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CONVERGENCE OF A LATTICE NUMERICAL METHOD
FOR A BOUNDARY-VALUE PROBLEM WITH FREE BOUNDARY

AND NONLINEAR NEUMANN BOUNDARY CONDITIONS ∗

I. A. CHERNOV†

Abstract. We consider the Stefan-type diffusion boundary-value problem with free boundary and nonlinear
Neumann boundary conditions. Such problems describe hydride formation under constant conditions when nonlinear
surface processes are taken into account. We construct the difference numerical method and prove the convergence
of the interpolation approximations to the weak solution ofthe problem. Then we apply the theory of boundary-value
problems to show that this weak solution is the classical solution. Thus, the existence of the solution to the problem
is proved and the difference method is justified.
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1. Introduction. We consider the boundary-value problem,

∂tc(t, x) = ∂xxc(t, x), x ∈
(

ρ(t), L
)

, t ∈ (0, T ),(1.1)

∂xc(t, L) = G
(

c(t, L)
)

, t ∈ [0, T ],(1.2)

∂xc
(

t, ρ(t)
)

= g
(

c(t, ρ(t))
)

, t ∈ [0, T ],(1.3)

c
(

t, ρ(t)
)

ρ̇ = −g
(

c(t, ρ(t))
)

, ρ(0) = ρ0, ρ(T ) = 0,(1.4)

c(0, x) = ϕ(x), x ∈ [ρ0, L], 0 < ρ0 < L.(1.5)

The following assumptions are made: the functionsG(c) andg(c) are defined forc > 0;
the continuous derivativesG′(c) < 0, g′(c) > 0 for c > 0 exist; the conditionsG(1) > 0,
G(∞) < 0, andg(1) = 0 hold; the functionϕ(x) is defined forx ∈ [ρ0, L], ϕ(x) > 1,
G(ϕ(x)) > 0 for x ∈ [ρ0, L], andϕ′′(x) exists and is continuous in[ρ0, L]. Note that the
initial-boundary compatibility condition is included in the problem: conditions(1.2), (1.3)
hold for t = 0. The following consequence can be derived.

PROPOSITION1.1. The initial distributionϕ(x) is not constant.
Proof. If ϕ(x) = const, theng(ϕ) = G(ϕ) = 0 due to(1.2) and(1.3) and thusϕ = 1;

butG(1) 6= 0.
Let us define the setYρ(T ) ⊂ R

2; it consists of all(t, x) such thatt ∈ [0, T ],
x ∈ [ρ(t), L]. Its closure isȲρ(T ). To solve the problem, we must find the numberT ,
ρ(t) ∈ C1([0, T ]), and c(t, x) ∈ C(Yρ(T )). These functions must satisfy(1.1)–(1.5).
If (1.1) is satisfied in a weak sense, then the solution obtained is called the weak solution.

This problem is a generalization of the model of isothermal hydriding of a metal particle
under constant pressure [1]. Equation(1.1) is the diffusion equation; without loss of gen-
erality we assume that the diffusivity is unity. The nonlinear Neumann boundary condition
(1.2) connects the diffusion flux near the surface with sorption and desorption on the surface.
The stoichiometric concentration in hydride is unity. The conditionG(1) > 0 means that
the pressure is above equilibrium with respect to stoichiometric hydride. The condition(1.3)
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connects the diffusion flux on the phase boundary with the concentration near it and describes
the hydride formation process. For stoichiometric concentration hydriding is impossible. The
Stefan-type condition(1.4) is the conservation on the free boundary. The initial concentration
(1.5) is between the stoichiometric and the equilibrium values.

The main difficulties are the free boundary and rather general nonlinear boundary con-
ditions. Analytical solution methods [2] can hardly be applied to such problems. A lot of
research has been devoted to the numerics of free boundary problems (e.g., [3, 4, 5, 6]), but
little attention has been paid to diffusion boundary-valueproblems with free boundary in fi-
nite domains and with nonlinear boundary conditions. The aim of this paper is to apply the
well-known idea of an implicit difference scheme with time steps dependent on the velocity
of the free boundary (see [2] and references therein) to this class of problems and to prove
the convergence to a classical solution. Therefore, we prove the existence of the solution in a
constructive way. We prove the maximum principle for the discrete lattice problems and use
it to construct a convergent sequence of approximations of asolution. The maximum prin-
ciple for parabolic PDEs and the corresponding discrete systems is well-known [7, 8], but in
our case it also holds on the boundary, i.e., boundary conditions also do not allow values of
the solution to be too high. The restrictions are rather weakand have a physical meaning.
Nevertheless, they are sufficient for the results obtained.

The structure of the paper is the following. First, we construct the difference scheme
for this problem and prove a few statements for the lattice solution. Next, we obtain the se-
quences of continuous approximations to the free boundary and the concentration by linear
interpolation. Then, we show that the sequence for the free boundary converges uniformly
to some functionρ(t), ρ(T ) = 0 for someT ; also the sequence for the concentration con-
verges inC(Ȳρ(T )). Next, we show that these functions are actually the classical solution
of the problem. Therefore, we prove the existence of the classical solution of the nonlinear
boundary-value problem with free boundary and additionally justify the difference scheme
for the problem. The idea is from [2, 7].

The solutionc(t, x) must be positive (because it represents a concentration); moreover,
c(t, x) > 1 because the concentration in hydride cannot be below the stoichiometric. We
show that the solution indeed has these properties; see Theorem3.4below.

2. Difference approximations. Let us divide [ρ0, L] in M pieces of equal length
h = (L − ρ0)/M . In the sequelh → 0 meansM → ∞. Let I = ⌊L/h⌋ (integer part),
K = I −M , andδh = L − Ih. Choose any sequenceKn such thatK0 = K, for n ≥ 0
eitherKn+1 = Kn orKn+1 = Kn + 1. Let us denotekn = Kn − n.

Now let us consider any spatially uniform lattice with the stepsh andτn, 0 ≤ n ≤ N ,
0 ≤ i ≤ I. HereN is the minimalN such that

∑N
0 τn ≥ T , T > 0 is some given time.

Let the nodes of this lattice be(n, i); these are the points(tn, xi), xi = δh + ih, t0 = 0,
tn+1 = tn + τn, n > 0.

Let D̄N be the lattice subset, such that, if(n, i) ∈ D̄N , then 0 ≤ n ≤ N and
i = kn, kn +1, . . . , I. In other words, each succeeding layer contains either the same number
of nodes (ifKn+1 = Kn + 1) or one left node more (ifKn+1 = Kn). LetDN be the open
subset; if(n, i) ∈ DN then0 < n < N andi = kn + 1, kn + 2, . . . , I − 1. We need one
more lattice set̃DN ; it is D̄N without the corner nodes(0,K), (0, I).

We denote the value of the lattice functionf at the node(n, i) by f i
n. Let us approximate

the derivatives,

∂tc ≈ ∂τc
i
n =

cin − cin−1

τn−1
, ∂xc ≈ ∂hc

i
n =

ci+1
n − cin
h

, ∂xxc ≈ ∂hhc
i
n = ∂h(∂hc

i−1
n ).
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Now replace the derivatives in(1.1)–(1.3) and(1.5) by the approximations,

∂τ c
i
n = ∂hhc

i
n, (n, i) ∈ DN ,(2.1)

∂hc
I−1
n = G(cIn), 0 ≤ n ≤ N,(2.2)

∂hc
kn
n = g(ckn

n ), 0 ≤ n ≤ N,(2.3)

ci0 = ϕ(ih), i = K, . . . , I.(2.4)

This is a system of algebraic equations for the unknownscin, (n, i) ∈ D̄N . The sequencekn

and the stepsh, τn are given.

3. The maximum principle for the lattice problem. Here we prove a few properties
of the solution to the lattice problem (2.1)–(2.4). The technique is similar to the maximum
principle for parabolic PDEs.

THEOREM 3.1. (Maximum principle). Let the lattice functioncin be defined inD̄N ,
satisfy the system(2.1) inDN , and its maximum or minimum be achieved at the node(n∗, i∗).
Then eithern∗ = 0 or i∗ = I or i∗ = kn∗ or cin = const in D̃n∗ .

Proof. Assume that the maximum (strict or not) is achieved at an inner node(n∗, i∗),
n∗ > 0, kn∗ + 1 ≤ i∗ ≤ I − 1. Let us use(2.1), its left-hand side is obviously nonnegative,
while the right-hand side is nonpositive. Thus∂τc

i∗

n∗ = ∂hhc
i∗

n∗ = 0. Due to the fact that
(n∗, i∗) is the maximum node,ci

∗
±1

n∗ = ci
∗

n∗ andci
∗

n∗−1 = ci
∗

n∗ . The same argument applied

to the nodes(n∗, i∗ ± 1) yields ci
∗
±2

n∗ = ci
∗
±1

n∗ = ci
∗

n∗ . Continuing the argument, we get
cin∗ = ci

∗

n∗ for all i = kn∗ , . . . , I, i.e., the function is constant on the whole layer. As
ci

∗

n∗−1 = ci
∗

n∗ , the same maximum is also obtained on the layern∗ − 1 and so the function
is also constant on it. Continuing, we prove thatcin = const on D̃n∗ . The proof for the
minimum is similar.

The theorem says that eithercin = const in D̃n∗ or the node(n∗, i∗) ∈ D̄N \DN .
COROLLARY 3.2. Let the lattice functioncin be defined inD̄N and satisfy the system

(2.1), (2.4), its maximum or minimum (strict or not) be achieved at a node(n∗, i∗), andh be
small enough. Then eithern∗ = 0 or i∗ = I or i∗ = kn∗ .

Proof. Due to (2.4) and Proposition1.1, the functionϕ(x) is not constant; then
ci0 = ϕ(ih) is also not constant provided thath is small enough. Thuscin is not constant
in D̃n for anyn. Theorem3.1provides the rest.

THEOREM 3.3. Let the lattice functioncin be defined inD̄N and satisfy(2.1)–(2.4).
Thencin < A in D̄N , the numberA > 0 is such thatG(A) = 0.

Proof. It is sufficient to show the inequality for the maximum. The constantA is finite
becauseG(∞) < 0. As G(ϕ) > 0 andG is decreasing,ϕ(x) < A. The maximal value
of cin cannot be achieved at a node(n∗, kn∗). Assume thatckn∗

n∗ is the maximum; therefore
ckn∗+1
n∗ ≤ ckn∗

n∗ . The initial distributionϕ(x) > 1 and thusckn∗

n∗ > 1. From(2.3) we know
that ∂hc

kn∗

n∗ > 0 and thusckn∗+1
n∗ > ckn∗

n∗ . This shows thatckn∗

n∗ cannot be the maximal
value. Assume that the maximal value ofcin is achieved at a node(n∗, I). The right-hand
side of(2.2) is negative ifcIn > A; therefore∂hc

I−1
n < 0. This means thatcIn < cI−1

n and
thuscIn cannot be maximal. IfcIn = A then the maximal value is achieved also at the inner
node(n, I − 1). This is impossible due to Corollary3.2.

Note that the boundA depends only onG(·) and is independent ofh, τn.
THEOREM 3.4. Let the lattice functioncin be defined inD̄N and satisfy(2.1)–(2.4).

Thencin > 1 in D̄N .
Proof. It is sufficient to show the inequality for the minimum. Forn = 0 it is given

thatϕ(x) > 1. The minimal valueC ≤ 1 cannot be achieved at a node(n∗, I). Assume
the contrary;(2.2) yields ∂hc

I−1
n∗ > 0 (becauseG(C) > 0) and thuscIn∗ > cI−1

n∗ . So
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cIn∗ cannot be the minimum. Assume that the minimal valueC < 1 is achieved at a node
(n∗, kn∗). From(2.3) we get∂hc

kn∗

n∗ < 0 (becauseg(C) < 0), i.e.,ckn∗+1
n∗ < ckn∗

n∗ and thus a
contradiction. Let us consider the case of the minimal valueckn∗

n∗ = 1. From(2.3) it follows
that the minimum is also achieved at the inner node:ckn∗+1

n∗ = ckn∗

n∗ = 1. This is impossible
due to Corollary3.2.

Note that the lattice solutioncin > 1 in D̄N and thus it is positive.
THEOREM 3.5. (Uniqueness) Let cin andwi

n be two solutions to system(2.1)–(2.4) in
D̄N . Thencin = wi

n in D̄N .
Proof. Consider the lattice functionwi

n = cin − ui
n. We need to prove thatwi

n = 0 in
D̄N . Suppose the contrary: letwi

n > 0 at some node(n, i).
The functionwi

n satisfies(2.1) due to linearity. Therefore, Corollary3.2guarantees that
the positive maximum is achieved on the boundary ofD̄N . But wi

0 = 0, so the maximum
cannot be achieved ifn = 0.

Note thatwi
n satisfies the condition

∂hw
kn
n = g

(

ckn
n

)

− g
(

ukn
n

)

= g′(R1)w
kn
n , R1 ∈

[

ukn
n , ckn

n

]

.

If the maximum is achieved at a node(n, kn), then the left-hand side is nonpositive while the
right-hand side is greater than zero (remember thatg′ > 0). The contradiction means that a
maximum is impossible.

Finally,wi
n satisfies the condition

∂hw
I−1
n = G

(

cIn
)

−G
(

uI
n

)

= G′(R2)w
I
n, R2 ∈

[

uI
n, c

I
n

]

.

If the maximum is achieved at the node(n, I), then the left-hand side is nonnegative, while
the right-hand side is less than zero (G′ < 0). A maximum is impossible.

The contradiction implies that no positive maximum ofwi
n can be achieved in̄DN . Thus

cin = ui
n in D̄N .

Let us consider the lattice set̄D′
N : if (n, i) ∈ D̄′

N then0 ≤ n ≤ N , kn ≤ i ≤ I − 1.
In other words, the set contains one node less at each layer compared toD̄N . Also we will
consider the subsetD′

N with the nodes(n, i), 0 < n < N , kn + 1 ≤ i ≤ I − 2. The setD̃′
N

is equal toD̄′
N without the corner nodes(0,K) and(0, I − 1).

Let cin satisfy the system(2.1)–(2.4) in D̄N . The lattice derivative∂hc
i
n is defined as a

lattice function inD̄′
N and satisfies(2.1) in D′

N . Thus it obeys Theorem3.1: if its minimum
or maximum is achieved at the node(n∗, i∗), then eithern∗ = 0 or i∗ = I − 1 or i∗ = kn∗

or it is constant inD̃′
n∗ .

THEOREM3.6. Letcin satisfy(2.1)–(2.4) in D̄N . The lattice derivative∂hc
i
n is bounded:

|∂hc
i
n| < B in D̄′

N . The constantB does not depend onh andτn. If additionallyϕ′(x) > 0
on [ρ0, L] then∂hc

i
n > 0 in D̄′

N .
Proof. Extremal values of∂hc

i
n cannot be achieved inD′

N due to the maximum principle.
Therefore, we only need to check if the values are bounded at the nodes(0, i), (n, I−1), and
(n, kn). Due to(2.4) ∂hc

i
0 = ϕ′(xi + θ), 0 ≤ θ ≤ h, is bounded for alli = K, . . . , I − 1.

From(2.2) and Theorems3.3and3.4, we have∂hc
I−1
n = G(cIn) ∈

(

0, G(1)
)

. Finally, (2.3)
and Theorems3.3and3.4 imply ∂hc

kn
n = g

(

ckn
n

)

∈
(

0, g(A)
)

.
Let us construct the lattice subsetD̄′′

N ⊂ D̄N in the following way: a node(n, i) ∈ D̄N

belongs toD̄′′
N if the node(n − 1, i) belongs toD̄N . One can see that in̄D′′

N the index
n > 0 (i.e., the layern = 0 is not contained); also the nodes(n, kn) are not contained if
Kn = Kn−1. Therefore this subset is generated by some sequenceK ′′

n , n ≥ 1. Denote
k′′n = K ′′

n − n. Let us consider also the subsetsD′′
N andD̃′′

N similarly toDN andD̃N .
Let cin satisfy the system(2.1)–(2.4) in D̄N . The lattice derivative∂τ c

i
n is defined as a

lattice function onD̄′′
N and satisfies(2.1) in D′′

N . Thus it obeys Theorem3.1; if its minimum



ETNA
Kent State University 

http://etna.math.kent.edu

44 I. A. CHERNOV

or maximum is achieved at the node(n∗, i∗) then eithern∗ = 1 or i∗ = I or i∗ = k′′n∗ or it is
constant inD̃′′

N .
THEOREM3.7.Letcin satisfy(2.1)–(2.4) in D̄N . The lattice derivative∂τ c

i
n is bounded:

|∂τ c
i
n| < Z in D̄′′

N . The constantZ does not depend onh andτn.
Proof. Extremal values of∂hc

i
n cannot be achieved inD′′

N due to the maximum principle.
Therefore, we only need to check if the values of∂τc

i
n are bounded at the nodes(n, I),

(n, k′′n), and(0, i).
Consider two nodes(n+ 1, I) and(n, I), n ≥ 0. Due to(2.2),

cIn+1 − cI−1
n+1 = hG(cIn+1), cIn − cI−1

n = hG(cIn).

Substract the second expression from the first one and divideby τn,

∂τ c
I
n+1 − ∂τ c

I−1
n+1 = hG′(Q1)∂τ c

I
n+1, Q1 ∈ [cIn, c

I
n+1].

As G′ < 0, the positive maximum and negative minimum of the function∂τc
i
n cannot be

achieved fori = I, otherwise the contradiction appears.
Now consider two nodes(n + 1, k′′n+1) and(n, k′′n), n ≥ 0. There can be two cases.

First, let us study the caseK ′′
n+1 = K ′′

n + 1. Due to(2.3),

c
k′′

n+1
n+1 − c

k′′

n

n+1 = hg
(

c
k′′

n

n+1

)

, c
k′′

n+1
n − c

k′′

n
n = hg

(

c
k′′

n
n

)

.

Substract the second expression from the first one and divideby τn,

∂τc
k′′

n+1
n+1 − ∂τc

k′′

n

n+1 = hg′(Q2)∂τ c
k′′

n

n+1, Q2 ∈
[

c
k′′

n
n , c

k′′

n

n+1

]

.

As g′ > 0, the positive maximum and negative minimum of the function∂τ c
i
n cannot be

achieved at the node(n, k′′n) if K ′′
n = K ′′

n−1 + 1.
Second, we study the caseK ′′

n+1 = K ′′
n . Due to(2.3)

c
k′′

n

n+1 − c
k′′

n−1
n+1 = hg

(

c
k′′

n−1
n+1

)

, c
k′′

n+1
n − c

k′′

n
n = hg

(

c
k′′

n
n

)

.

Substract the first expression from the second one,
(

c
k′′

n−1
n+1 − c

k′′

n
n

)

+
(

c
k′′

n+1
n − c

k′′

n

n+1

)

= −hg′(Q3)
(

c
k′′

n−1
n+1 − c

k′′

n
n

)

, Q3 ∈
[

c
k′′

n
n , c

k′′

n−1
n+1

]

.

Now let us transform the first bracket on the left-hand side,

c
k′′

n−1
n+1 − c

k′′

n
n = c

k′′

n−1
n+1 − c

k′′

n

n+1 + c
k′′

n

n+1 − c
k′′

n
n = −∂hc

k′′

n−1
n+1 h+ ∂τ c

k′′

n

n+1τn,

and the second bracket on the left-hand side,

c
k′′

n+1
n − c

k′′

n

n+1 = ∂hc
k′′

n

n+1h− ∂τc
k′′

n+1
n+1 τn.

The bracket on the right-hand side equals the first one on the left-hand side. Therefore,

(

1 + hg′(Q3)
)

∂τ c
k′′

n

n+1 = ∂τc
k′′

n+1
n+1 +

h

τn

(

∂hc
k′′

n−1
n+1 − ∂hc

k′′

n

n+1

)

+
h2

τn
g′(Q3)∂hc

k′′

n−1
n+1 .

The big bracket equals−∂hhc
k′′

n

n+1h = −∂τc
k′′

n

n+1h (we have used(2.1)). Thus,

(

1 + hg′(Q3)
)

∂τ c
k′′

n

n+1 = ∂τc
k′′

n+1
n+1 +

h2

τn

(

g′(Q3)∂hc
k′′

n

n+1 − ∂τc
k′′

n

n+1

)

.
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Then due to boundedness,∂hc
i
n ≤ B,

(

1 + hg′(Q3)
)

∂τc
k′′

n

n+1 ≤ ∂τ c
k′′

n+1
n+1 +

h2

τn

(

g′(Q3)B − ∂τ c
k′′

n

n+1

)

.

Now we see that if∂τc
k′′

n

n+1 is the maximal positive value, then it is less thanmax
[1,A]

(g′)B.

Otherwise, the bracket in the right-hand side is negative and thus

∂τc
k′′

n

n+1 ≤ ∂τ c
k′′

n+1
n+1 .

A similar argument shows that the minimal possible value is also bounded.
Now let us study the casen = 1. Let εi = ci1 − ci0 and consider(2.1) for n = 1,

K ≤ i ≤ I − 1:

∂τ c
i
1 =

ci−1
1 − 2ci1 + ci+1

1

h2
=
ci−1
0 − 2ci0 + ci+1

0

h2
+
εi−1 − 2εi + εi+1

h2
.

But ci−1
0 − 2ci0 + ci+1

0 = h2ϕ′′(xi) + o(h2) and thus the first term in the right-hand side is
bounded. Besides∂τ c

i
1 = εi/τ0. Therefore,

τ−1
0 εi = h−2

(

εi−1 − 2εi + εi+1
)

+R(i).

HereR(i) is bounded independently onh andτ0. Let the function∂τc
i
n reach a positive

maximum at the node(1, i∗); thenεi∗ also reaches the positive maximum. But the first term
in the right-hand side is negative; soτ−1

0 εi ≤ R(i) and thus is bounded. A similar argument
applies to the negative minimum.

Let us sum this all up. Minimal and maximal values of the lattice function∂τ c
i
n in D̄′′

N

are achieved at the nodes(n∗, i∗) for eithern∗ = 1 or i∗ = I or i∗ = k′′n∗ . But these extremal
values are bounded independently on the steps; therefore there existsZ such that|∂τc

i
n| ≤ Z

in D̄′′
N .
COROLLARY 3.8. The second lattice derivative∂hhc

i
n is bounded independently of the

steps at nodes where it is defined.
COROLLARY 3.9. If the initial distribution has a positive second derivativeϕ′′(x) > 0

and the steph is sufficiently small, then∂τc
i
n > 0 in D̄′′

N .
COROLLARY 3.10. Letϕ′(x) > 0 andϕ′′(x) > 0 and the steph be sufficiently small.

Then0 < ∂hc
i
n < B in D̄′

N andB = ∂hc
I−1
0 .

Proof. As ∂τc
i
n > 0, then also∂hhc

i
n > 0 at nodes where it is defined. This implies,

in particular,∂hc
kn
n < ∂hc

kn+1
n and therefore the maximal value of∂hc

i
n cannot be achieved

at a node(n, kn). As ∂τ c
i
n > 0, cIn increases; due to monotonicity of the functionG the

right-hand side of(1.2) decreases. Thus if the maximal value of∂hc
i
n is achieved at a node

(n, I), thenn = 0. The only possibility for the maximum is the node(0, I − 1).

4. Choosing the time step.Up to this point we considered the given lattice; the spatial
steph, the time stepsτn, the sequenceKn (it generates the subsetD̄N ), and the timeT were
fixed. Butτn andKn have to be determined. Some equations must be added to the system
(2.1)–(2.4) to find not only unknowncin but also unknownτn andKn.

Let us consider the lattice analogue of the Stefan condition(1.4),

∂τρn+1 =
ρn+1 − ρn

τn
= −g

(

ckn
n

)

ckn
n

.
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We have already proved thatckn
n > 1 and thus the shift of the free boundary is negative:

ρn+1 − ρn < 0. In order to make the absolute value of this shift equalh (up to the error of
approximation), we need to choose the specialτn,

τn =
ckn
n

g
(

ckn
n

)h.

However, it can turn out thatckn
n is close to unity, sog

(

ckn
n

)

is too small and thenτn is too
large. Ifτn does not tend to zero ash→ 0, then there is no approximation.

From (1.4) it follows that the boundary moves slowly when the concentration near the
boundary is close to unity:̇ρ ≈ −g′

(

ckn
n

)(

ckn
n − 1

)

. Therefore let us assume that for small
ckn
n , the boundary does not move. Let us considerckn

n small if

g
(

ckn
n

)

< ϕ′(ρ0)
√
h.(4.1)

The left-hand side is positive. Let the steph obey the inequalityh ≤ 1. The reason is to
guarantee that the initial distribution is not small.

Summing this up, we choose the stepsτn as follows,

τn =















ckn
n

g
(

ckn
n

)h, if g
(

ckn
n

)

≥ ϕ′(ρ0)
√
h,

g−1
(

ϕ′(ρ0)
√
h
)

ϕ′(ρ0)

√
h < Γ

√
h = τ̄ , otherwise.

0 ≤ n ≤ N − 1,(4.2)

Hereg−1 is for the inverse function,Γ = const is independent ofh. Note that bounds for the
time stepτn > h/g(A), τn < τ̄ = O(

√
h) hold.

In the first, case the boundary shifts left one steph during a time step; in the second case,
it remains motionless. In other words, in the first case we adda node to the new layer, while
in the second case we do not. Therefore,

Kn+1 =

{

Kn, if g
(

ckn
n

)

≥ ϕ′(ρ0)
√
h,

Kn + 1, otherwise.
0 ≤ n ≤ N − 1,(4.3)

The system(2.1)–(2.4), (4.2), and(4.3) is called the system(∗).
PROPOSITION4.1. Let cin satisfy the system(∗) in D̄1. Then∂hc

i
n 6= const in D̄′

N .
Proof. Due toh < 1 the initial valueϕ(ρ0) is not small and thusK1 = K0 = K.

Thus the layern = 1 has one node more compared to the layern = 0. Assume that
the lattice derivative∂hc

i
n is constant inD̄′

1. Then due to(2.4) ∂hc
i
n = ϕ′(ρ0) in D̄′

1.
In particular,∂hc

K
0 = ∂hc

K−1
1 and from (2.3) we haveg

(

cK0
)

= g
(

cK−1
1

)

. As g(c)
is monotonic, this meanscK0 = cK−1

1 . ThuscK1 = cK0 + ϕ′(ρ0)h. In the similar way,
cK+i
1 = cK0 + ϕ′(ρ0)(i + 1)h. ThuscN1 = cK0 + ϕ′(ρ0)(N − K + 1)h. As the derivative

is constant,cN0 = cK0 + ϕ′(ρ0)(N −K)h 6= cN1 . However, due to(2.2) G
(

cN0
)

= G
(

cN1
)

and, thus,cN0 = cN1 becauseG(c) is monotonic. This contradiction shows that∂hc
i
n cannot

be constant iñD′
1 and thus inD̄′

N for anyN ≥ 1.

5. Solving the system.We are going to present an algorithm for the solution of the
system(∗). Thus we will prove that it has a solution. A solution is a setτn for 0 ≤ n ≤ N−1,
Kn for 0 ≤ n ≤ N , cin for 0 ≤ n ≤ N , kn ≤ i ≤ I for given naturalM ; h < 1, I, K, N ,
andT are uniquely determined.

Let us develop a sweep method to obtaincin when thecin−1 are already known. Denote
X = ckn

n , Y = cIn. Express allcin, i = kn + 1,. . . , I − 1 via ci+1
n andX linearly with

unknown coefficients,

cin = aic
i+1
n + bi + diX.(5.1)
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Substitute(5.1) into (2.1) instead ofci−1
n for i = kn + 2, . . . , I − 1 . The result is

cin =
ci+1
n + Snc

i
n−1 + bi−1 + di−1X

2 + Sn − ai−1
.

HereSn = h2/τn−1. Then

ai = (2 + Sn − ai−1)
−1, bi = ai(Snc

i
n−1 + bi−1), di = aidi−1.(5.2)

This are the recurrent sequences. To get the initial values consider(2.1) for i = kn + 1,

ckn+1
n =

ckn+2
n + Snc

kn+1
n−1 +X

2 + Sn
.

Hence,akn+1 = dkn+1 = (2 + Sn)−1, bkn+1 = akn+1Snc
kn+1
n−1 .

Now expresscin, i = kn + 1,. . . ,I − 1 via ci−1
n similarly,

cin = Aic
i−1
n +Bi +DiY.(5.3)

Analogously,

Ai = (2 + Sn −Ai+1)
−1, Bi = Ai(Snc

i
n−1 +Bi+1), Di = AiDi+1,

with initial valuesAI−1 = DI−1 = (2 + Sn)−1,BI−1 = AI−1Snc
I−1
n−1.

PROPOSITION5.1. The following inequalities hold forkn +1 ≤ i ≤ I − 1 : ai ∈ (0, 1),
ai+1 > ai, di ∈ (0, 0.5), di+1 < di, bi > 0, ai < 1 − Γ1h

3
4 for some constant0 < Γ1 < 1.

The same inequalities hold forAi,Bi,Di.
Proof. The first five inequalities are proven by induction; obviously they are true for

i = kn + 1; if they hold for somei then(5.2) shows that they also do fori+ 1.
The sequenceai increases and is bounded; therefore it has an upper bound. Tocalculate

it find the fixed pointa of the functionai(ai−1), i.e., solve the equationa2−(2+Sn)a+1 = 0.
It has a real roota from (0, 1). If ai = a thenai+1 = a. As akn+1 < a, so ai < a,
1 − ai > 1 − a. Let us estimate

1 − a =

√

4Sn + S2
n − Sn

2
=

2Sn
√

4Sn + S2
n + Sn

=
2h2

√

4h2τn−1 + h4 + h2
=

=
2h

√

4τn−1 + h2 + h
>

2h√
4τ̄ + h2 + h

=
2h

√

4Γ
√
h+ h2 + h

>

>
h

√

4Γ
√
h+ h2

>
h3/4

√
4Γ + h3/2

>
h3/4

√
4Γ + 1

= Γ1h
3
4 .

This finishes the proof. The proof forAi, Bi,Di is similar.
Substitute(5.1) for i = I − 1 and(5.3) for i = kn + 1 into (2.2) and(2.3), respectively,

Y (1 − aI−1) − hG(Y ) = bI−1 + dI−1X,(5.4)

X(1 −Akn+1) + hg(X) = Bkn+1 +Dkn+1Y.(5.5)

This is a system of two non-linear equations with two unknowns,X andY .
We have proved that a solution to the lattice problem(2.1)–(2.4) with any stepsh andτn

is greater than unity and bounded independently of the step sizes. Therefore we can suppose
without loss of generality that the functiong(c) grows faster thanc: let g(c)/c → ∞ as
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c → ∞. For technical purposes we may needG(c) for negativec; suppose that it remains
continuous and monotonic and thusG(c) > 0 for c < 0.

THEOREM5.2. The system of equations(5.4) and(5.5) has a solution; if h is sufficiently
small, then the solution is unique.

Proof. Let us expressY as a function ofX defined by(5.5). We see thatY (0) < 0
becauseg(1) = 0 and increases (and thusg(0) ≤ 0), Bi > 0, Di > 0. On the other hand,
Y (+∞) = +∞ because1 −Ai > 0. Moreover,Y (X) grows faster thanX .

Now substituteY (X) into (5.4) and consider the continuous function

F (X) = Y (X)(1 − aI−1) − hG
(

Y (X)
)

− bI−1 − dI−1X.

If F (X∗) = 0, then the pair(X∗, Y (X∗)) is a solution to the system of equations (5.4)
and (5.5). To prove thatF (X) has a zero, note thatF (0) < 0 (becauseai < 1, G is
decreasing,bi > 0, di > 0) andF (∞) = ∞ (becauseai < 1 andY (X) grows faster
thanX). Hence, there existX∗ ≥ 0 andY ∗ = Y (X∗), such that equations(5.4) and(5.5)
are satisfied.

To prove the uniqueness, let us show that the derivativeF ′(X) > 0,

Dkn+1F
′(X) = Dkn+1Y

′(X)
(

1 − aI−1 − hG′
(

Y (X)
)

)

−Dkn+1dI−1 =
(

(1 −Akn+1) + hg′(X)
)(

1 − aI−1 − hG′
(

Y (X)
)

)

−Dkn+1dI−1.

To prove thatF ′(X) > 0, it is sufficient to show that

1 −Akn+1 > Dkn+1, 1 − aI−1 > dI−1.

These inequalities are proved similarly, so let us prove thesecond one,

1 − aI−1 > Γ1h
3
4 , dI−1 = dkn+1

I−1
∏

m=kn+2

am <
1

2

(

1 − Γ1h
3
4

)I−kn−2

.

Suppose thath is small enough so that2
(

1 − Γ1h
3
4

)2
> 1. Then

dI−1 <
(

1 − Γ1h
3
4

)I−kn

<
(

1 − Γ1h
3
4

)I−K

=
(

1 − Γ1h
3
4

)

L−ρ0
h

.

The functionf(z) = (1 − z)
1
z is decreasing. Therefore,f(z) < f(0) = exp(−1). Thus,

dI−1 <

(

(

1 − Γ1h
3
4

)

1

Γ1h
3
4

)

(L−ρ0)Γ1

h
1
4

< exp

(

− (L− ρ0)Γ1

h
1
4

)

= o(hα)

for anyα > 0. Hence, for sufficiently smallh, we havedI−1 < Γ1h
3
4 .

Note that a smallh is not necessary for the uniqueness of the solution.
Here we present the algorithm:
1. Letn = 0. DefineK0 = K. ForK0 ≤ i ≤ I calculateci0 using(2.4).
2. Findτn from (4.2). Obviouslyh < τn ≤ τ̄ .
3. DetemineKn+1 from (4.3) and calculatekn+1 = Kn+1 − (n+ 1).
4. If kn+1 = 0 then stop: the problem is solved because the boundary has reached

zero. AssignT =
∑

τn,N .
5. Increasen by one.
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6. Solve equations(5.4) and(5.5) simultaneously to obtainX andY .
7. Using(5.1) and the computedai, bi, di,X = ckn

n , Y = cIn, calculatecin one by one
for i = I − 1, I − 2, . . . ,kn + 1. It is also possible to use(5.3).

8. Go to step 2.
We have not proved that the determinedX > 1 andY > 1; but this is true because the

constructed solution obeys Theorem3.4.
THEOREM 5.3. Provided thath is sufficiently small, the algorithm terminates after a

finite number of steps.
Proof. Suppose that the algorithm never stops; the boundary movesonly in a finite num-

ber of steps. Thus, after the finite number of steps the boundary does not move
(kn = const for sufficiently largen). Let us see how the amount of matter changes,

I−1
∑

i=kn+1

cinh−
I−1
∑

i=kn+1

cin−1h =

I−1
∑

i=kn+1

∂τc
i
nτ̄h =

I−1
∑

i=kn+1

∂hhc
i
nhτ̄ =

I−1
∑

i=kn+1

∂h

(

∂hc
i−1
n

)

hτ̄

=
I−1
∑

i=kn+1

(

∂hc
i
n − ∂hc

i−1
n

)

τ̄ =
(

∂hc
I−1
n − ∂hc

kn
n

)

τ̄ .

The boundary does not move, sockn
n is small, and thus

g(ckn
n ) < ϕ′(ρ0)

√
h < ϕ′(ρ0) and ckn

n < g−1(ϕ′(ρ0)) = ϕ(ρ0).

It is necessary that∂hc
I−1
n − ϕ′(ρ0)

√
h → 0, otherwise the amount

I−1
∑

i=kn+1

cinh grows

to infinity and somecin become greater thanA for largen. Thus ifn is large,

G(cIn) = ∂hc
I−1
n ≈ ϕ′(ρ0)

√
h and cIn ≈ G−1(ϕ′(ρ0)

√
h) > ϕ(ρ0) + ǫ.

The last inequality holds for sufficiently smallh and someǫ > 0. Hence,cIn − ckn
n > ǫ.

On the other hand, if∂hc
kn+1
n and ∂hc

I−1
n remain small, then∂hc

i
n for all

i = kn, . . . , I − 1 become small for sufficiently largen. This follows from the maximum
principle. So we can assume that|∂hc

i
n| < ϕ′(ρ0)

√
h for i = kn, . . . , I − 1. Then

cIn − ckn
n =

I−1
∑

i=kn

∂hc
i
nh <

I
∑

i=1

ϕ′(ρ0)h
√
h = ϕ′(ρ0)h

3
2 I < ϕ′(ρ0)L

√
h.

If h is sufficiently small, this is below anyǫ > 0. Thus we have the contradiction.
It is easy to show that the timeT (h) =

∑

τn is also finite and, moreover, bounded for
all h: T (h) ≤ T̄ for someT̄ .

6. Order of approximation. Let us suppose that the classical smooth solutionρ(t),
c(t, x) > 1 to the boundary-value problem(1.1)–(1.5) exists. We need to see how large the
error is if we substitute it into the system(∗).

First, we see that, for alln, τn → 0 ash → 0, and thus, the rate of convergence is at
leastτ̄ = O(

√
h). Consider the equation∂τ c

i
n − ∂hhc

i
n = Ψi

n. If cin is a solution to(2.1)
thenΨi

n ≡ 0 in DN . Substitute the values of the exact solutionc(tn, xi) at nodes of the
lattice subset̄DN into the left-hand side. Then in generalΨi

n 6= 0 is some lattice function
called the discrepancy. LetΨ denote the maximum of the absolute value of theΨi

n onDN .
Using the Taylor expansion for the exact solution and the diffusion equation(1.1), we obtain
Ψ = O(h2, τ̄ ) = O(

√
h). These are standard arguments of the theory of numerical methods,
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so the details are omitted. In a similar way, we substitute the exact solution into(2.2) and
(2.3). The discrepancy turns out to beO(h). The initial condition(2.4) is satisfied precisely.

Let us recall how we approximated the Stefan condition(1.4),

∂τρn+1 =
ρn+1 − ρn

τn
= −g

(

ckn
n

)

ckn
n

, if g
(

ckn
n

)

≥ ϕ′(ρ0)
√
h,(6.1)

and zero otherwise. Substitute the exact solutionρ(t), c
(

t, ρ(t)
)

with a discrepancyΨn and
apply the Stefan condition(1.4),

O(τ̄ ) + Ψn =
g
(

c
(

tn, ρ(tn)
)

)

c
(

tn, ρ(tn)
) ≤ ϕ′(ρ0)

√
h, if g

(

c
(

tn, ρ(tn)
)

)

< ϕ′(ρ0)
√
h,

and zero otherwise. In both casesΨn = O
(
√
h+ τ̄

)

= O
(
√
h
)

. Thus the total discrepancy
and the order of approximation of the scheme isO

(√
h
)

.
The order of approximation cannot be made better than

√
h by just choosing the condition

(4.1) in the formg
(

ckn
n

)

< ϕ′(ρ0)h
1−ǫ with ǫ > 0.5. If we do so thenτn ≤ τ̄ = O

(

hǫ
)

.
The discrepancy of the Stefan condition and thus the total discrepancy will become worse,
O(h1−ǫ).

7. Convergence of approximations.In the remainder of the paper, we assume thath is
sufficiently small.

If an h is chosen, one can determine a solution using the presented algorithm. The
solution is the set ofT , τn for 0 ≤ n ≤ N − 1, D̄N , andcin in D̄N . Theorem3.5guarantees
that if the domains̄Dn are the same for two solutions, they coincide.

Construct the piecewise linear continuous time functionρh(t) by connecting the points
(tn, xkn

) (linear interpolation). Being piecewise linearρh(t) has a piecewise constant deriva-
tive between the nodes; let us estimate it. The differencexkn+1 − xkn

is either zero (if
Kn+1 = Kn + 1) or −h (if Kn+1 = Kn). The differencetn+1 − tn = τn. We know that
τn ≥ h/g(A). Thus the derivative between the nodes belongs to[−g(A), 0] for anyh. The
functionρh(t) ∈ [0, ρ0] for all h and is defined fort ∈ [0, T (h)]. Let us expand it to[0, T̄ ]
being continuous and constant fort > T .

Now let us consider a sequencehj → 0. The functionsρhj
(t) on [0, T̄ ] are uniformly

bounded and equicontinuous; due to the Arzela–Ascoli theorem a uniformly convergent sub-
sequence can be selected (but may be not unique). Denote thissubsequence again byhj and
its limit by ρ(t). The functionsρhj

(t) are all nonnegative, uniformly bounded byρ0 < L,
and non-increasing; thusρ(t) is also nonnegative, bounded byρ0, and does not increase. Also
ρ(T ) = 0 for someT ∈ [0, T̄ ]. This is the continuous free boundary.

Now define the lattice functioncin at the nodes(n, i) 6∈ D̄N : let ckn−1
n = ckn

n − ∂hc
kn
n h,

at other nodes(n, i) 6∈ D̄N let cin = ckn−1
n . The continuous approximationsψh(t, x) in the

rectangleℵ = [0, T ] × [0, L] are constructed in the following way. Letψh(tn, xi) = cin at
the nodes(n, i). For eachn we defineψh(tn, x) to be a polynomial of the fifth orderPn,i(x)
on each segment[xi, xi+1] for i = kn . . . , I − 2. The six coefficients of the polynomial
are obtained from six equations:Pn,i(xi) = cin, Pn,i(xi+1) = ci+1

n , Pn,i(xi)
′ = ∂hc

i
n,

Pn,i(xi+1)
′ = ∂hc

i+1
n , Pn,i(xi)

′′ = ∂hhc
i
n, Pn,i(xi+1)

′′ = ∂hhc
i+1
n . On the segments

[xI−1, xI ] we have only four equations because∂hc
I
n and∂hhc

I
n are not defined. Let us

add the equationsPn,I−1(xI)
′ = ∂hc

I−1
n andPn,I−1(xI)

′′ = 0. The equations for the
coefficients are linear with a regular matrix (its determinant can be easily calculated). Finally
we defineψh(t, x) being linear with respect tot for t ∈ [tn, tn+1], x ∈ [xi, xi+1],

ψh(t, x) = Pn,i(x) +
t− tn
τn

·
(

Pn+1,i(x) − Pn,i(x)
)

.
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Obviously∂xψh(t, x) and∂xxψh(t, x) are continuous and uniformly bounded, and∂tψh(t, x)
and∂xtψh(t, x) exist between the nodes and are also uniformly bounded (see Theorems3.6
and3.7and Corollary3.8); thus

ψh(tn + dt, xi + dx) = ψh(t, x) + o(dt) + o(dx),

∂xψh(tn + dt, xi + dx) = ∂xψh(t, x) + o(dt) + o(dx).

Due to the fact thatψh(t, x), ∂xψh(t, x), ∂tψh(t, x), and∂xxψh(t, x) are uniformly bounded
at the nodes, the functionsψh(t, x) and∂xψh(t, x) are uniformly bounded and equicontinu-
ous (even equi-Lipschitz) inℵ.

Now take the sequencehj → 0 chosen above and consider the corresponding sequence
ψhj

(t, x). These functions are uniformly bounded and equicontinuous; by the Arzela–Ascoli
theorem a uniformly convergent subsequence can be chosen. Let its limit beψ(t, x). It
is continuous. Denote the corresponding subsequence ofhj again byhj. It is clear that
ψ(t, x) ≥ 1, is bounded, and satisfies(1.5). Moreover, the derivatives∂xψh(t, x) are them-
selves uniformly bounded and equicontinuous. Applying theArzela–Ascoli theorem, we
learn that continuous∂xψ(t, x) exists and term-by-term differentiation is allowed.

PROPOSITION7.1. The functionψ(t, x) is Lipschitz continuous inℵ.
Proof. Let~z = (t, x) and bound

|ψ(~z1) − ψ(~z2)| ≤ |ψ(~z1) − ψhj
(~z1)| + |ψhj

(~z1) − ψhj
(~z2)| + +|ψ(~z2) − ψhj

(~z2)|
≤ ε+ Z ′‖~z‖ + ε = Z ′‖~z‖ + 2ε.

Hereε > 0 is any number. We have used Lipschitz continuity ofψhj
(~z1) and their uniform

convergence (assuming thatj is large enough). Passing to the limit asε → 0 finishes the
proof.

THEOREM 7.2. The free boundaryρ(t) has negative Lipschitz continuous derivative for
t ∈ [0, T ] and the Stefan condition(1.4) holds.

Proof. Rewrite the Stefan condition(1.4) in integral form,

ρ(t) = ρ0 −
∫ t

0

g
(

c
(

ξ, ρ(ξ)
))

c
(

ξ, ρ(ξ)
) dξ.(7.1)

Substitute the approximationsψh(t, x) andρh(t) into (7.1),

ρh(t) = ρ0 −
∫ t

0

g
(

ψh(t, ρh(t))
)

ψh(t, ρh(t))
dξ + Ψh.(7.2)

HereΨh is the discrepancy. We need to prove thatΨh → 0 ash→ 0.
First, let us studyρh(t). Let tn ≤ t ≤ tn+1. We definedρh(tn) by linear interpolation,

so that

ρh(tn) = ρ0 +

n
∑

m=1

∂τρmτm−1.

Letµn be the set of naturalm ≤ n, such thatckm
m is not small, i.e.,g

(

ckm
m

)

≥ ϕ′(ρ0)
√
h. Let

µ̄n be its complement, i.e.,m = 1, . . . , n that are not inµn. Now apply(6.1),

−
(

ρh(tn) − ρ0

)

= −
∑

m∈µn

∂τρmτm−1 =
∑

m∈µn

g
(

ckm
m

)

ckm
m

τm−1

=
n
∑

m=1

g
(

ckm
m

)

ckm
m

τm−1 −
∑

m∈µ̄n

g
(

ckm
m

)

ckm
m

τm−1 =
n
∑

m=1

g
(

ckm
m

)

ckm
m

τm−1 +O
(
√
h
)

.
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The sum overm ∈ µ̄n has positive terms and each is at mostϕ′(ρ0)
√
h; thus the sum is

O
(√
h
)

. Note thatρh(t) = ρh(tn) +O(τn) = ρh(tn) +O
(√
h
)

.
Let us consider

∫ tn

0

g
(

ψh(t, ρh(t))
)

ψh(t, ρh(t))
dξ =

n
∑

m=1

∫ tm

tm−1

g
(

ψh(t, ρh(t))
)

ψh(t, ρh(t))
dξ.

We have the continuous functions under the integrals; so that
∫ tm

tm−1

g
(

ψh(t, ρh(t))
)

ψh(t, ρh(t))
dξ =

g
(

ckm
m

)

ckm
m

τm−1 + o(τm−1) =
g
(

ckm
m

)

ckm
m

τm−1 + o(τm−1).

Let us rewriteo(τm−1) = τm−1ωm−1, ωm → 0 ash→ 0. Then

∫ tn

0

g
(

ψh(t, ρh(t))
)

ψh(t, ρh(t))
dξ =

n
∑

m=1

(

g
(

ckm
m

)

ckm
m

)

τm−1 +
n
∑

m=1

ωm−1τm−1.

The last sum tends to zero ash→ 0; denote it byW . Note that
∫ t

0

g
(

ψh(t, ρh(t))
)

ψh(t, ρh(t))
dξ =

∫ tn

0

g
(

ψh(t, ρh(t))
)

ψh(t, ρh(t))
dξ +O(τn).

Let us substitute the obtained expressions into(7.2),

O
(
√
h
)

= O
(
√
h
)

+W + Ψh.

ThusΨh → 0 ash→ 0 and the uniform limit of(7.2) exists. Therefore, the obtained contin-
uous solutionρ(t), ψ(t, x) satisfies the integral Stefan equation(7.1). Its left-hand sideρ(t)
is not only continuous, but also has the continuous derivative for t ∈ (0, T ). Differentiating
by t we see that the solutionρ(t), ψ(t, x) also satisfies the original Stefan condition(1.4).
Moreover, the derivativėρ is Lipschitz becauseψ is andρ̇ = g(ψ)/ψ, where the right-hand
side is smooth.

COROLLARY 7.3. The free boundaryρ(t) has the inverse functionρ−1(x).

8. Weak solution to the Dirichlet boundary-value problem. Let the setYρ(T ) ⊂ R
2

contain all(t, x) such thatt ∈ (0, T ), x ∈ (ρ(t), L), let Ȳρ(T ) be its closure. We are going
to prove thatψ(t, x) is the weak solution to problem(1.1)–(1.5) in Yρ(T ).

Consider the Dirichlet boundary-value problem,

∂tc(t, x) = ∂xxc(t, x), (t, x) ∈ Yρ(T ),(8.1)

c(t, L) = ψ(t, L), c
(

t, ρ(t)
)

= ψ
(

t, ρ(t)
)

, t ∈ [0, T ],(8.2)

c(0, x) = ϕ(x), x ∈ [ρ0, L], 0 < ρ0 < L.(8.3)

We are going to define a weak solution to this problem (similarto [7, 9, 10]).
DEFINITION 8.1. A weak solution of the problem is a continuous functionc(t, x) that

has the weak derivative∂xc in Ȳρ(T ) and satisfies conditions(8.2) and(8.3) and the integral
identity

∫

Ȳρ(T )

c(t, x)∂tv(t, x)dtdx =

∫

Ȳρ(T )

∂xc(t, x)∂xv(t, x)dtdx

for each continuous in̄Yρ(T ) functionv(t, x) with the weak derivative∂xv; the functionv is
such thatv(0, x) = v(T, x) = 0, v

(

t, ρ(t)
)

= v(t, L) = 0.
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Let us prove that the constructed functionψ is the only weak solution.
PROPOSITION 8.2. The constructed solutionψ(t, x) to the problem(1.1)–(1.5) is a

weak solution to the problem(8.1)–(8.3).
Proof. Boundary and initial conditions(8.2) and (8.3) are obviously satisfied. The

identity is proved by considering it for theψh up to the small errors and passing to the limit.
THEOREM 8.3. The weak solution to(8.1)–(8.3) is unique.
Proof. Suppose [10] that there are two solutionsc1(t, x) andc2(t, x); their difference

u(t, x) = c1 − c2 also satisfies the identity; besides it satisfies the homogenous boundary
conditions:u(0, x) = 0, u

(

t, ρ(t)
)

= u(t, L) = 0. Consider the functionv(t, x) such that
v(T, x) = 0, ∂tv(t, x) = −u(t, x). Substitutev(t, x) into the identity,

−
∫

Ȳρ(T )

u2dtdx =

∫

Ȳρ(T )

∂xu

∫ T

t

∂xudξdtdx.

Let us transform the right-hand side,

∫

Ȳρ(T )

∂xu

T
∫

t

∂xudξdtdx =

ρ0
∫

0

T
∫

ρ−1(x)

∂xu

T
∫

t

∂xudξdtdx+

L
∫

ρ0

T
∫

0

∂xu

T
∫

t

∂xudξdtdx

=

ρ0
∫

0

T
∫

ρ−1(x)

∂xu

t
∫

ρ−1(x)

∂xudξdtdx+

L
∫

ρ0

T
∫

0

∂xu

t
∫

0

∂xudξdtdx.

Adding the identities with these two forms on the right-handside, we get

−2

∫

Ȳρ(T )

u2dtdx =

∫ ρ0

0

∫ T

ρ−1(x)

∂xu

∫ T

ρ−1(x)

∂xudξdtdx +

∫ L

ρ0

∫ T

0

∂xu

∫ T

0

∂xudξdtdx.

The two integrals withξ as the integration variable are independent oft. Thus,

−2

∫

Ȳρ(T )

u2dtdx =

∫ ρ0

0

(

∫ T

ρ−1(x)

∂xudt

)2

dx+

∫ L

ρ0

(

∫ T

0

∂xudt

)2

dx.

This can hold only ifu ≡ 0 in Ȳρ(T ) and so the uniqueness is proved.
As the solution to(8.1)–(8.3) is unique, there are no other solutions beside the function

ψ(t, x) constructed above .

9. Regularity. Let us show that the constructed solutionψ(t, x) is actually classical,
i.e., smooth, by applying results from [11]. First, we transform the domain to a rectangle by
changing the spatial variablex in (8.1)–(8.3) in the following way:x = ρ(t)+y ·

(

L−ρ(t)
)

,
u(t, y) = c(t, x), y ∈ [0, 1], ρ is the obtained free boundary. The problem in the new variables
looks like

∂tu(t, y) = a(t, y)∂yyu(t, y) + b(t, y)∂yu(t, y), (t, y) ∈ D,(9.1)

u(t, y) = ψ(t, y), (t, y) ∈ B̄ × S,(9.2)

wherea = (L − ρ)−2, b = (1 − y)(L − ρ)−1ρ̇, D = B̄ × [0, T ] is a cylinder,B = (0, 1),
B̄ = [0, 1], the boundary∂B of B consists of two points,x = 0 andx = 1, and the boundary
manifoldS consists of two parts,S0 = (0, T ) × {x = 0} andS1 = (0, T ) × {x = 1}. The
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functionψ is continuous in̄Yρ(T ) and thus on̄B×S also. Note thata does not depend ony.
The notation is from [11].

Let us check the requirements of [11, Corollary 2,§4, Chapter III]. ConditionĀ from
[11] holds: the coefficientsa, b are uniformly Hölder continuous inD; indeed, even Lipschitz
continuous with the same Lipschitz constant. This follows from the fact thaṫρ is Lipschitz
continuous. ConditionB from [11] holds trivially: a(t, y) ≥ L−2 > 0. The other require-
ments of [11] also hold trivially.

From [11, Corollary 2,§4, Chapter III], the existence of the unique classical solutionu to
the boundary-value problem(9.1)–(9.2) follows. The inverse change of variables
c(t, x) = u(t, y(x)) provides us the classical solution of the problem(8.1)–(8.3) in Ȳρ(T ).
Being a classical solution,c(t, x) is then a weak solution and thus coincides with the weak
solutionψ(t, x) (because the weak solution is unique). We have proved thatψ(t, x) satisfies
the boundary Stefan condition(1.4). The boundary conditions(1.2) and(1.3) also hold; the
reason is that they obviously hold at the nodes of the latticeand the approximations have con-
tinuous derivatives with respect tox. Thus between the nodes the boundary conditions hold
up to the errorO(

√
dx2 + dt2), where

√
dx2 + dt2 is the distance to the nearest boundary

node. Passing to the uniform limit ash → 0 finishes the proof. Therefore, we have proven
the following theorem.

THEOREM 9.1. The constructed pair of the functionsρ(t), ψ(t, x) is the classical solu-
tion to the problem(1.1)–(1.5).

The presented numerical method (algorithm) converges to a solution of the boundary-
value problem(1.1)–(1.5) and can be used for solving the problem.

10. Numerical example.We illustrate the suggested method by a numerical example.
The model is similar to that of [1]. Assume that the right-hand sides of the boundary condi-
tions (1.2), (1.3), and the initial condition (1.5) are

G(c) = P − βc2, g(c) = κc(c− 1), ϕ(x) = γ1x+ γ2.

HereP is the sorption flux density, which is constant provided thatthe temperature and the
pressure are constant; the desorption flux densityβc2 depends on the concentrationc, the
square law follows from the fact that two hydrogen atoms forma moleculeH2, β < P
is the desorption constant. The difference between sorption and desorption is the diffusion
flux density, i.e., the right-hand side of (1.2). Hydride formation is described by the second
formula,κ is constant (this boundary condition differs from the appropriate one from [1],
where we assumedc(t, ρ) = 1). The initial distributionϕ(x) is stationary for the diffusion
equation, i.e., is its time-independent solution. The constantsγi are uniquely determined
from the boundary conditions.

All assumptions hold, onlyg′(c) is negative forc < 0.5. But this in not important
because we have proved thatc ≥ 1, so we can change the condition forc < 1 without any
influence on the results. After the timeT , i.e., when hydriding is over, we have the problem of
saturation with fixed boundaries and nonlinear boundary condition (1.2). Another condition
follows from the symmetry and looks like∂xc(t, 0) = 0, thusg(c) = 0. All our results hold
for this problem also. The dimensionless parameters wereL = 1, ρ0 = 0.63,P = 1.21 · 105,
β = 1.24 · 104, κ = 50. To return to usual units it is enough to knowL = 7 · 10−5 cm,
the stoichiometric concentration in uranium8.29 · 1022 atoms per cm3, and the hydrogen
diffusivity in UH3 d = 7 · 10−13 cm2/s. The figures are in the usual units.

Figure10.1shows the flux densities at the boundaries; the upper curve isthe flux density
at x = L, the other is the flux density at the free boundary. It vanishes instantly when
hydriding is over. Figure10.2displays the concentration at the free boundary; one can see
that the assumption from [1] (thatc(t, ρ) ≈ const while hydriding is not over) is reasonable.
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FIG. 10.1.Flux densities at the boundaries.
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FIG. 10.2.Concentration at the free boundary.

In Figure10.3we present the concentration profiles at regularly distributed time instants.
One can estimate the free boundary’s velocity: it is almost constant. Also the concentration
atx = L is almost constant. This is the reason why we did not present it in Figure10.2.
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