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CONVERGENCE OF A LATTICE NUMERICAL METHOD
FOR A BOUNDARY-VALUE PROBLEM WITH FREE BOUNDARY
AND NONLINEAR NEUMANN BOUNDARY CONDITIONS *

I. A. CHERNOV'

Abstract. We consider the Stefan-type diffusion boundary-value fembwith free boundary and nonlinear
Neumann boundary conditions. Such problems describedgyéisrmation under constant conditions when nonlinear
surface processes are taken into account. We constructfiiedce numerical method and prove the convergence
of the interpolation approximations to the weak solutiothef problem. Then we apply the theory of boundary-value
problems to show that this weak solution is the classicaltgwi. Thus, the existence of the solution to the problem
is proved and the difference method is justified.
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1. Introduction. We consider the boundary-value problem,

1.1) 6tc( &) = Opze(t,z), x€ (p(t),L), te(0,7),
(1.2) wc(t, L) = G(c(t, L)), tel0,T],

(1.3) O c(t p(t)) = g(c(t,p(t))), te0,T],

(1.4) c(t, p(t)p = —g(clt,p ( ). p(0)=po, p(T)=0,
(1.5) c(0,z) = p(), € [po, L], 0<po<L.

The following assumptions are made: the functioh(e) and ¢g(c) are defined for > 0;
the continuous derivativeS’(c) < 0, ¢’(¢) > 0 for ¢ > 0 exist; the conditiongz(1) > 0,
G() < 0, andg(1) = 0 hold; the functionp(z) is defined forz € [pg, L], ¢(z) > 1,
G(p(x)) > 0forz € [po, L], andy”(z) exists and is continuous iipg, L]. Note that the
initial-boundary compatibility condition is included ihé problem: condition$l.2), (1.3)
hold fort = 0. The following consequence can be derived.

PropPOsSITIONL1.1. The initial distributiony(z) is not constant.

Proof. If ¢(z) = const, theng(y) = G(¢) = 0 due to(1.2) and(1.3) and thusp = 1;
butG(1) #0. 0O

Let us define the seY,(7') C R?; it consists of all(t,z) such thatt € [0,7],
x € [p(t),L]. Its closure isY,(T). To solve the problem, we must find the number
p(t) € CY([0,T]), andc(t,z) € C(Y,(T)). These functions must satisfi.1)—(1.5).
If (1.1) is satisfied in a weak sense, then the solution obtainedleddile weak solution.

This problem is a generalization of the model of isothernyalrfding of a metal particle
under constant pressurg][ Equation(1.1) is the diffusion equation; without loss of gen-
erality we assume that the diffusivity is unity. The nonin&leumann boundary condition
(1.2) connects the diffusion flux near the surface with sorptioth@esorption on the surface.
The stoichiometric concentration in hydride is unity. Ttendition G(1) > 0 means that
the pressure is above equilibrium with respect to stoicteiiv hydride. The conditiofil.3)
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connects the diffusion flux on the phase boundary with theeotation near it and describes
the hydride formation process. For stoichiometric conitn hydriding is impossible. The
Stefan-type conditiofil.4) is the conservation on the free boundary. The initial cotregion
(1.5) is between the stoichiometric and the equilibrium values.

The main difficulties are the free boundary and rather gémemalinear boundary con-
ditions. Analytical solution method<] can hardly be applied to such problems. A lot of
research has been devoted to the numerics of free boundasiepts (e.g.,3, 4, 5, 6]), but
little attention has been paid to diffusion boundary-valugblems with free boundary in fi-
nite domains and with nonlinear boundary conditions. Time @i this paper is to apply the
well-known idea of an implicit difference scheme with tintess dependent on the velocity
of the free boundary (se€][and references therein) to this class of problems and teeoro
the convergence to a classical solution. Therefore, weepttoe existence of the solution in a
constructive way. We prove the maximum principle for thectise lattice problems and use
it to construct a convergent sequence of approximationssafiation. The maximum prin-
ciple for parabolic PDEs and the corresponding discreteegays is well-knownT, 8], but in
our case it also holds on the boundary, i.e., boundary comgdialso do not allow values of
the solution to be too high. The restrictions are rather waadk have a physical meaning.
Nevertheless, they are sufficient for the results obtained.

The structure of the paper is the following. First, we constithe difference scheme
for this problem and prove a few statements for the lattidetsm. Next, we obtain the se-
quences of continuous approximations to the free boundahtlae concentration by linear
interpolation. Then, we show that the sequence for the foemtdary converges uniformly
to some functiorp(t), p(T) = 0 for someT’; also the sequence for the concentration con-
verges inC(Y,(T)). Next, we show that these functions are actually the clabsilution
of the problem. Therefore, we prove the existence of thes@dabksolution of the nonlinear
boundary-value problem with free boundary and additignpistify the difference scheme
for the problem. The idea is fron2][7].

The solutione(t, ) must be positive (because it represents a concentratiargaowver,
c(t,z) > 1 because the concentration in hydride cannot be below theh&metric. We
show that the solution indeed has these properties; seadinéo4 below.

2. Difference approximations. Let us divide[po, L] in M pieces of equal length
h = (L — po)/M. Inthe sequeh — 0 meansM — oo. LetI = |L/h] (integer part),
K =1—- M, andé§, = L — Ih. Choose any sequenég, such thatk, = K, forn > 0
eitherK,,,; = K, or K,,;1 = K,, + 1. Let us denoté&,, = K,, — n.

Now let us consider any spatially uniform lattice with theggh andr,, 0 < n < N,
0 < ¢ < I. HereN is the minimalN such thatZéV ., > T, T > 0is some given time.
Let the nodes of this lattice b, ); these are the points,,, x;), x; = o, + ih, to = 0,
tht1 =t +7Tn,n > 0.

Let Dy be the lattice subset, such that,(if,i) € Dy, then0 < n < N and
1 =kn,kn+1,...,I. Inother words, each succeeding layer contains eitherimesiumber
of nodes (ifK,,+1 = K,, + 1) or one left node more (if{,, 1 = K,). Let Dy be the open
subset; if(n,i) € Dy then0 < n < N andi =k, + 1,k, +2,...,I — 1. We need one
more lattice seDy; it is Dy without the corner node@, K), (0, I).

We denote the value of the lattice functigrt the nodén, i) by f:. Let us approximate
the derivatives,

d —d _ i1 _ _ _
771_, OpC = 8}16; = 2 OpgC & 8}1}163I = 8h(8hc§;1).

. c
~ C—
Oic = 0-¢;, = h
Tn—1
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Now replace the derivatives if1.1)—(1.3) and(1.5) by the approximations,

(2.1) Orct = Oppct, (n,i) € Dy,
(2.2) 8;105171 = G(cfl), 0<n<N,
(2.3) dnerr = gle), 0<n <N,
(2.4) ch =p(ih), i=K,..., I

This is a system of algebraic equations for the unknowjjngn, i) € Dy. The sequenck,
and the stepa, 7,, are given.

3. The maximum principle for the lattice problem. Here we prove a few properties
of the solution to the lattice problen2.()—(2.4). The technique is similar to the maximum
principle for parabolic PDEs.

THEOREM 3.1. (Maximum principlg. Let the lattice function!, be defined inDy,
satisfy the systeif2.1) in Dy, and its maximum or minimum be achieved at the riadei*).
Then eithem* = 0 or i* = I or i* = k,- or ¢}, = const in D,-.

Proof. Assume that the maximum (strict or not) is achieved at aerimode(n*,i*),

n* >0,k +1<i* <I-—1.Letususg2.1), its left-hand side is obviously nonnegative,
while the right-hand side is nonpositive. Thilsc:. = dynci. = 0. Due to the fact that

(n*,i*) is the maximum node;., *' = ¢i, andci. | = ¢i.. The same argument applied
to the nodegn*,i* + 1) yields ¢ *2 = ¢/ *1 = ¢, Continuing the argument, we get

. = cﬁl foralli = k,-,..., I, i.e., the function is constant on the whole layer. As

¢ ._, = ci., the same maximum is also obtained on the layer- 1 and so the function
is also constant on it. Continuing, we prove tkt = const on D,,-. The proof for the
minimum is similar. 0O

The theorem says that eithé€f = const in D,,- or the nodgn*,i*) € Dy \ Dy.

COROLLARY 3.2. Let the lattice function, be defined inD, and satisfy the system
(2.1), (2.4), its maximum or minimum (strict or not) be achieved at a npde:*), and/ be
small enough. Then either* = 0 or i* = I or i* = k.

Proof. Due to (2.4) and Propositionl.1, the functiony(z) is not constant; then
¢ = (ih) is also not constant provided thatis small enough. Thug!, is not constant
in D,, for anyn. TheorenB.1provides the rest. [

THEOREM 3.3. Let the lattice function, be defined inDy and satisfy(2.1)—(2.4).
Thenc!, < Ain Dy, the numberd > 0 is such thatG(A) = 0.

Proof. It is sufficient to show the inequality for the maximum. ThenstantA is finite
because&i(cc) < 0. As G(p) > 0 andG is decreasingy(z) < A. The maximal value
of ¢!, cannot be achieved at a no@te’, k,,- ). Assume that2* is the maximum; therefore
et < FurThe initial distributiong(z) > 1 and thus:?>* > 1. From (2.3) we know
thatd,ct»* > 0 and thuscf2 ! > ¢F2*. This shows that!:* cannot be the maximal
value. Assume that the maximal valuedfis achieved at a nod@*, I). The right-hand
side of (2.2) is negative ifc! > A; therefored,cl~! < 0. This means that! < ¢/~! and
thusc’, cannot be maximal. I#. = A then the maximal value is achieved also at the inner
node(n, I — 1). This is impossible due to CorollaB/2. 0

Note that the bound depends only oi7(-) and is independent &f, 7,,.

THEOREM 3.4. Let the lattice function, be defined inDy and satisfy(2.1)—(2.4).
Thenc!, > 1in Dy.

Proof. It is sufficient to show the inequality for the minimum. Fer= 0 it is given
thato(x) > 1. The minimal valueC' < 1 cannot be achieved at a no@le*, I). Assume
the contrary;(2.2) yields d,c.-' > 0 (becausez(C) > 0) and thuscl. > ¢/Z'. So

n* n*
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¢!, cannot be the minimum. Assume that the minimal value< 1 is achieved at a node
(n*, ky+). From(2.3) we getd, 2" < 0 (becausg(C) < 0),i.e.,ci* ™! < F»- andthus a
contradiction. Let us consider the case of the minimal vafzé = 1. From(2.3) it follows
that the minimum is also achieved at the inner nade’ ™' = ¢f»* = 1. This is impossible
due to Corollary3.2. d

Note that the lattice solutiosf, > 1 in Dy and thus it is positive.

THEOREM 3.5. (UniquenesgLet ¢i andw!, be two solutions to systef@.1)—(2.4) in
Dy. Thenci, = w? in Dy.

Proof. Consider the lattice function!, = ¢!, — u‘,. We need to prove that! = 0 in
Dy . Suppose the contrary: let, > 0 at some nodén, 7).

The functionw?, satisfieg2.1) due to linearity. Therefore, Corolla.2 guarantees that
the positive maximum is achieved on the boundarydaf. Butw) = 0, so the maximum
cannot be achievedif = 0.

Note thatw! satisfies the condition
onwyr = g(eyr) = g(upr) = g'(Riwy,  Ru € [ugr, ]

If the maximum is achieved at a notle, &, ), then the left-hand side is nonpositive while the
right-hand side is greater than zero (remember ghat 0). The contradiction means that a
maximum is impossible.
Finally, w!, satisfies the condition
pwl ' =G(c) — G(ul) = G (R)w), Rs € [ul,cl].

n n’-n

If the maximum is achieved at the nogle ), then the left-hand side is nonnegative, while
the right-hand side is less than zef® (< 0). A maximum is impossible.

The contradiction implies that no positive maximumdjf can be achieved i y. Thus
¢l =l in Dy. d

Let us consider the lattice s&y: if (n,i) € Dy, then0 < n < N, k, <i <1 -1,
In other words, the set contains one node less at each laygpared toD . Also we will
consider the subsé®, with the nodegn,:),0 <n < N,k, +1<i<I—-2.The setD§v
is equal toD’y, without the corner node$), K) and(0, 7 — 1).

Let ¢!, satisfy the systeni2.1)—(2.4) in Dy. The lattice derivativé), ¢!, is defined as a
lattice function inD’y, and satisfie$2.1) in D’y.. Thus it obeys Theore®.1: if its minimum
or maximum is achieved at the no@e*, i*), then eithem™ = 0 ori* =T — 1 ori* = k-
oritis constantinD/,..

THEOREM3.6. Letc!, satisfy(2.1)—(2.4) in Dy. The lattice derivativé),c’, is bounded
|Onct | < Bin DY. The constanB does not depend dnandr,. If additionally ¢’ (z) > 0
on[po, L] thendyci, > 0in DYy,.

Proof. Extremal values of, ¢, cannot be achieved iRy, due to the maximum principle.
Therefore, we only need to check if the values are boundéeatades0, i), (n, I — 1), and
(n, ky). Due to(2.4) dnchy = ¢'(z; +60),0 < 6 < h,is bounded foralf = K,..., T — 1.
From(2.2) and Theorem8.3and3.4, we haved,cL~! = G(c.) € (0,G(1)). Finally, (2.3)
and Theorem8.3and3.4imply 8¢k = g(ck) € (0,9(A)). 0 )

Let us construct the lattice subsef; C Dy in the following way: a nodén,i) € Dy
belongs toDY; if the node(n — 1,i) belongs toDy. One can see that iP%; the index
n > 0 (i.e., the layem = 0 is not contained); also the nodés, k,,) are not contained if
K, = K,_i. Therefore this subset is generated by some sequklice: > 1. Denote
k' = K]! — n. Let us consider also the subsé§, andDE{, similarly to D andDy.

Let ¢!, satisfy the systeni2.1)—(2.4) in Dy. The lattice derivativé), ¢!, is defined as a
lattice function onD?, and satisfie$2.1) in D’;. Thus it obeys Theore®.1; if its minimum
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or maximum is achieved at the no¢le*, i*) then eithem* = 1 ori* = I ori* = k//. oritis
constant inD’.

THEOREM3.7. Letc!, satisfy(2.1)—(2.4) in Dy. The lattice derivativé, ¢!, is bounded
|0-¢t| < Zin D¥,. The constan does not depend dnand,,.

Proof. Extremal values of),c, cannot be achieved iR}, due to the maximum principle.
Therefore, we only need to check if the valuesit!, are bounded at the nod¢s, I),
(n, k), and(0, 7).

Consider two nodeg: + 1, 1) and(n, I), n > 0. Due to(2.2),

C7Il+1 - n+1 = hG(c n+1) C’{l - 0711_1 = hG(C{z)-

Substract the second expression from the first one and dyidg,

aﬂ'cvlz+1 - 8Tc711111 = hG/(Ql)aTC111+17 Q1 € [ Cns 77,+l]

As G’ < 0, the positive maximum and negative minimum of the funciipn?, cannot be
achieved fori = I, otherwise the contradiction appears.

Now consider two node§&: + 1,k;{+1) and(n, k), n > 0. There can be two cases.
First, let us study the cagdg,  , = K]/ + 1. Due to(2.3),

k)”“rl k” k” k)”“rl k” k”
Cpny1 — n+1 - hg (Cnll) ,  Cn" —cp't = hg (Cnn) .
Substract the second expression from the first one and dyidg,
k)”“rl k;ll ’ kx k// "
a CnJrl 8"'CnJrl = hg (QQ)aTanrl? Q2 € |:C" ’ n+1:| .

As g’ > 0, the positive maximum and negative minimum of the functipa?, cannot be
achieved at the nodes, &) if K! = K!_, + 1.
Second, we study the cas&,, ; = K. Due to(2.3)

k// k//—l k//_l k//"—l k// k//
Cpt1 —Ch1 =hg (Cnll ) , et —cpt=hg (cn") )

Substract the first expression from the second one,
S S S KK —1
(cn-l—l —Cn" ) + (C" - cn-l—l) - hg (Q?’)( n+1 — " )7 Q3 € |:C" ) n+1 :| :
Now let us transform the first bracket on the left-hand side,

k”—l k! kIl —1 k” 24 k! kI —1 4
n+1 —Cn = Cn+1 - n+1 + CnJrl —n" = _8hcn+1 h+ 8Tcn+17n7

and the second bracket on the left-hand side,
k! 41 24 k41
e TG4 = 5hcn+1h Orcplir Ta-

The bracket on the right-hand side equals the first one oreftdénd side. Therefore,
// h
(14 hg' (@) 0relfs, = 0, + 2 (ki — ) + g (Quianeliy

The big bracket equalsahhcffilh = —6chfj,r1h (we have use@?.1)). Thus,

" h N
(1 + hgl(Q3)) n+1 =0-c fwjl + 7__( (Q3)6hcn+1 2 Cnﬁrl)
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Then due to boundednesb,c;, < B,

k! k! h? W
(1+hg'(Qs))Oreyn < Oy + (9'@s)B = orclii, ).

Now we see that i@chfj;l is the maximal positive value, then it is less th[anaA)]c(g’)B.
1,

Otherwise, the bracket in the right-hand side is negativethns

kIl +1

ko,
Orc,y < 0rc

A similar argument shows that the minimal possible valudgs hounded.
Now let us study the case = 1. Lete’ = ¢} — ¢ and conside(2.1) for n = 1,
K<i<I—-1:
czfl —2ct + clfrl - cffl —2ch + cf)Jrl n gi=l — 2¢t 4 gt+1
h? N h? h? '

Butc) ' — 2¢} + citt = h%¢"(x;) + o(h?) and thus the first term in the right-hand side is
bounded. Besides, ¢} = /7. Therefore,

7o tet = h72 (e = 26" + M) + R(i).

Here R(i) is bounded independently dnand . Let the functiond,ci, reach a positive
maximum at the nodél, i*); thens*" also reaches the positive maximum. But the first term
in the right-hand side is negative; 89'<* < R(i) and thus is bounded. A similar argument
applies to the negative minimum.

Let us sum this all up. Minimal and maximal values of the t&tiunctiond. ¢, in DX,
are achieved at the nodés*, i*) for eithern* = 1 ori* = I ori* = k!!.. But these extremal
values are bounded independently on the steps; therefere éiistsZ such thatd. ¢! | < Z
in DY,. a

COROLLARY 3.8. The second lattice derivativ@,,,c!, is bounded independently of the
steps at nodes where it is defined.

COROLLARY 3.9. If the initial distribution has a positive second derivagiy” (z) > 0
and the steh is sufficiently small, thefl, ¢!, > 0in DY.

COROLLARY 3.10. Let¢'(z) > 0 and¢”(x) > 0 and the stefh be sufficiently small.
Then0 < dyc, < Bin Dy andB = dych .

Proof. As d,c!, > 0, then alsady,,ci, > 0 at nodes where it is defined. This implies,
in particular,0,ck» < 9;,ck»*1 and therefore the maximal value @fc!, cannot be achieved
at a node(n, k,). As d,ci, > 0, ¢! increases; due to monotonicity of the functiGhthe
right-hand side of1.2) decreases. Thus if the maximal valuedpt?, is achieved at a node
(n,I), thenn = 0. The only possibility for the maximum is the nodg I — 1). O

4. Choosing the time step.Up to this point we considered the given lattice; the spatial
steph, the time steps,,, the sequencé’, (it generates the subsBty), and the timel” were
fixed. Butr,, and K,, have to be determined. Some equations must be added to teensys
(2.1)—(2.4) to find not only unknowr!, but also unknown,, andk,,.

Let us consider the lattice analogue of the Stefan conditiof),

a _ Pn+1 — Pn _ g(cZn)
TPn+1 = =T
Tn cn”
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We have already proved thaf~ > 1 and thus the shift of the free boundary is negative:
pnt+1 — pn < 0. In order to make the absolute value of this shift equélip to the error of
approximation), we need to choose the spegjal

k
cyr

glcnm)

However, it can turn out that:~ is close to unity, sg(ck~) is too small and them,, is too
large. If 7, does not tend to zero &s— 0, then there is no approximation.

From (1.4) it follows that the boundary moves slowly when the conceitrenear the
boundary is close to unitys ~ —g'(ck») (ck» — tl(% Therefore let us assume that for small

Tn =

n mn

ckn | the boundary does not move. Let us consigersmall if
(4.1) g(ckm) < &' (po)Vh.

The left-hand side is positive. Let the stempbey the inequality, < 1. The reason is to
guarantee that the initial distribution is not small.
Summing this up, we choose the stepsas follows,

kn

S () > VR
(4.2) 7, = Ay 0<n<N-1,
W\/ﬁ <TVvh=7, otherwise.
0

Hereg ! is for the inverse functiorl; = const is independent of. Note that bounds for the
time stepr,, > h/g(A), 7, < 7 = O(~/h) hold.

In the first, case the boundary shifts left one Stefuring a time step; in the second case,
it remains motionless. In other words, in the first case weaddde to the new layer, while
in the second case we do not. Therefore,

K, if g(ck) > ¢'(po)Vh,
(43)  Knp= { K, +1, othegr\(/vise). 7o) O=n=N-1,
The system(2.1)—(2.4), (4.2), and(4.3) is called the systerfx).

PROPOSITION4.1. Letc!, satisfy the systeifx) in D;. Thend,cl, # const in Dy,.

Proof. Due toh < 1 the initial valuep(po) is not small and thud(; = K, = K.
Thus the layem = 1 has one node more compared to the layer= 0. Assume that
the lattice derivatived,c!, is constant inD}. Then due to(2.4) dnct, = ¢'(po) in Dj.
In particular, O,ck = e~ and from (2.3) we haveg(cf) = g(cf ™). As g(c)
is monotonic, this meangS = ¢!, Thuscl = ¢ + ¢'(po)h. In the similar way,
it = ¢l + @' (po)(i + 1)h. Thuscel = ¢ + ¢'(po)(N — K + 1)h. As the derivative
is constante)” = c¢ff + ¢'(po)(N — K)h # ¢f’. However, due tq2.2) G(cY) = G(c})
and, thus¢)’ = ¢ because7(c) is monotonic. This contradiction shows thiatc!, cannot
be constant i)} and thus inD’y foranyN > 1. O

5. Solving the system.We are going to present an algorithm for the solution of the
system(x). Thus we will prove that it has a solution. A solutionis asefor0 <n < N-1,
K,for0<n < N,c for0 <n < N,k, <i<Iforgivennaturald/; h < 1,1, K, N,
andT are uniquely determined.

Let us develop a sweep method to obtéjnwhen thec!, , are already known. Denote
X =ch Y =cl. Expressalll, i = k, +1,...,I — 1 viaci ' and X linearly with

unknown coefficients,

(5.1) ¢ = a4 b+ di X
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Substitute(5.1) into (2.1) instead ok’ ! fori =k, +2,...,1 — 1. Theresultis

;T S, 4 b+ dia X
no 245, —ai—1 .

HereS,, = h?/7,_1. Then
(52) a; = (2 + Sn - ai,l)_l, bl = ai(SnC%71 + bifl), dz = aidi,l.
This are the recurrent sequences. To get the initial valaesider(2.1) fori = &, + 1,

Ko +2 kp+1
ol _ cy + Spe,r T+ X

" 2+ 5,

_ Kent+1
Hencea,+1 = di,+1 = (24 )" br, 1 = k415t

Now express?,, i =k, + 1,...,1 — 1 viac’ ! similarly,
(5.3) ¢ = A;ci=' + B; + D;Y.
Analogously,
A;=(2+ 8, — Aiy1)"", Bi=Ai(Snc_i + Biy1), D =A;Diiq,

with initial valuesA;_1 = D;_{ = (2 + Sn)_l, By 1= Aj_lSnc,I;ll.

ProPOSITIONS.1. The following inequalities hold fak,, + 1 <i < T—1:4a; € (0,1),
ait1 > a;, d; € (0,0.5),dip1 < di, by >0,a;, <1-— I'1hi for some constarit < I'; < 1.
The same inequalities hold fet;, B;, D;.

Proof. The first five inequalities are proven by induction; obvigukey are true for
i = ky, + 1; if they hold for some then(5.2) shows that they also do for+ 1.

The sequence; increases and is bounded; therefore it has an upper bourghldalate
it find the fixed point: of the functiona; (a;_1), i.e., solve the equatiar? — (2+5,,)a+1 = 0.
It has a real root: from (0,1). If a; = a thena;+1 = a. Asag, +1 < a, SOa; < a,
1—a; >1—a. Letusestimate

. VA8, + 52— 8, 25, 2h?

—qQ = = = =

2 VAS, + 82+ S,  \/AR?T, 1 + At + k2
2h

2h 2h
= > = >
VAT—1+h2+h VATHR2+h \JATVR+Rh2 4+ h
h h3/4 h3/4
NS

> > > =
VATVE +h2 - VAT + 83727 AT +1

This finishes the proof. The proof fot;, B;, D, is similar. a
Substitutg5.1) fori = I — 1 and(5.3) fori = k,, + 1 into (2.2) and(2.3), respectively,

(5.4) Y(l — a]_l) — hG(Y) =br_1+d; 1 X,
(5.5) X(1 = Ag,41) + hg(X) = B, 1+ Di, 1Y

This is a system of two non-linear equations with two unknsuk andY'.

We have proved that a solution to the lattice probl@mi)—(2.4) with any steps: andr,
is greater than unity and bounded independently of the &teg.sTherefore we can suppose
without loss of generality that the functigr{c) grows faster thamr: let g(c)/c — oo as
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¢ — oo. For technical purposes we may ne@¢c) for negativec; suppose that it remains
continuous and monotonic and th@éc) > 0 for ¢ < 0.

THEOREMS5.2. The system of equatio(is.4) and(5.5) has a solutionif 4 is sufficiently
small, then the solution is unique.

Proof. Let us expres§” as a function ofX defined by(5.5). We see that’(0) < 0
becausg/(1) = 0 and increases (and thyé0) < 0), B; > 0, D; > 0. On the other hand,
Y (+00) = +o0 becausd — A; > 0. Moreover,Y (X) grows faster tharX .

Now substitutey"(X) into (5.4) and consider the continuous function

F(X)=Y(X)(1 —ar1) — hG(Y(X)) = by_1 —dy 1 X,

If F(X*) = 0, then the paifX*, Y (X*)) is a solution to the system of equatioris4
and 6.5. To prove thatF'(X) has a zero, note thatf(0) < 0 (becauser; < 1, G is
decreasingh; > 0, d; > 0) and F'(o0) = oo (becauser; < 1 andY (X) grows faster
thanX). Hence, there exisk* > 0 andY™ = Y (X*), such that equation$.4) and(5.5)
are satisfied.

To prove the uniqueness, let us show that the derivadtivé() > 0,

Dy i1 F'(X) = Dkn+1Y’(X)(1 —aq— hG’(Y(X))) — Dy srdpy =
((1 — Ap 1) + hg'(X)) (1 — a1 — hG’(Y(X))) — Dy ardir.
To prove thatF” (X) > 0, it is sufficient to show that
1—=Ap, 41> Dyp1, 1—ar—1 >dj_1.

These inequalities are proved similarly, so let us provesttmnd one,

R =1 1 3\ I —kn—2
1—a;_1 >T1hs, djq = dkn+1 J;[+2am < 5 (1 — F1h4) .

Suppose that is small enough so that(1 — 1“1113)2 > 1. Then

3 I—ky, 3 I-K 3 Li}%
dy 1 < (1 —Flhz) < (1 —Flhz) - (1 —Flhz)

The functionf(z) = (1 — z)+ is decreasing. Thereforg(z) < f(0) = exp(—1). Thus,

(L=pp)Ty

1 1
3\ & T L — po)T
dr_, < ((1_F1h%)rm4) " exp (_%) = o(h®)
4
foranya > 0. Hence, for sufficiently smah, we haved; ; < Flh%. O

Note that a smalk is not necessary for the uniqueness of the solution.
Here we present the algorithm:
1. Letn = 0. DefineK, = K. For K, < i < I calculatec), using(2.4).
2. Findr, from (4.2). Obviouslyh < 7, < 7.
3. DetemineX,,; from (4.3) and calculaté;,, ;1 = K, +1 — (n + 1).
4. If k41 = 0 then stop: the problem is solved because the boundary helkega
zero. Assignil’ = > 7,, N.
5. Increasen by one.
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6. Solve equations.4) and(5.5) simultaneously to obtaiX andY'.
7. Using(5.1) and the computed;, b;, d;, X = ck», Y = ¢!, calculater, one by one
fori=I1—-1,1-2,...,k,+ 1. Itis also possible to use.3).
8. Goto step 2.
We have not proved that the determin&d> 1 andY > 1; but this is true because the
constructed solution obeys Theor&m.
THEOREM 5.3. Provided thath is sufficiently small, the algorithm terminates after a
finite number of steps.
Proof. Suppose that the algorithm never stops; the boundary nmvgsn a finite num-
ber of steps. Thus, after the finite number of steps the bayndaes not move
(k. = const for sufficiently largen). Let us see how the amount of matter changes,

I-1 -1 I-1 -1 -1
Z ch— Z ¢ h= Z Dy ct Th = Z Opnci h7 = Z O, (6hcil_1)h?
i=kn+1 i=kn+1 i=kn+1 i=kn+1 i=kn+1
I-1
= Z (6;102 — 8;101';1)7‘- = (ahC£71 — 8}1651")7_’.
i=kn+1

The boundary does not move, & is small, and thus

glckn)y < @' (po)Vh < @' (po) and i < g7 (¢ (po)) = @(po).

-1
It is necessary thad,c.~' — ¢'(po)vh — 0, otherwise the amount 3~ ¢ h grows
i=kn+1
to infinity and some:!, become greater tha# for largen. Thus ifrn is large,

G(ch) = el ™ = ¢/ (po)Vh and = G (¢ (po)Vh) > ¢(po) + €.

The last inequality holds for sufficiently smalland some > 0. Hencec! — cfr > «.

On the other hand, ifd,cf»*1 and d,cl~' remain small, thend,ci for all
1 = kn,...,I — 1 become small for sufficiently large. This follows from the maximum
principle. So we can assume thégc:,| < ¢’ (po)vVhfori=k,,...,I —1. Then

~

—1 I
ch =k =N Oncih <> @ (po)hVh = ¢ (po)h> T < ¢/ (po) LV h.

" i=1

Il
>

%

If his sufficiently small, this is below any> 0. Thus we have the contradiction. O
It is easy to show that the tiniE(h) = > 7, is also finite and, moreover, bounded for
all h: T'(h) < T for someT.

6. Order of approximation. Let us suppose that the classical smooth solutiomn,
¢(t,x) > 1to the boundary-value problefd.1)—(1.5) exists. We need to see how large the
error is if we substitute it into the systefw).

First, we see that, for ak, 7, — 0 ash — 0, and thus, the rate of convergence is at
least7 = O(v/h). Consider the equatiof.c!, — dj,,ci, = ¥ . If ¢! is a solution to(2.1)
then¥! = 0in Dy. Substitute the values of the exact solutigh,, z;) at nodes of the
lattice subseD y into the left-hand side. Then in gener®j, # 0 is some lattice function
called the discrepancy. L&t denote the maximum of the absolute value of #jgon D .
Using the Taylor expansion for the exact solution and thiislibn equatior{1.1), we obtain
¥ = O(h?,7) = O(Vh). These are standard arguments of the theory of numericilodst
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so the details are omitted. In a similar way, we substitueeetkact solution int¢2.2) and
(2.3). The discrepancy turns out to 6§ /). The initial condition(2.4) is satisfied precisely.
Let us recall how we approximated the Stefan condifibd),

kn
6.1) Orpras = FE—L1 — —g(cc,;; ) i g(ckn) > ¢ (po)Vh,

mn

and zero otherwise. Substitute the exact solufiti, (¢, p(t)) with a discrepancy,, and
apply the Stefan conditiofi.4),

c(tn, p(tn)
O + ¥, = % <oV it g(eltn.plt)) < &)V,

and zero otherwise. In both caség = O(\/E + 7") = O(\/E) Thus the total discrepancy
and the order of approximation of the schemejis/7).

The order of approximation cannot be made better #iamy just choosing the condition
(4.1) in the formg(ck») < ¢'(po)h' ¢ with € > 0.5. If we do so therr,, < 7 = O(hF).
The discrepancy of the Stefan condition and thus the tosarépancy will become worse,
O(ht~e).

7. Convergence of approximations.In the remainder of the paper, we assume thist
sufficiently small.

If an h is chosen, one can determine a solution using the preselgedtlam. The
solution is the set of’, 7,, for 0 < n < N — 1, Dy, and¢’, in Dy. TheorenB.5guarantees
that if the domaingD,, are the same for two solutions, they coincide.

Construct the piecewise linear continuous time funcpgft) by connecting the points
(tn,xk, ) (linearinterpolation). Being piecewise lineay(t) has a piecewise constant deriva-
tive between the nodes; let us estimate it. The difference, — zx, is either zero (if
Kpi1 = K+ 1) or —h (if K41 = K,). The difference,, .1 — t,, = 7,. We know that
T > h/g(A). Thus the derivative between the nodes belonds-td A), 0] for anyh. The
function p, () € [0, po] for all h and is defined for € [0,7(h)]. Let us expand it td0, T
being continuous and constant for 7.

Now let us consider a sequenke — 0. The functionsp,,, (t) on [0, 7] are uniformly
bounded and equicontinuous; due to the Arzela—Ascoli #maa uniformly convergent sub-
sequence can be selected (but may be not unique). Denotatissquence again by and
its limit by p(t). The functionspy,, () are all nonnegative, uniformly bounded py < L,
and non-increasing; thygt) is also nonnegative, bounded hy, and does not increase. Also
p(T) = 0 for someT € [0, T]. This is the continuous free boundary.

Now define the lattice functiodf, at the nodes$n, i) & Dy: letckn =1 = ckn — gy,cknh,
at other nodesn,i) ¢ Dy letc!, = cf»—1. The continuous approximations, (¢, z) in the
rectangleX = [0, 7] x [0, L] are constructed in the following way. L&, (t,,z;) = ¢, at
the nodegn, 7). For eachn we defineyy, (¢, =) to be a polynomial of the fifth orde?,, ;(z)
on each segment;, x; 1] fori = k, ..., I — 2. The six coefficients of the polynomial
are obtained from six equations?, ;(z;) = ¢, Pni(wiy1) = i, Pui(z:) = Onct,,
Poi(wig1) = Opctt, Poi(m)" = Opnct), Pui(ziz1)” = Opncitt. On the segments
[x7-1, 2] we have only four equations becauﬁ@:{l and 8hhc{I are not defined. Let us
add the equation®, ;_1(z;) = pcl~t and P, ;_1(z;)” = 0. The equations for the
coefficients are linear with a regular matrix (its deternminean be easily calculated). Finally
we defineyy, (¢, ) being linear with respect tofor ¢ € [t,,, tnt1], ¢ € [z, Tita],

Lt (Prra(a) — Posa)).

Yp(t,x) = Pmi(l') +

n
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Obviouslyd, v, (t, z) andd... v (t, x) are continuous and uniformly bounded, a@hdy, (¢, x)
andd,. vy (t, x) exist between the nodes and are also uniformly bounded (seeréms3.6
and3.7and Corollary3.8); thus

Yp(tn + dt, x; + dx) = i (¢, x) + o(dt) + o(dx),
8m¢h (tn +dt, w; + dI) = 8m'¢)h(tv x) + O(dt) + O(dCC)

Due to the fact thaty, (¢, ), 0. 1¥n (L, ), Optbp (t, ), andd,. vy, (¢, ) are uniformly bounded
at the nodes, the functions, (¢, z) andd, (¢, ) are uniformly bounded and equicontinu-
ous (even equi-Lipschitz) iN.

Now take the sequendg — 0 chosen above and consider the corresponding sequence
Un, (t, ). These functions are uniformly bounded and equicontinuoyithe Arzela—Ascoli
theorem a uniformly convergent subsequence can be chosenitsUimit be ¢ (¢, x). It
is continuous. Denote the corresponding subsequenég afain byh;. It is clear that
¥(t,x) > 1, is bounded, and satisfi¢$.5). Moreover, the derivatived, v, (¢, x) are them-
selves uniformly bounded and equicontinuous. Applying Alieela—Ascoli theorem, we
learn that continuoud, ¢ (¢, x) exists and term-by-term differentiation is allowed.

ProPOSITION7.1. The function) (¢, ) is Lipschitz continuous iis.

Proof. LetZ = (¢, z) and bound

[9(21) — ¥(22)| < [Y(21) = Yn, (1) + [¥n; (21) — n, (Z2)] + +[Y(22) — ¥n, (22)]
<e+Z'||Z| +e=Z"|Z]| + 2.

Heres > 0 is any number. We have used Lipschitz continuity/gf (z1) and their uniform
convergence (assuming thais large enough). Passing to the limitas— 0 finishes the
proof. 0

THEOREM7.2. The free boundary(t) has negative Lipschitz continuous derivative for
t € [0, T] and the Stefan conditiofi.4) holds.

Proof. Rewrite the Stefan conditiafi.4) in integral form,

(7.0 o) =p— [ LTEEE (Cc(f’ p”(f))))) de.
Substitute the approximations, (¢, x) andpy, (t) into (7.1),
(7.2) pu(t) = po — /o %dﬁ + Uy,

HereW,, is the discrepancy. We need to prove thigt — 0 ash — 0.
First, let us studyy,(¢). Lett,, <t < t,1. We defined, (t,,) by linear interpolation,
so that

n
ph(tn) = po + Z 87-Pm7'm71-

m=1

Let ., be the set of naturah < n, such thatk: is not small, i.e.g(ck) > ¢’(po)Vh. Let
fin, be its complement, i.emp = 1, ..., n that are not inu,,. Now apply(6.1),

Km
(Ph( Z anme 1 — Z g(c;;:l )Tmfl

me fin mMeE fin Cm

n Kom, m n km
=zg<i b= 3 M), 2o,
m=1 € MEfin, Cm m=1 Cm
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The sum overn € [i,, has positive terms and each is at moé&tp,)+v/h; thus the sum is
O(V'h). Note thatp, (t) = pi(tn) + O(7n) = pu(ts) + O(Vh).
Let us consider

g(Pn(t, Ph g (Pn(t, pr(t)))
/o Y (t, pn(t Z/ Un(t, pn(t)) o

We have the continuous functions under the integrals; o tha

o tpn(t ii;“ 24
/t 7 gﬁh(ivlilh((t))))) d¢ = g(ccfnm )Tm_1 +0(Tm—1) = g(ccﬁ{“ )Tm—l + o(Tim-1)-

Let us rewriteo(7,,,—1) = Tim—1Wm—1, wm — 0ash — 0. Then

"g(nten®)) o S~ [ 9len
/0 Yn(t, pu(t)) dg_;( chm ) e 1+Z‘*’m 1Tm—1-

The last sum tends to zero As— 0; denote it bylV. Note that

CICYI0) vy GG IO e
/0 Un(t, pn()) dg_/o Un(t, pn (D) d€ + O(7n).

Let us substitute the obtained expressions {ita),
O(Vh) = O(Vh) + W + ¥y,

Thus¥,, — 0 ash — 0 and the uniform limit of(7.2) exists. Therefore, the obtained contin-
uous solutiorp(t), ¥ (t, z) satisfies the integral Stefan equatighl). Its left-hand sidep(¢)
is not only continuous, but also has the continuous deviedtir¢t € (0, 7). Differentiating
by ¢ we see that the solution(t), ¢ (t, z) also satisfies the original Stefan conditigh4).
Moreover, the derivative is Lipschitz because is andp = g(v)/v, where the right-hand
side is smooth. O

COROLLARY 7.3.The free boundary(t) has the inverse functiog*(z).

8. Weak solution to the Dirichlet boundary-value problem. Let the set/,(T') C R?
contain all(t, z) such that € (0,T), z € (p(t), L), letY,(T) be its closure. We are going
to prove that) (¢, x) is the weak solution to problefi.1)—(1.5) in Y,(T').

Consider the Dirichlet boundary-value problem,

(8.1) Opc(t, x) = Ogae(t,z), (t,x) € Y,(T),
(8.2) c(t7 L) = w(t7 L)7 C(t,p(t)) = w(tvp(t))v te [Oa T]7
(8.3) c(0,z) = p(x), x€po,L], 0<po<L.

We are going to define a weak solution to this problem (simidd7, 9, 10]).
DEFINITION 8.1. A weak solution of the problem is a continuous functiénz) that
has the weak derivativ,c in Y,(T") and satisfies condition$.2) and(8.3) and the integral

identity
s

c(t, x)0v(t, z)dtde = / Orc(t, 2)0,v(t, z)dtdx
o (T)

Y, (T)

for each continuous iy, (T )functlonu(

, )W|th the weak derivativé, v; the functiorw is
such thaw (0, z) = v(T, z) = 0, v(¢,p(t)) =

)=0.
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Let us prove that the constructed functigrs the only weak solution.

PROPOSITION8.2. The constructed solutioth(¢, ) to the problem(1.1)—(1.5) is a
weak solution to the proble(8.1)—(8.3).

Proof. Boundary and initial condition§3.2) and (8.3) are obviously satisfied. The
identity is proved by considering it for thg, up to the small errors and passing to the lirdit.

THEOREM 8.3. The weak solution t¢8.1)—(8.3) is unique.

Proof. Suppose (] that there are two solutions (¢, z) andcs(t, z); their difference
u(t,z) = ¢1 — co also satisfies the identity; besides it satisfies the hommgeboundary
conditions:u(0,z) = 0, u(t, p(t)) = u(t,L) = 0. Consider the function(t,z) such that
o(T,z) =0, o(t,z) = —u(t,x). Substitute(t, z) into the identity,

T
- / u?dtde = / Oy / Oyudédtde.
Y,(T) Y, (T) t

Let us transform the right-hand side,

T po T T LT T
/ 8zu/8zud§dtd:c :/ 8zu/8zud§dtd:c+//3zu/&md{dtdm
Y, (T) t 0 p=1(x) t po 0 t
po T t LT t
:/ Ozt / (“)mudfdtdx—i—//(%Cu/amud{dtdx.
0 p=1(x) p~1(2) po 0O 0

Adding the identities with these two forms on the right-haide, we get

oo T T L T T
-2 / u2dtdz:/ / 8zu/ amudfdtd:c—i—/ / 8zu/ OyudEdtde.
0 Jp~i(x) p~i(z) po /0 0

Y,(T)

The two integrals witlf as the integration variable are independent dfthus,

0 T 2 L T 2
—2/ u?dtdx :/ / Ozpudt dx—i—/ / Oyudt | dx.
Y,(T) 0 p~i(z) Po 0

This can hold only ifu = 0in Y, (7") and so the uniqueness is proved. O
As the solution tq8.1)—(8.3) is unique, there are no other solutions beside the function
¥ (t, ) constructed above .

9. Regularity. Let us show that the constructed solutiofy, x) is actually classical,
i.e., smooth, by applying results from]]. First, we transform the domain to a rectangle by
changing the spatial variabtein (8.1)—(8.3) in the following way:z = p(t)+y- (L —p(t)),
u(t,y) = c(t,x), y € [0,1], pis the obtained free boundary. The problem in the new vasmbl
looks like

(91) atu(ta 1/) = a(tv y)ayyu(ta 1/) + b(ta y)ayu(tv y)v (ta 1/) € Dv
(9.2) u(t,y) =4y(ty), (ty) € B xS,

wherea = (L — p)~2,b= (1 —y)(L — p)~'p, D = B x [0,T]is a cylinder,B = (0, 1),

B =0, 1], the boundary B of B consists of two points; = 0 andz = 1, and the boundary
manifold S consists of two parts§y, = (0,7) x {x = 0} andS; = (0,T) x { = 1}. The
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functions is continuous irt’, (7') and thus onB x S also. Note that does not depend an
The notation is from11].

Let us check the requirements dfl] Corollary 2,84, Chapter 1lI]. ConditionA from
[11] holds: the coefficients, b are uniformly Holder continuous iv; indeed, even Lipschitz
continuous with the same Lipschitz constant. This follovesyf the fact thap is Lipschitz
continuous. Conditior from [11] holds trivially: a(t,y) > L=2 > 0. The other require-
ments of [L1] also hold trivially.

From [L1, Corollary 2,84, Chapter IlI], the existence of the unique classical $otut to
the boundary-value problen9.1)—(9.2) follows. The inverse change of variables
c(t,x) = u(t,y(x)) provides us the classical solution of the problesnl)—(8.3) in Y, (7).
Being a classical solutiory¢, x) is then a weak solution and thus coincides with the weak
solutiony (¢, ) (because the weak solution is unique). We have proveditfiatr) satisfies
the boundary Stefan conditiqi.4). The boundary conditiond..2) and(1.3) also hold; the
reason is that they obviously hold at the nodes of the latimbthe approximations have con-
tinuous derivatives with respect 1o Thus between the nodes the boundary conditions hold
up to the erroiO(v/dxz? 4 dt?), wherev/dz? 4 dt? is the distance to the nearest boundary
node. Passing to the uniform limit &s— 0 finishes the proof. Therefore, we have proven
the following theorem.

THEOREM9.1. The constructed pair of the functiop&), (¢, x) is the classical solu-
tion to the problen{1.1)—(1.5).

The presented numerical method (algorithm) converges wwisn of the boundary-
value problem(1.1)—(1.5) and can be used for solving the problem.

10. Numerical example. We illustrate the suggested method by a numerical example.
The model is similar to that ofl]. Assume that the right-hand sides of the boundary condi-
tions (1.2), (1.3), and the initial condition1.5) are

G(c) =P —pc*, g(c)=relc—1), o(x)=mz+72.

Here P is the sorption flux density, which is constant provided thattemperature and the
pressure are constant; the desorption flux densify depends on the concentrationthe
square law follows from the fact that two hydrogen atoms famoleculeHs, 7 < P

is the desorption constant. The difference between sarptial desorption is the diffusion
flux density, i.e., the right-hand side df.@). Hydride formation is described by the second
formula, s is constant (this boundary condition differs from the agpiate one from ],
where we assumedt, p) = 1). The initial distributiony(z) is stationary for the diffusion
equation, i.e., is its time-independent solution. The tamis~; are uniquely determined
from the boundary conditions.

All assumptions hold, only/(c) is negative forc < 0.5. But this in not important
because we have proved that- 1, so we can change the condition fox 1 without any
influence on the results. After the tirig i.e., when hydriding is over, we have the problem of
saturation with fixed boundaries and nonlinear boundarylitimm (1.2). Another condition
follows from the symmetry and looks lik&,c(¢,0) = 0, thusg(c) = 0. All our results hold
for this problem also. The dimensionless parameters Wmerel, po = 0.63, P = 1.21-10°,

B = 1.24-10% k = 50. To return to usual units it is enough to kndw= 7-10=° cm,
the stoichiometric concentration in uraniu29 - 1022 atoms per crf, and the hydrogen
diffusivity in UHs d = 7 - 10~ '3 cm?/s. The figures are in the usual units.

Figure10.1shows the flux densities at the boundaries; the upper cuihie igux density
atz = L, the other is the flux density at the free boundary. It vargsimstantly when
hydriding is over. Figurel0.2displays the concentration at the free boundary; one can see
that the assumption froni] (thatc(¢, p) ~ const while hydriding is not over) is reasonable.
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F1G. 10.1.Flux densities at the boundaries.
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FiG. 10.2.Concentration at the free boundary.

In Figure10.3we present the concentration profiles at regularly disteddime instants.
One can estimate the free boundary’s velocity: it is almosistant. Also the concentration
atx = L is almost constant. This is the reason why we did not presenFigure10.2
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