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Abstract. We study the convergence &fregular splitting iterative methods for non-Hermitian pivsi definite
linear systems. Our main result is tHatregular splittings of the formt = M — N, whereN = N*, are convergent.
Natural examples of splittings satisfying the convergermlitions are constructed, and numerical experiments are
performed to illustrate the convergence results obtained.
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1. Introduction. Many problems in scientific computing give rise to a system bifiear
equations im unknowns,

(1.2) Az =0b, A=a;;] € C™™" nonsingular, and b,z € C",

where A is a large, sparse non-Hermitian matrix. In this paper wesiclan the important
case whered is non-Hermitian positive definifé.e., the Hermitian partf = (A + A*)/2is
Hermitian positive definite, wherg* denotes the conjugate transpose of the matriXVe note
that the phrasaon-Hermitian positive definitevhile widely used, is a bit misleading since
could actually be Hermitian. The expressjmossibly non-Hermitian, positive definite matisx
more precise, but also too cumbersome. The exprestictly accretivas also used, but is not
widely adopted. Large, sparse systems with non-Hermitésitipe definite coefficient matrix
arise in many applications, including discretizations ohwection-diffusion problemsl[],
regularized weighted least-squares problehd; feal-valued formulations of certain complex
symmetric systems9], and so forth. In order to solve systeth1) by iterative methods, it is
useful to construct splittings of the coefficient matrlx Such splittings are associated with
stationary iterative methods, and are frequently used esopditioners for Krylov subspace
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methods or as smoothers for multigrid or Schwarz-type selsersee, e.g.2D, 31, 38]. In
general, the coefficient matrit € C™**"™ is split into

(1.2) A= M- N,

where M € C™*" is nonsingular andV € C™*™. Then, the general form of stationary
iterative methods forl(.1) can be described as follows:

(1.3) 20D = M~IN2® + M, i=0,1,2,... .

The matrixT' = M~ N is called the iteration matrix of the methodl.§). It is well known
[34] that (1.3) converges for any given(®) if and only if p(T) < 1, wherep(T') denotes the
spectral radius of the matrik. Thus, to establish convergence results for stationargtite
methods, we need to study the spectral radius of the iteratitrix in (L.3).

Next, consider the general class of alternating iteratie¢hods for the solution ofl(1)
of the form

(1.4)

(i41/2) — =1 nr.(0) -1
{‘” M=Nat) £ M7 19

2+ = p=1Qg(i+1/2) L p=1p

whereA = M — N = P — @ are splittings of the coefficient matrix. Many well known
iterative schemes such as the symmetric Gauss-Seidel chfthahe SSOR method3[],
alternating-direction and implicit (ADI) method&§, 34, 38, the Hermitian/skew-Hermitian
splitting (HSS) methods4] 8] and several others belong to this class of methods. To aealy
the convergence of the general schethd)( Benzi and Szyld4] construct a single splitting
A = B — C associated with the iteration matrix as follows. Eliminagti:(**1/2) from (1.4),
we obtain the iterative process

(1.5) 20D = pIQMINZ®D + PTH QM+ )b, i=0,1,2,...,

which is of the form {.3), where nowI’ = P~'QM !N is the iteration matrix. IfA is
nonsingular and 1 is not an eigenvaluelgfthen there exists a unique splittinlg= B — C
such thatl' = B~1C = I — B~'A. lItis not difficult to see thafi/ + P — A is necessarily
invertible and thal? = M (M + P — A)~!P. The splittingA = B — C'is said to bénduced
by T'; see [L4] for details.

There have been several studies on the convergence oiigplirative methods for non-
Hermitian positive definite linear systems. It5[ pages 190-193], some convergence condi-
tions for the splitting of non-Hermitian positive definiteatrices have been established. More
recently, B5] and [36] give some conditions for the convergence of splittingsthis class of
linear systems.

Recently, there has been considerable interest in the Hamaind skew-Hermitian split-
ting (HSS) method introduced by Bai, Golub and Ng for solvirog-Hermitian positive def-
inite linear systems, sed]f we further note the generalizations and extensions &f lthisic
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method proposed irb[ 7, 8, 3, 6] and [25]. Furthermore, these methods and their convergence
theories have been shown to apply to (generalized) saddi¢ pmblems, either directly or
indirectly (as a preconditioner); se®g P, 3, 7, 6, 35, 36, 25, 11, 12].

Continuing in this direction, in this paper we establish meaults on splitting methods
for solving system 1.1) iteratively, focusing on a particular class of splittingSor a given
matrix A € C"*™, a splittingA = M — N with M nonsingular is called &-regular splitting
if the matrix M* 4+ N is non-Hermitian positive definite; seq). It is a well-known result
[37, 29 that if A is Hermitian positive definite and = M — N is a P-regular splitting, then
the splitting iterative method is convergemt{M ~' N) < 1. In this paper, we examine the
spectral properties of the iteration matrix inducedm®yegular splittings of a non-Hermitian
positive definite matrix. Based on these properties, wetoattsvarious SOR-type methods
for non-Hermitian linear systems and prove their convetgeimder appropriate restrictions
on the choice of the relaxation parameter. While convergeeselts have been known for
many years for Hermitian positive definite matrices, monetmatrices and/-matrices (see,
e.g., [L5, 20, 31, 38, 29, 21, 34]), very little appears to be known in the non-Hermitian pigsi
definite case. Among the few studies known to us we mentlan pages 194-195].2[],
[28], and [24]. Our results are more general than the few results founiderature, and they
complete the SOR theory for non-Hermitian matrices. It is loope that these results will
prove useful in the study of convergence of more sophigtit@erative schemes, including
Schwarz-type and algebraic multilevel methods; see, [e.g.and [L0].

For convenience, some of the terminology used in this pajiebggiven. The symbol
C™>*™ will denote the set of alk x n complex matrices. Lett, B € C"*". We use the notation
A= 0 (A > 0)if Ais Hermitian positive (semi-)definite. U and B are both Hermitian, we
write A - B (A = B)ifandonlyif A— B = 0 (A — B = 0). If Ais Hermitian all the
eigenvalues of! are real, and we denote By,;,(A) and\,.x(A) the smallest (i.e., leftmost)
and largest (rightmost) eigenvalues, respectively. Alee C**™ with H = (A + A*)/2
andS = (A — A*)/2 its Hermitian and skew-Hermitian parts, respectively;ntheis non-
Hermitian positive (semi-)definite if and onlyH - 0 (H > 0). Throughout the papef,will
denote ther x n identity matrix.

The paper is organized as follows. Some convergence rdsulf3-regular splittings of
non-Hermitian positive definite linear systems are giveseiation2. In section3 we construct
some SOR-type methods and use the general theory of s@dtistudy their convergence. In
sectiord a few numerical examples are given to demonstrate the ogenee results obtained
in this paper. Some conclusions are given in seciion

2. General convergence results foP-regular splittings. In this section we establish
some convergence results feregular splitting methods for non-Hermitian positive déé
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linear systems. First, some lemmas will be presented to & inghe sequel.

LEMMA 2.1. Let H, B € C"*™ be Hermitian and lefS € C"*™ be skew-Hermitian. If
H = 0,thenp[(H + S)™'B] < p(H'B).

Proof SinceH = 0, H ! = 0 andH /2 » 0, it follows that H !B is similar to the
Hermitian matrixH ~1/2BH~1/2. As a result,

(2.1) p(H'B) = p(H Y?BH™Y?) = max [¢*H Y2BH Y?z|.

lzll2=1
Similarly, (H + S)~! B is similar to the matrix
HY?(H+S) '\BH Y? = (I+ H Y2SH Y%~ 1H~/2BH~1/2,

Hence,(H + S)"'Band(I + H-'/2SH~'/2)~1H~1/2BH~1/? have the same eigenvalues
and therefore

p((H+8)™'B) = p[(I + H Y2SH /)L g=/2BH /7).

Let \ be an eigenvalue off + H—Y/2SH~'/2)~"1H-1/2BH~1/2 satisfying|\| = p((H +
S)~1B) and letz (with ||z||2 = 1) be a corresponding eigenvector. Then, one has

(I+H Y258 Y2) T HY2BH Y2 = \z
and consequently
HY!BH Y2y = \I+ H Y2SH/?)z

and

x*H_1/2BH_1/2£U x*H_1/2BH_1/2ZC
(I + H-Y2SH-Y2)x 1+ a*(H-1/2SH-Y/2)2’

SincesS is skew-Hermitian, so i$7~'/2SH~1/2. As a resultz*(H~Y/2SH~1/?)z is either
purely imaginary. Thus,

1+ a2 (HV2SH™V?)a| = \/1 + o (H-V2SH=12)af? > 1.

Therefore,
*H71/2BH71/2:C‘
H+$)B) = =0
p((H +S)"B) Al 11+ 2" (H-1/2SH-172)g]
(2.2) < |o*H-Y2BH-V2z| < max |z*H-Y2BH /21|

llzll2=1

p(H'B),
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which completes the proofl

LEMMA 2.2. (See Orteg@®p, page 123].LetA > 0, and letA = M — N be aP-regular
splitting. Therp(M ~1N) < 1.

THEOREM 2.3. Let A € C"*"™ be non-Hermitian positive definite, and lét= M — N
be aP-regular splitting with NV Hermitian. Therp(M ' N) < 1.

Proof. Let H(A) = (A + A*)/2 andS(A) = (A — A*)/2 be the Hermitian and skew-
Hermitian parts of4, respectively, and leff (M) = (M + M*)/2 be the Hermitian part of
M. Non-Hermitian positive definiteness dfgives thati (A) > 0. SinceN is Hermitian, the
skew-Hermitian part of\/ coincides with the skew-Hermitian part df

1

SO = 5

(M = M) = S[(M = N) = (M = N)*] = 3 (A= A4") = S(4),

and H(A) = H(M) — N » 0. Again, A = M — N is aP-regular splitting and thus
M* + N is positive definite, consequently/ (M) + N = 0. Therefore,H(M) = 0 and
H(A) = H(M) — N is aP-regular splitting. Lemma.2 showsp[(H (M))~*N] < 1. Since
H(M) > 0, N is Hermitian andS(M ) is skew-Hermitian, it follows from Lemma.1that

23) p(M~'N) = pl(H(M) + S(M))"'N] < pl(H(M))"'N] < L.

This completes the proofl

COROLLARY 2.4.LetA € C™*" be non-Hermitian positive definite, and lét= M — N
be a splitting withN = 0. Thenp(M~1N) < 1.

REMARK 2.5. In the last two results, the condition that be Hermitian is essential and
cannot be relaxed. An obvious exampledis= I — S whereS = —S* and ||S]|s > 1.
SettingM = I and N = S leads to aP-regular splitting whereV is non-Hermitian positive
semidefinite ang(M ' N) > 1.

REMARK 2.6. In the Hermitian case, Lemm&a2 has the following converse: il =
A* = M — N is a P-regular splitting ando(M ~1 V) < 1, thenA is positive definite; see3D,
page 255]. It is therefore natural to ask whether the cormeksTheoren?.3 holds. That is,
given aP-regular splitingA = M — N with N = N* andp(M~1N) < 1, is it true that
H(A) = %(A + A*) is positive definite? The answer is negative, as is shownégihitting
A= M — N where

N A P A P

This splitting isP-regular, N = N*, andp(M ~1N) < 1; the Hermitian part of the matrixi,
however, is not positive definite.
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Next, we consider the convergence of the iterative schémgdr (1.5) for non-Hermitian
positive definite linear systems. 4] the following convergence result for symmetric positive
definite linear systems is proved.

THEOREM 2.7. (See 14].) Let A € R"*™ be symmetric positive definite, and lét=
M — N = P — Q be bothP-regular splittings. Them(T) < 1, whereT = P~'QM~'N,
and therefore the sequen¢e(*)} generated by1.4) converges to the unique solution(af1)
for any choice of the initial guess®) . Furthermore, the unique splitting = B — C induced
by T is P-regular.

In what follows, we partially generalize this result to ndermitian positive definite linear
systems. First, some useful lemmas are introduced.

LEMMA 2.8. (See Corollary 7.6.5 ir2p].) Let A, B € C™*™ be Hermitian withA > 0.
Then there exists a nonsingular matiix € C**"™ such thatA = C*C and B = C*DC,
whereD € R™*" is diagonal.

LEMMA 2.9. Let B = C*DC € C™™ with ¢ € C™*" nonsingular and
D = diag(ds, ..., d,) € C"*",andletB = C*|D|C € C"*" with |D| = diag(|di|, ..., [dn]).

Then the Hermitian matrigg = [ BB* g ] is positive semidefinite.

Proof. Observe that# can be decomposed as

5 B Bl_[cC 0 \D| D C 0
N B B| | 0 O D* |D| 0 C
(2.4)
_ [ D,
; D* |D| |
| C 0. . . . . [ IDb] D
where¥4 = { 0 C } is nonsingular sinc€’ is. Writing ¥ = [ D D] ] (2.4) shows

that the Hermitian matrice® and 2 are congruent, and therefore they must have the same
inertia. Hence, all we need to show is thatis positive semidefinite. Letting” denote the
odd-even permutation matrix of ord®mn, it is immediate to see that

* |d1| dl :| |: |dn| dn :|
P*PP = | = e )
{ di |d1‘ dn |dn|
Hence,Z* 22 is just a direct sum of two-by-two Hermitian matrices, each of which is
obviously positive semidefinite. This shows tiat- 0, and the proof is completél.

LEMMA 2.10.Let A;, B; € C"*™ be Hermitian and such that;, = B; = 0fori =1, 2.
Then there exist positive real numbess e; such that2e; Ay = e1 By + ea By and2es As >
6131 + 6282.

Al _Bl

Proof. Let ¥ = [ B, A,

} SinceA; = B; = 0fori = 1,2, it follows that
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£ is a generalized//-matrix in the sense of Elsner and Mehrmann; sk Notation 2.3]
and 3] for details. Therefore,Z* is also a generalized/-matrix, and consequentlylg,
Notation 2.3] implies that there exist positive real nunsagt e5 such thate; A; — ea By - 0
andes A; — e1B; = 0. Observe thatd; -~ B; = 0 impliese;A; — e¢;B; = 0 fori = 1,2.
Therefore, we havee, A, = e1 By + es By and2e, A, = e1B1 + es Bo. This completes the
proof.00

LEMMA 2.11. Let A € C™*" be non-Hermitian positive definite, and ldt = M —
N = P — @ be bothP-regular splittings withVand @ Hermitian. Then the matrixz,, =
{ M
pQ P
Proof. Let H (M) andH (P) be the Hermitian parts d¥/ and P, respectively. Sincel is
non-Hermitian positive definite and = M — N = P — @ are bothP-regular splittings with
N and(@ Hermitian, one has

} is nonsingular for ally € C with |u| < 1.

H(M)+ N =0, H(M)— N = 0;

(2:5) H(P)+Q =0, HP)—Q» 0.

Clearly, .5 implies thatH (M) = 0 andH (P) = 0. Also, N and@ are both Hermitian. It
follows from Lemma2.8 that there exist two nonsingular matric€s, C> € C"*™ such that
H(M)=C;Cy, N =C;D,Cy andH(P) = C5C5, Q = C3 D2Co, whereDy, Dy € R"*"
are diagonal matrices. Following.f), we have

Ci‘([-ﬁ-Dl)C& >0, Cf([—Dl)Cl > 0;

2.6

20 C3(I + D2)Cy =0, C5(I — D2)Cy = 0.
Consequently,

(27) I+D1>—0,I—D1>—O;

I+Dy=0, I— Dy 0,

which shows that

(2.8) I—|Dy| =0, I—|Dy 0.

Let N = Cf|D;|C, andQ,, = Cj|uD5|Cy for € Cwith |u| < 1. ThenN »= 0andQ,, > 0.
Furthermore,

H(M)— N = C{(I — |D1])Cy = 0;

=9 H(P) = Q, = C5(I — [uDa|)Cs 0.

This leads toH (M) = N = 0 andH(P) = Q,, = 0. It then follows from Lemma2.10that
there exist positive real numbers, e5 such that

2e1H(M) ~ et N + 626:2# = 0;

(2.10) 2e5H(P) > e1N + €2Q,, = 0.
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Letting & = diag(e1 1, eal), we have

. 2€1H(M) 61N+62ﬁQ
(2.11) EAp+ (EH)" = { e1N + ea @ 2e9H(P)
Let K1 = 2€1H(M) — (61N + GQQ#), Ky = 2€2H(P) — (€1N + GQQ#) and % =
diag(Kl,{Q). Then @.10 yieIdsNKl = 0and Ky > 0. As aresult,?” = 0. Letting

N N Qu  hQ

— N = - , = = 0.
N [ N N } and2, { WQ 0, , Lemma2.9shows that/” = 0 and2,, = 0
Therefore,

x 261H(M) 61N+62[L_LQ
(2.12) EHu+ (EH) = |: e1N + exu@ 2eoH(P)
' = K +e N+ GQQM
= 0,

i.e., &7, is non-Hermitian positive definite and thus nonsingulanc8¥’ is nonsingular,/z;,
is nonsingular. This completes the prodf.

THEOREM 2.12. Let A € C™*" be non-Hermitian positive definite, and lét= M —
N = P — @ be bothP-regular splittings withN and @ Hermitian. Therp(7T") < 1, where
T = P~'QM~'N, and therefore the sequenée(”)} generated by(1.4) converges to the
unique solution of1.1) for any choice of the initial guess® .

Proof. The proof is by contradiction. We assume thas an eigenvalue ¢f with |\| > 1.
Then\I—T = M- P~ 'QM !N is singular. As aresult? —(A\~'Q)M ~! N is singular. Let
w= A"t then|u| < 1landP — (uQ)M N = P— (A\"'Q)M !N is singular. Observe that
M N ]

S=P—(pQ)M~'N = /M, the Schur complement of the mattiK;, = { QP

with respect to the matrix/. It follows from the block LU decompositior8p]
I 0 M N
%MQMl IHO S]

that Z, must be singular. This contradicts Lemid 1, according to which matrix?), is
nonsingular foriu| < 1. Thereforel” has no eigenvalug with |A\| > 1; that is,p(T") < 1 and
T = P~'QM~'N is convergent. This completes the prdof.

REMARK 2.13. It remains an open question whether the unique splittihgs B — C
induced byl" in Theoren?.12is P-regular.

3. SOR methods for non-Hermitian positive definite systemsin this section we apply
the general theory developed in the previous section toystuel convergence of SOR-like
methods applied to non-Hermitian positive definite systems
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Without loss of generality, we write
(Bl A=I-L-U=(I-L4U")—(U+U")=(I—-U+L")—(L+L"),

where L and U are strictly lower and strictly upper triangular matricesspectively. The
successive over-relaxation method (SOR method) is defipdldediteration matrix

(3.2) L= —w(L-U") " wU+U*)+ (1 —w)],

while the unsymmetric SOR method (USSOR method) is giverhbyteration matrix

(33) ﬂw,@ = %Dguu
where
(3.4) Uy =[I —o(U — L") w(L + L*) + (1 — @)

As a special case, whem= @ we have the symmetric SOR method (SSOR method), defined
by the iteration matrix

(35) fw = UL

THEOREM3.1.Let A € C™*™ be non-Hermitian positive definite wiftf = (A + A*)/2
its Hermitian part, and letd = I — L — U be defined by3.1). Also, letn = Anin(B) be the
smallest eigenvalue @ := H + 2(U + U™).

(i) If n > 0, then the SOR method is convergentdog (0, 1);

(i) If n < 0, then the SOR method is convergentoe (0, ﬁ).

Proof. Let M = lI— (L—U*)andN = (1 - 1) I+({U+U*).Then¥, = M—'N
w w

andA = M — N is a splitting ofA sinceM is nonsingular. Lef{ (M) = (M + M*)/2. Since
N is Hermitian,
HOM)+N = H4oN=2"%

(3.6) B
_ 2=
w

I+H+2U+U*)

2 — 2w

@) If n > 0andw € (0,1), then we haveB = 0 and

2 — 2w

> 0. Identity 3.6) shows

w
H(M)+N = I+ B > 0; thatis,M + N is positive definite. Therefore = M — N
w
is aP-regular splitting ofA. Hence, Theorer.3yields thatp(.Z,) = p(M~1N) < 1, i.e.,
the SOR method is convergent.




ETNA
Kent State University
http://etna.math.kent.edu

48 Cheng-yi Zhang and Michele Benzi
(i) If n < 0andw € (0, ﬁ), then we have with3.6) that
2—2
H(M)+N = “I+B
w
= —-nl+B>x0,

(3.7)

which shows thafl/ + N is positive definite. As aresulf = M — N is aP-regular splitting
of A. It follows again from Theorer.3thatp(.%,) = p(M~1N) < 1, i.e., the SOR method
is convergent. This completes the prdof.

REMARK 3.2. Theorem3.1 becomes Theorem 1 [@7] if A = I — L + LT € R™*";
hence, Theorerf.1generalizes the convergence result of Niethammer and $chad

THEOREM3.3. Let A € C™*™ be non-Hermitian positive definite wifld = (A + A*)/2
its Hermitian part, and letA = I — L — U be defined by3.1) andn = Ayin(B) andp =
Amin(C) be the smallest eigenvalues Bf:= H + 2(U + U*) andC := H + 2(L + L*),
respectively.

(i) If n > 0andyu > 0, then the USSOR method is convergentfap € (0, 1);

(i) If n < 0andp > 0, then the USSOR method is convergentfoe (0, 32;) and
w e (0,1);

(i) If » > 0andp < 0, then the USSOR method is convergentdoe (0,1) and
w € (0, 5%);

(iv) If n < 0 andu < 0, then the USSOR method is convergentfoe (0, %) and
w e (0, 52).

1 1 1
Proof. Let M = —I —(L—-U"), N = (—1>I+(U+U*) andP = =I —
w w w

U—-L1L"),Q = (1 - 1> I+ (L + L*). ThenM and P are nonsingularN and () are
w

Hermitian,.Z, = M~'N, .#y; = P~'Q, andA = M — N = P — (Q are splittings of4. Let
H(M)=(M+M*)/2andH (P) = (P+ P*)/2. SinceN and@ are Hermitian, .6) holds.
Furthermore,

2 — 2w

8 HP)+Q = H+2Q=
' = 2_W2°°’1'+C.

I+H+2(L+LY

It is easy to prove that both/ (M) + N = 0 andH(P) + Q = 0O when (i)n > 0, > 0
andw,w € (0,1); (i) n < 0, p > 0 andw € (0, 52,), @ € (0,1); (iii) » > 0, p < 0 and
we (0,1),w € (0,5%;);and (iv)n < 0, u < 0 andw € (0, 32;), @ € (0, 52;). Therefore,
both M + N and P + @ are positive definite and consequently= M — N = P — @ are
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P-regular splittings withV and@ Hermitian. Then Theorer.12shows that
p(Foz) = p(ULs) = p(PT'QM™'N) = p(T) < 1,
i.e., the USSOR method is convergent. This completes thaf.[dro

THEOREM3.4.Let A € C"*™ be non-Hermitian positive definite wiftf = (A + A*)/2
its Hermitian part, and letA = I — L — U be defined by3.1) andn = A\, (B) andp =
Amin(C) be the smallest eigenvalues Bf:= H + 2(U + U*) andC := H + 2(L + L*),
respectively.

@) If n > 0andu > 0, then the SSOR method is convergentfar (0, 1);

(i) If eithern < p < 0orn < 0 < u, then the SSOR method is convergent.foe
(0, 225);

(iii) If eitherp < n < 0or u < 0 < 7, then the SSOR method is convergentdoe
(0, 5%).

Proof. The proof can be immediately obtained from Theof O

4. Numerical experiments. In this section we describe the results of some numerical
experiments with the SOR method on a set of linear systersggrfrom a finite element
discretization of a convection-diffusion equation in twimnénsions. The purpose of these
experiments is not to advocate the use of SOR as a solverigopainticular type of problem,
but to illustrate the theory developed in this paper, inipatar Theoren8.1.

The model problem is the partial differential equation
(4.2) —ecAu+w-Vu=f,

wheree > 0, A is the 2D LaplacianyV is the gradientw is a prescribed vector field (the
‘wind’), and f is a given scalar field (the ‘source’). The solutiois sought on the unit square
Q = [0,1] x [0,1], and is subject to suitable boundary conditions. Here wesiden the
problem given as Example 3.1.3 ifv7]: zero source { = 0), constant wind at 80° angle

to the left of vertical v = (—sin §, cos §)), and boundary conditions such that the solution
exhibits a downstream boundary layer and an interior lases;[L7, page 118] for details.

Equation 4.1) is discretized on a uniform square grid of s&x 32 using Q1 Galerkin
finite elements with SUPG stabilization. The resulting mxatd is nonsymmetric and has
complex eigenvalues. Its symmetric paftis positive definite, for alk > 0. We note thatd
has some positive off-diagonal entries and therefore ibtsam A/-matrix. Prior to forming
the SOR splitting, the coefficient matrik is diagonally scaled so that its diagonal entries are
allequal to 1, hencel = I — L — U with L strictly lower andU strictly upper triangular.

We consider three problem instances, corresponding 4o 10~!, 10~2 and 103, re-
spectively. The problems becomes increasingly conveataninated as decreases. In Table
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TABLE 4.1
Values ofy, 2/(2 — n) and GMRES iterations for different valuescof

e=10"1 | e=10"2 | =103
n -2.033 -2.406 -2.646
% 0.496 0.454 0.430
Whest 0.57 0.55 0.51
GMRES 53 48 52

4.1we report the value of = A\ (B), with B = H + 2(U + UT), together with the cor-
responding value /(2 — n) for the three values of considered. Recall that according to
Theorem3.1, whenn < 0 (as is the case here) the SOR method is guaranteed to corfigerge
allw € (0,2/(2 —n)). This is, however, a sufficient condition only. In practives found that
SOR converges fav € (0, &) wherew is typically somewhat larger thay (2—n). In all three
cases, the Gauss—Seidel method= 1) was found to diverge. Sindé < w < 1, the SOR
method used here is actually an under-relaxation procedthier than an over-relaxation one.
In Table4.1we also report the optimal value,.,; of the relaxation parameter in the SOR
method, determined experimentally (to two digits of accyyaFinally, as a baseline method
we report in Tablet.1 the number of (unpreconditioned) full GMRESZ iterations. In all
our experiments, we report the number of iterations reduioereduce the initial residual by
five orders of magnitude, starting from a zero initial guess.

In Table4.2 we report (under ‘its’) the number of SOR iterations reqdite solve the
three linear systems with the SOR method for two distinctad®of the relaxation parameter,
namely, forw = 2/(2 — ) andw = wyest. We also include (under ‘G-its’) the number of iter-
ations required by preconditioned GMRES, where the pretionér is the SOR method with
the corresponding value af. We note that GMRES acceleration is generally not very effec
tive, and sometimes counterproductive. For a discussitineofise of SOR as a preconditoner
for Krylov subspace methods; sek].

Finally, in Table4.3we show iteration counts for SOR and SOR-preconditioned GBIR
for several values af. We note that forv > 0.7, SOR diverges for all three problems. (For
e = 1072 ands = 1073, the SOR iteration is already divergent for> 0.6.) The results show
that the rate of convergence suffers some deterioratiendesreases. The results also show
that GMRES acceleration with suboptimal values can be baakfhowever, the reduction
in the number of iterations compared to unpreconditionedRES (see Tabld.1) is rather
disappointing. In practice, using SOR (with the optimgl without GMRES acceleration
is more effective, in terms of total costs, than using eith&R-preconditioned GMRES or
unpreconditioned GMRES; the exception is the case 0.1, where GMRES preconditioned
with the Gauss—Seidel method converges very rapidly. Tlithod, however, behaves poorly
for smaller values of.
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TABLE 4.2
Results forw = ﬁ and forw = wpest -

e=10""1 e=10"2 e=10"3
w p(Z,) its G-its| p(Z,) its G-its| p(Z,) its G-its
w = 2%" 0.622 32 35| 0.735 48 40| 0.776 58 44
W=uwps | 0581 27 33| 0.705 43 39| 0.757 52 47

TABLE 4.3
Results for different values af .

e=10"1 e=10"2 e=10"3

w | p(&,) its  GHits| p(ZL,) its  GHits | p(Z,) its  G-its
0.1| 0.906 176 44| 0913 176 44| 0.918 182 45
02| 0822 83 43| 0.848 92 43| 0.860 100 44
03| 0748 53 41| 0.796 66 42| 0.818 74 43
04| 0681 39 38| 0754 52 40| 0.785 61 43
05| 0.620 31 35| 0.720 48 39| 0.759 53 47
0.6 | 0565 32 32| >1 00 39 >1 00 58
10| >1 00 19 >1 co 131 | >1 oo > 300

We mention in passing an interesting experimental obsiervain all the numerical tests
reported above, the iteration matrix of the SOR method,

Lo == w(L - U] (U +U") + (1 - )],

was found to have purely real spectrum. This means thatadsté GMRES acceleration,
standard Chebyshev acceleration could be used insteacoMen forw small enough all the
eigenvalues ofZ, are positive.

Our numerical experiments provide an illustration of thevargence result in Theorem
3.1, case (ii). Similar experimental tables could be used tesithte the other convergence
results in this paper, for example for the SSOR method. Intjmey, of course, it is difficult to
use SOR-type methods for solving this type of problem, sirisgenerally difficult to estimate
n and therefore the SOR convergence intef@aR/(2 — n)). Also, estimatingu,.s: is even
more difficult. Of course, more practical methods exist fer $olution of problem4( 1), such
as Krylov subspace methods with more effective preconuktie or multigrid methods. In light
of our results, it is possible that SOR with a small valuexahay prove an effective smoother
for multigrid applied to problems like the ones considereceh

5. Conclusions. In this paper we have studied the convergencé’akgular splitting
methods for the solution of non-Hermitian positive defititear systems. Some of our results
can be regarded as generalizations of analogous resultefetermitian positive definite case.
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As an application of our theory, we obtain new convergencalitions for SOR-like methods
in the non-Hermitian case.
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