. Recall that according to
Theorem3.1, whenη < 0 (as is the case here) the SOR method is guaranteed to convergefor
all ω ∈ (0, 2/(2− η)). This is, however, a sufficient condition only. In practice,we found that
SOR converges forω ∈ (0, ω̄) whereω̄ is typically somewhat larger than2/(2−η). In all three
cases, the Gauss–Seidel method (ω = 1) was found to diverge. Since0 < ω < 1, the SOR
method used here is actually an under-relaxation procedurerather than an over-relaxation one.
In Table4.1 we also report the optimal valueωbest of the relaxation parameterω in the SOR
method, determined experimentally (to two digits of accuracy). Finally, as a baseline method
we report in Table4.1 the number of (unpreconditioned) full GMRES [32] iterations. In all
our experiments, we report the number of iterations required to reduce the initial residual by
five orders of magnitude, starting from a zero initial guess.

In Table4.2 we report (under ‘its’) the number of SOR iterations required to solve the
three linear systems with the SOR method for two distinct choices of the relaxation parameter,
namely, forω = 2/(2 − η) andω = ωbest. We also include (under ‘G-its’) the number of iter-
ations required by preconditioned GMRES, where the preconditioner is the SOR method with
the corresponding value ofω. We note that GMRES acceleration is generally not very effec-
tive, and sometimes counterproductive. For a discussion ofthe use of SOR as a preconditoner
for Krylov subspace methods; see [16].

Finally, in Table4.3we show iteration counts for SOR and SOR-preconditioned GMRES
for several values ofω. We note that forω ≥ 0.7, SOR diverges for all three problems. (For
ε = 10−2 andε = 10−3, the SOR iteration is already divergent forω ≥ 0.6.) The results show
that the rate of convergence suffers some deterioration asε decreases. The results also show
that GMRES acceleration with suboptimal values can be beneficial; however, the reduction
in the number of iterations compared to unpreconditioned GMRES (see Table4.1) is rather
disappointing. In practice, using SOR (with the optimalω) without GMRES acceleration
is more effective, in terms of total costs, than using eitherSOR-preconditioned GMRES or
unpreconditioned GMRES; the exception is the caseε = 0.1, where GMRES preconditioned
with the Gauss–Seidel method converges very rapidly. This method, however, behaves poorly
for smaller values ofε.
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TABLE 4.2
Results forω = 2

2−η
and forω = ωbest .

ε = 10−1 ε = 10−2 ε = 10−3

ω ρ(Lω) its G-its ρ(Lω) its G-its ρ(Lω) its G-its
ω = 2

2−η 0.622 32 35 0.735 48 40 0.776 58 44

ω = ωbest 0.581 27 33 0.705 43 39 0.757 52 47

TABLE 4.3
Results for different values ofω .

ε = 10−1 ε = 10−2 ε = 10−3

ω ρ(Lω) its G-its ρ(Lω) its G-its ρ(Lω) its G-its
0.1 0.906 176 44 0.913 176 44 0.918 182 45
0.2 0.822 83 43 0.848 92 43 0.860 100 44
0.3 0.748 53 41 0.796 66 42 0.818 74 43
0.4 0.681 39 38 0.754 52 40 0.785 61 43
0.5 0.620 31 35 0.720 48 39 0.759 53 47
0.6 0.565 32 32 > 1 ∞ 39 > 1 ∞ 58
1.0 > 1 ∞ 19 > 1 ∞ 131 > 1 ∞ > 300

We mention in passing an interesting experimental observation. In all the numerical tests
reported above, the iteration matrix of the SOR method,

Lω = [I − ω(L − U∗)]−1[ω(U + U∗) + (1 − ω)I],

was found to have purely real spectrum. This means that instead of GMRES acceleration,
standard Chebyshev acceleration could be used instead. Moreover, forω small enough all the
eigenvalues ofLω are positive.

Our numerical experiments provide an illustration of the convergence result in Theorem
3.1, case (ii). Similar experimental tables could be used to illustrate the other convergence
results in this paper, for example for the SSOR method. In practice, of course, it is difficult to
use SOR-type methods for solving this type of problem, sinceit is generally difficult to estimate
η and therefore the SOR convergence interval(0, 2/(2 − η)). Also, estimatingωbest is even
more difficult. Of course, more practical methods exist for the solution of problem (4.1), such
as Krylov subspace methods with more effective preconditioners or multigrid methods. In light
of our results, it is possible that SOR with a small value ofω may prove an effective smoother
for multigrid applied to problems like the ones considered here.

5. Conclusions. In this paper we have studied the convergence ofP -regular splitting
methods for the solution of non-Hermitian positive definitelinear systems. Some of our results
can be regarded as generalizations of analogous results forthe Hermitian positive definite case.
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As an application of our theory, we obtain new convergence conditions for SOR-like methods
in the non-Hermitian case.
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