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Abstract. In this paper, we address the problem of generating good quality grids on very irregular regions, and
propose a measure for both the quality of the generated gridsand the difficulty of the problem, as well as an efficient
algorithm based on the minimization of area functionals to solve it. Using the proposed measure, a preliminary
classification of some standard test regions is presented.
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1. Introduction. The variational problem of generating structured grids in the plane has
been studied in detail in previous papers. There is currently a robust theory regarding area
and harmonic functionals, which can be used for the successful gridding of very irregular
regions [7, 8, 9, 10]. A deep geometric insight into these functionals is available, as presented
in [2] and [1, 3, 5, 6]. Adaptive versions for all these functionals have also been developed [4].

However, a question that arose immediately in these papers is how “good” the generated
grids are. To answer it, we must pose a practical definition ofquality in the direct optimization
method [9, 11]. In the following sections, we provide an intuitive answermotivated mainly
by the fact that the areas of the cells in every optimal grid are as close together as possible.

This paper is organized as follows: Sections1 and2 discuss the terminology required.
Section3 defines a new scale-independent test for variational grid generation:ǫ-convexity.
Section4 addresses briefly the direct optimization method as proposed by Charakhch’yan and
Ivanenko [9]. As an efficient solution to the problem of generatingǫ-convex grids, Sections5
and6 introduce the shifted and bilateral functionalsSω,ǫ andBω,ǫ. Section7 features the
corresponding algorithm. Section8 addresses the issue of how to measure the quality of grids
generated in quite irregular regions. Section9 presents the numerical tests. Conclusions are
presented in Section10.

2. Discrete structured grid generation problem.

2.1. Continuous grids. The regions on the grid generation problem of interest are sim-
ple connected domainsΩ in the plane, whose boundaries are closed polygonal positively-
oriented Jordan curves. For such regions, the problem can bedescribed as the construction of
continuous functionsx(ξ, η), y(ξ, η) to define a one-to-one mapping

x : R 7→ Ω with x = (x(ξ, η), y(ξ, η))

from the unit square

R = {(ξ, η)|0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1}
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onto the physical regionΩ to be gridded in such a way thatx(∂R) = ∂Ω.
In practical terms, the discrete structured grid generation problem can be described as the

efficient construction of a logically rectangular subdivision of Ω formed by convex quadrilat-
erals. These subdivisions, as defined in the next section, will be referred to as grids.

It is important to remark that in order to test the robustnessof the algorithm presented in
Section7, meshing in this paper is done with a single block.

2.2. Discrete grids.Let us consider a regionΩ in the plane, defined by a simple, closed
and counterclockwise-oriented polygonal curveγ of verticesV = {v1, v2, · · · , vq} (Fig-
ure2.1).
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FIGURE 2.1.Example of a region defined by a simple closed polygonal curve.

DEFINITION 2.1. Letm,n be natural numbers withm,n > 2. A set of points in the
plane

G = {Pi,j |1 ≤ i ≤ m, 1 ≤ j ≤ n}

with boundaries

L1(G) = {Pi,1|i = 1, . . . ,m}

L2(G) = {Pm,j |j = 1, . . . , n}

L3(G) = {Pi,n|i = 1, . . . ,m}

L4(G) = {P1,j |j = 1, . . . , n}

is called a structured, admissible and discrete grid1 for Ω, of orderm× n, if

V ⊆

4
⋃

i=1

Li(G).

In addition, we will say thatG is convex if each one of the(m − 1)(n − 1) quadrilaterals
(or cells)ci,j of vertices{Pi,j , Pi+1,j , Pi,j+1, Pi+1,j+1}, with 1 ≤ i < m and1 ≤ j < n, is
convex and non-degenerate, except, possibly, in the cornercells.

Hereinafter,M(G) will represent the set of all the admissible grids forΩ according to
the previous definition.

The setsL1(G), L2(G), L3(G), andL4(G) will be referred to asthe sides of the grid
boundaryor the grid sides, and appear in the definition to emphasize our interest in having

1With quadrilateral elements.
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the same boundary for the region and for the grid. In this sense, from now on,Ω will denote
not only the region itself, but also the four sidesL1(G), L2(G), L3(G), andL4(G).

In order to have control over the convexity of the grid cells,it will be of the greatest rel-
evance to consider every grid cellci,j with verticesPi,j , Pi+1,j , Pi,j+1, Pi+1,j+1 as divided

into the four oriented triangles△(1) = △
(1)
i,j ,△(2) = △

(2)
i,j ,△(3) = △

(3)
i,j , and△(4) = △

(4)
i,j

(Figure2.2).

P PQ Q
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FIGURE 2.2.The four oriented triangles defined by a quadrilateral grid cell.

Let us notice that the orientation of the boundary induces that of the cells and triangles
of the cells, inducing a sign on the triangle areas which is the key to finding out whether a
grid is convex.

2.3. Important quantities. In order to pose some useful functionals, in this section we
introduce two basic triangle-dependent quantities:λ andα. For the oriented triangle with
verticesA,B,C ∈ R

2, these functions are defined as

λ(△(A,B,C)) = ‖A−B‖2 + ‖C −B‖2, (2.1)

whereAB andCB are cell sides and

α(△(A,B,C)) = (B −A)tJ2(B − C) = 2 area(△(Q,P,R)), (2.2)

where‖ · ‖ denotes the Euclidean norm andJ2 is the matrix

J2 =

[

0 1
−1 0

]

.

Notice that a gridG is convexiff

min{α(△q) > 0|q = 1, . . . , N},

whereN = 4(m − 1)(n − 1) is the total number of triangles inG, considering the four
triangles in each cell defined by its vertices as mentioned above.

The following three important quantities are related toα:

α (G) = min{α(△q)|q = 1, . . . , N}, (2.3)

α+(G) = max{α(△q)|q = 1, . . . , N}, (2.4)

α(Ω) =
1

N

N
∑

q=1

α(△q). (2.5)

Equation (2.2) yields

N
∑

q=1

α(△q) = 4 Area(Ω), (2.6)
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and thusα depends only onΩ and not on a particularG since

α(Ω) = α(G) =
1

N

N
∑

q=1

α(△q) =
Area(Ω)

(m− 1)(n− 1)
. (2.7)

For the sake of brevity,αq andα(△q) will be used interchangeably in this paper.

3. The ǫ-convexity. As we mentioned before, a gridG is convex iffα (G) > 0. How-
ever, this inequality is neither scale-independent nor a numerically stable test. This is because
the problem of generating convex grids in some irregular regions may be ill-posed in the sense
that the critical value

ǫc(Ω) = max

{

α (G)

α(Ω)

∣

∣

∣

∣

G ∈M(Ω)

}

(3.1)

can become be very small.
Nevertheless, this test can be reformulated in a numerically useful way. Since for any

convex gridG we have

0 <
α (G)

α(Ω)
≤ ǫc,

it follows that if we chooseǫ > 0, then any gridG satisfying

ǫc ≥
α (G)

α(Ω)
≥ ǫ

is convex. Consequently, the following definition appears in a natural way.
DEFINITION 3.1. Let ǫ be a positive number. A gridG is ǫ-convex iff

min{α(△q) > ǫ · α(Ω)|q = 1, . . . , N}. (3.2)

This new definition of convexity has proven to be very useful because it is scale-independent,
which is a desirable property.

4. Direct optimization method. The basis for the direct optimization method, as de-
veloped by Charakhch’yan and Ivanenko [9], is the minimization a suitable function of the
form

F (G) =
N

∑

q=1

f(△q), (4.1)

wheref(△q) depends only on the vertices of the triangle△q andN is the total number of
triangles of the grid, so that our problem is to find the coordinates of the interior points of
the gridG. Thus, a gridG will be represented by a point inn-dimensional space, where the
coordinates are thex andy coordinates of the interior points of the grid.

In this context, the discrete variational grid generation problem can be posed as a large-
scale optimization problem in the following way:

PROBLEM 4.1. Solve

G∗ = arg min
G∈M(Ω)

N
∑

q=1

f(△q)
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over the set of admissible gridsM(Ω) for a regionΩ and a givenǫ, in such a way thatG∗ is
ǫ-convex.

We must emphasize that the adequate selection off is the key to generating anǫ-convex
grid in an efficient way, as will be shown in the following sections.

Using equation (3.2), the following can be shown:
• If ǫ > ǫc, Problem4.1has no solutions.
• In contrast, ifǫ ≤ ǫc, Problem4.1hassolutions.
• If ǫ ≈ ǫc, the problem might be very difficult for the numerical optimization.

5. Convex area functionals with barriers. In this section, we address the issue of
designing efficient functionals to solve Problem4.1. First, though, we review some important
functionals.

5.1. Ivanenko’s harmonic functional. The first effective functionals for the generation
of convex harmonic grids on quite irregular regions were developed by A. A. Charakhch’yan
and S. A. Ivanenko [8, 9]. A beautiful insight into these functionals can be found in[10].

These authors rewrote the harmonic functional proposed by Winslow [16] in a varia-
tional setting [9], and discretized it to obtain a function of the inner grid points similar to the
expression (4.1) presented in the preceding section, withf given as

f(△q) =
λ(△q)

α(△q)
. (5.1)

They then minimized the corresponding functional by means of a Newton iteration.
It is easy to prove that Ivanenko’s functional attains its minimum in the set of convex

grids for a region due to the pole inf and the relations betweenα andλ [8]. However, for
fixed boundary points the minimization process required a rather complicated formula to get
an initial convex grid [9].

5.2. Tinoco’s quasi-harmonic functional. Later, Tinoco [6] developed a new quasi-
harmonic functional with an easier initialization by choosing f as

fω(△q) =
λ(△q)− 2α(△q)

ω + α(△q)
, (5.2)

whereω is a parameter that allows the use of non-convex initial grids by setting

ω > −α(△q), q = 1, . . . , N.

For both Ivanenko’s and Tinoco’s functionals, the optimal grids generated were only
required to satisfy the scale-dependent convexity test. This caused numerical instability in
some irregular regions.

5.3. The functionalSω. Ivanenko’s and Tinoco’s functionals feature poles as barriers,
a fact that can be disadvantageous and cause instability if small values ofα are produced on
some irregular regions. In order to avoid the use of poles as barriers, Barrera and Domı́nguez-
Mota comprehensively analyzed the properties of a family ofcontinuous discrete area func-
tionals (i.e., with no explicit dependence onλ) with softbarriers [2], and proved the following
theorem:

THEOREM 5.1. Let f : R → R be aC2 convex, strictly decreasing and nonnegative
function, and defineF : R

N → R by

F (G) =

N
∑

q=1

f(αq).
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Let Ω be a polygonal regions for which there exists a convex gridG0. Then it is possible to
find a real numbert for the scaled regiontΩ such that the optimization problem

min{F (G)|G ∈M(tΩ)},

whereM(tΩ) is the set of admissible grids fortΩ, has a solution̂G that satisfiesα (Ĝ) > 0.
Despite the simplicity of these results,F (G) still lacks the scale-independent property re-

quired to work robustly on very irregular non-convex regions. Even though the shift required
in Theorem5.1 in order to generateǫ-convex grids is almost automatic, it is also important
enough to deserve a new subsection.

5.4. The shifted functionalSω,ǫ. An efficient solution to Problem4.1was proposed by
Barrera and Domı́nguez-Mota [3], who realized that one of the main conclusions of Theo-
rem5.1, the positivity of the least value ofα of the optimal grid, could be restated in terms
of a shifted inequality. Indeed, the theorem itself can be easily restated to generateǫ-convex
grids in the following way:

THEOREM 5.2. If f is aC2 strictly decreasing convex and bounded below function such
thatf(α)→ 0 asα→∞, then

Sω,ǫ(G) =

N
∑

q=1

f(ωα(△q)− ǫα(G)) (5.3)

considered as the objective function in the optimization Problem4.1, is minimized byǫ-convex
grids forω > 0 large enough.

One must notice that, as a straightforward consequence of this theorem, for numerical
purposes very economical choices forf , such as

ψ(α) =

{

1/α, α ≥ 1
(α− 1)(α− 2) + 1, α < 1,

can be used.
The ǫ-convex grids generated by minimizingSω,ǫ with (5.4) have been reported by the

authors in previous papers, for instance [2]. In many irregular regions, the presence of cells
with relatively large values ofα+(G) has been observed. This often slows down the opti-
mization process when generatingǫ-convex grids with good area control.

6. The bilateral functional Bω,ǫ. It is straightforward to address the requirement of
decreasingα+(G) and propose another functional to solve Problem4.1. In [5], Tinoco pro-
posed a way to apply his adaptive area functional “twice” in order to control large and small
values ofα simultaneously by using

fω1,ω2
(△q) =

1

ω1 + α(△q)
+

1

ω2 − α(△q)
, (6.1)

whereω1 andω2 are parameters introduced to increase the lower values ofα and decrease
the larger values ofα, respectively.

It is easy to conclude that the same strategy proposed in [2] can be applied twice in the
same fashion. The functionalSω was designed to increase the lowerα values in a grid by
means of the parameterω. Now, to avoid very large cell areas, it is convenient to consider a
“reflection” of Sω in order to create a second control barrier. Consequently, it is possible to
define a new functional with two barriers, the bilateralBω, as

Bω,ǫ(G) =

N
∑

q=1

(

ψ(ω(αq − ǫα(G)) + ψ
(ω

c
(α0 − αq)

))

, (6.2)
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whereω > 0, c > 0 is a fixed parameter to control the relative rigidity betweenthe two
barriers in (6.2), andα0 > α(G) is another fixed parameter to control large cell areas.

If α0 is adequately selected, then every minimizer ofBω,ǫ is attained deep within the
first orthant, i.e., for numerically positive values ofα. Thus, the left barrier inBω,ǫ takes care
of convexity, and the right one improves grid quality.

Some interesting grids generated for several regions will be shown in the following sec-
tions. The first step to accomplish this task is to briefly describe a useful algorithm related to
the direct optimization method.

7. Generation algorithm. In the present section, we show a practical way to use the
results that have been discussed so far. It is important to consider the following facts:

• The numerical optimization process produces anǫ-convex grid close to an actual
optimal grid.
• Numerical optimization requires convergence criteria. Such decisions are made by

considering the gradient norm and the relative functional change in the algorithm.
• In practice, it is convenient to scaleΩ to satisfy the condition,

α(Ω) = 1,

which immediately implies

α (G) ≤ 1 ≤ α+(G).

In this way, the following algorithm can be used to generate convex grids:

ALGORITHM 7.1. Convex grid generation withBω,ǫ

1. Choose initial values fortolf, tolg, ω, τ > 1, ITERMAXandε > 0.
2. Generate an initial gridG0 and scale it to satisfyα = 1.
3. Chooseα0 > 1 andc > 0.
4. Solve the optimization problem

Ĝ = arg min
G∈M(Ω)

{Bω,ǫ(G)} (7.1)

until

‖∇Bω,ǫ(Ĝ)‖ < tolg,

or

‖Bω,ǫ(Ĝ)−Bω,ǫ(G0)‖ < tolf · ‖Bω,ǫ(G0)‖,

or ITERMAXhas been reached.
5. If α (Ĝ) > ε, anε-convex grid has been generated and we are done; elseifITERMAX

was reached, no convex grid has been found and we are done; else we setω ← τω,
G0 ← Ĝ, and go back to step3.

It is important to observe that the factorτ and the initial value fort in the algorithm are
quite arbitrary, although it is clear that different choices mean different numbers of iterations
in the optimization process.
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TABLE 9.1
Parameters for the optimization.

Parameter Value
tolf 10−7

tolg 10−5

ω 10.0
τ 2.000
ITERMAX 1000
min ε 10−4

c 0.5
α0 max(0.9 · α+(G), 1.0)

8. Quality grid measurement in terms of area. It is very important to observe that the
reciprocal ofǫc, which we will denote by

κ =
1

ǫc
=

α(G)

max{α (G)|G ∈M(Ω)}
, (8.1)

can be understood as a condition number forΩ.
Indeed:
• κ is a function only ofm, n, and the geometries ofV andΩ.
• κ is scale-independent.
• κ ≥ 1.
• If all the values ofα in a gridG are equal, thenκ = 1.

These reasons makeκ a good parameter for measuring grid quality in terms of area.However,
it must be estimated, sinceǫc is unknown a priori.

A fast estimate ofκ can be obtained by defining the quality ratioq for a convex gridG:

q(G) =
α (G)

α(G)
. (8.2)

As before,q is scale-independent, and for rectangular grids,q = 1. Asα (G)→ 0, q → 0.
Since

q ≤ ǫc = 1/κ,

one can see that a large “condition number” for a region corresponds to a low quality of the
grids generated for it.

9. Numerical experiments. In order to calculateq and obtain a practical approximation
to κ, it is practical to use theα values for the optimal grids ofBω,ǫ, since this functional was
precisely designed to reduce the interval[α (G), α+(G)] as much as possible [3].

In the numerical tests presented below, the test regions were scaled to satisfyα(G) = 1,
which led toε ∈ [0, 1] for the generation algorithm of Section7. The optimization step was
carried out with Newton-like methods for large-scale problems [13, 17]. The parameters used
for the algorithm and the optimization process are summarized in Table9.1. Since the value
εc is unknown a priori, an initial value ofε = 0.1 was used, and once anε-convex grid was
generated, we setε← ε+ 0.1 until noε-convex grid was generated.

We applied Algorithm7.1 to twelve test regions that have been frequently used in the
literature related to grid generation, grouped in two sets:

I. Airfoil, Annulus, Chevron, Dome, Plow, and Swan (Figure9.1).
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II. Cat, Great Britain, Havana, Mexico, Sigma, and Ucha (Figure9.2).
The first group has appeared in tests for many different methods. These regions have been
gridded with algebraic, differential, and other methods [12]. The second group includes very
irregular regions, for which most of the algebraic and differential methods fail, but that can
be gridded successfully with the direct optimization method [2].

Airfoil.

Annulus.

Chevron.

Dome.

Plow.

Swan.

FIGURE 9.1.Test regions. Set I.

Cat.

Great Britain.

Havana.

Mexico.

Sigma.

Ucha.

FIGURE 9.2.Test regions. Set II.

The initial grids for both groups, generated with Algorithm7.1 usingε = 0.01, were
convex. Three different grid sizes were considered: 31, 51,and 71 points per side. In Tables
9.2, 9.3, and9.4, there is a summary ofα , α+, andq−1, sorted as a function of the latter.
Note that, due to normalization,q = α . These tables also include the standard deviation
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TABLE 9.2
Results for the test regions (31 points per side).

Region n α α+ q−1 STD
Chevron 31 0.99680 1.00320 1.00321 0.00146
Dome 31 0.95149 3.88970 1.05098 0.12797
Airfoil 31 0.83361 1.34550 1.19960 0.08345
Ucha 31 0.75006 5.87921 1.33323 0.52299
Havana 31 0.73399 4.44630 1.36242 0.53137
Swan 31 0.70219 2.04255 1.42412 0.13046
Plow 31 0.67201 2.38785 1.48807 0.37279
Cat 31 0.65603 3.94373 1.52432 0.49377
Great Britain 31 0.40264 3.75619 2.48361 0.57017
Annulus 31 0.32333 1.28390 3.09282 0.03798
Sigma 31 0.25462 1.80445 3.92742 0.45769
Mexico 31 0.22156 7.98021 4.51345 0.76749

TABLE 9.3
Results for the test regions (51 points per side).

Region n α α+ q−1 STD
Chevron 51 0.99759 1.00240 1.00242 0.00022
Dome 51 0.94695 2.61970 1.05602 0.09769
Ucha 51 0.87677 3.64730 1.14055 0.31298
Airfoil 51 0.86640 2.41650 1.15420 0.00179
Havana 51 0.83030 4.81440 1.20438 0.39002
Cat 51 0.82346 4.01970 1.21439 0.41991
Plow 51 0.73384 2.84615 1.36269 0.25332
Swan 51 0.68971 2.32260 1.44988 0.09442
Annulus 51 0.66670 1.97820 1.49993 0.03798
Great Britain 51 0.50205 3.74210 1.99183 0.42759
Sigma 51 0.23926 2.69440 4.17955 0.47527
Mexico 51 0.09105 7.38490 10.98298 0.52611

(STD) for the values ofα for each one of the final grids generated, and just like in the first
test, the values for the four fixed corners are excluded.

Let us notice that, in general, if a region is irregular or strongly nonconvex, its values of
α are more spread and grids of lower quality are obtained. But though some quality is lost in
the values of the standard deviation ofα indicate that even for most of the irregular regions,
large deviations occur only locally.

In terms of the values ofq one can conclude that, as expected, regions in set I are gen-
erally simpler for the grid generation problem than those inset II. It is important to mention
thatq−1 is, by definition, an upper bound of the condition numberκ proposed in Section8.
Recalling thatκ is always greater than one, the reciprocal of the quality ratio provide us
with useful information about the geometrical difficulty ofa region in the context of the grid
generation problem of our interest.

9.1. Smoothness control.It is important to emphasize that the main problem of this
paper was to pose a measure of the quality of a grid in terms of its values ofα. This is
quite natural in the context of the theory of the convex area functionals [2]. However, one
must acknowledge that there are some other useful considerations in judging the quality of
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TABLE 9.4
Results for the test regions (71 points per side).

Region n α α+ q−1 STD
Chevron 71 0.99360 1.00641 1.00644 0.00207
Ucha 71 0.90307 2.38464 1.10733 0.18025
Airfoil 71 0.86282 2.23778 1.15899 0.03909
Havana 71 0.85723 4.90527 1.16655 0.31738
Cat 71 0.85212 3.94372 1.17354 0.34611
Plow 71 0.81788 1.99423 1.22267 0.09273
Swan 71 0.70301 1.97769 1.42245 0.06934
Annulus 71 0.68653 1.05089 1.45660 0.01914
Dome 71 0.66388 2.64157 1.50630 0.04420
Great Britain 71 0.51647 4.04164 1.93622 0.36091
Mexico 71 0.11298 6.80687 8.85112 0.40978
Sigma 71 0.09018 1.50805 11.08893 0.30015

TABLE 9.5
Results for the grids with smoothness control,n = 50.

Region n α α+ q−1
2

Havana 0.50 0.79931 4.33295 1.25108
Great Britain 0.75 0.25245 5.08705 3.96120
Sigma 0.75 0.20150 1.83115 4.96268
Mexico 0.90 0.10140 7.38493 9.86217

a grid. One of the most important is smoothness, which can be achieved with Winslow’s
functional [4, 8].

In this sense, some of the area grids presented in the previous section might be considered
coarse. However, coarseness is not a major problem using thedirect optimization method. It
is possible to use the length functional given by

L(G) =

N
∑

q=1

λ(△q)

as a smoother. Thus, with a linear convex combination betweenBω,ǫ(G) andL(G), one can
generate both convexandsmooth grids [14]. Just as an example, let us consider the last four
grids with 71 points per side, modified by minimizing

σ ·Bω,ǫ(G) + (1− σ) · L(G).

The figures for this grid are shown in Table9.5. The corresponding grids are included in
Figures9.3, 9.4, and9.5. These grids speak by themselves: some quality in terms of area has
been lost, but the gain in smoothness is quite evident.

10. Conclusions and future work. We have introduced a measure of the quality of a
structured grid in terms of area, as well as a new bilateral area functional to generate quality
convex grids. According to the results obtained, it is possible to conclude that the direct
optimization method is very well suited to solve this problem on very irregular regions.

In a future paper, other quality measures based on some othergeometrical properties as
smoothness and orthogonality will be reported, as well as some results for the analogous 3D
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FIGURE 9.3.A grid for Mexico with smoothness control.

problem for which, up to our knowledge, a practical computational test for convexity of cells
in structured grids might not be as intuitive and simple as the one given by equation (3.2).

The functional addressed in this paper, as well as some otheruseful area and smoothness
functionals, are currently included in the software UNAMALLA [ 15].
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para la generación de mallas, DGAPA-UNAM México, 1994.
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