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CHEBYSHEV SEMI-ITERATION IN PRECONDITIONING FOR PROBLEMS
INCLUDING THE MASS MATRIX ∗
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Dedicated to V́ıctor Pereyra on the occasion of his 70th birthday

Abstract. It is widely believed that Krylov subspace iterative methods are better than Chebyshev semi-iterative
methods. When the solution of a linear system with a symmetric and positive definite coefficient matrix is required,
the Conjugate Gradient method will compute the optimal approximate solution from the appropriate Krylov sub-
space, that is, it will implicitly compute the optimal polynomial. Hence a semi-iterative method, which requires
eigenvalue bounds and computes an explicit polynomial, must, for just a little less computational work, give an infe-
rior result. In this manuscript, we identify a specific situation in the context of preconditioning where finite element
mass matrices arise as certain blocks in a larger matrix problem when the Chebyshev semi-iterative method is the
method of choice, since it has properties which make it superior to the Conjugate Gradient method. In particular,
the Chebyshev method gives preconditioners which are linear operators, whereas corresponding use of conjugate
gradients would be nonlinear. We give numerical results fortwo example problems, the Stokes problem and a PDE
control problem, where such nonlinearity causes poor convergence.
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1. Introduction. Suppose we are interested in solving a system of linear equations

Ax = b (1.1)

in the situation whereA ∈ R
n×n is sparse andn is large. Such problems arise ubiquitously

in the numerical solution of partial differential equationproblems as well as other areas. One
approach is to use iterative methods, and leading contenders are methods of Krylov subspace
type. These require matrix vector products withA and compute a sequence of iterates{xk}
from a starting guessx0 which belong to nested Krylov subspaces

xk ∈ x0 + span{r0,Ar0,A2r0, . . . ,Ak−1r0}

for k = 1, 2, . . . , n, whererk = b − Axk is the residual; see, for example, [8, 14, 26].
The most well-known such method is the method of Conjugate Gradients due to Hestenes
and Stiefel [16], which is applicable in the case thatA is symmetric and positive definite.
Hereafter, we denote this method by the abbreviationCG. For indefinite symmetric matrices,
the MINRES method of Paige and Saunders [20] is the Krylov subspace method of choice
and this is the method we employ in our examples in this paper.

Most often, such Krylov subspace methods are used in conjunction with a preconditioner
P [6]. The preconditioner should be such that an appropriate Krylov subspace method ap-
plied to P−1A or AP−1, or if it is useful to preserve symmetry toM−1AM−T , where
P = MMT , will give a sequence of iterates which converges rapidly. Even in the sym-
metric case it is not necessary to form any factorization ofP in practice and, in fact, in all
cases all that is needed for a given vectorr is to be able to solvePz = r for z. For this
reason,P does not have to be known explicitly as a matrix, but it must bea linear operator;
else the preconditioned operatorP−1A (or any of the other forms as above) to which the
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Krylov subspace method is applied is also not a linear operator. We comment that there are
well-known nonlinear Conjugate Gradient methods such as that of Fletcher and Reeves [9]
(see also Powell [21]) in the optimization literature, but generally in the context of solving
a system of linear equations it would seem desirable to maintain linearity by using a linear
preconditionerP .

In this paper we explore a practical implication of this simple observation as it relates
to nested iterations when just part of the preconditioner isnonlinear. We give two practical
numerical examples, both for symmetric and indefinite matricesA of saddle-point form [4].
The first arises from the mixed finite element approximation of the Stokes problem in compu-
tational fluid dynamics and the second from a problem of PDE-constrained optimization. In
both cases, we employ the Minimal Residual (MINRES) method of Paige and Saunders [20]
rather thanCG because this is the method of choice for symmetric and indefinite systems.
The issue of linear versus nonlinear preconditioning is as relevant for this iterative method as
for CG.

2. Preconditioning, Krylov subspace methods and Chebyshevsemi-iteration. The
MINRES method is a Krylov subspace method based on the Lanczos algorithm. To use
MINRES with a preconditionerP = HHT , which must be symmetric positive definite, we
solve the (symmetric) system

H−1AH−T y = H−1b, y = HT x, (2.1)

which is equivalent to (1.1). The matrixH is not required – all that is needed for a practical
algorithm is a procedure for evaluating the action ofP−1; see, for example, Algorithm 6.1
in [8]. In some cases, an obvious preconditioning procedure may be a nonlinear operator
Q ∼= P−1. The theoretical framework for guaranteeing a minimum convergence rate for the
appropriate Krylov subspace is at least more complicated and may no longer be valid with
use of such a nonlinear procedure, although in practice it ispossible that such a procedure
may give good results on some examples.

There are flexible Krylov subspace methods which allow for a different preconditioner
at each iteration; however, the performance (convergence)of these methods is more complex,
and it might be considered generally desirable to stay within the standard linear convergence
framework where possible. The most well-known of the flexible methods is the flexibleGM-
RES method for nonsymmetric matrices [25], though there has been significant research in
this area; for example, see [29] and references therein, which also include work on symmetric
matrices. Simoncini and Szyld present a quite general analysis of Krylov subspace iteration
with preconditioning which is also a Krylov method for thesamematrix. In this case one
can view the iterates as lying in some higher-dimensional Krylov subspace and often can es-
tablish convergence. The situation we consider here arisesin several practical applications
(as illustrated by our examples) and is different in that only a part of the preconditioner is an
iteration for adifferentmatrix.

Any Krylov subspace method (includingCG) computes iteratesxk of the form

xk = x0 + qk−1(A)r0, (2.2)

whereqk−1 is a polynomial of degreek − 1. Often this property is described in terms of the
residualsrk = b−Axk rather than the iterates as

rk = pk(A)r0,

wherepk is a polynomial of degreek satisfyingpk(0) = 1. This is easily seen from (2.2) by
multiplication of each side byA and subtraction fromb:

rk = b−Axk = b −Ax0 −Aqk−1(A)r0 = r0 −Aqk−1(A)r0 = pk(A)r0,
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wherepk(z) = 1− zqk−1(z) clearly satisfiespk(0) = 1. This procedure is clearly reversible
whenA is invertible, hence the equivalence of these statements. Now suppose that the same
Krylov subspace method is used on the same problem with a different starting vector̂x0; we
will compute iterateŝxk satisfying

x̂k = x̂0 + q̂k−1(A)r̂0,

wherêr0 = b−Ax̂0. Even for the first iterate we will have

x1 = x0 + γAr0 = x0 + γAb− γA2x0

x̂1 = x̂0 + γ̂Ar̂0 = x̂0 + γ̂Ab − γ̂A2x̂0

so that, for example,

x1 + x̂1 = x0 + x̂0 + (γ + γ̂)Ab −A2(γx0 + γ̂x̂0).

Correspondingly ifx0 = x0 + x̂0 is chosen as starting vector, we get

x1 = x0 + γAb− γA2x0.

It is easy to see thatx1 6= x1 + x̂1, whatever the values of the constantsγ. This is a simple
demonstration that any Krylov subspace method is nonlinear; this fact is in some sense well-
known, but is sometimes overlooked. The above demonstratesnonlinearity with respect to the
starting vector, but in a similar manner it is easy to show nonlinearity with respect to the right
hand side vector; in correspondence with the above, ifAx = b andAx̂ = b̂ are solved by a
Krylov subspace method for the same starting vectorx0 thenx1 + x̂1 is not the first iterate
for A(x + x̂) = b + b̂. The sophistication ofCG is that it implicitly computes automatically
the best polynomial both with respect to the eigenvalues ofA but also dependent on the
components of the initial residual in the eigenvector directions; see, for example, [3, p. 560],
[22, Section 2.5]. In summary, forCG we haverk = p(A, r0)r0, i.e., the polynomialp
depends onr0.

The Chebyshev semi-iterative method was developed by Goluband Varga [12], [13,
Section 10.1.5], and also Young [15]. This method, by contrast to CG, implicitly computes
the same shifted and scaled Chebyshev polynomials of each degreek independently of the
initial guess and right hand side vector provided the same spectral bounding parameters are
used. Precisely, for the Chebyshev method applied to accelerate Richardson iteration

xk = (I −A)xk−1 + b

we have the Chebyshev iterates{yk} satisfying

x− yk = sk(A)(x − x0),

wheresk is a Chebyshev polynomial of degreek shifted and scaled so thatsk(0) = 1. Since
sk does not depend onx0 nor onb, it is clear thatyk is the result of applying a fixed linear
operator for the approximate solution of (1.1). This is true for eachk. Of course, using
different valuesk1 6= k2 leads to different linear operators, as does varying the spectral
bounding parameters. For largerk the approximation will be better, but in terms of using
a fixed number of Chebyshev semi-iterative steps as a preconditioner, the important point
we emphasize is that this preconditionerP is a linear operator. Thusrk = p(A)r0, where
the polynomialp does not depend onr0. The same holds true if a different splitting than
Richardson is used; we will employ a Jacobi splitting in the examples below.
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The basic point here is that although the Chebyshev method computes a sequence of
polynomials in the matrix as a Krylov subspace method does, these polynomials are fixed
by the parameter estimates of the spectral interval or region which are employed, i.e., the
coefficients do not depend on the starting guess nor the righthand side, unlike withCG. That
means for any particular choices of the spectral bounding parameters that a fixed number of
steps of the Chebyshev semi-iteration is a fixed linear operatorP , and so can be reliably used
as a preconditioner for a linear system or, in fact, as a part of a preconditioner — this is how
we employ it in the examples below.

This is in contrast to even a fixed number of iterative steps ofa Krylov subspace method,
which is always a nonlinear operator and so does not fit into the theory of (linear) precondi-
tioning for linear systems of equations. It is reasonable that if sufficiently many iterations of
a Krylov subspace method (or any other convergent iterativemethod) are employed so that
we essentially have convergence to the exact solution, thenthe corresponding operator is lin-
ear, namelyA−1. Of course, if an inner convergence tolerance is used foranymethod, then
this will give different preconditioners at each outer iteration, in which case a flexible outer
iterative method should be employed. In any particular computation, an appropriate flexible
method with an inner iteration could perform well; however,as mentioned above, there is no
guarantee with such an approach because of the limited theoretical understanding of flexible
methods. By contrast, our approach is completely covered bywell-known theory, i.e., there
is a guaranteed upper bound on the work required. We emphasize that we are not considering
inner/outer iterations here, but a fixed linear preconditioning operator.

The Chebyshev semi-iteration has been previously exploredas a preconditioner in the
literature [2, 10, 18, 19, 24]. In particular, it has recently been used successfully as aprecon-
ditioner by Golub, Ruiz and Touhami [11, 30] in the case of solving a system with multiple
right hand sides. Some additional theoretical results are also to be found in the report by
Arioli and Ruiz [1].

3. Finite elements: the mass matrix.The major issue with Chebyshev methods is
getting good a priori estimated bounds for the eigenvalues.Fortunately there are practical
situations where such bounds are analytically known. One such is for the (consistent) mass
matrix that arises in finite element computations.

Suppose that finite element basis functions{φj , j = 1, . . . , N} are used for some prob-
lem on a domainΩ, then the consistent mass matrix is just the Gramm matrix

Q = {qi,j, i, j = 1, . . . , N}, qi,j =

∫

Ω

φiφj ,

which is symmetric and positive definite because the basis will always be chosen to be linearly
independent. More than twenty years ago, the first author established analytic bounds for the
eigenvalues of the matrixdiag(Q)−1Q, or equivalently for the generalized eigenvaluesλ
satisfying

det(Q − λD) = 0,

whereD = diag(Q) [31]. For example, for any conforming mesh of tetrahedral (P1) ele-
ments in three dimensions, the result is

1

2
≤ λ ≤ 5

2
,

and for a mesh of rectangular bi-linear (Q1) elements in two dimensions

1

4
≤ λ ≤ 9

4
. (3.1)
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For other elements, see [31]; the matrixwathen.m in the test set of matrices inmatlab
assembled by Higham [17] is precisely such a mass matrix for the ‘serendipity’ finiteelement.
The bounds are found to be as tight as possible in practical computations in that there are
eigenvalues equal to both the upper and lower bounds.

Such a priori bounds are precisely what are required for Chebyshev semi-iteration. Cheby-
shev polynomials shifted from the interval[−1, 1] to [α, β] and scaled so that their intercept
is unity will ensure that the Chebyshev iterates{yk} satisfy

‖x− yk‖2 ≤ 2

(√
κ − 1√
κ + 1

)k

‖x− x0‖2,

whereκ = β/α. For example, for theQ1 element with the required Jacobi splitting the result
is

‖x − yk‖2 ≤ 2(
1

2
)k‖x− x0‖2

sinceκ = 9. The usual convergence result that is quoted forCG iterates{xk} is based on
precisely these same Chebyshev polynomials and is

‖x− xk‖A ≤ 2

(√
κ − 1√
κ + 1

)k

‖x− x0‖A, (3.2)

where‖z‖2
A

= zTAz; see, for example, [8, Theorem 2.4], [14, Theorem 3.1.1]. In all
the computations here which compareCG and Chebyshev for systems withQ, the diagonal
scaling is used with both methods.

Figure3.1shows how little in general is lost in using the Chebyshev method rather than
CG for such mass matrices. We give results for the first 20 iterations for both methods applied
to a diagonally preconditionedQ1 mass matrix corresponding to a mesh size ofh = 2−5

with a right hand side that is a random, normally distributedvector generated byrandn in
matlab. The easily computable quantity for monitoring convergence in each case is the
residualrk = b−Axk for CG, respectivelyrk = b−Ayk for Chebyshev; hence, we show
the values of‖rk‖2 in Figure3.1(a)and the values of‖rk‖A−1 , the quantity that is actually
minimized byCG, in Figure3.1(b).

The behavior seen in Figure3.1 is as we might expect from the theory. Although the
conjugate gradient method in general shows superlinear convergence, in this particular case
the spectrum of the preconditioned system is essentially uniformly distributed (and the right
hand side is random), which corresponds to the situation that is considered to get the error
bound (3.2). Thus, since CG on these matrices does not exhibit superlinear convergence, the
linear convergence slope must be the same as that seen in the Chebyshev case.

4. Numerical Examples. Problems with constraints lead to saddle-point systems — an
important class of symmetric (and nonsymmetric) indefinitematrices. The general structure
is

Ax =

[
A BT

B 0

] [
u

p

]
=

[
f

g

]
, (4.1)

whereA may either be symmetric (giving the classical saddle-pointsystem) or non-symmetric
(giving a generalized saddle-point system). For a comprehensive survey of solution methods
for saddle-point systems, see [4]. We consider only symmetricA here; in this situation,A is
symmetric and indefinite, and the solver of choice would be the MINRES method of Paige
and Saunders [20].
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FIGURE 3.1.Comparison of convergence ofCG and Chebyshev semi-iteration.

4.1. Example 1. One of the more important PDE examples of a saddle-point system is
the Stokes problem:

∇2u + ∇p = f

∇ · u = 0;

see, for example, [8, Chapters 5 and 6]. This problem arises as the most common model for
the slow flow of an incompressible fluid. This problem is self-adjoint, and most discretiza-
tions — including conforming mixed finite elements in any domain Ω ⊂ R

d — lead to a
symmetric matrix blockA that is usually ad× d block diagonal matrix with diagonal blocks
that are just discrete Laplacians.

Silvester and Wathen [28] proved that ifÂ is a spectrally equivalent approximation of
the Laplacian, such as a multigrid cycle, andQ is the mass matrix as above (for the pressure
space), then a block diagonal preconditioner of the form

P =

[
Â 0
0 Q

]
(4.2)

leads to optimal convergence of theMINRES iterative method for any (inf-sup) stable mixed
finite element discretization. That is, the solution of (4.1) will be achieved in a number of
MINRES iterations which is bounded independently of the number of unknowns in the finite
element discretization.

At eachMINRES iteration it is necessary to solve a system of equations withcoefficient
matrix P . Since a multigrid cycle is a simple stationary iteration, it is a linear operator —
although certainly not known in general in the form of a matrix! By using exactly the same
number of cycles (here, just one V-cycle) with the same number of pre- and post-smoothing
steps at every application, this part of the preconditioneris a fixed linear operator. This
is true even for the Algebraic Multigrid (AMG) procedure that we employ in our example
computations. For the other part of the preconditioner involving the solution of linear systems
with Q, it is advantageous to use the results of the previous section. Now the issue addressed
in this paper arises: use ofCG (with any preconditioner) for theseQ systems will result in
a nonlinear preconditioner even if a fixed number of iterations is employed, whereas a fixed
number of steps of a Chebyshev method forQ with Jacobi splitting (i.e., with preconditioner
D = diag(Q)) is a linear operator, and so it preserves the linearity ofP .

Some simple numerical results illustrate the issue and showthe clear advantage of the
Chebyshev method in this situation. For clarity in our nomenclature, we letλ1 ≤ λ2 ≤ · · · ≤
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λm denote the eigenvalues of the symmetrically scaled matrixD− 1

2 QD− 1

2 andv1,v2, . . . ,vm

denote the corresponding eigenvectors.
In Figure4.1, we plot the value of the Euclidean norm of the residual versus the iteration

number inMINRES. In both cases we useQ2–Q1 mixed finite elements and the Stokes sys-
tem is of size2467× 2467. The (1,1) block of (4.2) is given by a single AMG V-cycle using
HSL packageHSL MI20 applied via amatlab interface [5]. The (2,2) block is approxi-
mated using a fixed number of steps of eitherCG or Chebyshev semi-iteration, as described
above, with diagonal scaling for both methods. In both casesthe velocity part of the right
hand side is given by the driven cavity flow problem inIFISS [7], whereas the pressure part,
g, is given byv(m+1)/2 andv3 + v(m+1)/2 in Figures4.1(a)and4.1(b), respectively. The
pressure part of the right hand side is in this case not relevant to the physical problem, but it
enables easy description of our particular example and gives an initial residual which must
correspond to some starting guess for the correct physical right hand side. We use oneCG
iteration with starting vectorvm in Figure4.1(a)and twoCG iterations with starting vector
v1 in Figure4.1(b). On the same plots are shown the results with the same number of Cheby-
shev iterations with the exact spectral bounding parameters (3.1) for theQ1 pressure element
used here.
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FIGURE 4.1. Convergence ofMINRES when using fixed number of steps ofCG and Chebyshev semi-
iteration in the preconditioner.

4.2. Example 2.Our second example also involves the saddle point system (4.1), but as
it arises in the context of PDE-constrained optimization. Consider the (distributed) optimal
control problem

min
u,f

1

2
||u − û||22 + β||f ||22 (4.3)

subject to −∇2u = f in Ω (4.4)

with u = g on ∂Ω, (4.5)

whereΩ is some bounded domain,g andû are prescribed functions, andβ is a regularization
parameter. It can be shown that upon discretization, this problem is equivalent to solving the
saddle point system

[
A BT

B 0

] [
x

y

]
=

[
c

d

]
, (4.6)
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whereA =

[
2βQ 0

0 Q

]
, B = [−Q K] with Q andK denoting the mass and stiffness

matrices, respectively [23, 27].
Rees, Dollar and Wathen [23] showed that if we useMINRES to solve this system then

an effective preconditioner is of the form

P =




2βQ̃ 0 0

0 Q̃ 0

0 0 K̃Q−1K̃T


 , (4.7)

whereQ̃ andK̃ are approximations to the mass and stiffness matrices. As inthe first example,
we can use a fixed number of multigrid iterations, say, forK̃. The operator̃Q needs to be an
approximation to the mass matrix which preserves linearityof P ; thereforeCG is unsuitable,
but, because of the results in Section3, a fixed number of steps of the Chebyshev semi-
iteration with Jacobi splitting should perform well.

Figure4.2 illustrates the situation. Here we takeΩ = [0, 1]2 and discretize the problem
usingQ1 finite elements with mesh size2−5 (makingA a2883× 2883 system). We take the
regularization parameterβ = 10−2. We takeû such that

û =

{
(2x − 1)2(2y − 1)2 if (x, y) ∈ [0, 1

2 ]2

0 otherwise.

ForK̃ we again use one AMG V-cycle usingHSL packageHSL MI20 applied via amatlab
interface [5]. Q̃ is one step of either diagonally scaledCG or Chebyshev semi-iteration, and
in both cases the vectord in the right hand side is that given by Example 1 in [23]. In Figure
4.2(a), the vectorc is given by[βv(m+1)/2 v3]

T and the starting vectors for bothCG and
Chebyshev arev(m+3)/2 for the (1,1) block andv2 for the (2,2) block. In Figure4.2(b),
c = [vm v3]

T and the initial vectors arev(m+1)/2 andv(m+3)/2.
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FIGURE 4.2. Convergence ofMINRES when using fixed number of steps ofCG and Chebyshev semi-
iteration in the preconditioner.

In both these examples, we see failure in the convergence of the outerMINRES iteration
when we useCG, presumably because of the nonlinear nature of the preconditioner. Again,
these examples are artificial, but they serve to illustrate behavior that may occur in a prac-
tical application. The Chebyshev method is covered by the linear theory and soMINRES
convergence in this case is as expected.
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We have shown that a small fixed number of iterations of the Chebyshev semi-iteration
can behave better than CG, but it remains to be seen how effective this actually is as a pre-
conditioner. In Table4.1, we give iteration counts and timings to solve the system (4.6) using
(4.7) as a preconditioner for the described two-dimensional problem, whereQ̃ represents
five steps of Chebyshev semi-iteration, ten steps of Chebyshev semi-iteration,diag(Q), the
lumped mass matrix, or a sparse direct solve (backslash in matlab). The number of it-
erations is given in brackets after the CPU time, and tests were done usingmatlab version
7.5.0 on a machine with a dual processor AMD Opteron 244 (1.8GHz).

Here, again, we see that the sparse direct solver gives the smallest iteration counts, as one
would expect, but the time taken to solve the system increases superlinearly as the problem
size increases. The most efficient preconditioner out of theones considered here is ten steps
of the Chebyshev semi-iteration. In this case, since the multigrid solves in the preconditioner
are relatively more expensive, it pays to have a more accurate approximation to the mass
matrix — which can be done comparatively cheaply — giving a faster solution time overall.
In Table4.2, the results are given for the corresponding problem in three space dimensions.

TABLE 4.1
Comparison of times and iterations to solve (4.6) for different mesh sizes (h) (with 3n unknowns) to a tolerance

of 10−6 for MINRES with (4.7) as a preconditioner, whereeQ represents five steps of Chebyshev semi-iteration,
ten steps of Chebyshev iteration,diag(Q), the lumped mass matrix, and a sparse direct solve (backslash in
matlab).

h 3n Chebyshev (5) Chebyshev (10) Diagonal Lumpedbackslash
2
−2 27 0.15 (11) 0.12 (6) 0.14 (17) 0.16 (18) 0.12 (5)

2
−3 147 0.17 (12) 0.15 (8) 0.23 (28) 0.24 (28) 0.13 (7)

2
−4 675 0.23 (12) 0.19 (8) 0.37 (30) 0.32 (23) 0.17 (7)

2
−5 2883 0.47 (12) 0.36 (8) 0.74 (27) 0.60 (20) 0.35 (7)

2
−6 11907 1.4 (11) 1.12 (8) 2.42 (26) 1.70 (17) 1.31 (7)

2
−7 48387 5.5 (11) 4.43 (8) 9.05 (24) 6.41 (16) 5.73 (7)

2
−8 195075 22.9 (10) 17.8 (7) 38.0 (23) 28.5 (16) 43.9 (7)

2
−9 783363 111 (10) 84.2 (7) 102 (14) 115 (15) 1956 (7)

TABLE 4.2
Comparison of times and iterations to solve the three-dimensional problem corresponding to (4.6) for different

mesh sizes (h) (with 3n unknowns) to a tolerance of10−6 for MINRES with (4.7) as a preconditioner, where
eQ represents five steps of Chebyshev semi-iteration, ten steps of Chebyshev iteration, fifteen steps of Chebyshev
iteration,diag(Q), the lumped mass matrix, and a sparse direct solve (backslash in matlab).

h 3n Cheb. (5) Cheb. (10) Cheb. (15) Diagonal Lumpedbackslash
2
−2 81 0.32 (11) 0.14 (9) 0.16 (7) 0.14 (12) 0.15 (12) 0.13 (5)

2
−3 1029 0.37 (18) 0.27 (11) 0.24 (8) 0.47 (33) 0.51 (38) 0.22 (5)

2
−4 10125 3.13 (18) 2.10 (11) 1.60 (8) 2.40 (20) 2.85 (23) 3.64 (7)

2
−5 89373 29.3 (18) 16.2 (9) 15.0 (8) 18.9 (16) 21.8 (18) 94.4 (7)

2
−6 750141 214 (15) 169 (11) 132 (8) 136 (13) 173 (16) — (–)

5. Conclusions. In the context of preconditioning for Krylov subspace iterative meth-
ods for solving linear systems, the use of a Krylov subspace method in applying the precon-
ditioner — or part of the preconditioner — leads necessarilyto a nonlinear preconditioner.
There are important situations where the Chebyshev semi-iterative method is essentially as
effective as Conjugate Gradients, and it leads to a linear preconditioner provided that a fixed
number of iterations are used. We have illustrated this by giving two examples where the
consistent mass matrix is desired as part of a preconditioner and so this issue is important.
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