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HOW SHARP IS BERNSTEIN'S INEQUALITY
FOR JACOBI POLYNOMIALS? *

WALTER GAUTSCHIf

Dedicated to Richard S. Varga on his 80th birthday

Abstract. Bernstein’s inequality for Jacobi polynomialsﬁ“'m, established in 1987 by P. Baratella for the
regionRy,5 = {la] < 1/2, 8| < 1/2}, and subsequently supplied with an improved constant byhawe
L. Gatteschi, and R. Wong, is analyzed here analytically abdve all, computationally with regard to validity and
sharpness, not only in the original regi® /», butalso in larger regior® s = {~1/2 < a <s,-1/2 < g < s},
s > 1/2. Computation suggests that the inequality holds with nemewhat larger, constants in any regign .
Best constants are provided fer=1:.5:4 ands =5:1:10. Our work also sheds new light on the so-called
Erdelyi-Magnus—Nevai conjecture for orthonormal Jacobi potyials, adding further support for its validity and
suggesting66198126 . . . as the best constant implied in the conjecture.
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1. Introduction. Bernstein’s inequality for Legendre polynomials, slightly sharp-
ened by Antonov and H&évnikov [l] and Lorch f], states that fon = 1,2.3, ...,

9\ 1/2 -
(1.2) (sin8)Y/2| P, (cos 0)] < (—) (n+ %) 1/2, 0<6<m.
m

According to Bernstein, the constafit/7)'/? is best possible. An extension df.{) to
ultraspherical polynomial®™ = pA~1/2A71/2) g « \ < 1, is due to Lorch §], and a
further extension to Jacobi polynomiall%a’ﬁ) with |a| < 1/2, |5] < 1/2 to Baratella P].

Chow, Gatteschi, and Wong@]| by sharpening her constant, improved Baratella’s result
read

s §0)° 4172 (cos 1)1 P cost)| < L) (O v,

N=n+(a+08+1)/2, 0<0 <,

(1.2)

whereq = max(«, §) and|a| < 1/2, |6| < 1/2. Equality sign is included inl(2), since in
the caser = 3 = F1/2 the inequality reduces faos(nf)| < 1 resp.|sin((n + 1)0)| < 1,
and in the case = +1/2, = F1/2to |sin(n + 1/2)0| < 1 resp.|cos(n + 1/2)0] < 1. It
appears, though, that strict inequality holds in all otheeses.

Squaring both sides of the inequality.?) and writing the result in terms of = cosf

and the orthonormal Jacobi polynomfai“’ﬂ) yields (if 5 > «; cf. (4.2))

(1— x)a+1/2(1 + x)ﬂ+1/2[157(La,5) (l‘)P

2'(n+a+ B+ 1)I'(n+B+1)
“aln+a+Dnl(n+ (a+p+1)/2)28"°

(1.3)

ol <1/2, 8] <1/2.
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Since a1 — oo the right-hand side is- 2/, it follows that the left-hand side i©(1) for
|z| < 1, which proves the Eglyi-Magnus—Nevai conjecture

L4 (1= @) (14 ) R ()2 = O (max(1, (o + 5%)1Y))

[7, p. 604] (see also4]) on the domain«| < 1/2, || < 1/2. The constant on the right
of (1.3) takes on the valug&/m not only atn = oo, but also atn = 1 when = 0 or
|a] = |B| = 1/2. Itis probably forn = 1 andg = 1/2 that the maximum is attained, near
a = —.0691, its value being64297807.

Incidentally, if we denote the ratio of the left-hand sidg(bf) and the right-hand side
(asin @.2), (3.3) by ¢, F,(x), we have

(1.5) (1 —a) V21 4 2) V2P ()] = s F (),

where

_ 2n+a+B+1)0(n+F+1)
Crl(n+a+Dnl(n+ (a+B3+1)/2)20°

(1.6) Yn

While the constant'(¢ + 1)/T'(1/2) in (1.2), whena = 3 = 0, is best possible, it
does not follow necessarily that the same is true in the gémase, although asymptotic
arguments will suggest that it is. In this note, the sharprdéghe inequality is determined
computationally, at least for < 100, in the squaréa| < 1/2, |3] < 1/2. Outside thereof,
it is examined to what extent the inequality is an undereation. We will also experiment
with different choices of the parametgrwhich, asymptotically, is irrelevant.

All of this will be done by computing the infinity norm,, = p,,(«, 8, ¢) (on the interval
0 < 0 < ) of the ratio of the left-hand side ol (2) divided by the right-hand side. This
is an important quantity inasmuch as it allows us to assesguhlity of the inequality(.2)
on a domairD of the parameter spade, a, 3, ¢). In fact, letpf, = maxp p,(a, 3,¢) and
pp = minp p,(a, 3,q). Then, ifpf5 < 1, i.e., the inequality holds oP, on a scale from 0
to 1, the best degree of sharpnesslof(on D is p},, and the worst degree of sharpnesgon
is pp- If pf5 > 1, then the inequality on the domaim should be modified by multiplying the
right-hand side by, to make it valid orD. The best and worst degrees of sharpngss,
pp of the modified inequality are thei, = 1, p = pp/pp-

2. The constant in (L.2) is sharp. An elementary computation, using Stirling’s for-
mula, will show that the right-hand side df.), asn — oo, is asymptotically equivalent to
(mn)~1/2, regardless of the values of the parameterg, andq. The inequality {.2) thus
says that the function on the left, multiplied byn)'/?, is less than, or equal to, a constant
that tends to 1 a8 — oo. But Darboux’s formula§, Theorem 8.21.8] tells us that this same
expression, at least on a compact subintervdl ef 6 < =, but for arbitrary reak and 3,
is <14 O(1/n), where the constant 1 is best possible (bounding, as it @o&ssine func-
tion). This not only shows that the constdifyy + 1)/I'(1/2) in (1.2) is indeed best possible,
but also that the inequality, with the constant somewhadrged, may well hold in larger
domains of the(o, 3)-plane. The purpose of this note is to explore this compunatly in
some detail.

3. Bernstein’s inequality for monic Jacobi polynomials. In what follows, we prefer
to use the monic Jacobi polynomizaia’m, i.e.,
n

2n
PO (2) = k@ (@), ky = 2—”( ntat ﬂ) ,
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and we shall write it as

n

(3.1) (@) = [[(@ - 2,)

r=1

in terms of the zeros, = xﬁ{f,:ﬂ) (in ascending order) of the Jacobi polynoml%ﬁ”’ﬁ). If

we divide both sides ofl(2) by the expression on its right-hand side, anddet cos 6,
Bernstein’s inequality takes the form

(3.2) e Fn(x)] <1, —1<z<1,
where

V(A (at f+1)/2) 7012 (Bt
Cp = Cn(aaﬁa Q) = n+(a+p+1)/2 n-+q = ’
03 [+ 1)2 ()

Fo(z) = F{7 (2) = (1= 2) @D/ (1 4 )0 /47000 (),

whereq = max(«, 3). Since we later considerto be an independent parameter, we include
it in the constant,, as one of three parameters. Notice that

Cn(aa ﬁv Q) = Cﬂ(ﬂa Oé, q)a
regardless of how = ¢(«, ) is defined so long ag(«, ) = q(0, «).

4. The infinity norm || F,, || of F,,. We now wish to computéF, || = max_j<z<1
|F,(z)]. Since by the reflection formula for Jacobi polynomials,

IES P oo = IF oo,
it suffices to conside > «, and sinceﬂF,(f’"ﬁ) lloo = 0 if 2 + 1 < 0, we may assume
(4.1) B>a>-1/2.

Computing|| F}, || @amounts to computing the local extremarof in the interior of the
interval[—1, 1] along with|F},(+1)|. With regard to the former, we have

Fy(2) = 5(1-2) M (142) @I [f-a—(a+f+Dalr™? (2) +2(1—2®)n ' (2) },

1
2

so that the local extrema occur at those roots of the equigltion — («+ 5+ l)x]m(f"’ﬁ) (z)+

2(1 — 22)ri*? () = 0 that are insidé—1, 1), that is, dividing byr'™” and noting 8.1),
at the respective roots of

n

(4.2) f@)=0, fl@)=f-a—(a+f+Dz+2(1—-2%))

r=1

1

T — x,

There can be at most-+ 1 real roots. To discuss their location, we first observe that
f-1)=28+1, f(1)=—(Q2a+1).
Itis clear from from §.2) that

f(z, +0) =400, f(z,—0)=—-00, r=12,...,n,
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and on each intervdle,., z,41), r = 1,2,...n — 1, the functionf descends monotonically
(cf. Sectionb) from +oco to —oc. It therefore crosses the real line exactly once, accogntin
for n — 1 internal extrema. We distinguish three cases with regattiggarametes. |f,
first,2a+ 1 > 0, and hence by4(1) also28 + 1 > 0, thenf(—1) > 0 andf(1) < 0, so that
there are two more roots, one eact{inl, z;) and(zx,,, 1), accounting for two more internal
extrema, and thus for a complete setof 1 extrema. If, secondl2«a + 1 = 0, there are
two subcases23 +1 > 0 and283 + 1 = 0. In the former, there is still a local extremum
in (—1,z), but none in(x,,, 1); in the latter, both these lateral intervals are devoid oélo
extrema (in fact, this is one of the trivial cases noted inti®ad, in whichc, || F}, || = 1.)
Finally, in the third cas€a + 1 < 0, as was already mentionef, || .. = .

5. Computing || F;, ||« in terms of local extrema. To compute a local extremum &,
say in the intervala, b), —1 < a < b < 1, we use Newton’s method applied to the equation
(4.2), with the midpoint of the intervala, b) as the initial approximation,

(9)

i+1 i f=') . 0

(5.1) 2+ = 20 _ Py’ i=0,1,2,..., 29 =(a+b)/2

Since the intervala, b) in our application is small anfirapidly descending fror-oo to —co

(i.e., f’is large negative), Newton's iteratioB.() converges very quickly. The derivative pf
is easily computed fromi(2),

n 2
f’(:c):—(oHrﬁJrl)fQZ%;x)jl.
r=1 r

Sincea + 8+ 1 > 0 by (4.1), and the discriminants of the quadratics in the numerator o
the right are—4(1 — 22) < 0, each term of the sum is positive aifit{z) < 0 on (a,b), as
already noted in the previous section. Thus we arrive ataheing

Computational procedure.
If « > —1/2, apply 6.1) to the intervalga, b) = (z,,xr41),7 =0,1,2,...,n
(Wherezq = —1, 2,11 = 1), giving &, = (>, Then, since, (£1) = 0,

(652 Fulleo = max [Fu(6)], 20+1>2a+1>0,

If « = —1/2andg > —1/2, do the same, but irb(2) let » run only up to
n — 1, and compute
(5.3)

| Fy || oo = max {Fn(l)7 max |Fn(§,)|} , 286+1>0=2a+1.

0<r<n—

If a =5 =—1/2, pute, | Fullee = 1.

The Matlab scripbernstein.m listed in the Appendix implements this procedure and
for any givenn, o, 3, g outputsp, (@, 8, 9) = ca(a, 8, ) A7 .

6. Numerical results. In this section we present numerical results for the sqlére
1/2, |8] < 1/2. We determinep;, and p (cf. Sectionl) on the domairD = {n =
[5102050100],« = —.5:.01:.5,3 = a:.01:.5,¢}, where inturny = ¢* = max(«, 3) =
B,q=¢q  =min(q, ) = «a,q=—.75:.25:1. The results are shown in Talile.

It was observed that the sequengs, («, 3, ¢)} is monotone, either increasing or de-
creasing. Therefore, ifip < n < nq, it would suffice to compute,, for n = ny and
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TABLE 6.1
Sharpness ofl(2) on the squarea| < 1/2, || < 1/2, with selected values qf

g— | q* q 0 .25 5 .75 1
pg 1.0000 1.0000 1.0230 1.0169 1.0000 .9997 .9988
o .9978 .9978 .9754 .9468 9091 .8639 .8128
¢g— | -2 -5 =75
p;g 1.0174 1.0000 1.0000
Pp .9532 .9167 .8707
TABLE 6.2

Sharpness of (the modified) Bernstein’s inequality)(with the right-hand side multiplied by?gs on the
square—1/2 < a <s,—-1/2< 3 <s.

s 23 Pp.

1.0
15
2.0
2.5
3.0
3.5
4.0
5.0
6.0
7.0
8.0
9.0
10.0

1.038670463288
1.077936370739
1.11990521663§
1.166112996124
1.217697600829
1.275581233437
1.340588974513
1.495211643984
1.688484850743
1.928648600014
2.225950341336
2.593289070919

3.046949165887

.960631920975
.925639053930
.890950401502
.855646070084
.819398840672
782215962616
744284804200
667316902208
590932161440
517346707121
448248994544
.384754639811
.327468542495

n = nq, SINCeMaX,,<n<n, Pr = Max(pPn,, Pn,) ANAMIN, <p<pn, pr = Min(pn,, Pn,)-
Consequentlypf, = max(maxp pn,, maxp p,, ) andpy = min(minp py,, minp py,, ). In
other words, if monotonicity in fact holds tru® = {ny, < n < ny,...} may be replaced
by D = {n = {ng,n1},...}. In all our experiments we have verified that indeed the tesul
for p, andpy, are the same whether we restricto the smallest and largest value, or include
intermediate values as well.

It can be seen from Tablé.1 that the choiceg = ¢™ andq = ¢~ yield by far the
best degrees of sharpness, both choices being esserdeilydal in quality. Naturally, if we
lowerng = 5 tong = 1, the sharpness deteriorates ftg = .9406 for both choices of),
while increasingn to, say,no = 10 improves sharpness (o, = .9994 for both choices

of q).

7. Bernstein’s inequality on larger domains. We now explore the sharpness resp. va-
lidity of (1.2) in the larger region®R; = {—1/2 < o < 5,—1/2 < 3 < s}, where, to begin
with, s = 1,2,5, and 10. We defin® = D, = {n = [5 10 20 50 100], (o, 5) € R},

s > 1/2. We found thap, = D, for all s > 1/2, and computations based on succes-
sively finer screenings near the minimum pdint, 37) € R4, for D, s yielded

997780002408
997804307519

7.1) P,y = (where ¢ = ¢*),
' PD, 5 = (where g = ¢7).
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Forp{gs we found, whers = 1,2, 5, 10, regardless of whether = ¢+ or ¢ = ¢, that the
maximumpD = maxp, p, IS always attained at the upper right-hand corfers) = (s, s)
of the squaréR ;. Assuming this to be true in general, we computed T&blfor pD and
(cf. Sectionl) pp_ = pp, /pD , where we used the first of the two values figy = le/2
(7.2). (The other value, of course, gives very similar results.)

It can be seen that the sharpness of the inequality, evesn for10, is still well within
one order of magnitude. What is remarkable is also that thateeare exacly the same if we
letn go up to 200, so that the results are likely to be valid fonalt 5.

As a final experiment, we recomputed the second column ofeTald with Dy =
{n =152443 6281100}, {(o, 3)} C Rs }, where{(«, 3)} is a set of 1,000 randomly gen-
erated pairg«, 8) in Rs. We verified that the results are all strictly smaller thaos#hin Ta-
ble 6.2, the smallest and largest deviations ber@y70 x 10~° (for s = 3.5) resp.6.2961 x
103 (for s = 9).

We remark that the property of the maxmtp% being attained at = 3 = s has been
verified also ifn. =[1:10, 20, 25, 50, 75, 100] in the definition ofD, and also foimax,, \/7,.cn

x || Fr|leo in (1.5). The property, therefore, is likely to hold for any> 1 and anys > 1/2;
if so, it would allow to extend the upper bound for

_ p)atl/2 B+1/21 plesB) ()12
max (1= )"+ )RR @),

proved fora = 3 > (1 ++/2)/4 in [4, Equation (4)] to arbitraryy > —1/2, 3 > —1/2,
lending added support for the validity of the Etfi—-Magnus—Nevai conjecture. Indeed,
further calculations along the lines reported on in Tebl but forn > 1, in particular the
computation forx = 3 = s of the quantity

max 7,2 | Fy |2,/ max (1, (25%)1/4)

fors = [.5:.01:12:10 20 50] and = .706:.0001:.708 reveals that it attains a global
maximum.66198126. .. ats = 1/v/2. This suggests that the best constant implied in the
Erdélyi-Magnus—Nevai conjecturé @) is .66198126.. . ..

Appendix. In the following Matlab script, the routingsjacobi andgauss are part
of a software packagePQwhich can be downloaded, along with the routine below, laryi
routines, and a driver, from

http://www.cs.purdue.edu/archives/2002/wxg/codes/BI J.html


http://www.cs.purdue.edu/archives/2002/wxg/codes/BIJ.html
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% BERNSTEIN Sharpness of Bernstein’'s inequality for
% Jacobi polynomials P _n(a,b; -) with b>=a>=-1/2.
% The output is ¢ n || F _n ||
%
function rho=bernstein(n,a,b,q)
if a<-1/2 | b<-1/2 | b<a

disp('parameters a and/or b not in range’)

return
end tol=1e2*eps;
pnum=1; pden=1; p2=1;
for nu=1:n

pnum=(1+(n+a+b)/nu)*pnum;

pden=(1+qg/nu)*pden;

p2=(1-1/(2*nu))*p2;
end
cO=pnum/2°(n+(a+b+1)/2);
cl=(n+(a+b+1)/2)"(g+1/2)/(gamma(1l+qg)*pden);
c2=sqrt(pi)*cl*p2;
c=sqrt(pi)*c0*cl;
extr=zeros(n+1,1);
%
% When applying this routine for the same values
% of a and b, but many different values of n, the
% following command, for better efficiency, should
% be called outside the n-loop with n set equal to
% the largest n-value in the loop and the array ab
% included among the input parameters of this routine.
%
ab=r _jacobi(n,a,b);
xw=gauss(n,ab);

x=xw(:,1);
x1=[-1 x' 1];
kO=1; kl=n+1;
if a==-1/2
if b>-1/2
kl=n;
else
rho=1;
return
end
end
for k=k0:k1

t0=0; t1=(x1(k)+x1(k+1))/2;
while abs(t1-t0)>tol
t0=t1;
t1=t0-fbern(t0,a,b,x)/f1bern(t0,a,b,x);
end
p=prod(t1l-x);
extr(k)=(1-t1)"(a/2+1/4)*(1+t1)"(b/2+1/4)*abs(p);
end
rho=c*max(extr);
if a==-1/2
if ¢c2>rho
rho=c2;
end
end
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% FBERN A function f needed in Bernstein’s inequality
% for Jacobi polynomials

%

function y=fbern(t,a,b,x)
y=b-a-(a+b+1)*t+2*(1-t"2)*sum(1./(t-X));

% F1BERN The function f' needed in Bernstein’s inequality
% for Jacobi polynomials

%

function y=flbern(t,a,b,x)
y=-(a+b+1)-2*sum((t"2-2*t*x+1)./(t-X)."2);
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