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A REDUCED BASIS METHOD FOR EVOLUTION SCHEMES WITH
PARAMETER-DEPENDENT EXPLICIT OPERATORS

�
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Abstract. During the last decades, reduced basis (RB) methods have been developed to a wide methodology for
model reduction of problems that are governed by parametrized partial differential equations (P � DEs ). In particular
equations of elliptic and parabolic type for linear, low degree polynomial or monotonic nonlinearities have been
treated successfully by RB methods using finite element schemes. Due to the characteristic offline-online decom-
position, the reduced models often become suitable for a multi-query or real-time setting, where simulation results,
such as field-variables or output estimates, can be approximated reliably and rapidly for varying parameters. In the
current study, we address a certain class of time-dependent evolution schemes with explicit discretization operators
that are arbitrarily parameter dependent. We extend the RB methodology to these cases by applying the empirical
interpolation method to localized discretization operators. The main technical ingredients are: (i) generation of a
collateral reduced basis modelling the effects of the discretization operator under parameter variations in the offline-
phase and (ii) an online simulation scheme based on a numerical subgrid and localized evaluations of the evolution
operator. We formulate an a-posteriori error estimator for quantification of the resulting reduced simulation error.
Numerical experiments on a parametrized convection problem, discretized with a finite volume scheme, demonstrate
the applicability of the model reduction technique. We obtain a parametrized reduced model, which enables param-
eter variation with fast simulation response. We quantify the computational gain with respect to the non-reduced
model and investigate the error convergence.

Key words. model reduction, reduced basis methods, parameter dependent explicit operators, empirical inter-
polation, a-posteriori error estimates
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1. Introduction. General parametrized evolution problems for an unknown function���	��
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��� �"! depending on a parameter �$#&%(')!�* can frequently be found
in the form of a parametrized partial differential equation (P + DE ) for � ,
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with corresponding initial and boundary conditions, where �A0 � denotes the evaluation of the
spatial differential operator. The parameter domain, where the parameter vector � stems
from, is denoted by %B'C!D* . The initial data, denoted by �FEG�H�D�
�I� , and the solution
commonly have some spatial regularity �FE.�102�
����

���30A

���
���J#LK . Numerical treatment of
such evolution problems is frequently based on a time discretization at a finite number of
time instances �M>N� EMOQPRPSPTO �1UV>N� by finite differences or higher order Runge-
Kutta type time integration. For the space discretization a finite but frequently high di-
mensional space KXW for approximating the solution at the discrete times is available, i.e.,���30A

�3Y.�
���<Z[� W\�102�
�]
3�3YG�I#JKXW , where ^ �_>a`cb2de�9KXW]� . Typically, this is a finite element
(FE), finite volume (FV) or discontinuous Galerkin (DG) space.

The motivation for reduced basis (RB) methods is founded on the need to solve a given
P + DE repeatedly in a multi-query setting such as parameter variation for design, optimization,
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control, inverse problems or statistical analysis. In the following we abbreviate �DYW �	���T�_>�FWg�102
3�3Y��
�<� .
Numerical evolution schemes of first order mostly consist of implicit and explicit con-

tributions, which compute the sequence ��YW �9����
ihj>k�@
 PRPSP 
il , by starting with a suitable
projection m �5KB�VK W of the given initial data � E W �	���g�n> m � � EG�30A�i�<�o� and successively
solving the following equation for � Y�p�qW �9�<� , hr>Ms�
 PRPSP 
ilutXs :sv �xw � Y�p�qW �	���/t�� YW �9�<�
yz476z{.�	�]
3� Y �;� � Y�p�qW �	�I�o�|476z}~�9�]
3� Y �;� � YW �9�<�o��>�� P(1.1)

Here 6�{|�	�]
3�3Y��;
86�}~�	�]

�3Y��J�IK W ��K W denote the implicit and explicit discretization
contributions of the analytical spatial differential operator 6]�	�:

�iY�� .

A general description of the Reduced Basis methodology for stationary cases can be
found in [10, 13]. Time dependent problems are for instance treated in [2, 11]. The general
goal in case of time-dependence is to find a sequence of functions �DY� �9����
ihj>k�@
 PRPSP 
il ,
in a reduced basis space K � '�K W of low dimension ��� ^ , which approximates
the detailed solution sequence, i.e., � Y� �	���rZ�� YW �	��� . In particular, the complexity of the
computation scheme for determining these reduced basis solutions should be independent
of ^ . In addition to this general goal further questions in RB methods deal with general
outputs � �H�FW:� derived from the field variable and their RB estimation. For many problems,
the provision of effective a-posteriori error estimators is a distinctive feature of RB methods.

Special instances of evolution schemes of type (1.1) have been treated in the literature
with RB methods: The case of a pure implicit FE space discretization, i.e., 6I}��k� , and
affine 6�{ was treated in [4]. The extension to the case of nontrivial explicit operators, e.g.,
covering FV schemes, while the operators still are assumed to be affine in � , was formulated
in [6]. The parabolic case for a monotonic pointwise nonlinearity was treated in [2, 3].

In the current study we devise an RB formulation for the pure explicit case. That means
we confine ourselves to the case 6<{.�	�]
3�3YG���k� and 6z}I�9�]
3�3Y�� being a general parameter
dependent operator with a certain localized representation. This localized structure allows us
to apply the empirical interpolation technique [1] to approximate the operator evaluations.

In the next section we specify the class of explicit discretization operators that can be
approximated with our approach and we present the reduced simulation scheme. The reduced
simulation scheme requires a decomposition of the computation in an offline and online-part.
We describe details on this decomposition in Section 3. As an analytical result, we present
an a-posteriori error estimator in Section 4. Experiments in Section 5 on a simple convection
model indicate the applicability of the method. In particular, we investigate the computational
gain and the error convergence. We conclude our study in Section 6.

2. RB approximation for explicit evolution schemes. In this section we will formulate
the RB approximation for the class of evolution schemes that we are interested in. For this
we will first give some general definitions, such that we can specify our assumptions on the
discretization space K W and the discretization operators.

DEFINITION 2.1 (Local Basis of K W ). Let � �_>a�����
� �/>MsG
 PRPSP 
 ^�� be the basis of K W
on which the evolution scheme and space-discretization is based. For a function � #)K W ,
we denote � � �3� to be the coefficient or degree of freedom (DOF) corresponding to �z� in the
basis expansion � >a� W�2� q � � �1�9��� . The set of basis function indices that support the value of
functions � #�K W at a given point ��#J� is denoted by � �	� �z>����;� ����# � and ���3�H�F�x�>�� � .
We call � a local basis if the size of these index sets is bounded by a constant independent of^ , i.e., there exists a   , such that ¡S¢G£ `�� � �	� �
��¤   for almost all �¥#�� . For any set of DOF-
indices ¦ '[��s�
 PSPRP 
 ^�� , we further define the projection §�¨ ��K W �ª©3« ¢�¬ �R���­# � � �z# ¦��
on the corresponding subspace via §�¨ �	�/�=�8>L��� for all �:# ¦ and §F¨ �H���®�:>¯� , otherwise.
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Finally, let ° W"'u� be a set of ^ points, such that the restricted functions � � � ±�² allow
pointwise evaluations and are linearly independent.

Trivially,   is bounded by ^ . But our approximation scheme will depend on the fact
that the basis is a local basis in the sense that this number   is much smaller and independent
of ^ . This is typical for FE or FV basis functions, which have support only in few grid
elements, and the number   only depends on the shape of the grid elements and not on the
overall number of cells. For convenience, we exemplify the notation for a FV space in 2
dimensions, as this also will be used in the experiments.

EXAMPLE 2.2 (Local Basis of Finite Volume Space). Assume a non-degenerate tri-
angulation ³ >´����� � of a bounded polygonal domain �k'u! + with ^ disjoint triangles���1
3��>as�
 PSPRP 
 ^ . After choosing an elementwise constant Ansatz space, a corresponding ba-
sis is simply given by the indicator functions �­�/�n>�µD¶¸· of the triangles. We easily verify that
this is a local basis in the sense of Definition 2.1: For ��#¹��� only the single basis function ���
has support in � , hence � �	� �<>��R� � with upper bound on the cardinality   �_>Ls . In particu-
lar, this value is independent of ^ . As the point set ° W 'j� we simply can use the centroids
of the triangles, ° W �n>º��»G�H���9�R� ��>LsG
 PSPSP 
 ^�� , as the values of piecewise constant functions
are well defined in the triangle centers and the restrictions �z�¼� ± ² are linearly independent.

The main requirement for efficient approximation of evolution schemes is a small stencil
of the discretization operators. Intuitively, this means that the value of 6 } �9�]
3�3Y��;� �½� in a
certain point in space only depends on a small ( � , � Y and ^ -independent) number of at most  } point-evaluations of � , or more generally, only   } DOFs of � . For this, we will assume
the following general structure of the explicit discretization operator, which will be relevant
for efficient approximation.

DEFINITION 2.3 (Localized Discretization Operator). A discretization operator 6I}¾�K W �¿K W can be expressed as

6 } � �@�D�n> WÀ �A� q
Á � �H���o� � 
(2.1)

with suitable functionals
Á �e�IK W �Â! , which represent the coefficients of the operator

evaluation. Each of these functionals
Á � has a set of DOFs ¦ �T'Ã��s�
 PRPSP 
 ^�� on which it

depends and all other DOFs do not influence the result, i.e.,

Á �
�	�F��> Á �
� § ¨ ·S� �½�Ä� for all ��#eK W P(2.2)

We call the operator 6�} a localized operator if there exists a constant   } independent of^ with ¡S¢G£ `�� ¦ �9�Å¤   } for all � and the computation of a single
Á �3� § ¨ ·S� �½�Ä� has complexity

polynomial in   } , i.e., Æ �  DÇ} � for a small integer È .
Again,   } is trivially bounded by ^ . In the following, however, the computational gain

will depend on a small value of   } �"^ . For example, first order FV operators are localized
operators in this sense. This is illustrated in the following example.

EXAMPLE 2.4 (Finite Volume Discretization Operator as Localized Operator). Assume
a conform triangulation and a piecewise constant function space as given in Example 2.2.
Let ��YW > � W�2� q �FY� ���8#7K W denote a piecewise constant function at time h with element-
wise values � Y� #¥! . A first order explicit finite volume time evolution for computing � Y;pDqW >� W�2� q � Y�pDq� � � is defined by

� Y�pDq� >?� Y� t v �� � � � À
É;ÊRË�Ì �AÍ�Î � É �	� Y� 

� YÉ �;
(2.3)
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where � � � � denotes the area of triangle � � , Ï �	�1� denotes the set of triangle-indices that share
an edge with � � , and Î � É �H��
3Ðc�g��! + �V! denotes a suitable choice of numerical flux func-
tions [7]. For simplification of the presentation, we omit the boundary treatment here. Com-
paring (2.3) with (1.1), we can identify 6�{�>Ñ� and 6�}~� �FYW �&>Ò� W�2� q Á �i�H��YW �o��� by the
coefficient functionals

Á � �H� YW �<�_> s� ���i� À
É;ÊRËTÌ �2Í Î � É �H� Y� 
3� YÉ �

P

In particular, the value of
Á �3�	�FYW � only depends on the element values on ��� and its neighbours.

Consequently, the sets of DOF-dependency are simply given by ¦ �D> Ï �H�1�5ÓJ�R� � . Obviously
every triangle has a maximum of 3 neighbours, hence ¡S¢G£ `�� ¦ �®�Ô¤   }º�_>LÕ independent of^ and the computation of the functionals

Á �i�H��YW � has complexity linear in   } .
Another example of localized operators are FE operators using basis functions with small

support, e.g., nodal bases, where the number   } is the maximum number of basis functions,
which have common support on some mesh element.

The empirical interpolation method [1] was proposed for approximation of non-affinely
parameter dependent or nonlinear analytical functions which allows a fast online-interpolation
scheme. Geometry variation was treated in RB literature, e.g., [8], and in particular by this
interpolation scheme [12, 14]. We will adopt this procedure to approximate discretization
operator evaluations.

DEFINITION 2.5 (Empirical Interpolation of Localized Operator Evaluations). For a lo-
calized discretization operator 6<}~�9�8

�3Y�� we assume to have given a ( � and �iY -independent)
collateral basis space K)ÖC'LK W of dimension × , spanned by snapshots of the operator
evaluation K)ÖÒ�_>�©
« ¢�¬ �R6z}~�	� � 

�3Y · �;� � Y ·W �	� � �o�o� �x>ØsG
 PSPRP 
 ×L� for suitably chosen � � andh�� . We further assume the availability of a set of interpolation points �DÖk�n>M�R� q 
 PRPSP 
3� Ö � '° W in � and corresponding nodal basis Ù Ö �_>���Ú q 
 PSPSP 
3ÚRÖ � '�KXÖ satisfying Ú É �H� �®�:>Û � É . We denote the corresponding interpolation operator as Ü ÖÝ�zK W �ÞK)Ö , which is
consequently given by Ü Ö � Ð���>(� Öß � q ÐF�H� ß �oÚ ß and satisfies Ü Ö � Ð��=�	� ß �~>ºÐ �	� ß � for allàá>ºsG
 PSPSP 
 × and Ð&#eKâW .

The DOF-index set that supports a numerical function in any of these points is given by� Öª�n>¯ã\ä Ê ¶�å � �H� �Ô'��.sG
 PSPSP 
 ^�� , where � �	� � is given in Definition 2.1. The larger set of
DOF-indices which are required for the computation of these target DOFs by the coefficient
functionals is obtained as ¦ Ö �n> ã � Ê { å ¦ � .

For any given �a#¥%�
ih�#æ���@
 PRPSP 
ilktjs � and ��#�K W , we can determine the desired
interpolation values in the interpolation points

ç ß �H��

�]

� Y �<�n>?6 } �	�]
3� Y �S� �½�o�H� ß � for àá>ºsG
 PSPRP 
 × 
(2.4)

and obtain the empirical interpolation of the operator evaluation as

Ü Ö � 6 } �9�8

� Y �;� �@�2�F> ÖÀ
ß � q ç ß �H��

�8
3�

Y �oÚ ß �H�F� P(2.5)

The motivation for the notion empirical interpolation stems from the fact that the col-
lateral reduced basis space KjÖ is constructed from simulation results, i.e. “empirical” data.
The construction of the interpolation basis Ù Ö and interpolation points ��Ö will be adressed
in the subsequent section. The key observation for the use of the empirical interpolation
in RB methods is that it results in an effective separation of space-independent coefficients
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ç � �	�D
i�]
3�3Y�� and parameter-independent functions Ú � �	� � . This enables an efficient offline-
online decomposition.

The core of a (Lagrangian) reduced basis approximation of the evolution equation (1.1)
with 6�{)�ª� is the availability of a reduced basis space K � '´K W of low dimension� �n>�`cbAd?K � constructed from snapshots of the unknown field variable � Y ·W �	� � � for suitable
parameters � � and time-indices h�� . These parameters may very well be different from the ones
used for constructing the collateral reduced basis space K?Ö . For computational reasons, it
is beneficial to work with an orthonormal basis è � �_>¯�¸é q 
 PRPSP 

é � � of K � . Here, proper
orthogonal decomposition methods could be used, which result in an orthonormal basis by
construction. A Galerkin projection of the explicit evolution scheme onto this subspace leads
to the following weak formulation of the problem: start with a suitable projection of the initial
data by determining � E � �	���<#eK � , such that�H� E � �9����
3Ðc�­>º� m � �½E.�	���=�=
3Ðc�ëê ÐT#¥K � 

and then subsequentially find � Y�pDq� �	����#¥K � for all hT>?��
 PSPRP 

lut)s , such that

w � Y�pDq� �	����

Ð y 4 w � v �o6�}~�	�]

� Y ��t �.ì �;� � Y� �	���=�=
3Ð y >$�Bê Ð�#eK � P(2.6)

Here �.ì denotes the identity operator.
For an effective offline-online decomposition in the next section, we will additionally

require a so called affine parameter-dependence of the initial data, i.e.,

�½E.�	����>�íDî�ïÀ
ð � q�ñ

ðò ï �	���o�
ðE �	� ��
(2.7)

with a small number ó ò ï of parameter-independent functions � ðE �	� � and space-independent
coefficients ñ

ðò ï �	��� . If this decomposition is not available in a given model-problem, an
additional empirical interpolation of the initial data can provide an arbitrarily accurate ap-
proximation. If we replace the evaluations 6<}I�9�8

�3Y��;� ��Y� � by the empirical interpolationsÜ Ö�� 6�}I�	�]
3�3YG�;� �FY� �A� , we can formulate the RB approximation of the explicit evolution scheme
as follows:

DEFINITION 2.6 (Reduced Basis Approximation with Empirical Interpolation of 6 } ).
We assume that we have given an explicit evolution scheme, where 6 } �9�]
3�3Y�� is assumed
to be an arbitrary explicit discretization operator. We assume that an appropriate empir-
ical interpolation scheme is defined by means of interpolation basis Ù Ö and interpolation
points � Ö 'M� , and a reduced basis è � is available. We then define the following scheme
for sequentially computing �5Y� �9���j�n>V�$ô�õcYô �9�<�3é ô by specifying its coefficient vectorsö@Yx>º�9õcYq 
 PRPSP 
iõ|Y� � ¶ #¹! � for hr>$��
 PRPSP 
il :ö E �_>��3� m � � E��	���o�®
ié q ��
 PSPRP 
R� m � � E��9���=�=

é � �
� ¶ 
(2.8) ö Y�pDq >�ö Y t v �
÷\}�ø9}��	�:
3� Y �S� ö Y � P(2.9)

Here, the corresponding vectors and matrices are defined as�=÷ } �1ô ß �n>º�	Ú ß 
ié ô ��
(2.10)

w ø } �	�]

� Y �;� ö Y �Hy ß �n> Ü Ö � 6 } �	�]

� Y �;� � Y� �A�o�H� ß ��
(2.11)

for ù >úsG
 PSPSP 
 � and àÝ>"sG
 PSPRP 
 × . The resulting sequence of functions ��� Y� �	��� � U Y ��E
finally defines the reduced basis approximation � � �	û�
3���
��� to coincide with ��Y� �Hû��i�I� in the
time-slab � �3Yc
3�3Y�pDqS� .

Due to the well-definedness of the empirical interpolation for a given vector öFY all quan-
tities are uniquely defined.
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3. Offline-online decomposition. A fundamental ingredient in reduced basis approx-
imation of P + DEs is the effective decomposition of the computations in an offline- and
online-phase. The offline phase prepares parameter-independent quantities, the computa-
tion of which is (typically heavily) depending on ^ . The online phase assembles the final
parameter-dependent matrices and vectors for the RB simulation, which is ideally indepen-
dent of the complexity ^ .

3.1. Offline-phase. Certain quantities are computed in the offline-phase as they are in-
dependent of the parameter � , which is only available in the online-stage. We discriminate
between two steps in the offline-phase.

3.1.1. Offline-phase step 1. The first step derives possibly ^ -dependent quantities,
which therefore may not be used in the online-simulation as such. This step is largely based
on running detailed simulations for different parameters, and hereby contributes the dominat-
ing part to the computation time.

The empirical interpolation of the operator evaluation is the main new component in the
RB scheme, though it largely follows the standard formulation of the empirical interpolation
of functions [1]. To start, a set of snapshots of the operator evaluation is generated by

ü -Hý¼þ � ô >M�R6 } �	�]
3� Y �S� � YW �	���=�1� hT>$��
 PSPSP 

l�
i��# × -Hý¼þ � ô � ')KâW\
(3.1)

for some finite training set × -Hý¼þ � ô 'L% . Thus, for each ��# × -Hý¼þ � ô the whole trajectory�R��YW �9��� � U Y ��E is contained in
ü -Hýiþ � ô . This dense sampling in time turned out to be necessary

for good empirical interpolation of these trajectories. Now, for all àÝ>�sG
 PSPRP 
 × (or an
earlier stop at point 4, if a certain approximation accuracy on

ü -Hýiþ � ô is obtained), we consec-
utively determine functions ÿ ß #�K W and interpolation points � ß # ° W by the following,
starting with àá>ºs :

1. Define K ß�� q �_>�©
« ¢�¬ � ÿ � � �/>Ms�
 PSPRP 
3à¾tXs � (with K ß�� q �n>M��� � if àu>as ).
2. For all Ð&# ü -Hý¼þ � ô determine the best approximation Ð � in K ß�� q by

Ð � �n> ¢�£ � drb ¬� Ê����
	�� 
 Ðgt�� 
 +��� Ì�� Í P(3.2)

3. Determine the snapshot in
ü -Hý¼þ � ô that has the worst error

Ð ß �n> ¢�£ � d ¢��� Ê ������� ·�� 
 ÐÔt�Ð � 
 � � Ì�� Í P(3.3)

4. If the error for Ð ß is less than a prescribed  -"!$# then stop the loop with × �_>jàMt�s .
5. Otherwise, if à&%�s then solve the following equation system to obtain interpolation

coefficients ' ß�� q:�n>º� ñ
ß�� qÉ � ß�� qÉ � q #¥! ß�� q ,

ß�� qÀ
É � q ñ

ß�� qÉ ÿ É �H�½�=��>�Ð ß �	�½�o� for �/>ºsG
 PSPSP 
3à�t)s P(3.4)

6. Compute the residual function, i.e., error between Ð ß and its current interpolant

( ß �_>?Ð ß t ß�� qÀ
É � q ñ

ß�� qÉ ÿ É P

Note, in particular, that in case of àá>Ms the sum is empty, so ( ß >?Ð ß .
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7. Search the maximizer of ( ß as new interpolation point and normalize to obtain the
new interpolation function

� ß �_> ¢�£ � ©*)�«ä Ê ±�² � ( ß �	� �S� 
 ÿ ß �_>+( ß�, ( ß �	� ß � P(3.5)

8. Increase àØ�n>�à¯4�s and if à ¤ × then repeat starting with step 1.

Note, that apart from different and slightly simplified notation the above algorithm is
mainly the so called surrogate method [3] of empirical interpolation, as we use the

ü + -error
for choosing the worst approximation in (3.2) and (3.3). This is known to be computationally
more efficient than

ü.-
-norm approximation, which requires a solution of a linear program

for each training parameter vector in each extension step.
Differences to the formulation in [3] lie in the choice of the initial function, which is

not random in our case, and in the restriction of the search space for the interpolation points� ß # ° W . These are considered minor natural modifications for the case of dealing with
discrete functions. It might happen, that the minimization/maximization operations have non-
unique optima. In this case, refined selection criteria can be defined based on enumerations of
the finite search spaces. In case of multiple maxima of (3.3), choose an enumeration of the setü

and take the Ð ß from the set of worst approximated functions that has smallest index in the
enumeration. In case of multiple maxima in (3.5), we again obtain a unique point involving
an enumeration of the set. For example, in case of nodal basis functions, the maximization
can be restricted to the set of these nodes. The set / Ö �n>Ø� ÿ q 
 PRPSP 
 ÿ Ö � of functions is a
non-nodal basis for the interpolating space K?Ö . We additionally introduced the nodal basisÙ Ö in Definition 2.5. Formally both are equivalent, as they both span K?Ö . Computationally
the basis / Ö is used for all interpolation steps, whereas for ease of intuition, the subsequent
argumentation mainly uses the nodal basis Ù Ö .

The remaining crucial quantity is the construction of a reduced basis è � spanning K � .
In RB approaches such schemes frequently are based on a given training set of parameters× -Hý¼þ � ô 'º% and an incremental basis extension procedure involving a greedy search [10].
This means, given a current small reduced basis, reduced simulations are run for all param-
eters �u# × -Hý¼þ � ô , the parameter � � with the worst error


 �FWÅ�	� � ��t�� � �9� � � 
 �10 Ì � � Í (or
estimate thereof) is determined, a new basis vector is constructed from the detailed simula-
tion �FWg�9� � � , and the current reduced basis is extented by this. In the present study we choose
the approach as described in detail in [6]. Instead of an a-posteriori error estimator, which
was used there for estimating the error, we compute the true error as we have the detailed
simulations � W �9��� for all �´# × -Hý¼þ � ô available. More sophisticated procedures such as
adaptive training set extension can also be applied [5]. Note that such incremental reduced
basis construction requires reduced simulations for assessing the quality of the current ba-
sis. So repeated evaluation of all subsequent online-steps in Section 3.2 and returning to this
offline-step 1 is required until the final basis is obtained.

3.1.2. Offline-phase step 2. The above quantities are partially dependent on ^ , so the
second step of the offline-phase provides the final quantities that are used in the subsequent
online-simulation. Their computation may very well still be ^ -dependent, but the quantities
themselves are independent of ^ and parameter independent.2 We compute component-vectors ��ö ðE � í�î�ïð � q for the initial data by

ö ðE �n>��3� m � � ðE �9���=�=

é q �;
 PRPSP 
�� m � � ðE �	���=�=

é � �3� ¶ for ÿ >ºsG
 PSPSP 
 ó ò ï
P

2 We compute the cross-gram-matrix ÷Å} between the reduced basis è � and the nodal
basis Ù Ö of the collateral space by (2.10).
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 PSPSP 
 ¡S¢G£ `�� � Ö � � � � Ö of the set � Ö
from Definition 2.5 and compute4 #¹! Ö6587:9*;=< Ì {oåIÍ with � 4 � ß É >��?> ÌnÉ Í �H� ß � P(3.6)2 The projections § ¨ å � é ô � for all reduced basis vectors é ô # è � are computed and
stored in such a way that linear combinations can be computed efficiently with com-
plexity Æ � ¡S¢G£ `�� ¦ Ö � � � , i.e., in particular ^ -independently. This can be realized by
storing the � -basis expansion coefficients �	é ô �1� for ��# ¦ Ö in a matrix along with
a corresponding enumeration of the set ¦ Ö .2 Depending on the implementation of the localized operator, further numerical quan-
tities may be required for the online stage. For example, in our implementation a
numerical subgrid is extracted from the the detailed grid that contains the elements
supporting the basis functions �­� for ��# ¦ Ö .

It can easily be verified, that the memory complexity of these quantities is independent
of ^ , which is the basic requirement for an ^ -independent online-phase.

3.2. Online-phase. In the online-phase, the parameter �Q#u% is specified and the
offline-quantities are combined by ^ -independent operations to realize the RB approxima-
tion of Definition 2.6. The start of the simulation is quite obvious: The parameter dependent
projection (2.8) is replaced by a linear combination of offline-quantities while making use of
the affine parameter-dependence (2.7) of � E �	��� :

öcE8>$í�î�ïÀ
ð � qFñ

ðò ï �	���3ö
ðE P

This is an overall operation of complexity Æ � ó ò ï � � , independent of ^ . The main ingre-
dient in the online-phase is the online-computation of the empirical interpolation in case of
localized operators. This is the main new component of the present scheme.

PROPOSITION 3.1 (Online Empirical Interpolation). We assume to have an explicit
evolution scheme and corresponding RB approximation according to Definition 2.6. If the
explicit operator 6<}~�	�]

�3Y�� is a localized operator, then the computation of the empirical
interpolation (2.11) for a coefficient vector ö Y of a function ��Y� >º�$ô<õcYô é ô #�K � can be
performed by the following steps:

(i) Determine the partial reconstruction Ð��n> § ¨ å � ��Y� � of the RB solution by

ÐÅ> �Àô � q õ
Yô §F¨ å � é ô � P(3.7)

(ii) Let
Á �
�	�]
3�3Y�� denote the parameter-dependent coefficient functionals of the localized

representation (2.1) of 6z}I�9�]
3�3Y�� and compute these for ��# � Ö by

ø3�	�]

� Y ���n>�� Á > Ì_É Í �	�]
3� Y �S� Ð��H� 7:9@;=< Ì { å ÍÉ � q P
(3.8)

(iii) Perform the interpolation by

ø	}I�9�8

� Y ��> 4 ø
�	�]
3� Y �;
(3.9)

with
4

given as in (3.6).
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In particular, the complexity of these computations is independent of ^ , only polynomial in� , × ,   and   } .
Proof. We verify that the above computational scheme indeed results in the interpolation

property (2.11). For this we first recall from (2.4) and (2.5) that for all ��#e� ,

Ü Ö�� 6z}8�	�]
3� Y �S� � Y� �A�o�H�F�­>
ÖÀ
ß � q w 6�}I�	�]

�

Y �;� � Y� � y �H� ß �oÚ ß �H�F� P

As Ú ß are nodal basis functions, an evaluation in an interpolation point � ß # �5Ö is obtained
(abbreviating

Á �D> Á �
�9�8

�3Y�� ) by

Ü Ö�� 6z}~�9�]
3� Y �S� � Y� �2�=�	� ß �­> w 6�}~�	�]

� Y �;� � Y� �Äy­�H� ß ��>
WÀ �2� q

Á �3�	� Y� �o���i�H� ß � P

As 6 } is a localized discretization operator and � � �H� ß ��>$� for ���# � Ö , we obtain

Ü Ö�� 6�}I�	�]

� Y �;� � Y� �2�=�	� ß ��> À� Ê {oå Á �i�H� Y� �1�/�i�H� ß � P(3.10)

Definition 2.1 implies §F¨ ·BA § ¨ å > § ¨ · for �­# � Ö . Then, using (2.2) yieldsÁ �i�H� Y� �z> Á �i� § ¨ ·;� � Y� �H�­> Á �
� § ¨ ·BA § ¨ å � � Y� �Ä��> Á �3� § ¨ å � � Y� �H�­> Á �i�HÐc��

as Ð is defined by (3.7). Inserting this in (3.10), rewriting the summation, and using (3.8) and
(3.9) yields

Ü Ö�� 6z}8�	�]
3� Y �S� � Y� �A�o�H� ß �z>
7:9@;=< Ì { å ÍÀ
É � q

Á > ÌnÉ Í �HÐc�o�?> ÌnÉ Í �	� ß ��> w 4 ø3�9�]
3� Y � y ß > w ø	}��	�]

� Y � y ß P

This concludes the proof of the interpolation property (2.11).
Concerning the computational complexity, we see that (i) requires Æ � ��¡S¢G£ `�� ¦ Öe�3� op-

erations, (ii) grows as Æ � ¡R¢�£ `5� � Ö¹�  �Ç} � , and (iii) has complexity Æ � ×a¡R¢�£ `5� � Öe�3� . Due to the
definition of � Ö and the assumption of a local basis, we can upper bound ¡S¢G£ `�� � Öe�]¤ ×L 
and ¡R¢�£ `�� ¦ Öe�¹¤ ¡S¢�£ `�� � Ö¥�   }�> ×L /  } . Overall, we therefore obtain a complexity es-
timate for all three steps of Æ � �J×L /  }â4 ×L /  Ç} 4 × +   � , which is linear in � and   ,
quadratic in × and polynomial in   } . In particular, the complexity is independent of ^ .

We indeed obtain ^ -independent complexity for the complete online stage, in particular
for the empirical interpolation of a localized operator evaluation. Therefore the method is
suitable for the online-phase in RB methods.

We want to comment on some implementation issues, which make our approach distinct
from existing RB approaches. The first comment addresses the fact, that the online-phase
is tightly connected to the numerical environment producing the detailed simulations. The
reason is that the local functionals

Á � �H��� must be evaluated, which usually is much more
complex than a simple operation of a scalar function operating on � as in [2]. The functionals
are operating on discrete functions and therefore require knowledge of the geometry, the
numerical grid, neighborhood between cells, data functions, etc. These numerical structures
must be available during the reduced simulation. This directly leads to an implementation
issue related to the numerical grid. As mentioned earlier, the main nontrivial requirement
for complete ^ -independent computation in the online-phase is indeed depending on a fast
evaluation of the coefficient functionals

Á � independent of ^ . Therefore, the grid structure
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must allow the selection of subgrids, i.e., access to a part of the grid and access-complexities
that are independent of ^ . The last implementational comment is important for the coefficient
functionals

Á � : usually these are evaluated simultaneously for all DOFs, i.e., producing the
new values from the given ones. In the online-phase however, this evaluation must be limited
to a local evaluation, i.e., working on the subgrid, involving all DOFs of the input function
corresponding to the degrees of freedom in ¦ Ö , but only producing values for the target
DOF-indices � Ö .

Note that the offline-online decomposition as presented here, can be easily extended such
that the online-phase not only allows the choice of a parameter � , but also the choice of an� #$��s�
 PSPRP 
 � ß þ ä � and an × #?��s�
 PRPSP 
 × ß þ ä � for some large � ß þ ä 
 × ß þ ä #DC . The
advantage of this is interactive choice of approximation accuracy.

4. A-posteriori error estimate. As a first analytical backup for the presented scheme,
we derive an a-posteriori

ü + -error estimate. The bound is effectively computable in com-
plexity polynomial in � and × during the reduced simulation. This is due to the fact,
that the crucial ingredients in the bound are based on the residual E YX�n>��	�FY� tj� Y�p�q� tv � Ü Ö�� 6�}I� ��Y� �A�H� , v � . Its

ü + -norm can be computed as

v � +GFF E Y FF +� � Ì�� Í > FF � Y� t�� Y�pDq� t v � Ü Ö � 6 } � � Y� �A� FF +� � Ì�� Í
> FFFFF

�À �2� q �	õ
Y� t�õ Y�pDq� �3é � t v � ÖÀ

ß � q Ü Ö � 6 } � � Y� �2�o�H� ß �1Ú ß FFFFF
+� � Ì�� Í

> FF ö Y t�ö Y�pDq FF + tIH v �;�9ö Y t�ö Y�pDq � ¶ ÷g}­ø	}�� ö Y �|4 v � + �9ø	}I� ö Y �H� ¶KJ ø	}~� ö Y �®
(4.1)

with vectors and matrices from the RB simulation scheme and the mass-matrix
J #¹! ÖL5�Ö

of the interpolation basis given as � J � ß�M ß.N >N�	Ú ß 

Ú ßON � . Additionally, in the following
estimate we use an extended interpolation space K Ö pDq and a corresponding interpolation
point � Ö p�q obtained by the collateral reduced basis generation algorithm of Section 3.1.1.

PROPOSITION 4.1 (A-Posteriori
ü + -Error Bound). We assume that for all �8
3�iY the

operator �.ì t v �o6 } �	�]

�3Y�� is Lipschitz-continuous in
ü + with known Lipschitz-constant P } ,

i.e., for all ��
3�RQF#eKâW , it holdsFF ��t�� Q t v �;�	6z}I�9�8

� Y �;� �½�@t�6z}I�9�8

� Y �;� � Q �H� FF � � Ì�� Í ¤ P } 
 ��t�� Q 
 ��� Ì�� Í P(4.2)

We assume that 6�}8�	�]
3�3Y��S� ��Y� ��#�KXÖ pDq . We require that the reduced basis space contains
the projections of the initial data components m � � ðE �8#�K � for ÿ > sG
 PRPSP 
 ó ò ï . Then for
given � the RB evolution error at time �iY can be bounded byFF � YW �9���/t�� Y� �	��� FF � � Ì�� ÍHÍ ¤ v Y� M Ö �	����
(4.3)

with

v Y� M Ö �	�����_> Y � qÀ
Y N ��E v � P Y � q � Y N} S � T Y NÖ pDq �	���S� 
 ÿ Ö pDq 
 � � Ì�� Í 4 
 E Y N �9��� 
 � � Ì�� Í:U 
(4.4)

and the empirical interpolation error estimatorT Y NÖ p�q �	�I��>�6z}~�	�]
3� Y N �;� � Y N� �o�H� Ö pDq �/t Ü Ö�� 6�}~�	�]

� Y N �S� � Y N� �2�o�H� Ö pDq � P(4.5)

In particular, the upper bound
v Y� M Ö �9��� can be effectively computed.



ETNA
Kent State University 
etna@mcs.kent.edu

RB METHOD FOR EVOLUTION SCHEMES WITH EXPLICIT OPERATORS 155

Proof. From the construction of the scheme, we obtain for given � and given h (abbre-
viating 6 } �	�]
3�3Y�� by 6 } )

� Y�p�qW >?� YW t v �o6�}I� � YW �®
(4.6) � Y�p�q� >?� Y� t v � Ü Ö�� 6z}I� � Y� �2�@t v � E Y P(4.7)

By forming the difference of the two equations we obtain an evolution equation for the errorV�YÔ�_>?��YW t��FY� as followsV Y�pDq >WV Y t v � w 6 } � � YW �½t Ü Ö � 6 } � � Y� �2�Hyz4 v � E Y>WV Y t v � w 6�}~� � YW �½t�6z}I� � Y� � y 4 v � w Ü Ö�� 6�}I� � Y� �A� t�6�}I� � Y� � y 4 v � E Y P
The interpolated operator evaluation can be written in the non-nodal basis / Ö expansion as

Ü Ö�� 6z}~� � Y� �2�F>
ÖÀ
ß � q�ñ ß ÿ ß 
(4.8)

where the coefficients ñ ß are obtained by solving (3.4) for index range ��> s�
 PSPRP 
 × . Due
to the assumption, the exact evolution 6<}I� ��Y� � is contained in K)Ö pDq and can be written as

6 } � � Y� ��>
Ö pDqÀ
ß � q T Yß ÿ ß P(4.9)

We recall that by construction of the functions ÿ ß in the collateral basis construction phase,ÿ ß �H� ß N �&>Ã� for àXQ O à . Comparing the values of (4.8) and (4.9) in the points � � for�z>LsG
 PSPSP 
 × 4$s yields that T�Yß > ñ ß for à >¯sG
 PSPRP 
 × and T�YÖ pDq >[6 } � ��Y� �o�H� Ö pDq ��t� Öß � q ñ ß ÿ ß �H� Ö pDq � . Therefore, we obtainFF v � w Ü Ö�� 6z}~� � Y� �2�@t�6z}I� � Y� � y FF ��� Ì�� Í > v �S� T YÖ pDq � 
 ÿ Ö pDq 
 � � Ì�� Í P
Together with the assumption of the boundedness of the discretization operator (4.2) and the
residual norm decomposition (4.1), we arrive atFF V Y�pDq FF ��� Ì�� Í ¤ P } FF V Y FF ��� Ì�� Í 4 v �;�
� T YÖ pDq � 
 ÿ Ö p�q 
 � � Ì�� Í 4 FF E Y FF ��� Ì�� Í � P
We assume that the initial data components are contained in K � , therefore m � � E��9�<�o��#¥K �
for all � with the affine parameter dependence (2.7), hence V E >u� . Thus we can resolve
the recursion of the error evolution and obtain the claimed a-posteriori error bound (4.3)
and (4.4).

Note that in absence of an interpolation error ( � TcYÖ pDq �½>�� ), we reproduce the estimate
for the linear and affine parameter dependent case [6]. Here we do not assume linearity of the
operator and allow a more general parameter dependence.

We briefly comment on the plausibility of the assumptions: The boundedness of the
evolution operator (4.2) is realistic. For instance, if 6<} is linear and coercive and

v � is suf-
ficiently small, then this can even be bounded by a suitable P }Ø¤¿s ; see, e.g., [6]. The
main restricting and unrealistic assumption is found frequently in empirical interpolation es-
timates [9, 2], which is the approximation quality of the collateral space K�Ö p�q . Requiring6z}I�9�]
3�3Y��S� ��Y� �D#¹K)Ö p�q is unrealistic, since 6�}8�	�]
3�3Y��S� ��YW � , not 6�}I�	�]

�3Y��;� �FY� � , are used in
the collateral basis generation procedure. To improve this estimate, extensions similar to [9]
are possible. This means that not only KjÖ pDq is used in the estimate, but by involving larger
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K Ö p Ö N for × Q?%(s , an extended error estimator can be devised. The last assumption, the
condition on the initial data, is trivially satisfied if we include the projections of the initial
data components in the reduced basis space.

The error estimator readily allows an offline-online decomposition: In the offline phase
the interpolation mass matrix

J
in (4.1) must be computed. For the error estimate, the

collateral reduced basis must be extended by one further function ÿ Ö pDq and interpolation
point �FÖ pDq . The norm


 ÿ Ö pDq 
 and the values of the interpolation basis functions ÿ ß �H�FÖ pDq �
must be stored. The online-phase then evaluates the interpolated operator Ü Ö�� 6�}I� �FY� �A� at the
point �FÖ p�q , computes T.YÖ pDq , assembles the residual norm (4.1) and the final bound (4.4).

The relevance of a-posteriori error estimates in RB schemes is that they provide a certi-
fied quality measure for the reduced simulation. This can be used for example in the offline-
stage of basis generation, where the error estimator can be used as an indicator, how well
certain regions of the parameter space are resolved with a current RB model [6, 10]. Pa-
rameters � with large error estimators can then be chosen for basis extension, such that the
extended model becomes more accurate on these parameters.

5. Experiments. As a model example, we choose the geometry, the P + DE and the FV
discretization from [6] and transform the example to a purely explicit evolution scheme
by omiting the diffusion. The resulting equation is a convection equation

, - ���9�8

�3�­4ZY�0�=[����9�:
3�3�3�]>L� in �M�â� �@
3��� with �º>¾� ��
Rs~0|sR� �]\ �/�X� �@
@Hx0|s�� �1^ � , �L>L� P _ , and a space-
dependent precomputed velocity field [­�Hû�� as illustrated in Figure 5.1. The boundary seg-
ments are assigned different types: noflow Neumann conditions in ` \ 
 `ba at the middle of
the top and the bottom, outflow conditions at `
c and Dirichlet-conditions on the remaining
segments. We consider initial data ��E��Hû���> q+ »ed fgd hS�9©3b ¬ �3sR�G���G� § � �z4Ls¸� with a parameter»ed fid h�#�� ��
Rs;� interpolating between homogeneous zero initial data and the full sine-wave. The
Dirichlet boundary values are set as j <id ;��Hû�
3�3�I>lk5µbm � 4��1s~tnkD�1µbm�o , where µKmG· denote the
indicator functions of the corresponding boundary segments. Thus, j <id ; is parametrized byk?#�� ��
SsS� , which models concentration differences between the inlet ` + and outlet ` ^ . The
Neumann boundary values are chosen as j fip:q >�µ m�r �"[5���­0ts . The space discretization is a
cartesian grid of Õ.�r�XHG�G� cells, the time range is �z#æ� ��

�?>$� Pu_ � discretized with lØ>vH��G�
equally sized time-intervals.
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FIGURE 5.1. Illustration of the geometry and velocity field.

By this we have specified our P + DE with parameter vector �)>º�	» d fgd h 
~kD� ¶ being variable
in the range %��_>�� ��
Rs;�/�7� �@
Ss;� . We choose a first order explicit finite volume scheme with
Lax-Friedrichs-flux for the discretization. A resulting detailed solution for »gd fid h~> s�
~kâ>��
is illustrated at start- and end-time in Figure 5.2 a) and b). Lowering »�d fid h diminishes the
sinusoidal data, enlarging k increases the ` + Dirichlet value and lowers the ` ^ value. For
details concerning the numerical scheme and the model example we refer to [6].

As concluded in that study, the case without diffusivity is to some extent a hard case for
parametrized model reduction. First, the solution variety is larger, as the smoothing diffusivity
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FIGURE 5.2. Illustration of numerical solutions ����O���B� for �+�����~� ��� �:���8�=�����"�e�����=� at a) start time� ��� , and at b) end time
� �X�e�e� .

is missing. Secondly, the purely explicit time-step only requires Æ � ^ ��t Æ � ^�+ � operations
in contrast to Æ � ^ \ � for matrix inversions for parabolic or elliptic problems. Still, we will
be able to demonstrate the computational gain. This linear convection problem is inherently
affine in � due to the non-homogeneous boundary conditions. This is a good benchmark
problem to demonstrate the applicability of the operator interpolation.

In this section we will first demonstrate the results of the empirical interpolation method,
then the approximation quality of the proposed RB scheme, and finally the runtime gain of
the reduced over the detailed simulation.

5.1. Empirical interpolation. We constructed the collateral reduced basis space K Ö
with nodal interpolation basis Ù Ö and interpolation points � Ö as described in Section 3.1.1,
setting × >asR��� and × -Hýiþ � ô >a�|� �^ 
 É ^ �S� �i
��g>$��
 PRPSP 

Õ � 'X% .

Insights into the interpolation process are obtained from the distribution of the selected
interpolation snapshots in the parameter-time space %��7� ��

��� , which we plot in Figure 5.3
a). The first observation is, that most interpolation points are almost exclusively gathered
at the edges corresponding to the corners of % , i.e., the extreme values of the parameters.
This is in accordance with the intuition, that due to the simple parameter dependence, these
extreme values produce the most characteristic solutions. Hence, the empirical interpolation
automatically detected, that the coarse

_ � _ grid of parameter space sampling actially was
too fine. A further observation is that the edge corresponding to �X>��	��
i��� ¶ is resolved with
only few snapshots. This is due to the fact, that this trajectory has snapshots, that are zero
in most of the domain, do not change much in time and therefore are already approximated
well by few basis functions. The last observation is that the time-sampling is very dense and
more concentrated at early times. This may be due to the fact that the numerical flux has
a considerable numerical viscosity, which smoothens the solution. This results in smallerü + -differences between subsequent snapshots at later times.

A further interesting quantity produced in the offline phase is the distribution of the inter-
polation points ��Ö in the computational domain. In our case of piecewise constant functions,
the set ° W for selecting the interpolation points is chosen as the cell-centroids. Therefore,
we plot the grid-cells corresponding to the selected interpolation points ��Ö in Figure 5.3 b).
Comparing with Figure 5.2 we, indeed, see that the impirical interpolation process selects
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FIGURE 5.3. Illustration of empirical interpolation offline-quantities. a) Selected empirical-interpolation
snapshots in the parameter-time domain ¡£¢�¤ �¥�§¦b¨ with time index

�
growing in vertical direction, b) grid cells that

contain interpolation points ¦ª© ( « DOF-index-set ¬~© ), c) subgrid that is extracted and used in the online stage
( « DOF-index-set ­�© ).

interpolation points that are discriminative for the evolution process. In particular, regions
with large gradients are important, as they occur at discontinuities, in our case at the upper
Dirichlet-boundaries. This importance is reflected in the higher density of interpolation points
in these regions. In case of piecewise constant finite volume spaces, the DOFs can also be
identified with grid-cells, so the marked cells in plot b) particularly represent the set � Ö of
DOFs that are to be computed by every online-step during the empirical interpolation. In plot
c) we plot the larger DOF-index set ¦ Ö , which is the set of DOFs, that must be available to
perform the local evaluation of the evolution operator. For these online-computations also the
geometry of the cells must be available. Thus, the marked cells are exactly the subgrid, that
is extracted from the detailed grid, and used in the online evaluation of the localized operator.
We see, that these subsets of elements are very small compared to the global grid (593 of
8000 elements), guaranteeing efficient online-evaluation.

We now investigate quantitative aspects of the empirical interpolation. A natural measure
for the quality of this is the criterion used in the construction of the collateral basis,

d ¢��� Ê � ����� ·�� drb ¬�i® Ê�¯=° 9*f²± ð ·�³ �· � � 
 ÐÔt�Ð � 
 ��� Ì�� Í 

for increasing àN>ks�
 PSPRP 
 × . This error measures the maximum

ü + -projection error over
the training set. Additionally, the maximum interpolation error is an interesting quantity,
since this is the real error resulting during the interpolation. In Figure 5.4 a) we plot the
maximal

ü + -projection error over the training set of operator-evaluation-snapshots
ü -Hýiþ � ô

and the maximal interpolation error for increasing dimensionality of the interpolating space
for àu>asG
 PSPRP 
 × .

The exponential error decrease in the curves is obvious. Hence, indeed, by minimizing
the approximation error over the training set of operator evaluations, the interpolation error is
also kept small. In the current simple example, this training error is a very reliable predictor
for errors on previously unseen parameters. The diagrams for independent test-sets are almost
identical. The test-errors are even frequently smaller, i.e., the training set seems to contain
the most difficult parameters in our simple example.

5.2. RB error convergence. After the empirical interpolation, we construct a reduced
basis è � for � > _ � based on a greedy search over the solution-trajectories of the same set× -Hý¼þ � ô as used in the empirical interpolation step. We now assess the error convergence of the
final reduced basis scheme, i.e., considering the

üG- �
� �@
3���=
 ü + �9���
� error between the detailed
and the reduced simulation. We vary several values of � and × and for each resulting RB
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FIGURE 5.4. Error convergence of empirical interpolation and the resulting RB scheme. a) Decrease of
maximum projection and interpolation error with increasing dimensionality of the interpolation space ½L© in the
offline phase. b) Convergence of the overall RB scheme, where the maximum error ¾~� �6¿ �ÁÀÂ¾~Ã 0�Ä�Å Æ@Ç ��È Ç Ã �*É overÊÌË�Í:ÎeÏ�Ð

is plotted for varying values Ñ and
Ê

.

scheme determine the maximum error over the training set × -Hýiþ � ô
d ¢t�� Ê Ö ���:� ·�� 
 � � �	���/t�� W �	�I� 
 �10 Ì=Ò E M ¶�Ó M � � Ì�� ÍHÍ P

The resulting errors are depicted in Figure 5.4 b). The results indicate that it is useful to
require a certain minimal and maximal ratio of � , × . If � is chosen too large with respect
to × , then large errors occur due to the (relatively) poor approximation of the discretization
operator. If × is taken too large with respect to � , then the approximation error remains
almost constant, so too large × is possible, but a waste of computational time. Similar in-
vestigations of the test-error reveal, that the error surfaces are almost identical, which again
indicates that our coarse choice of × -Hý¼þ � ô is sufficient. The necessary balancing of � and× can also be concluded from theoretical considerations: Let � W M Ö denote the detailed sim-
ulation using the interpolated instead of the exact evolution operator, i.e., � E W M Ö �n>�� EW and� Y;pDqW M Ö > ��YW M Ö t v � Ü Ö � 6 } � ��YW M Ö �2� for h7>ØsG
 PSPRP 

l´t$s . Then the overall RB approx-
imation error can be decomposed in an empirical interpolation component and a Galerkin-
projection component:FF � YW t�� Y� FF � � Ì�� Í ¤ FF � YW t�� YW M Ö FF ��� Ì�� Í 4 FF � YW M Ö t�� Y� FF ��� Ì�� Í P
The first term is determined solely by × , for fixed × the second term is mainly depending
on � . The regions in the � 
 × -plane, where either the first or the second term is dominating
is nicely reflected in the diagram.

5.3. Computational gain. The main goal of RB approaches is an accelerated online-
phase compared to the full simulation. Based on a MATLAB implementation run on an IBM
Lenovo Notebook (Intel Centrino Duo, 2.0 GHz, 1024 MB RAM), we obtain the time mea-
surements as given in Tab. 5.1. We compute the averaged runtimes for a detailed simulation
and reduced simulations for varying choices of � and × with fixed ratio. The mean run-
times are determined from 10 single simulations. The detailed simulation with full evaluation
of the explicit operator in each timestep requires 26.65 seconds, whereas the reduced sim-
ulations are computed in 2.83 to 4.22 seconds. For visually indiscriminable solutions, the
choice � >vH��@
 × >WÔG� is sufficient, which gives speedup of a factor 8.5 in our case. Recall
from an earlier comment that this acceleration will be more pronounced in combination with
implicit discretization components, where the operation count for a single step grows withÆ � ^ \ � instead of Æ � ^ � as in our case of localized explicit evolution operators.
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TABLE 5.1
Runtime Comparison of detailed simulation and online phase of reduced basis simulations for different ap-

proximation levels Ñ�� Ê . The mean over 10 simulations is reported.

Simulation Approximation Mean Runtime [s]
detailed ^ >+Õ��G�G� 26.65
reduced � >as���
 × >as _ 2.83
reduced � >+HG��
 × >WÔ�� 3.15
reduced � >WÔ���
 × >jÕ _ 3.56
reduced � >jÕ.��
 × >WÖ�� 3.86
reduced � > _ ��
 × >Ø× _ 4.22

The gain of the RB approach will be obtained in application settings where the online
time complexity is crucial irrespective of a possibly expensive offline-phase. But also in
applications, where the cost for the offline-phase must remain decent, RB approaches can be
beneficial, if it is a multi-query setting with sufficient number of requests: In our example,
the runtimes of the offline-phase are about 60 minutes for construction of K�Ö and K � . For� >ÙH�� , × >ÚÔ�� , we save 23s for each online simulation compared to the detailed model.
Hence, after roughly 150 simulation runs with different parameters, the offline-phase pays
off.

The results indicate that the reduced model indeed is so fast that it can be applied in an
interactive setting. We realized this by incorporating the reduced simulation in an interactive
MATLAB-GUI, which allows online-parameter variation by the user.

6. Conclusion. We have presented a reduced basis method for evolution schemes, which
have a localized explicit discretization operator. As main ingredient, the empirical interpo-
lation method was adopted to the interpolation of discretization operator evaluations. This
required an extensive offline-phase for constructing a collateral reduced basis space, an in-
terpolation scheme based on a subgrid of the detailed grid, and an online reduced simulation
scheme. We derived an a-posteriori error estimator with certain restrictions. On a simple
model example we have demonstrated the applicability of the RB method. We obtained a
runtime gain of factor 6-10 in the reduced model, which allows parameter variation without
visible degradation of the solution over the parameter domain. Hereby we demonstrated that
RB methods are not only useful in implicit discretizations of evolution problems, as done
so far, but also in the more time critical case of explicit discretizations. This speedup is ex-
pected to be more pronounced in presence of implicit discretization contributions and higher
order time-integration schemes. A further perspective is the application to nonlinear evolu-
tion schemes. As we did not explicitly assume linearity of the evolution operator, the current
method will be the crucial ingredient for treating the nonlinear case. Examples of such opera-
tors are FV schemes or LDG schemes of higher order in space (reconstruction steps, limiters).
Further numerical analysis aspects also seem interesting. On one hand this comprises stability
statements of the empirical interpolation and the reduced scheme. On the other hand, more
general a-posteriori error estimates would be required for certified approximation statements
of the reduced simulation.
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