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MONOTONE CONVERGENCE OF THE LANCZOS APPROXIMATIONS TO
MATRIX FUNCTIONS OF HERMITIAN MATRICES ∗

ANDREAS FROMMER†

Abstract. When A is a Hermitian matrix, the actionf(A)b of a matrix functionf(A) on a vectorb can
efficiently be approximated via the Lanczos method. In this note we useM -matrix theory to establish that the2-
norm of the error of the sequence of approximations is monotonically decreasing iff is a Stieltjes transform andA
is positive definite. We discuss the relation of our approachto a recent, more general monotonicity result of Druskin
for Laplace transforms. We also extend the class of functions to certain product type functions. This yields, for
example, monotonicity when approximating sign(A)b with A indefinite if the Lanczos method is performed forA2

rather thanA.
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1. Introduction. Throughout the whole paper letA ∈ Cn×n be a Hermitian matrix.
Then there exists an othornormal set of eigenvectors ofA which spansCn. We can express
this via the spectral decomposition

(1.1) A = QΛQH , Λ = diag[λ1, . . . , λn],

thei-th column ofQ being an eigenvector ofA for the eigenvalueλi andQHQ = I.
Let spec(A) = {λ1, . . . , λn} denote the set of all eigenvalues ofA. Any function

f : z ∈ spec(A) → f(z) ∈ C

can be extended to a matrix functionf(A) as

f(A) = Qf(Λ)QH wheref(Λ) = diag[f(λ1), . . . , f(λn)].

Other, equivalent, definitions are possible. For example, with the help of the polynomialp of
degree at mostn − 1 which interpolatesf on spec(A) we have

f(A) = p(A),

and for f analytic there is a representation as a contour integral forthe resolvent; see,
e.g., [13]. We will be particularly interested in cases wheref is defined forz > 0 and
can be represented as an (improper Riemann-Stieltjes) integral of the form

(1.2) f(z) =

∫ ∞

t=0

1

(t + z)k
dµ(t)

with k a natural number andµ(t) : R → R a non-decreasing bounded function for which
∫ ∞

t=1 1/tkdµ(t) is finite. Using (1.1) we see that we then can representf(A) as

f(A) =

∫ ∞

t=0

(tI + A)−kdµ(t),
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the integral to be understood componentwise.
This paper deals with the situation where one wants to compute u = f(A)b for some

vectorb ∈ Cn. If A is large and sparse, computingf(A) is prohibitive, since it usually is a
dense matrix. The action off(A) on b may, however, still be computable at reasonable cost,
and the Lanczos method has established itself as the standard way to do so.

Let us recall that given an initial vectorb ∈ Cn, which for notational consistency is now
calledṽ1, ṽ1 6= 0, the Lanczos process computes an orthonormal basisv1, v2, . . . , vm of the
Krylov subspaceKm(A, ṽ1) = span

{
ṽ1, Aṽ1, . . . , Am−1ṽ1

}
up to a maximum stagemmax

(which is the degree of the minimal polynomial ofṽ1 with respect toA) via the iteration (we
putv0 = 0), as follows.

for m = 1, . . . , mmax

βm = ‖ṽm‖
vm = ṽm/βm

w̃m+1 = Avm − βmvm−1

αm = 〈w̃m+1, vm〉
ṽm+1 = w̃m+1 − αmvm

The process is stopped form = mmax since this is the first index for which̃vm+1 = 0.
The Lanczos process is usually summarized as

(1.3) AVm = VmTm + βm+1v
m+1eT

m,

whereVm = [v1| . . . |vm] ∈ Cn×m, em is them-th Cartesian unit vector inCm andTm is
the symmetric tridiagonal matrix

Tm =










α1 β2

β2 α2 β3

. . .
. . .

. . .
βm−1 αm−1 βm

βm αm










∈ R
m×m.

Based on the Lanczos method, the following approach for obtaining approximations
um ∈ Km(A, b) to u = f(A)b has meanwhile established itself as standard:

(1.4) um = Vmf(Tm)V H
m b = β1Vmf(Tm)e1.

This amounts to orthogonally project the matrixA onto the subspaceKm(A, b) and to ap-
proximatef(A)b by the matrix function evaluated on the subspace. In [7], to which we also
refer for a detailed historic account including [14, 20, 24], this method is called thespectral
Lanczos decomposition method. For brevity, let us callum just the (m-th) Lanczos approx-
imation tof(A)b. Note that form = mmax we haveAVm = VmTm. Sincef(Tm) can be
represented as a polynomial inTm we have that

f(A)b = β1Vmmaxf(Tmmax)e1.

Note also that (1.4) still requires to computef(Tm). ButTm will be of much smaller size
thanA and, in addition, it is tridiagonal. So various appropriatetechniques may be applied
to computef(Tm), including those using the spectral decomposition ofTm; see, e.g., [12]
or [13].

Our purpose is to investigate the error

em = um − u
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of the Lanczos approximationsum and we will identify situations where‖em‖ decreases
monotonically. Our basic result holds for the case whereA is positive definite andf can be
represented in the form (1.2). In this sense, we extend a well-known result for the Conjugate
Gradient (CG) method for solvingAx = b; see, e.g., [21]. CG is mathematically equivalent
to the Lanczos method described above withf(z) = z−1 which can be expressed in the form
(1.2) using the step functionω:

f(z) =

∫ ∞

t=0

1

z + t
dω(t) with ω(t) =

{
0 for t = 0,
1 for t > 0.

In the CG method the residualsrm = b − Aum are collinear to the Lanczos vectors, see
[21]:

(1.5) rm = (−1)m+1‖rm‖ · vm.

The presentation of the results in this paper will be greatlysimplified if we flip the direc-
tion of every other Lanczos vectorvm just in the way suggested by (1.5). So let

V ±
m = [v1| − v2| . . . |(−1)m+1vm].

The basic relation (1.3) can then equivalently be expressed as

(1.6) AV ±
m = V ±

m T±
m + (−1)m+1βm+1v

m+1eT
m

with

T±
m =










α1 −β2

−β2 α2 −β3

. . .
. . .

. . .
−βm−1 αm−1 −βm

−βm αm










.

Of course,T±
m = S−1TmS with the signature matrixS = diag[1,−1, . . . , (−1)m−1] ∈

Rm×m. Since for any matrix function and any non-singular matrixX one has (see, e.g., [12],
[13], or [15])

Xf(A)X−1 = f(XAX−1),

we see thatf(Tm) = Sf(T±
m)S−1. It follows that the Lanczos approximationum from (1.4)

is also given by

(1.7) um = β1V
±
m f(T±

m)e1.

The remainder of this paper is organized as follows: In Section 2 we will study some
properties ofT±

m using M-matrix theory. In Section3 we will use these to prove the mono-
tone convergence for the given class of functions. Section4 is devoted to a comparison with
the recent results from [6]. In Section5 we extend our results to a larger class of functions,
thus including Lanczos type methods for approximating the action of the matrix sign function.
The paper ends with a general discussion of the techniques used in Section6 and some con-
clusions where we also address the impact of inexact arithmetic. Otherwise, exact arithmetic
is assumed throughout.
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2. Properties ofTm and T±
m . In this section we assumeA to be positive definite. Let

us first note that from (1.3) and (1.6) we immeditaley see that

Tm = V H
m AVm, T±

m = (V ±
m )HAV ±

m = STmS−1.

So, sinceA is positive definite, we have thatTm andT±
m are both positive definite, too. From

the Lanczos process it is also clear that all non-zero entries of Tm are real and positive. Let
Dm = diag[α1, . . . , αm] be the diagonal part ofTm and letBm = Tm−Dm. ThenBm ≥ 0,
where ”≥” stands for the entrywise partial ordering. SinceT±

m = Dm − Bm, we see that the
off-diagonal entries ofT±

m are all nonpositive. A matrix with nonpositive off-diagonal entries
whose inverse is (componentwise) nonnegative is called anM-matrix. The following lemma
shows thatT±

m is an M-matrix.
LEMMA 2.1. If A is positive definite, then

(T±
m)−1 ≥ 0.

Proof. A well-known result for M-matrices (see [3, Theorem 2.3, G20]) states that for
B ∈ R

n×n with nonpositive off-diagonal entries the relationB−1 ≥ 0 is equivalent to that
all eigenvalues ofB have positive real parts. ButT±

m = (V ±
m )HAV ±

m has only nonpositive
off-diagonal entries and its eigenvalues are all positive,sinceA is positive definite.

M -matrices have plenty of useful properties. The two that we need are collected in the
following lemma. For a proof see [3, Exercise 5.1], for example.

LEMMA 2.2. Let B, C ∈ Rm×m be twoM -matrices and letE ∈ Rm×m be such that
E ≥ 0.

(i) If B ≤ C, then0 ≤ C−1 ≤ B−1.
(ii) If B + E has all its off-diagonal entries nonpositive, thenB + E is an M-matrix.

3. Monotone convergence.Our approach to prove monotone convergence, which builds
upon [6], starts from (1.7). Since the Lanczos basis vectorsvm are mutually orthogonal, if
we can show that the coefficient vectors representingum from (1.7) in this basis, given as

sm = β1f(T±
m)e1 ∈ R

m,

satisfy

(3.1) o ≤
[

sm−1

0

]

≤ sm

for m = 1, . . . , mmax, we have that the sequence‖um‖ is monotonically increasing. It is even
strictly increasing if for one component, for example the last one, we have strict inequality in
(3.1). Moreover, sincef(A)b = ummax , we also see that the norm of the errors

em = ummax − um = Vmmax

(

smmax −
[

sm

o

])

is monotonically decreasing. This is how we will prove our main result stated as follows.
THEOREM 3.1. Let A be Hermitian and positive definite. Assume that the function

f : (0,∞) → R can be expressed for allz > 0 as

f(z) =

∫ ∞

t=0

1

(t + z)k
dµ(t),

with µ(t) a non-decreasing function such that
∫ ∞
1

1
tk dµ(t) < ∞ andk ∈ N. Letum be the

Lanczos approximation defined in (1.4) or (1.7) andem = f(A)b−um for m = 1, . . . , mmax.
Then the following holds for the 2-norm‖ · ‖:
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(i) The sequence‖um‖ is monotonically increasing.
(ii) The sequence‖em‖ is monotonically decreasing.
Proof. As we just explained it is sufficient so show (3.1). To that purpose we use the

representation

(3.2) sm = β1 · f(T±
m)e1 = β1

∫ ∞

t=0

(tI + T±
m)−ke1dµ.

Note that this integral exists since spec(T±
m) ⊂ (0,∞). Denote byT̂±

m ∈ Rm×m the matrix
obtained fromT±

m by setting the(m − 1, m) and(m, m − 1) entries to zero,

(3.3) T̂±
m =










α1 −β2

−β2 α2 −β3

. . .
. . .

. . .
−βm−1 αm−1 0

0 αm










=

[
T±

m−1 o

o
T αm

]

.

Then

tI + T̂±
m =

[
tI + T±

m−1 o

o
T t + αm

]

and

tI + T±
m ≤ tI + T̂±

m for all t ≥ 0.

But for all t ≥ 0 the matrixtI + T±
m is an M-matrix by Lemmas2.1and2.2(ii). Moreover,

again by Lemma2.2(ii), the matrix tI + T̂±
m is an M-matrix for allt ≥ 0, too. And since

tI + T±
m ≤ tI + T̂±

m , part (i) of that lemma gives us

0 ≤ (tI + T̂±
m)−1 ≤ (tI + T±

m)−1 for all t ≥ 0.

Trivially, then, via repeated multiplication we get

0 ≤ (tI + T̂±
m)−k ≤ (tI + T±

m)−k for all t ≥ 0,

which results in

0 ≤
∫ ∞

t=0

(tI + T̂±
m)−kdµ ≤

∫ ∞

t=0

(tI + T±
m)−kdµ.

Given the block structure (3.3) and comparing the first columns, the inequality above finally
yields

o ≤
[

sm−1

0

]

≤ sm.

COROLLARY 3.2. Let A be Hermitian and positive definite. Then the norms of the
Lanczos approximationsum to f(A)b increase monotonically, and the error norms
‖f(A)b − um‖ decrease monotonically for the following functionsf :

(i) f(z) = z−k, k ∈ N,
(ii) f(z) =

∑p
i=1

αi

z+βi

with αi ≥ 0, βi > 0 for i = 1, . . . , p,

(iii) f(z) = z−1/2,
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(iv) f(z) = z−α for α ∈ (0, 1),
(v) f(z) = (z − 1)−1 log z,
(vi) f(z) = z−α(1 + z)−β, 0 < α ≤ 1, α + β ∈ [0, 1),
(vii) f(z) =

∑∞
i=1

αi

z+βi

with αi ≥ 0, βi > 0 for i = 1, 2, . . ., and
limi→∞ zi = ∞, limi→∞ |αi/βi| < ∞,

(viii) f is the result of a Stieltjes transform, i.e.,

f(z) =

∫ ∞

t=0

1

z + t
dµ(t),

whereµ is a non-decreasing real function such that
∫ ∞
1

1
t dµ(t) < ∞,

(ix) f(z) =
∑ℓ

i=1 γifi(z) with γi ≥ 0 for all i andfi any function from (i)-(viii) or a
constant.

Proof. Part (i) follows by taking the step function,

ω(t) =

{
0 for t = 0,
1 for t > 0,

so thatz−k =
∫ ∞

t=0
1

(t+z)k dω(t). The functions considered in (ii) to (vii) are all particular
Stieltjes transforms, i.e., they are special cases of (viii) as we briefly outline now. For the
rational function case (ii), assume that0 ≤ β1 < · · · < βp and define the step functionω as

ω(t) =







0 for t ≤ β1,
∑i

j=1 αj for βi < t ≤ βi+1,
∑p

j=1 αj for βp < t,

to see thatf(z) =
∫ ∞

t=0
1

t+z dω(t). Part (iii) is contained in (iv) for which we observe that for
α ∈ (0, 1),

z−α =
sin((1 − α)π)

π

∫ ∞

0

1

t + z
dµ(t),

with µ(t) = t−α; see [4]. The fact that we are also in the presence of Stieltjes transforms in
cases (v) and (vi) has been observed in [16], the case (vii) was treated in [7]. Finally, if f is
of the form given in (ix) we have thatsm = β1 · ∑ℓ

i=1 fi(T
±
m)e1. Herein, each individual

summandfi(T
±
m)e1 fulfills a relation analogous to (3.1) which thus carries over to the whole

sum.
Let us remark that the set of Stieltjes transforms is a subsetof the set of completely mono-

tone functions. We refer to [11, Chapter 12] for a textbook treatment of Stieltjes transforms.
Defining the Stieltjes cone as the set of all functions of the form

a +

∫ ∞

0

1

t + z
dµ(t),

with a ≥ 0 andµ as before, it can be shown that the Stieltjes cone is exactly the restric-
tion to the positive real axis of all functionsg which are holomorphic in the cut planeC \
(−∞, 0], nonnegative onR+ and which map the upper half plane to the lower half plane; see
[1, Chapter 3, Addenda and Problems], [2] or [11, Chapter 12.10].

The importance of the Stieltjes cone for the analysis of matrix function methods has
been realized by several authors, for example in [7, 17] for approximation in extended Krylov
subspaces and in [16] (see also [8]) for an analysis of restarted variants.
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4. Relation to the exponential.For the matrix exponential we have the following result
which has recently been proved in [6, Theorem 1 and Remark 1].

THEOREM 4.1. LetA be Hermitian and

g(z) =

∫ ∞

t=0

w(t)etzdt, z ∈ [a, b] ⊃ spec(A),

with w(t) real, nonnegative such thatg(z) exists and is bounded on[a, b]. Then the Lanczos
approximations toexp(A)b as well as tog(A)b converge monotonically.

Now, letA be positive definite,(a, b) = (−∞, 0) and takef(z) = g(−z), i.e.,

f(z) =

∫ ∞

t=0

w(t)e−tzdt, z ∈ (0,∞).

Thenf can be interpreted as the Laplace transform (see, e.g., [11, Chapter 10]) ofw, pro-
vided w is from what is called the ’original space’Ω in [11]. Laplace transforms are in-
timately related to Stieltjes transforms, since the latterones arise as the result of two iter-
ated Laplace transforms. Indeed, as is explained in detail in [11, Chapter 10.11], taking
σ(s) =

∫ ∞
0 w(t)e−stdt, and assuming that this integral converges absolutely fors in the

closed right half plane, the following transformations arevalid:

∫ ∞

0

e−szσ(s) ds =

∫ ∞

0

∫ ∞

0

e−sze−stw(t) dt ds

=

∫ ∞

0

∫ ∞

0

e−(z+t)sds w(t) dt

=

∫ ∞

0

1

z + t
w(t)dt.

This shows that, at least for the casek = 1, our Theorem3.1with µ(t) =
∫ t

τ=0 w(τ)dτ
and ‘standard’ functionsw is actually a special case of what has been proven in [6] in the
context of the matrix exponential. The proof presented here, however, is quite different from
that in [6], and may thus have some value by itself. In [6], an analog to a semidiscretized one-
dimensional heat equation was built up from the Lanczos coefficients, and the monotonicity
result was established considering the time stepping operator of an explicit Euler scheme.
Our approach, in turn, highlights the role ofM -matrices in this context and may be regarded
more ‘linear algebra oriented’.

5. Extensions.Assume that the functionf can be represented as

f(z) = g(z) · p(z),

wherep is a polynomial andg is of the form considered in Theorem3.1, i.e.,

g(z) =

∫ ∞

t=0

1

(t + z)k
dµ(t),

with µ(t) a non-decreasing real function,k ∈ N,
∫ ∞
1

1
tk dµ(k) < ∞. An obvious way to ap-

proximatef(A)b is to first computẽb = p(A)b, e.g., using Horner’s scheme or a known stable
recurrence forp. This mainly requires only simple matrix vector multiplications. We then
approximateg(A)b̃ using the Lanczos approach. Obviously, by Theorem3.1 this approach
leads to monotone convergence.
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Approximatingf(A)b in this manner we considerably increase the class of functions for
which the approximations tof(A)b converge smoothly, i.e., monotonously. In the following
example we explicitly list some functions which are from this class and which are important
in practice.

EXAMPLE 5.1. (See [7].) The following matrix functions arise in the solution of elliptic
boundary problems of the form

(5.1) Aw − d2w

dΘ2
= g(Θ)ϕ

using the method of lines:
(i) For g ≡ 0 and the boundary conditions,w(0) = ϕ0, w(∞) = 0, we have

w(Θ) = exp(−Θ
√

A)ϕ0, i.e., we have

f(z) = e−Θ
√

z = 1 − g(z)z,

with

g(z) =
1 − exp(−Θ

√
z)

z
=

∫ ∞

0

1

z + t
dµ, wheredµ =

sin(Θ
√

t)

πt
dt.

(ii) The matrix square root arises from the Dirichlet to Neumann problem for (5.1), i.e.,

f(z) =
√

z = g(z)z with g(z) = z−1/2,

wherez−1/2 was considered in Corollary3.2(iii).
With a slight modification of the Lanczos approach, the discussion of this section also

holds for the matrix sign function as we will explain now. Computing the action of the
sign function sign(A)b for a Hermitian, indefinite matrixA is at the heart of very compute-
intensive numerical simulations in lattice quantum chromodynamics with so-called overlap
fermions; see, e.g., [18]. SinceA is indefinite, the theory developed so far does not apply
directly. Actually, numerical experiments reported in [23] show that there is no monotone
decrease of the error norm if one computes the Lanczos approximations as given by (1.4).
Based on numerical experiments and a partly heuristic explanation, the paper [23] therefore
suggests to rather compute sign(A)b as (A2)−1/2(Ab); see also [5]. This means that we
use (1.4) for

(5.2) f(B)b̃ wheref(z) = z−1/2, B = A2, b̃ = Ab.

With Corollary3.2 (iii), we now have a proof for the smooth convergence observed since it
shows that the norm of the error of the Lanczos approximations for (5.2) is monotonically
decreasing.

In the case of the matrix sign function, we know that‖sign(A)b‖ = ‖b‖, because sign(A)
is unitary. Together with the monotone convergence of the approximations via (1.4), we can
thus even get bounds on the error of the approximations according to the following proposi-
tion.

PROPOSITION5.2. Assume thatA is Hermitian and that approximationsum for u =
sign(A)b are computed by the Lanczos method forB−1/2b̃ with B = A2, b̃ = Ab. Then the
sequence‖um‖ is monotonically increasing,‖um‖ ≤ ‖b‖ for all m and

‖b‖ − ‖um‖ ≤ ‖u − um‖ ≤
(
‖b‖2 − ‖um‖2

)1/2
.
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Proof. We use the notation introduced in Section3. Thus,

u = V ±
mmax

· smmax andum = V ±
m · sm = V ±

mmax
·
[

sm

o

]

.

Definingsm
i = 0 for i = m+1, . . . , mmax, we extendsm to a vector inRmmax and we know

that

(5.3) 0 ≤ sm
i ≤ smmax

i for i = 1, . . . , mmax.

Our task is to bound the minimum and the maximum of

h(sm) = ‖u − um‖2 = 〈smmax − sm, smmax − sm〉
= 〈smmax , smmax〉

︸ ︷︷ ︸

=‖b‖2

−2 · 〈smmax , sm〉 + 〈sm, sm〉
︸ ︷︷ ︸

=‖um‖2

as a function ofsm under the constraints (5.3). From (5.3) we see that〈smmax , sm〉 ≥ ‖sm‖2,
which gives the boundh(sm) ≤ ‖b‖2 − ‖um‖2. On the other hand, the Cauchy-Schwarz
inequality gives

〈smmax , sm〉 ≤ ‖smmax‖
︸ ︷︷ ︸

=‖b‖

· ‖sm‖
︸ ︷︷ ︸

=‖um‖

from which we deduceh(sm) ≥ (‖b‖ − ‖um‖)2.

6. Further discussion. Rational functions, which arise either directly or as approxima-
tions to other functions, have an important practical advantage in large scale computations if
they allow for a partial fraction expansion as considered inCorollary 3.2 (ii): The Lanczos
approximations can now be obtained by simultaneously performing the CG iterations for all
p terms in the partial fraction expansion. Only one matrix-vector multiplication per iteration
is needed for all systems together, and since CG relies on short recurrencies, it is not neces-
sary to store all the Lanczos vectors. The storage requirements are thus determined byp, the
number of poles, but they are independent ofm, the iteration count. Details can be found in,
e.g., [10].

As an example, consider thep pole Zolotarev rational approximationZp(z) to z−1/2 on
an interval[a, b] with 0 < a < b. This approximation minimizes therelativeℓ∞-error in[a, b]
over all rational functions with nominator and denominatorof degree≤ p. It has precisely
the form considered in Corollary3.2(ii), and explicit formulae, involving the Jacobi elliptic
function, are known for the all positive parametersαi andβi; see [19]. The use ofZp(z

2)z
as an approximation to the sign function has been studied in [23]. As before we now have a
proof that the Lanczos approximations for

Zp(B)c with B = A2, c = Ab

have their errors decrease monotonically.
As a last contribution, let us turn back and consider the matricesTm rather thanT±

m .
Define

T̂m =










α1 β2

β2 α2 β3

. . .
. . .

. . .
βm−1 αm−1 0

0 αm










=

[
Tm−1 o

o
T αm

]

.
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If A is positive definite, we have

0 ≤ T̂m ≤ Tm for m = 1, . . . , mmax,

and thus fork = 0, 1, . . .,

T̂ k
m ≤ T k

m for m = 1, . . . , mmax.

Assume that spec(A) ⊆ [0, b) and that f can be developed into a power series

f(z) =
∑∞

i=0
f(i)(0)

i! zi that converges forz ∈ [0, b] and that the derivatives satisfyf (i)(0) ≥ 0
for all i = 1, 2, . . .. From this power series representation, we immediately seethat

0 ≤ f(T̂m) ≤ f(Tm).

Therefore, using the same argumentation as in Section3, we obtain that for the Lanczos ap-
proximations um the norms ‖um‖ increase monotonically, whereas the error norms
‖f(A)b − um‖ are monotonically decreasing. This approach holds in particular for
f(z) = exp(z), so that we are back to the results from [6] for A positive definite. Actu-
ally, we can easily generalize toA Hermitian but not necessarily positive definite.1 We start
from

exp(A + αI) = exp(α) · exp(A).

Together with the shift invariance of the Lanczos process (shifting the matrix fromA to
A+αI does not change the Lanczos vectorsvm and shifts the tridiagonal matrices fromTm to
Tm +αI) this shows that the Lanczos approximations forexp(A) are, up to the scalar scaling
factorexp(α), identical to those forexp(A + αI). Takingα sufficiently large makesA + αI
positive definite, from which the monotone decrease of the error norms can be deduced.

7. Conclusion. We have shown that the error of Lanczos approximations to theaction
of certain matrix functions on a vector is monotonically decreasing if the matrix is Hermitian
and positive definite. This was done by showing that the moduli of the coefficients of the
corresponding Lanczos vectors are monotonically increasing. Our results hold in particular
for functions which arise as the result of a Stieltjes transform and thus for certain rational
functions and for the inverse square root. The results can beextended to more general func-
tions, in this manner including Lanczos-type approximations to the matrix sign function for
indefinite matrices.

Our investigations assumed exact arithmetic throughout. It is well known that in actual
numerical computations, inexact arithmetic due to rounding errors has a substantial effect
on the quality of the Lanczos vectorsvi which will loose their theoretical orthogonality;
see [22] for an analysis of error estimates for the CG method in this context. For our results,
let us observe the following: UnlessA has very small eigenvalues, the computed matrices
Tm will usually still be positive definite ifA is. By construction, they are also Hermitian.
This implies that all what we have shown for the coefficient vectorssm essentially remains
valid in the presence of round-off. The only, but major, concern is that once the vectorsvi

are not orthogonal any more, an increase (decrease) in the coefficients does not necessarily
imply an increase (decrease) of the2-norm. However, the Lanczos vectors tend to keep
their orthogonality at least locally, and the coefficients in the Lanczos approximations tend
to change significantly only in the last few places. These observations motivate that we can
actually expect our monotonicity results to be also observed in computational pratice. At the
very least they explain thesmoothconvergence behavior observed in practice.

1We thank Vladimir Druskin for pointing this out in a personalcommunication.
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