Electronic Transactions on Numerical Analysis. ETNA

Volume 34, pp. 76-89, 2009. Kent State University
Copyright 0 2009, Kent State University. http://etna.math.kent.edu
ISSN 1068-9613.

GENERATING QUALITY STRUCTURED CONVEX GRIDS ON IRREGULAR
REGIONS*

P. BARRERA-ANCHEZ 1§, F. J. DOMNGUEZ-MOTA 9,
G. GONZALEZ-FLORES 8, AND J. G. TINOCO-RUIZ?

Dedicated to Vttor Pereyra on the occasion of his 70th birthday

Abstract. In this paper, we address the problem of generating goodtyjgaids on very irregular regions, and
propose a measure for both the quality of the generated gnidshe difficulty of the problem, as well as an efficient
algorithm based on the minimization of area functionalsdlvesit. Using the proposed measure, a preliminary
classification of some standard test regions is presented.
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1. Introduction. The variational problem of generating structured gridfieplane has
been studied in detail in previous papers. There is cugrentbbust theory regarding area
and harmonic functionals, which can be used for the suaglegstiding of very irregular
regions[, 8, 9, 10]. A deep geometric insight into these functionals is adédaas presented
in[2] and [L, 3, 5, 6]. Adaptive versions for all these functionals have alsatmeveloped4].

However, a question that arose immediately in these papéisy “good” the generated
grids are. To answer it, we must pose a practical definitiaquafity in the direct optimization
method P, 11]. In the following sections, we provide an intuitive answeotivated mainly
by the fact that the areas of the cells in every optimal grédear close together as possible.

This paper is organized as follows: Sectidnand2 discuss the terminology required.
Section3 defines a new scale-independent test for variational gneiggion: e-convexity.
Section4 addresses briefly the direct optimization method as prapeg€harakhch’yan and
Ivanenko P]. As an efficient solution to the problem of generatingonvex grids, Sectiors
and6 introduce the shifted and bilateral functiondls . and B,, .. Section7 features the
corresponding algorithm. Secti@addresses the issue of how to measure the quality of grids
generated in quite irregular regions. Sectiopresents the numerical tests. Conclusions are
presented in Sectioh0.

2. Discrete structured grid generation problem.

2.1. Continuous grids. The regions on the grid generation problem of interest ane si
ple connected domairg in the plane, whose boundaries are closed polygonal pelsitiv
oriented Jordan curves. For such regions, the problem ceadmibed as the construction of
continuous functions (&, n), y(£,n) to define a one-to-one mapping

x: R— Qwithx = (I(& n)vy(& 77))

from the unit square
R={En0<¢<1, 0<n<1}
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onto the physical regiof? to be gridded in such a way thatoR)) = 0.

In practical terms, the discrete structured grid genemgiroblem can be described as the
efficient construction of a logically rectangular subdivisof (2 formed by convex quadrilat-
erals. These subdivisions, as defined in the next sectidifevieferred to as grids.

It is important to remark that in order to test the robustriddke algorithm presented in
Section7, meshing in this paper is done with a single block.

2.2. Discrete grids. Let us consider a regiof in the plane, defined by a simple, closed
and counterclockwise-oriented polygonal curyef verticesV = {v1,va, - ,v4} (Fig-
ure2.1).

FIGURE 2.1. Example of a region defined by a simple closed polygonal curve

DEFINITION 2.1. Letm,n be natural numbers withn, n > 2. A set of points in the
plane

with boundaries

Ll(G) = {Pi71|i = 1,...,m}
La(G) ={Pm,li=1,....n}
Lg(G) = {szn|l = 1, e ,m}

Ly(G) ={P1;lj=1,...,n}

is called a structured, admissible and discrete dridr 2, of orderm x n, if
4
velJL@).
=1

In addition, we will say thatz is convex if each one of then — 1)(n — 1) quadrilaterals
(or cells)¢; ; of vertices{ P, ;, Piy1,5, Pi j+1, Pit1,41}, Withl <i <mandl < j < n,is
convex and non-degenerate, except, possibly, in the cosllst

Hereinafter,M (G) will represent the set of all the admissible grids fdaccording to
the previous definition.

The setsL; (G), L2(G), L3(G), and L4(G) will be referred to ashe sides of the grid
boundaryor the grid sidesand appear in the definition to emphasize our interest itnigav

lwith quadrilateral elements.
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the same boundary for the region and for the grid. In thiseseinem now on§2 will denote
not only the region itself, but also the four sideg(G), L2(G), L3(G), andL4(G).

In order to have control over the convexity of the grid catlsyill be of the greatest rel-
evance to consider every grid cell; with verticesP, ;, Pi11 j, Pi j+1, Piy1,;41 as divided
into the four oriented trianglea ) = A", A®) = AP A®) = AP) andA® = Al
(Figure2.2). ‘ ‘

s R S R

A(1)\) A®

P Q P

FIGURE 2.2.The four oriented triangles defined by a quadrilateral grellc

Let us notice that the orientation of the boundary induces dfithe cells and triangles
of the cells, inducing a sign on the triangle areas which éskiy to finding out whether a
grid is convex.

2.3. Important quantities. In order to pose some useful functionals, in this section we
introduce two basic triangle-dependent quantiti®sand «. For the oriented triangle with
verticesA, B, C' € R?, these functions are defined as

AMA(A,B,C)) = ||A- B|”> +|C - B|)?, (2.1)
whereAB andCB are cell sides and
a(A(A,B,C)) = (B — A)tJs(B — C) = 2 ared A(Q, P, R)), (2.2)

where|| - || denotes the Euclidean norm asiglis the matrix
0 1
n=% |

min{a(A,) >0j¢=1,...,N},

Notice that a grid~ is convexff

whereN = 4(m — 1)(n — 1) is the total number of triangles i@, considering the four
triangles in each cell defined by its vertices as mentionedab
The following three important quantities are relatedito

a(G) = min{a(Ay)|lg=1,...,N}, (2.3)
oy (G) = max{a(Ay)|lg=1,...,N}, (2.4)
a(Q) = % XN;a(Aq). (2.5)
Equation R.2) yields i
XN: a(lg) =4 Areq ), (2.6)

q=1
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and thusy depends only of2 and not on a particulak since

N
a(@) = a(6) = Yaldy) = g 2.7)
q=1

m—1)(n—1)

For the sake of brevityy, anda(A,) will be used interchangeably in this paper.

3. Thee-convexity. As we mentioned before, a gr@ is convex iffa_(G) > 0. How-
ever, this inequality is neither scale-independent nomaerically stable test. This is because
the problem of generating convex grids in some irregulaoregmay be ill-posed in the sense
that the critical value

_ a(G)
€(Q) = max{ =) ’G € M(Q)} (3.1)
can become be very small.

Nevertheless, this test can be reformulated in a numeyicakful way. Since for any
convex gridG we have

a(G)

- <
O < a(ﬂ) — 607

it follows that if we choose > 0, then any grid> satisfying

€c > —

5@ =€

is convex. Consequently, the following definition appeara hatural way.
DEFINITION 3.1. Lete be a positive number. A gri@ is e-convex iff

min{a(A,) >e-a@(Q)|¢g=1,...,N}. (3.2)

This new definition of convexity has proven to be very useédduise it is scale-independent,
which is a desirable property.

4. Direct optimization method. The basis for the direct optimization method, as de-
veloped by Charakhch’yan and Ivanenk), [is the minimization a suitable function of the
form

N
F(G) =Y f(Ay), (4.1)

q=1

where f(4,) depends only on the vertices of the triangle and V is the total number of
triangles of the grid, so that our problem is to find the coomatis of the interior points of
the gridG. Thus, a grid= will be represented by a point im-dimensional space, where the
coordinates are the andy coordinates of the interior points of the grid.

In this context, the discrete variational grid generatioobtem can be posed as a large-
scale optimization problem in the following way:

PROBLEM 4.1. Solve
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over the set of admissible gridd (2) for a region{) and a giverx, in such a way tha€™* is
€-CONVex.
We must emphasize that the adequate selectighi®the key to generating anconvex
grid in an efficient way, as will be shown in the following secis.
Using equationg.2), the following can be shown:
e If € > €., Problem4.1has no solutions.
e |n contrast, ife < ¢., Problem4.1 hassolutions.
e If € =~ ¢, the problem might be very difficult for the numerical optaaiion.

5. Convex area functionals with barriers. In this section, we address the issue of
designing efficient functionals to solve Probldm. First, though, we review some important
functionals.

5.1. Ilvanenko’s harmonic functional. The first effective functionals for the generation
of convex harmonic grids on quite irregular regions wereattgyed by A. A. Charakhch’yan
and S. A. lvanenkoq, 9]. A beautiful insight into these functionals can be foundlif].

These authors rewrote the harmonic functional proposed imgldév [16] in a varia-
tional setting P], and discretized it to obtain a function of the inner gridrs similar to the
expression4.1) presented in the preceding section, witgiven as

189 = 335

(5.1)

They then minimized the corresponding functional by medrasiewton iteration.

It is easy to prove that Ivanenko’s functional attains itsimium in the set of convex
grids for a region due to the pole jhand the relations betweenand\ [8]. However, for
fixed boundary points the minimization process requiredl@eracomplicated formula to get
an initial convex grid §].

5.2. Tinoco’s quasi-harmonic functional. Later, Tinoco p] developed a new quasi-
harmonic functional with an easier initialization by chogf as

ADg) = 2a(Dy)

JolBa) = w+a(Dy)

, (5.2)

wherew is a parameter that allows the use of non-convex initialgig setting
w>—-a(ldy), g=1,...,N.

For both Ivanenko’s and Tinoco’s functionals, the optimatlg generated were only
required to satisfy the scale-dependent convexity tests ddused numerical instability in
some irregular regions.

5.3. The functional S,,. Ivanenko’s and Tinoco’s functionals feature poles as besyi
a fact that can be disadvantageous and cause instabilityalll salues ofx are produced on
some irregular regions. In order to avoid the use of polesasdns, Barrera and Dominguez-
Mota comprehensively analyzed the properties of a familgaritinuous discrete area func-
tionals (i.e., with no explicit dependence aywith softbarriers p], and proved the following
theorem:

THEOREM5.1. Let f : R — R be aC? convex, strictly decreasing and nonnegative
function, and definé" : RV — R by

N
F(G) = flag).

q=1
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LetQ) be a polygonal regions for which there exists a convex @i id Then it is possible to
find a real numbet for the scaled regionS2 such that the optimization problem

min{ F(G)|G' € M(tQ)},

whereM (192) is the set of admissible grids féf2, has a solutior(? that satisfies:_(GY) > 0.

Despite the simplicity of these resulis(G) still lacks the scale-independent property re-
quired to work robustly on very irregular non-convex regioBven though the shift required
in Theorem5.1in order to generate-convex grids is almost automatic, it is also important
enough to deserve a new subsection.

5.4. The shifted functionalS,, .. An efficient solution to Problem.1was proposed by
Barrera and Dominguez-Mot&][ who realized that one of the main conclusions of Theo-
rem5.1, the positivity of the least value af of the optimal grid, could be restated in terms
of a shifted inequality. Indeed, the theorem itself can lslyaestated to generateconvex
grids in the following way:

THEOREMS.2.If fis aC? strictly decreasing convex and bounded below function such
that f(a)) — 0 asa — oo, then

N
Su,e(G) = Z flwa(by) — ea(G)) (5.3)
qg=1
considered as the objective function in the optimizatiasbRrm4. 1, is minimized by-convex
grids forw > 0 large enough.
One must notice that, as a straightforward consequenceasoftiborem, for numerical
purposes very economical choices forsuch as

1/a, a>1
W“)—{ (@-D(@-2+1, a<l,

can be used.

The e-convex grids generated by minimizirfy, . with (5.4) have been reported by the
authors in previous papers, for instan2g [[n many irregular regions, the presence of cells
with relatively large values ofv, (G) has been observed. This often slows down the opti-
mization process when generatiiigonvex grids with good area control.

6. The bilateral functional B, .. It is straightforward to address the requirement of
decreasingv (G) and propose another functional to solve Probletn In [5], Tinoco pro-
posed a way to apply his adaptive area functional “twice rihen to control large and small
values ofa simultaneously by using

1 1
+ ;
w1+ a(Bg) w2 — D)

wherew; andw, are parameters introduced to increase the lower valuesaofd decrease
the larger values af, respectively.

It is easy to conclude that the same strategy proposef] iteh be applied twice in the
same fashion. The functional, was designed to increase the loweralues in a grid by
means of the parameter Now, to avoid very large cell areas, it is convenient to adersa
“reflection” of S,, in order to create a second control barrier. Consequentlypiossible to
define a new functional with two barriers, the bilatelal, as

fwuwz(Aq) = (6.1)

N

Bue(G) = Y ((wlag — (@) + ¥ (L (a0 - ay) ) ), (6.2)

q=1
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wherew > 0, ¢ > 0 is a fixed parameter to control the relative rigidity betwélea two
barriersin 6.2), anday > @(G) is another fixed parameter to control large cell areas.

If ap is adequately selected, then every minimizeByf. is attained deep within the
first orthant, i.e., for numerically positive valuesafThus, the left barrier iB,, . takes care
of convexity, and the right one improves grid quality.

Some interesting grids generated for several regions wiiimwn in the following sec-
tions. The first step to accomplish this task is to briefly dbgca useful algorithm related to
the direct optimization method.

7. Generation algorithm. In the present section, we show a practical way to use the
results that have been discussed so far. It is importantrisider the following facts:
e The numerical optimization process producescaionvex grid close to an actual
optimal grid.
e Numerical optimization requires convergence criteriactSdecisions are made by
considering the gradient norm and the relative functiohahge in the algorithm.
e In practice, it is convenient to scaleto satisfy the condition,

a(Q) =1,
which immediately implies

a(G) <1< a4 (G).

In this way, the following algorithm can be used to generatevex grids:

ALGORITHM 7.1. Convex grid generation wit#s,, .
1. Choose initial values fdolf, tolg, w, 7 > 1, ITERMAXande > 0.
2. Generate an initial griéfy and scale it to satisfs = 1.
3. Choosey, > 1 andc > 0.
4. Solve the optimization problem

G= argGg}?Q){Bw,e(G)} (7.1)
until
IVB..(G)] < tolg,
or

HBW,€(G) - Bw,E(GO)H < tolf - HBw,e(GO)Ha

or ITERMAXhas been reached.
5. If a_(G) > ¢, ane-convex grid has been generated and we are done; ET&RMAX
was reached, no convex grid has been found and we are doesyekety «— Tw,

Go — G, and go back to step.

It is important to observe that the factoiand the initial value fot in the algorithm are
quite arbitrary, although it is clear that different ch@eeean different numbers of iterations
in the optimization process.
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TABLE 9.1
Parameters for the optimization.

Parameter Value
tolf 10~7
tolg 1075
w 10.0
T 2.000
ITERMAX 1000
min e 10~
c 0.5
g max (0.9 - a1 (G), 1.0)

8. Quiality grid measurement in terms of area. It is very important to observe that the
reciprocal ofe., which we will denote by
1 a(G)

" T max{a(G)[G € M(Q)}’ (8.1)

can be understood as a condition numberior
Indeed:
e xis afunction only ofm, n, and the geometries &f andf2.
e xis scale-independent.
o > 1.
e [f all the values ofx in a gridG are equal, ther = 1.
These reasons makea good parameter for measuring grid quality in terms of dreavever,
it must be estimated, sineg is unknown a priori.
A fast estimate of can be obtained by defining the quality ragifor a convex grid:

_a(G)
4D =Z5 (8.2)

As beforey is scale-independent, and for rectangular grids, 1. Asa_(G) — 0, ¢ — 0.
Since

qSECZI/H,

one can see that a large “condition number” for a region spwads to a low quality of the
grids generated for it.

9. Numerical experiments. In order to calculate and obtain a practical approximation
to x, it is practical to use the values for the optimal grids d8,, ., since this functional was
precisely designed to reduce the interval G), a4 (G)] as much as possibl&][

In the numerical tests presented below, the test regions sealed to satisffi(G) = 1,
which led toe € [0, 1] for the generation algorithm of Sectidn The optimization step was
carried out with Newton-like methods for large-scale peohs [L3, 17]. The parameters used
for the algorithm and the optimization process are sumradria Tabled.1. Since the value
. is unknown a priori, an initial value of = 0.1 was used, and once arconvex grid was
generated, we set— ¢ + 0.1 until noe-convex grid was generated.

We applied Algorithm7.1to twelve test regions that have been frequently used in the
literature related to grid generation, grouped in two sets:

I. Airfoil, Annulus, Chevron, Dome, Plow, and Swan (Fig@&&).
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Il. Cat, Great Britain, Havana, Mexico, Sigma, and Ucha (Fé3.2).
The first group has appeared in tests for many different nasth@hese regions have been
gridded with algebraic, differential, and other methotig [ The second group includes very
irregular regions, for which most of the algebraic and défgial methods fail, but that can
be gridded successfully with the direct optimization metFig.

K
~

Airfoil. Chevron. Plow.

>
C
S

Annulus. Dome. Swan.

FIGURE9.1.Test regions. Set I.

hn
2
=

Cat. Havana. Sigma.

o
=
3

Great Britain. Mexico. Ucha.

FIGURE 9.2.Test regions. Set Il.

The initial grids for both groups, generated with Algoritiirl usinge = 0.01, were
convex. Three different grid sizes were considered: 31abd,71 points per side. In Tables
9.2, 9.3 and9.4, there is a summary af_, o, , andg~!, sorted as a function of the latter.
Note that, due to normalization, = «_. These tables also include the standard deviation



ETNA
Kent State University
http://etna.math.kent.edu

GENERATING QUALITY STRUCTURED CONVEX GRIDS 85

TABLE 9.2
Results for the test regions (31 points per side).

Region n o oy g ! STD
Chevron 31 0.99680 1.00320 1.00321 0.00146
Dome 31 0.95149 3.88970 1.05098 0.12797
Airfoil 31 0.83361 1.34550 1.19960 0.08345
Ucha 31 0.75006 5.87921 1.33323 0.52299
Havana 31 0.73399 4.44630 1.36242 0.53137
Swan 31 0.70219 2.04255 1.42412 0.13046
Plow 31 0.67201 2.38785 1.48807 0.37279
Cat 31 0.65603 3.94373 1.52432 0.49377
Great Britain 31 0.40264 3.75619 2.48361 0.57017
Annulus 31 0.32333 1.28390 3.09282 0.03798
Sigma 31 0.25462 1.80445 3.92742 0.45769
Mexico 31 0.22156 7.98021 4.51345 0.76749
TABLE 9.3

Results for the test regions (51 points per side).

Region n Q. oy g ! STD
Chevron 51 0.99759 1.00240 1.00242 0.00022
Dome 51 0.94695 2.61970 1.05602 0.09769
Ucha 51 0.87677 3.64730 1.14055 0.31298
Airfoil 51 0.86640 2.41650 1.15420 0.00179
Havana 51 0.83030 4.81440 1.20438 0.39002
Cat 51 0.82346 4.01970 1.21439 0.41991
Plow 51 0.73384 2.84615 1.36269 0.25332
Swan 51 0.68971 2.32260 1.44988 0.09442
Annulus 51 0.66670 1.97820 1.49993 0.03798
Great Britain 51 0.50205 3.74210 1.99183 0.42759
Sigma 51 0.23926 2.69440 4.17955 0.47527
Mexico 51 0.09105 7.38490 10.98298 0.52611

(STD for the values ot for each one of the final grids generated, and just like in tts fi
test, the values for the four fixed corners are excluded.

Let us notice that, in general, if a region is irregular oosggly nonconvey, its values of
« are more spread and grids of lower quality are obtained. fiButgh some quality is lost in
the values of the standard deviationcofindicate that even for most of the irregular regions,
large deviations occur only locally.

In terms of the values af one can conclude that, as expected, regions in set | are gen-
erally simpler for the grid generation problem than thosseénll. It is important to mention
thatg~? is, by definition, an upper bound of the condition numberoposed in Sectiof.
Recalling thatx is always greater than one, the reciprocal of the qualitip natovide us
with useful information about the geometrical difficultyafegion in the context of the grid
generation problem of our interest.

9.1. Smoothness controllt is important to emphasize that the main problem of this
paper was to pose a measure of the quality of a grid in termssofalues ofa. This is
quite natural in the context of the theory of the convex atgafionals P]. However, one
must acknowledge that there are some other useful consmlesan judging the quality of
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TABLE 9.4
Results for the test regions (71 points per side).

Region n o o gt STD
Chevron 71 0.99360 1.00641 1.00644 0.00207
Ucha 71 0.90307 2.38464 1.10733 0.18025
Airfoil 71 0.86282 2.23778 1.15899 0.03909
Havana 71 0.85723 4.90527 1.16655 0.31738
Cat 71 0.85212 3.94372 1.17354 0.34611
Plow 71 0.81788 1.99423  1.22267 0.09273
Swan 71 0.70301 1.97769 1.42245 0.06934
Annulus 71 0.68653 1.05089 1.45660 0.01914
Dome 71 0.66388 2.64157 1.50630 0.04420
Great Britain 71 0.51647 4.04164 1.93622 0.36091
Mexico 71 0.11298 6.80687 8.85112 0.40978
Sigma 71 0.09018 1.50805 11.08893 0.30015
TABLE 9.5
Results for the grids with smoothness controk= 50.

Region n Q. oy q2_1

Havana 0.50 0.79931 4.33295 1.25108

Great Britain  0.75 0.25245 5.08705 3.96120

Sigma 0.75 0.20150 1.83115 4.96268

Mexico 0.90 0.10140 7.38493 9.86217

a grid. One of the most important is smoothness, which canch&weed with Winslow’s
functional [, 8].

In this sense, some of the area grids presented in the peesséation might be considered
coarse. However, coarseness is not a major problem usirdiréet optimization method. It
is possible to use the length functional given by

N
L(G) = Y A(Ly)

q=1

as a smoother. Thus, with a linear convex combination betike. (G) and L(G), one can
generate both conveandsmooth grids 14]. Just as an example, let us consider the last four
grids with 71 points per side, modified by minimizing

0By (G)+ (1—-0)-L(G).

The figures for this grid are shown in Talfle5. The corresponding grids are included in
Figures9.3, 9.4, and9.5. These grids speak by themselves: some quality in termsafteas
been lost, but the gain in smoothness is quite evident.

10. Conclusions and future work. We have introduced a measure of the quality of a
structured grid in terms of area, as well as a new bilateed &unctional to generate quality
convex grids. According to the results obtained, it is palesto conclude that the direct
optimization method is very well suited to solve this prablen very irregular regions.

In a future paper, other quality measures based on somegsberetrical properties as
smoothness and orthogonality will be reported, as well ases@sults for the analogous 3D
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FIGURE 9.3. A grid for Mexico with smoothness control.

problem for which, up to our knowledge, a practical compatel test for convexity of cells
in structured grids might not be as intuitive and simple &sahe given by equatior3(2).

The functional addressed in this paper, as well as some osledul area and smoothness
functionals, are currently included in the software UNAMAA [ 15].
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