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ORTHOGONAL GRIDS ON MEANDER-LIKE REGIONS *

MARIANELA LENTINI f AND MARCO PALUSZNY*
Dedicated to Vctor Pereyra on the occasion of his 70th birthday

Abstract. Lemniscates are level curves of the absolute value of uateacomplex polynomials. We consider
the approximation of meander-like regions (i.e., regidnslar to meandering rivers) by pairs of confocal lemnis-
cates that are stitched together continuously. We looktabgonal grids on these types of plane regions. The main
application is in the area of numerical solution of partidfledential equations.

Key words. lemniscate, orthogonal grid, path approximation

AMS subject classifications.65L50, 65M50, 65N50

1. Preliminaries. The construction of grids on irregular regions has been indivel-
oped for use in numerically solving partial differentiabgjons. To solve numerically a set
of partial differential equations on a two dimensional ogtfi?, using finite differences, the
main idea is to discretize the equations on a set of poinfietton the boundary and the
interior of 2 where the properties of the phenomenon to be studied will éasored. The
quality of the generated grid will impact the computatioaabr in the numerical solution
of the partial differential equations. Two factors are intpat: grid orthogonality and grid
aspect ratios near to one. Both are required for the well itionthg of the discrete opera-
tor. In the literature, the most popular numerical proceddor generating a grid of are
conformal mapping methods, elliptic grid generation andatemnal methods.

A conformal mapping method produces a map from an orthojogaldded region,
like a rectangle, into the target region, which in the litara is referred to as physical
space 16, 17]. Early discussions can be found ] fand [8]. The conformality of the map,
in theory, guarantees the orthogonality of the grid in thesidal space; but in practice these
methods may perform badly with respect to orthogonalityraag perform well with respect
to aspect ratios, since they are restricted to having the saale factor in all directions. In
the conformal mapping methods, the Schwarz-Christofégldformations play a fundamen-
tal role [9]. Some drawbacks of these methods are documentédjnHor a more thorough
discussion of numerical conformal mappings between sirophnected regions, see the in-
teresting review papef]. The introduction of the covariant Laplace equations asag t@
compute the grid points was proposed as a generalizatidredtiea of using a nonconstant
scale factor in order to achieve orthogonality], but this led to the problem of getting some
cells with very small scale factors.

Elliptic grid generation consists in solving an ellipticrpal differential equation which
enforces the orthogonality or near-orthogonality of therdinate lines. For orthogonality,
the Beltrami equations have to be solv&fl [These relax the more stringent conformality
condition given by the Cauchy-Riemann equations. For neaiegonality, Akcelik, et al. in
[1] propose a further modification of the Beltrami system byddticing nonhomogeneous
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correction terms for the control of the aspect ratio of the.gA recent paper of Bourchtein
and Bourchtein§] studies the consistency of the solution of the Beltramiatigms with
certain boundary conditions that might be naturally imglkiseorder to guarantee the orhog-
onality of the grid.

The main idea of the variational approach is as follows. Giaelanar region? find
a continuous transformation of the unit squareB: into the region{2 wherez(¢,n) =
(z(&,n),y(&,n)). Ifagridis defined omB; usingz we obtain a grid orf). To get a useful
grid in the context of the numerical solution of partial diféntial equations, the transforma-
tion z should be a homeomorphism. Moreover, it should transfoevbtiundary ofB; into
the boundary of2.

To find the homeomorphisrm, the problem can be set in variational terms, and there
are many possible choices of functionals. The approprirson of the functional will
depend on the additional properties that the grid shouidfgatGiven a functional, i.e. the
Lagrangian’, the transformatiom is the solution of the minimization problem

min//L(xg,xn,yg,yn) dé dn. (1.2)

In [2] and [3], Barrera et al. give a very clear presentation of the cotitsn of the discrete
versions of the main possible choices for the functional. i$ twice continuously differen-
tiable solving (.1) is equivalent to solve the related Euler-Lagrange eqnatio

d ( oL ) d ( oL )
— |5+ ) =0,
d¢ \ Ox¢ dn \ Oz,
d < OL > d ( oL >
— | == +t-(5—) =0,
dg \dye )~ dn \Oyy
with the boundary constraiat(0Bs) = 9.

The existence and uniqueness of the solution of the bounddug problem 1.2) de-
pends onL. When it has a unique solution it can be solved numericalllie @egree of
difficulty of this process depends on the propertie& of

Grid orthogonality is a desirable property for the converggeand stability of numerical
partial differential equation solvers. Useful reviews thogonal and nearly orthogonal grids
on two dimensional regions ar@][ [2] and the references therein. I7]]it is stated that the
problem of generating an orthogonal grid on an irregulaiomegs not fully settled yet.

The goal of this paper is to introduce a new method for theraatiw generation of
orthogonal grids on elongated two dimensional regionsviBus work on orthogonal grids
on elongated regions id(]. We refer to these as meander-like regions because of their
similarity to actual riverbeds.

In fact, the construction of grids on river channels is intpot in numerical simulations
of sediment and pollutant transport which involve the nuo@solution of the Navier-Stokes
equations. Seelp] and also 4] for a novel methodology using splines for the generation of
grids to study computational fluid dynamics models of oillspi rivers.

Our method is based on lemniscates of complex polynomia#auarantees automati-
cally the orthogonality of the grid. We propose to “tile” ttreeander-like region with lemnis-
catic sectors. A lemniscatic sector is the region boundddbyonfocal lemniscates and two
arcs; the latter are orthogonal to the lemniscates. The dmtraious curves given by joining
corresponding lemniscatic segments of contiguous leraticssectors approximate the two
riverbeds of the meander-like region. Any two neighboutérgniscatic sectors meet, within

a given tolerance, along a common arc. The optimizationireduy the proposed method
can be dealt with using standard routines ofIMAB .

(1.2)
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FIGURE 2.1. Confocal lemniscates with four foci.

2. Lemniscates, lemniscatic regions and gridsGiven a polynomialF’'(z) = (z —
a1)(z — az2)...(z — a,) andp > 0, we will refer to the level curvéz : |F(z)| = p} as the
lemniscate of radiug and fociay,as,...,a,. Two lemniscates are confocal if they have
the same foci. Lemniscates are bounded closed curves afatablemniscates are nested,;
see Figur@.1l Good references for lemniscates are the beautifullyevritomplex variables
book of T. Needham1[3] and the classical workl[1].

The main goal of this paper is to offer a new look at an ampleaeshed and very
important problem: automatic generation of an orthogondlgn a plane region.

The regions we deal with are the meander-like regions; sego®e! for a full descrip-
tion. Other applications are in the areas of texture reocgrdnd data compression.

A lemniscatic region is the set of points between two corftaaniscates. That is, a
complex polynomialF'(z) and two positive numbersg; < ps2, determine the lemniscatic
region{z : p1 < |F(2)| < p2}. Lemniscatic regions might be disconnected sets. If we look

FIGURE 2.2.Lemniscates and pre-images.

at F' as a mapping of the-plane into thew-plane, it sends the lemniscatesointo circles
centered at the origin. The radius of a lemniscate coinaid#sthe radius of the circle it
maps into.
If the region{z : p1 < |F(2)| < p2} does not contain any zeros of the derivative of

F then the magF is ann : 1 local homeomorphism (in the sense of covering spat#s.[
Figure2.2illustrates a lemniscatic region that does not contain @mgszof the derivative of

a degree four polynomidl. The points in the lemniscatic region are the roots of theaéqn
F(z) — w = 0, asw runs through points in the annulus, as shown in Figu& Fis a
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conformal mapping of the lemniscatic region into the anapile., it preserves angles, hence
it maps orthogonal grids into orthogonal grids. Since itigal to produce orthogonal grids
in an annulus and mapping them back to a lemniscatic regitailgnly finding roots of
polynomials, this is an easy method to produce orthogords$ @n lemniscatic regions.

We will be mainly interested in sections of lemniscatic cet, namely subsets bounded
by two confocal lemniscates and the inverse images of twaradgments of the annulus.
We refer to the latter as rays of the lemniscatic redidine grid on a section is now clear: it
consists of the intersection points of intermediate leatiss and the rays of the lemniscatic
region. See Figur@.2. Figure2.3 shows the orthogonal grid on a section of a lemniscatic

PR L I

LI T P A )
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FIGURE 2.3. Section of lemniscatic region of a polynomial of degree 5.

region which consists of two connected components. Tharselfsecting curves are singular
lemniscates, i.e., lemniscates that pass through zerbe aferivative of the polynomial.

FIGURE 3.1.Air view of the Sacramento river and data points on its riiees.

3. Approximating meander-like regions. A meander-like region is an elongated re-
gion with identifiable length and varying width. Figusel shows the motivating picture for
the definition. Other examples are brush traces, two dimeasimages of curvilinear inner

1The rays of the lemniscatic regions should not be confuséf the rays of the annulus, the former are the
inverse images of the latter under the polynomial mapping
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body structures such as respiratory and digestive traets; icently, meander-like regions
surfaced in the computer aided geometric design settinépasdnics” [L8].

Given two sets of data points, one on each side of a riverbedyawuld like to find a
polynomial F' and two positive radip; andp, such that the lemniscatds : |F(z)| = p1}
and{z : |F(z)| = p2} approximate these two data sets. In the final section of #pep we
will comment on how to extend the sampling sets on both simlester the full riverbed. For

96W0

FIGURE 3.2. Computation of the distance between a lemniscate and a pgitboking at the roots of a
polynomial.

the rest of this section we will look at the problem of approating a portion of the riverbed
with a lemniscatic region.

The approximation involves minimizing a continuous costdtion, H (a1, ag, ..., a,)
where thea; are the foci of the sought-after pair of confocal lemnissat€he function”
depends on the distances of the points in DAT1 and DAT2 to tiees{z : |F(z)| = p1}
and{z : |F(z)| = p2} respectively.

Given a point;y and a lemniscatd = {z : |F(z)| = p}, letsy, so, ..., s, be the roots of
the polynomialF'(z) — pe’®, where0 < ¢ < 2 is the argument of"(zo). We estimate the
distance between the poigg and the lemniscaté asmin(|zg — s;/).

Figure3.2shows a lemniscate of radigsnd fociay, as, a3 and a pointg in the exterior
and its image pointy = F(z9) = (20—a1)(20—az2)(20—a3) = poe'?. The distance between
zo and the lemniscate is the minimum|ef — s1], |zo — s2| and|zg — s3| wheresy, s; andss
are the roots of’(z) — pe'®. To find the monic polynomial and two positive numbgrsand
p2 as above we proceed as follows. For any given set©dmplex numbers,, as, ..., a,,
the foci of the lemniscates, we define the radii of the confleraniscates as

= 3 IR

z€DAT1

and

p= [ 3 PGP

z€DAT2

wheren; andns are the numbers of data points in DAT1 and DAT2, respectiwiy define
the cost functiorff (a1, as, ..., a,,) as

1
m ( Z Fu(al,ag,...,an)—l— Z Fu(al,ag,...,an)>

ueDAT1 u€DAT2
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FIGURE 3.3.Data sets DAT1 and DAT2 on the two sides of the Sacramento rive

where F, (a1, as, ..., a,,) is the square of the distance estimate between a poarid the
lemniscate given by, for u € DAT1 andp, for u € DAT2. The factor containing; and
ns9, allows us to compare lemniscatic approximations when timber of sample points vary.
The objective is then to minimize the cost function, i.e final the foci which make the cost
minimum.

When DAT1 and DAT2 extend along long pieces of the riverbagdshown in Figur8.3,
the approximation task might require a pair of lemniscati#ls alarge number of foci. Hence,
the complex polynomial one has to deal with might have a higgirele. This is inconvenient
for numerical computations. To avoid working with high degpolynomials, DAT1 and
DAT?2 are partitioned into data subsets that face each atherfor each data subset pair we
determine a complex cubic polynonfignd two positive numbers; andp, such that each
lemniscate approximates within a given tolerance eachefitiia subsets of the chosen pair.
Figures3.4and3.5show data subsets pairs and the approximating confocalideates.

4. Joining lemniscatic regions.As discussed in Sectidh within certain constraints we
may construct an orthogonal grid on the region between twmiscates by mapping back
an orthogonal grid given in the annulus determined by twaceatric circles. Moreover, as
illustrated in Figure2.2, the lemniscatic region determined by two segments of @atfem-
niscates which face each other corresponds to a sectiomafue The latter is given by two
concentric circular arcs which face each other. More pedgis sector of the circular annu-
lus cut off by two radial segments corresponds to the lenatisecegion which is bounded
by the two lemniscatic segments and the two lemniscatic.¥ayse complex polynomial
which maps the confocal lemniscates into concentric @r@s illustrated in Figurg.2, is a
one-to-one conformal map between the lemniscatic regidritasector of the annulus.

The partition of DAT1 and DAT?2 into subsets which face eadteo{such that one subset
of each pair is contained in DAT1 and the other in DAT2) hasd@hosen so that the region
determined by each data subset pair can be fitted with a leatiisegion. Moreover, we

20ur computational experiments strongly suggest that ivigys possible to partition DAT1 and DAT2 such
that each data subset pair can be approximated, within a gierance, with lemniscates of cubic polynomials.

3A lemniscatic ray is a curve segment in thglane, i.e., the plane where the lemniscates live or, etprity,
the physical space, which is mapped into a radial segmehediitcular annulus.
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FIGURE 3.4.Lemniscate pair approximating the first subsets of DAT1 aAdD

have to guarantee that the lemniscatic region correspgrditwo contiguous data subsets
meet along a lemniscatic ray of each one of the lemniscagions. See Figuré.1

Our algorithm offers fully automatic partitioning of thepnt DAT1 and DAT2. The
only required user input is a tolerance for the data appration and a target number for the
number of sectors that should compose the complete meékéeegegion. A slightly modified
version of the above cost function is used to enforce theitiondhat the lemniscatic regions
meet along lemniscatic rays within the given tolerance s Thodification consists of adding
a penalty term when lemniscatic rays of neighboring lenatissectors do not coincide. Our
numerical experiments suggest that it is enough to imposaalfy on the euclidean distance
between the two endpoints of the last ray of one sector antiiivendpoints of the first ray
of the next sector.

5. The orthogonal grid and examples.As explained in Sectio, the generation of
the grid reduces to solving cubic equations. Although it @l\known that polynomial root
finding might be numerically unstable in the neighborhood ofiultiple root, this does not
affect our method because we stay away from zeros of theadigvof F'(z): the approxi-
mating polynomialF’(z) is chosen so that the lemniscatic region giverpbandp, does not
contain singularities.

We illustrate the resulting grids obtained from five runs af eystem for the data set
DAT1 and DAT2 for the boundaries of the Sacramento river. rétee 40 data points on
the right riverside and 47 points on the left. Our algorithtarts with three random foci
to determine each pair of confocal lemniscates. Figuldllustrates the pairs of confocal
lemniscates that approximate each pair of data subsetsrignte 5.2 shows the resulting
grid. The data set was subdivided into nine pairs of datastabBigure$.3 5.4, 5.5and5.6
depict four additional grids for the same data set, alsogusine pairs of data subsets. Ta-
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0.5
0.5 0 0.5 1 1.5

FIGURE 3.5. Lemniscate pair approximating the second subsets of dataesides of the riverbed together

with those of the first subsets.

FIGURE 4.1.Common lemniscatic ray between contiguous lemniscatiomsg

ble 5.1 summarizes the information regarding the number of cdils,average aspect ratio
(AAR), the maximum aspect ratio (MAR), the average deviatborthogonality (ADO) and
the maximum deviation of orthogonality (MDO), the lattelotwere computed using angles.
As mentioned above, the grid examples in this section cpores to the same data set
and the number of sections is nine for each case. We beliat¢hik feature is an advantage,
since it hands to the user (or to an automatic procedure) deauaf grid options which can
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FIGURE5. 1. Nine pairs of confocal approximating lemniscates.

TABLE 5.1
Statistics over five trials of the grid generator for the Samento river data corresponding to Figurd<, 5.3
5.4,5.5and5.6.

Figure | AAR | MAR | ADO | MDO | Cell Number

5.2 1.3339 | 2.2832 | 0.0288 | 0.3444 572
53 1.5048 | 3.9196 | 0.0304 | 0.2639 650
5.4 1.4484 | 2.5485 | 0.0306 | 0.6156 626
55 1.4845 | 3.3662 | 0.0360 | 0.5693 590
5.6 1.2979 | 2.4151 | 0.0304 | 0.2446 553

be compared/validated in the context of the use for whichgtie is intended. The reason
why this is possible stems from the fact that the algorithamtstwith a random choice of
three foci for the first pair of lemniscates which approxieide first data subset pair.

6. Conclusions.We introduce a new method for the automatic generation bbgxnal
grids on meander-like regions. The method depends only atfiraling of cubic complex
polynomials and the minimization of a cost function. Theoaithm automatically partitions
the data on both boundaries of the meander-like region, pptbaimates each pair of data
subsets that face each other by segments of confocal leat@iscThe lemniscatic regions
given by pairs of confocal lemniscates and lemniscatic tigy$he meander-like region.

The only input required from the user is the tolerance forghygroximation and the max-
imum number of regions. The algorithm uses the standardhigation routind sgnonl i n
of the MATLAB system.

A comparison with other methods is undertaken by computiagrtaximum and average
deviation of orthogonality (MDO and ADOQO) and the maximum aarage aspect ratios
(MAR and AAR) of the grids. The MAR, AAR, MDO and ADO are compdt for the
concrete example of the Sacramento river.
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FIGURE5.2.Grid corresponding to the lemniscates of Figéré.
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FIGURE 5.3.Second grid for the Sacramento river data.
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FIGURE5.4.Third grid for the Sacramento river data.

FIGURE5.5. Fourth grid for the Sacramento river data.
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FIGURE5.6.Fifth grid for the Sacramento river data.
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