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Abstract. The necessity to approximate dynamic contact problems arises in many engineering processes. Be-
cause of the local effects in the contact zone, adaptive techniques are suited to improve the finite element discreti-
sation of such problems. In this article, the Newmark method in time and finite elements in space are used to
approximate the solution numerically. A spatial error estimator is derived from the semidiscretised problem. The
approach relies on an auxiliary problem, which is a variational equation. An adaptive refinement process is based on
this error control. Numerical results illustrate the performance of the presented method.
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1. Introduction. Dynamic contact problems arise in many engineering processes, e.g.,
in milling and grinding processes, vehicle design and ballistics. The main effects in these
processes result from the contact between the considered bodies. Dynamic obstacle problems
provide a model problem for this kind of contact problems. In obstacle problems the contact
takes place inside the domain; in contrast to Signorini problems, where the contact occurs on
the boundary. The influence of the contact on the elastic domain is more direct in obstacle
problems than in Signorini problems. Thus, errors in handling the contact are immediately
seen in the approximated solution. In dynamic contact problems, the contact zone depends
on time. Hence, numerical simulations have to be adapted to the timedependent conditions to
improve the error with minimal additional costs.

An adequate technique, which gives rise to a flexible and efficient finite element dis-
cretisation, is a posteriori error control and mesh refinement. In general, a posteriori error
estimates for second order hyperbolic problems are based on two different discretisation ap-
proaches. One approach uses space time Galerkin methods to discretise the problems and
applies similar techniques for error control as in the static case [5, 6, 29, 33]. The other one
is based on finite differences in time and finite elements in space. Here, separate error es-
timators are used for space and time direction [14, 34, 52] or error estimates for the whole
problem [1, 11] are derived.

In this article, finite difference methods in time and finite elements in space are used
to discretise the dynamic obstacle problems. Because only the data of the current time step
comes into play the error estimator can be evaluated efficiently. However, the separation of
time and space direction complicates the consideration of space time effects. The aim of
this article is to derive an error estimator for the finite element discretisation of the space
direction. Therefore, an error control technique for static contact problems is applied to the
semidiscrete spatial problem. This technique goes back to Braess [15] and Schröder [44].
Other approaches to a posteriori error control for static contact problems are discussed in
[3, 9, 18, 26, 28, 37, 45, 47]. In particular, an adaptive scheme for two-body contact is
contained in [49]. Convergence results for adaptive algorithms in the context of obstacle
problems are proven in [16].�
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Adaptivity for the time direction is not taken into account in this article for notational
simplicity, although it is easy to incorporate. One can do this on the basis of error estimators,
which are known from the literature for second order hyperbolic problems [52].

The temporal discretisation of dynamic contact problems is difficult. A lot of approaches
based on different problem formulations have been presented in the literature. In [51] the
Penalty-method is used to solve the discrete problems. Special contact elements in com-
bination with Lagrange multipliers are presented in [10]. Other techniques for smoothing
and stabilizing the computation with special finite elements, e.g., mortar finite elements, are
presented in [24, 35, 40]. In [20] an additional ��� projection is used to stabilise the New-
mark scheme. Algorithms for dynamic contact/impact problems based on the energy- and
momentum-conservation are derived in [4, 32]. An additive splitting of the acceleration into
two parts, representing the interior forces and the contact forces, is the basis of the meth-
ods introduced in [30, 39]. In [19, 41, 46] algorithms based on variational inequalities and
optimisation algorithms are presented. Detailed surveys of this topic can be found in the
monographs [31, 50].

This article is organised as follows: In Section 2 the strong and the weak continuous
formulations of the dynamic obstacle problem are discusssed. The discretisation with Rothe’s
method is developed by formulating the problem as a hyperbolic variational inequality. An
error estimator is derived in Section 4. The next section is concerned with the practical issues
of dynamic meshes. The error estimator and an adaptive algorithm is tested by an example
in Section 6. The article concludes with some remarks on the presented method and further
developments.

2. Continuous formulation. In this section, the strong formulation and the weak for-
mulation of the dynamic obstacle problem are presented. The domain � is assumed to be
a subset of � � and 	�

��� ����������� is the time interval. Homogeneous Dirichlet boundary
conditions are assumed for notational convenience. The functions ��� and ��� represent the
start displacement and the start velocity, respectively. The right-hand side is denoted by � .
The time dependent obstacle is given by the function  !
��#"$	&%'�)(+*-,/.1032 Here, the
restriction �&45 is considered, �768 can be treated analogously.

For the initial values we assume � �19;:=<�/> ��? and � �@9 �A��A> ��? , for the right-hand
side we assume � 9 �CBEDF	HG�� � > ��?JI . For the precise definition of weak derivatives and
the corresponding function spaces, see [22]. The gradient of the displacement � in space
direction is denoted by KL� and ML� is the usual Laplace operator. The first time derivative is
denoted by N� and the second one by O� . In the following, all relations have to be understood
almost everywhere.

We choose the unconstrained trial spaceP 

�RQ �TS B D 	UGJ� � > ��? I�V � B D 	HG : <� > ��? I
for notational convenience, although the existense of a solution in

P
can not be proven, even

in the contact-free case [22].
The parametrisation of the obstacle  has to be contained in � BWD 	UGJ�A� > ��? I . The set of

admissible displacements isX 
Y�Z*\[ 9 P@] [)48 a.e. on �R"^	3032
The ��� scalar product is defined by > �_���`?a�cbedf�H�Cgih for �j�k� 9 �A� > ��? . The weak for-
mulation of the dynamic obstacle problem, which is similar to the formulation of dynamic
Signorini problems (see, e.g., [38]), reads as follows.

PROBLEM 2.1. Find a function � 9 X with � >ml �n�-?o�p� � and N� >ql �n�-?o�p� � for
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which > O� >rl ?s�J[ >ql ?t,�� >rl ?�?vu > KL� >ql ?s�JK > [ >ql ?j,�� >ql ?k?J?C4 > � >Fl ?s�J[ >ql ?t,=� >ml ?J?
holds for all [ 9 X and all l 9 	 .

If the solution is sufficiently smooth, we obtain the equivalent formulation [23]:O�w,xML�&41�y��w,= 14z���> O�w,+ML�w,+�{? > �w,� C?3�n��2
3. Discretisation. We use Rothe’s method to discretise the dynamic obstacle problem.

First, the temporal direction is discretised by an adequate time stepping scheme. Here, the
Newmark method [36] is applied. The obtained spatial problems are numerically solved by
the finite element method.

3.1. Temporal discretisation. The time interval 	 is split into | equidistant subinter-
vals 	~}^

� >ql }`� < � l }�� of length �w� l }L, l }`� < with �L�L
 l ��� l < ��2~2\2U� l�� � < � l�� 
Y�n� .
The value of a function � at a time instance l } is approximated by � } . The velocity is given
by ����N� . The acceleration � is the second time derivative of � .

In the Newmark method, � } and � } are approximated as:� } � �� � � D � } ,=� }`� < I ,��� � � }`� < ,E�n�� � , �\� � }�� < �(3.1) � } �z� }`� < u)��� > � ,$��?`� }`� < u+�{� }�� 2(3.2)

Here,
�

and � are free parameters in the interval � ��� � � . For second order convergence, ��� <�is required. Furthermore, the inequality
� � 4c��4 <� has to be valid for unconditional

stability; see [27]. For dynamic contact problems, the choice �)� � � <� is recommanded;
see [10, 41]. For starting the Newmark method the initial acceleration ��� is needed. It can
be calculated on the basis of the initial displacement and velocity; see [27]. The semidiscrete
problem reads as follows.

PROBLEM 3.1. Find � with � � �@�H� , � � �z��� , and � � �n��� , such that in every time step� 9 * � � � �~2\2~2���|+0 , the function � } 9 X } is the solution of the variational inequality> � } �J[&,�� } ?_u > K�� } �JK > [=,�� } ?�?C4 > � >ql }�?s��[=,�� } ?s�(3.3)

which must hold for all [ 9 X } . Moreover � } , � } , and � } have to fulfill (3.1) and (3.2).
Here and in all following problems, (3.1) and (3.2) have to hold as well. The set

X } 
Y�� [ 9^:=<��> ��? ] [84) } a.e. on �7� is the time discretised set of admissible displacements.
Substituting the equation (3.1) with �^� � � <� into the inequality (3.3) leads to> � } ��[=,=� } ?vu �� � � > K�� } �JK > [=,�� } ?�?C4 ���� � � � >rl }�?vu�� }`� < u8�C� }�� < �J[$,�� } � 2
This can be written as � > � } ��[=,�� } ?C4 >q  } �J[$,�� } ?��(3.4)

where

�
is defined by � >r¡ ��[¢?C

� >m¡ �J[¢?�u �� � � > K ¡ �JK�[¢?s�
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and   by   } 

�£�� � � � >ql } ?vu+� }`� < u)�C� }`� < 2
The bilinearform

�
is uniformly elliptic and symmetric. Thus, an elliptic variational inequal-

ity has to be solved in every time step. An efficient way for solving variational inequalities
is given by their mixed formulation. Especially, the included Lagrange parameters are in-
terpretable as contact forces. The variational inequality (3.4) is equivalent to the following
mixed problem.

PROBLEM 3.2. Find > �_�¥¤H? with � � �Z� � , � � ��� � , and � � �#� � , such that > � } �J¤ } ? 9P } "�¦ } is the solution of the system� > � } ��[¢?vun§F¤ } ��[¢¨3� >q  } ��[¢?��(3.5) §q©�,+¤ } ���w,� } ¨C6z���(3.6)

which must hold for all [ 9 P } , all © 9 ¦ } and all � 9 * � � � �~2~2\2���|x0 . Based on (3.1) and
(3.2), the functions � } and � } are calculated in a postprocessing step.

Here, ¦ } is the dual space of the closed and convex cone ª«
Y� � © 97:=<�/> ��?�¬¬ ©x65� � .
The dual pairing is expressed by §k­®�\­ ¨ . The set

P } 
Y� :=<� > ��? is the time discretised uncon-
strained trial space.

The equivalence of the two formulations is a well-known conclusion from the general
theory of minimisation problems in Hilbert spaces, which is presented, e.g., in [17, 21].

3.2. Spatial discretisation. A finite element approach is applied to discretise the mixed
problem 3.2. We use adaptive algorithms with dynamic meshes. Therefore, the trial spacesP }¯ and ¦ }° vary from time step to time step. Bilinear basis functions on the mesh ± } are used
for the finite element space

P }¯ . The discrete Lagrange multipliers are piecewise constant and
are contained in the set ¦ }° . The index : points out, that coarser meshes are used for the
Lagrange multipliers. Here, we use : � �i² . A detailed study of the stability properties of
this discretisation can be found in [44].

If the meshes differ between two time steps, the data of the previous time step have to be
transfered from the previous mesh to the current one. This is done by an ��� -projection and
is marked in the formulas with a prefix 	 ¯ . The transfer can also be done by interpolation,
which needs less effort, but can lead to instabilities. The space and time discrete problem is
as follows.

PROBLEM 3.3. Find > � } ¯ �J¤ }° ? 9 P }¯ "³¦ }° with � � ¯ �n	 ¯ � � , � �¯ �1	 ¯ � � , and � � ¯ �1	 ¯ � � ,
such that the system � > � } ¯ ��[ ¯ ?�u@§´¤ }° �J[ ¯ ¨A� >F  }¯ �J[ ¯ ?s�(3.7) §r© ° ,x¤ }° ��� } ¯ ,� } ¨�65���(3.8)

is valid for all [ ¯ 9 P }¯ , © ° 9 ¦ }° , and � 9 * � � � �~2~2\2T��|+0 . Additionally, (3.1) and (3.2)
determine � }¯ and � } ¯ .

Here,   }¯ is given by  }¯ 

� �� � � � >Fl }�?vu)	 ¯ � }`� <¯ u)��	 ¯ � }`� <¯ 2
The system (3.7)–(3.8) leads to the following saddle point problem in �3µ , where ¶ depends
on � : · }t¸� } u)¹ } ¸¤ } � ¸  } �D ¸©�, ¸¤ } I~º=» > ¹ } ? º ¸� } , ¸ }�¼ 65�U�
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which must hold for all ¸© 9 �a½µ ¾ � . Here,

· } 

�À¿ } u <� ��� X } is the generalised stiffness
matrix, ¿ } 9 �tµ�Á�µ is the mass matrix and

X } 9 �tµ³Á�µ is the stiffness matrix. The matrix¹ } 9 �jµ�Á�½µ represents the dual pairing in (3.8). Notice, that all matrices can change from
time step to time step.

The saddle point problem can be written as a quadratic optimisation problem, which can
be solved, e.g., by SQP methods, by substituting ¸� } 

� > · } ? � < D ¸  } ,x¹ } ¸¤ } I . More details
can be found in [44].

4. Spatial error estimation. In this section, an error estimation is derived for the spatial
error in every time step. The estimation is easy to implement and can be evaluated fast. The
temporal error is not considered. The idea of the error estimation goes back to Braess [15],
who presented it for static obstacle problems. This idea was extended by Schröder [44] to
static Signorini problems even with friction by introducing a general framework for error
control in Banach spaces. In order to apply this framework, we consider the following saddle
point problem.

PROBLEM 4.1. Find »HÂ� } � Â¤ } ¼ 9 P } "^¦ } , so that� > Â� } ��[¢?vun§ Â¤ } ��[¢¨3� >q  }¯ �J[t?��§r©^, Â¤ } � Â� } ,� } ¨C6z���
are valid for all [ 9 P } and © 9 ¦ } .

An integral part of the general framework in [44] is the formulation of the following
auxiliary problem.

PROBLEM 4.2. Find � }Ã 9 P } , so that the variational equation� > � }Ã �J[t?3� >q  }¯ �J[¢?t,5§Ä¤ }° �J[t¨
holds for all [ 9 P } .

Problem 4.2 corresponds to the first line of Problem 4.1, but with the discrete Lagrangian
multiplier ¤ }° instead of Â¤ } . Applying Lemma IV.2 in [44] yields the following result.

LEMMA 4.1. There are constants Å�ÆF�JÅfÆ Æ 9 ��Ç � , so thatÈ Â� } ,=� }¯ È � u�ÉÉÉ Â¤ } ,x¤ }° ÉÉÉ � 6zÅ Æ È � }Ã ,�� }¯ È � u8Å Æ Æ § Â¤ } ,+¤ }° �k� } ¯ ,= } ¨�2
Here,

È ­ È denotes the norm correponding to the function spaces. We use the :�< > ��? -
norm for

P } . Taking into account that the discrete solution � } ¯ is also a discrete solution
of Problem 4.2, we are able to get rid of the term

È � }Ã ,�� }¯ È by using an appropriate error
estimator for the auxiliary problem: Let Ê }Ã$Ë � be an error estimator of the Problem 4.2, i.e.,
there exists a constant Å Ã Ë � independent of

P }¯ and ¦ }° , so thatÈ � }Ã ,�� }¯ È � 6zÅ Ã > Ê }Ã ? � 2
Then, Lemma 4.1 leads toÈ Â� } ,�� }¯ È � u ÉÉÉ Â¤ } ,+¤ }° ÉÉÉ � 6zÅ Æ Å Ã > Ê }Ã ? � u)Å Æ Æ §F¤ } ,x¤ }° �k� } ¯ ,� } ¨T2
The remaining term § Â¤ } ,+¤ }° �k� } ¯ ,� } ¨ is estimated in the next lemma.

LEMMA 4.2. Let Ì � Ë � be the constant of continuity of

�
. Furthermore, let g 9 ÂX } 
Y�*\� 9 P } ]  } ,�� }¯ u��Í45��0 and Î Ë � . Then, there holds§ Â¤ } ,+¤ }° �k� } ¯ ,� } ¨�6 Î� È Â� } ,�� }¯ È � u > � u+ÎÏ?�Ì���� Î È g È � u �� È � }Ã ,�� }¯ È � u ] > ¤ }° �Jg�? ] 2
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Proof. Inserting � and
� ¤ }° in (3.8) yields §Ä¤ }° ��� } ¯ ,x } ¨3�n� . Furthermore, we get§ Â¤ } ��� } ¯ ,= } ¨3�#,�§ Â¤ } �� } , > � } ¯ u)g�?�¨¢,z§ Â¤ } ��g`¨6 � > Â� } ��g`?t, >F  }¯ ��g`?� � > Â� } ,�� }¯ �Jg�?_u � > � } ¯ �Jg�?¢, >F  }¯ ��g`?6zÌ�� È Â� } ,�� }¯ ÈAÈ g È u � > � } ¯ �Jg�?t, >q  }¯ ��g`?6 Î � È Â� } ,�� }¯ È � u Ì���� Î È g È � u � > � } ¯ �Jg�?t, >q  }¯ ��g`?�2

Here, we use Young’s inequality. The term

� > � } ¯ �Jg�?j, >q  }¯ �Jg�? is estimated as follows:� > � } ¯ ��g`?j, >F  }¯ ��g`?3� � > � } ¯ ,�� }Ã ��g`?t, > ¤ }° �Jg�?61ÌÐ� È � }Ã ,=� }¯ È3È g È , > ¤ }° ��g`?6 �� È � }Ã ,�� }¯ È � u Ì���� È g È � u ] > ¤ }° �Jg�? ] 2
Eventually, we obtain an a posteriori error estimation by the following proposition.
PROPOSITION 4.3. There exists a constant Å Ë � independent of

P }¯ and ¦ }° , so thatÈ Â� } ,=� }¯ È � u ÉÉÉ Â¤ } ,x¤ }° ÉÉÉ � 6zÅ » > Ê }Ã ? � u ÉÉ >  } ,=� }¯ ?kÑ ÉÉ � u#¬¬ D ¤ }° � >  } ,=� }¯ ?kÑ I ¬¬ ¼
holds. Here, � Ñ denotes the positive part of a function � , which means� Ñ > hy?��!Ò � > hs?���� > hy?�45������ � > hy?��5��2

Proof. Combining Lemma 4.1 and Lemma 4.2 yieldsÈ Â� } ,�� }¯ È � u ÉÉÉ Â¤ } ,x¤ }° ÉÉÉ �6zÅ Æ Å Ã > Ê }Ã ? � u)Å Æ Æ § Â¤ } ,x¤ }° ��� } ¯ ,� } ¨6 > Å Æ uÀ�� Å Æ Æ ?kÅ Ã > Ê }Ã ? � u)Å Æ Æ � Î � È Â� } ,�� }¯ È � u > � u+ÎÏ?�Ì���� Î È g È � u ] > ¤ }° ��g`? ] � 2
Choosing �o��Î�� ��Ó Å³Æ Æ , we get> � , ÅfÆ ÆYÎ� ? È Â� } ,=� }¯ È � u ÉÉÉ Â¤ } ,x¤ }° ÉÉÉ � 6ÔaÕ�Ö * > Å Æ u ÅfÆ Æ� ?�Å Ã � ÅfÆ Æ > � uxÎi?kÌ���� Î �¥Å Æ Æ 0 >�> Ê Ã ? � u È g È � u ] > ¤ }° ��g`? ] ?�2
Since  } ,�� }¯ u >  } ,�� }¯ ? Ñ 45� , we set gw
Y� >  } ,�� }¯ ? Ñ 9 ÂX } and complete the proof.

REMARK 4.4. All terms in the error estimation of Proposition 4.3 are interpretable as
typical sources of errors in contact problems. The term

È >  } ,�� }¯ ? Ñ È measures the error of
the geometrical contact condition and the term

] > ¤ }° � >  } ,^� }¯ ? Ñ ? ] measures the violation of
the complementary condition.

REMARK 4.5. The term
È >  } ,@� }¯ ? Ñ È is of higher order in

²
, which is shown by

numerical experiments in [44]. Since the localisation of this term is difficult, it is neglected
in the numerical realisation.
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In order to apply the error estimation of Proposition 4.3, we have to specify an appropri-
ate error estimator Ê }Ã for the Problem 4.2. In principle, each error estimator known from the
literature of variational equations can be used; see [2] or [48] for an overview. For the sake
of completeness, a residual based error estimator for Problem 4.2 is specified:> Ê }Ã ? � 
Y�Ø×Ù�ÚÏÛ�Ü Ê �Ù �Ê �Ù 
Y� ² �Ù È¥Ý�È �Þ�ßTà Ù�á u ² Ù È~âoÈ �Þ�ß�àäã Ù�á �
with Ý 
Y�   }¯ ,+¤ }° u �� � �Íå � } ¯ ,�� }¯ �â 
Y��,7�� � �8æTç � } ¯ç Ì$è 2
The quantity

â
represents the jump discontinuity in the approximation to the normal flux on

the interface; see [2, Section 2.2] for more details.
REMARK 4.6. We have used the discrete value   }¯ instead of   } in Problem 4.1, i.e.,

Proposition 4.3 provides a temporal local error estimator for the spatial discretisation error.
This technique is commonly used in the derivation of error estimators for numerical methods
for ordinary differential equations; see, e.g., [25]. The presented error estimator expresses
the spatial error distribution in the single time steps. But it provides only informations about
the global error under the assumption   }¯�é   } , which should hold for small � and

²
. An

a priori error analysis of the Newmark method in the context of dynamic contact problems is
needed to make a precise statement. To the best of the authors’ knowledge, this analysis does
not exist and cannot be derived by standard techniques due to the low regularity of the exact
solution.

5. Adaptive algorithm. In general, adaptive algorithms for dynamic problems are based
on refinement strategies, which are known from static problems; see, e.g., [8, 48]. Commonly
used adaptive algorithms for time dependent problems, e.g., in [33, 43], perform an adaptive
refinement process using a prescribed tolerance in every time step. This refinement process
is independent of previous and following time steps. Here, the crucial point is, that the time
interval is passed only once. The tolerance cannot be reached, if the solution in the previous
time step has not been calculated accurately enough. Moreover, the difference of the meshes
of two succesive time steps may lead to a significant increase of the error. Usually, rapid
changes of the problem parameters are the reason for this behaviour.

In dynamic obstacle problems, the problem parameters change rapidly. Hence, the men-
tioned algorithms are not appropriate. An alternative is given by algorithms based on the
ideas in [7, 42]. The refinement procedure is split into several cycles. The whole time inter-
val is passed in every cycle. A cycle consists of two steps: In the first step, the approximated
solution of whole problem is determined, the error is estimated, and the mesh is refined with
a usual refinement strategy, e.g., a fixed fraction strategy [8, 48]. Multiple hanging nodes
in space and time may be generated by this refinement. In a second step, they are removed.
Furthermore, it has to be ensured, that the mesh has patch structure. We say, a 2D mesh has
patch structure, if four adjacent mesh cells, which have the same size, can be combined to
a patch or macro element. The patch structure allows a reasonable coarsening of the mesh.
In particular, no instability effects, as checkerboard patterns, are observed in numerical ex-
periments. The removal of hanging nodes in time closely connects the meshes of different
time steps. A detailed presentation of this adaptive algorithm and its extensions will be given
in [13].
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(a) Mesh at ê�ë=ìkí�î (b) Mesh at êfë=ìkï�ð (c) Mesh at ê³ë&ìkñ�ð

(d) Mesh at ê�ë^ò�î�ð (e) Mesh at êfë�òeìkð (f) Mesh at ê³ë�ò�ò�ð

(g) Mesh at ê�ë^ò�ó�î (h) Mesh at êfë^ò¥ôTî (i) Mesh at êfë^ò�ð�î
FIG. 6.1. Meshes for different time steps.

6. Numerical Results. The error estimator and the adaptive algorithm based on it are
tested with the following example. We set ��
Y�õ� ��� � � � and 	)

��� ���J��2 �iö � �i÷ � . The initial
displacement and the initial velocity are� � > h < �kh � ?C
Y�n������ > h < �kh � ?C
Y��,/ø �Ïùfú�ûäü > ù h < ? ú�û®ü > ù h � ?s2
The obstacle  is a constant function  #

�;,ý��2 � . The length of the time steps � is choosen
as � 2 �i÷ ­ � � �Hþ and the initial mesh size

² � as �U2 �-ÿ �i÷ . Five refinement cycles are performed,
where a fixed fraction strategy with a constant refinement fraction of

÷ ��� without coarsening
is used. Meshes of different time steps are displayed in Figure 6.1. Figure 6.1 (a) shows
the mesh before the first contact between the membrane and the obstacle takes place. In
Figure 6.1 (b), the contact zone is a circle in the middle of the membrane. It moves outside
and the membrane is reflected in the middle. One observes, that the meshes are refined in the
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FIG. 6.2. Trend of the error estimation for adaptive and regular refinement.

outer contact zone and in areas, where the membrane is vibrating. In Figure 6.2, the estimated
error of the discretisation with adaptive refined meshes is compared to the estimated error of
the discretisation with globally refined meshes. The maximum estimated global error over
the whole time interval Êo� ÔaÕ�Ö< ¾ } ¾ � Ê }
is displayed on the y-axis and the sum over all number of degrees of freedom is shown on the
x-axis. The adaptive refined discretisation only needs a quarter of the unknowns to achieve
the same accuracy as the globally refined one.

7. Conclusions. The presented space adaptive scheme for dynamic obstacle problems
shows a significant improvement in the numerical experiments. More sophisticated refine-
ment strategies can further reduce the number of unknowns needed to reach a certain toler-
ance. However, not every strategy seems to be suited for adaptive schemes. For example, the
refinement strategy presented in [42], where the refinement indicators are compared over all
time steps, has been tested. The results are not satisfactory. The contact zone is not refined
before the first contact. The algorithm is not able to detect the occurrence of the first contact
exactly, which increases the error significantly.

Another method to reduce the number of unknowns is given by time adaptive discretisa-
tions; using error estimators for the Newmark method, e.g., as presented in [52]. This will be
considered in future works.

The difficulties discussed in Remark 4.6 and the separation of the spatial and temporal
discretisation complicate the derivation of rigorous a posteriori error estimators. A remedy
could be the application of a space-time Galerkin method [12] and of the DWR technique [8].
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