Electronic Transactions on Numerical Analysis. ETNA

Volume 31, pp. 86-109, 2008. Kent State University
Copyright 0 2008, Kent State University. http://etna.math.kent.edu
ISSN 1068-9613.

ENHANCEMENT OF KRYLOV SUBSPACE SPECTRAL METHODS BY BLOCK
LANCZOS ITERATION *

JAMES V. LAMBERS'
Dedicated to the memory of Gene H. Golub, 1932-2007

Abstract. This paper presents a modification of Krylov subspace sgd&t&8) methods, which build on the
work of Golub, Meurant and others, pertaining to moments angs&an quadrature to produce high-order accurate
approximate solutions to variable-coefficient time-depabhdDEs. Whereas KSS methods currently use Lanczos
iteration to compute the needed quadrature rules, our mdilificases block Lanczos iteration in order to avoid
the need to compute two quadrature rules for each componeheafalution, or use perturbations of quadrature
rules. It will be shown that, under reasonable assumptiort@noefficients of the problem, a 1-node KSS method
is unconditionally stable, and methods with more than one @oeleshown to possess favorable stability properties
as well. Numerical results suggest that block KSS methodsignéfisantly more accurate than their non-block
counterparts.
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1. Introduction. Consider the following initial-boundary value problem ineospace
dimension,

u+Lu =0, on(0,2m) x (0,00), (1.1)

u(z,0) = f(z), 0<x<2m, (1.2)
with periodic boundary conditions
u(0,t) = u(2m,t), t>0. (1.3)
The operatot. is a second-order differential operator of the form

Lu = _(p(x)u:r):z + Q(x)u7 (14)

wherep(x) is a positive function and(z) is a positive smooth function. It follows thétis
self-adjoint and positive definite.

In [15, 17] a class of methods, called Krylov subspace spectral (KS&haods, was
introduced for the purpose of solving time-dependent aldei-coefficient problems such as
this one. These methods are based on the application ofiteesdeveloped by Golub and
Meurant in ], originally for the purpose of computing elements of theeirse of a matrix, to
the elements of the matrix exponential of an operator. Isdhreferences it has been shown
that KSS methods, by employing different approximationshefsolution operator for each
Fourier component of the solution, achieve higher-ordeueaxy in time than other Krylov
subspace methods (see, for examplé@])[for stiff systems of ODE, and, as shown ih3],
they are also quite stable, considering that they are apliethods.
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In this paper, we consider whether these methods can be ethanterms of accuracy,
stability, or any other measure, by using a single block Giansquadrature rule to compute
each Fourier component of the solution, instead of two steh@aussian rules. KSS methods
take into account the solution from the previous time stdp ttmough a perturbation of initial
vectors used in Lanczos iteration. While this enables KSShaast to handle stiff systems
very effectively by giving individual attention to each Far component, and also yields
high-order operator splittings (se&4]), it is worthwhile to consider whether it is best to
use quadrature rules whose nodes are determined primgridach basis function used to
represent the solution, instead of the solution itselfuitively, a block quadrature rule that
uses a basis function and the solution should strike a bedlence between the competing
goals of computing each component with an approximatiohithan some sense, optimal
for that component in order to deal with stiffness, and givime solution a prominent role in
computing the quadrature rules that are used to evolvevitiat in time.

Section2 reviews the main properties of KSS methods, including algavic details
and results concerning local accuracy. They use pertormsmbtf quadratic forms to compute
Fourier components of the solution, where the perturbasamthe direction of the solution
from the previous time step. In Secti@ we present the modified KSS method that uses
block Lanczos iteration to approximate each Fourier corapbif the solution by a single
Gaussian quadrature rule. In Sectibnwe study the convergence behavior of the block
method. Numerical results are presented in Sediolm Section6, various extensions and
future directions are discussed.

2. Krylov subspace spectral methodsWe begin with a review of the main aspects of
KSS methods. Leb(t) = exp(—Lt) represent the exact solution operator of the problem
(1.1)-(1.3), and let(-, -) denote the standard inner product[0r2~|

2m

(f(2), g(x)) = ; f(x)g(x) da.
Krylov subspace spectral methods, introducedlis, [L7], use Gaussian quadrature on the
spectral domain to compute the Fourier components of theisol These methods are time-
stepping algorithms that compute the solution at times,, . . ., wheret,, = nAt for some
choice ofAt. Given the computed solution(z, ¢,,) at timet,,, the solution at time,, . is
computed by approximating the Fourier components that avbalobtained by applying the
exact solution operator @z, t,,), i.e.,

Ww,bsr) = <\/127Tew"°,5’(At)ﬂ(w,tn)> . 2.1)
Krylov subspace spectral methods approximate these caenpowith higher-order temporal
accuracy than traditional spectral methods and time-giggzhemes. We briefly review how
these methods work.

We discretize the functions defined {ih 27| on anN-point uniform grid with spacing
Axz = 27 /N. With this discretization, the operatdrand the solution operatdi(At) can
be approximated byw x N matrices that represent linear operators on the space @f gri
functions, and the quantity (1) can be approximated by a bilinear form

W(w, tny1) ~ VAz&? Sy (At)u™. (2.2)

In this formula, we have

~ - 761‘ij17 [un]j — u(ij’tn)’
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and

Sn(t) = exp(=Lnt), [Lnljx = —p[D¥]jk + q(jAx), (2.3)

where Dy is a discretization of the differentiation operator that&fined on the space of
grid functions. Our goal is to approximate.?) by computing an approximation to

[, =eflu"™ = &gy (At)u". (2.4)
In [6] Golub and Meurant describe a method for computing quastitf the form
u’ f(A)v, (2.5)

whereu andv are N-vectors,A is an N x N symmetric positive definite matrix, anflis

a smooth function. Our goal is to apply this method with= L, whereL 5 was defined

in (2.3, f(\) = exp(—At) for somet, and the vectors andv are derived frong,, andu™.
The basic idea is as follows: since the matfixs symmetric positive definite, it has real

eigenvalues

b:)\lz)\QZ"'Z)\N:a>07

and corresponding orthogonal eigenvecigys;j = 1,...,N. Therefore, the quantity2(5)
can be rewritten as

N
ul f(A)yv = Z f()\j)uquqJTv.

j=1

We leta = Ay be the smallest eigenvalue= \; be the largest eigenvalue, and define
the measurex(\) by

0, if A\ <a,
N
Zajﬁj, if)\ié)\<)\i,1,i:2,...,N,
a(A) == (2.6)
N
> a;B, fb<A
j=1

with o;; = u’'q; andg; = qfv. If this measure is positive and increasing, then the gtyanti
(2.5) can be viewed as a Riemann-Stieltjes integral

b
u? f(A)v = I[f] = / () da()).

As discussed ind, 4, 5, 6], the integrall[f] can be bounded using either Gauss, Gauss-
Radau, or Gauss-Lobatto quadrature rules, all of whicllyaelapproximation of the form

K
1f] = 3 wif (&) + RIf],

where the nodes;, j = 1, ..., K, as well as the weights;, j = 1,..., K, can be obtained
using the symmetric Lanczos algorithmuf= v, and the unsymmetric Lanczos algorithm if
u # v; see [LQ).
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In the caseu # v, there is the possibility that the weights may not be pasijtivhich
destabilizes the quadrature rule; s&Efpr details. Therefore, it is best to handle this case by
rewriting (2.5) using decompositions such as

1
u’ f(A)v = g[qu (A)(u+6v) —u’ f(A)u], (2.7)
whered is a small constant. Guidelines for choosing an appropvialige foré can be found
in [17, Section 2.2].
Employing these quadrature rules yields the following basocess (for details segj,
17] for computing the Fourier coefficients af**! from u™):

forw=-N/2+41,...,N/2
Choose a scaling constaff
Computeu; ~ e Sy (At)e,,
using the symmetric Lanczos algorithm
Computeuy ~ e Sy (At)(e, + d,u”)
using the unsymmetric Lanczos algorithm
[@ ]y, = (u2 —w1)/du
end

It is assumed that when the Lanczos algorithm (symmetricnsymnmetric) is employed,
K iterations are performed to obtain thequadrature nodes and weights. It should be noted
that the constand,, plays the role ob in the decomposition27), and the subscript is
used to indicate that a different value may be used for eacle wamberw = —N/2 +
1,...,N/2. Also, in the presentation of this algorithm if7q a polar decomposition is
used instead ofZ7), and it is applied to sines and cosines instead of complprreantial
functions.

This algorithm has high-order temporal accuracy, as inditay the following theorem.
Let BLy([0,27]) = spar{e‘i‘”ﬂ}L\Z{N/2+1 denote a space of bandlimited functions with at
mostN nonzero Fourier components.

THEOREM 2.1. Let L be a self-adjointn-th order positive definite differential opera-
tor on C,, ([0, 27]) with coefficients inBL ([0, 27]), and letf € BLx([0,2x]). Then the
preceding algorithm, applied to the probleth {)-(1.3), is consistent, i.e.,

[, — a(w, At) = O(AL*F),

forw=-N/2+1,...,N/2.

Proof. See L7, Lemma 2.1, Theorem 2.4]1

The preceding result can be compared to the accuracy adhimvean algorithm, de-
scribed by Hochbruck and Lubich idg], for computinge”#tv for a given matrix4 and
vectorv using the unsymmetric Lanczos algorithm. As discussedh this algorithm can
be used to compute the solution of some ODEs without timep#teg, but this becomes less
practical for ODEs arising from a semi-discretization oblgems such asl(1)-(1.3), due
to their stiffness. In this situation, it is necessary theituse a high-dimensional Krylov
subspace, in which case reorthogonalization is requinedne can resort to time-stepping,
in which case the local temporal error is ol AtX), assuming & -dimensional Krylov
subspace. Regardless of which remedy is used, the congnahéffort needed to compute
the solution at a fixed tim&' increases substantially.

The difference between Krylov subspace spectral methodgtenapproach described
in [12] is that in the former a differeni-dimensional Krylov subspace is used for each
Fourier component, instead of the same subspace for all aoemps as in the latter. As
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can be seen from numerical results comparing the two appesain [L7], using the same
subspace for all components causes a loss of accuracy asritieenof grid points increases,
whereas Krylov subspace spectral methods do not suffertinamphenomenon.

Using a perturbation of the forn2(7) is only one approach for computing bilinear forms
such as 2.5 in the case whera # v. In [13], this approach was numerically stabilized
by the use of formulas for the derivatives of the nodes andjlisiwith respect to the pa-
rameters. However, two quadrature rules are needed to compute eachareent, as well
as the unsymmetric Lanczos algorithm, which is much lessetaved than its symmetric
counterpart. A polar decomposition may be used, but thatralguires two quadrature rules,
although the symmetric Lanczos algorithm can be used fdr.b&h approach that requires
only one quadrature rule per component involves block Lasdteration. The result is a
block-tridiagonal Hermitian matrix, from which the nodesdaweights for the quadrature
rule can be obtained. It is worthwhile to examine whetherazlblapproach might be more
effective than the original algorithm.

3. Block formulation. In this section, we describe how we can compute elements of
functions of matrices using block Gaussian quadrature. W¥a present a modification of
KSS methods that employs this block approach.

3.1. Block Gaussian quadrature. If we compute 2.5 using the formulaZ.7) or the
polar decomposition

HE T FA) @+ v) — (v )T (A (v - w)], 3Y)

then we would have to run the process for approximating aressjon of the formZ.5) with
two starting vectors. Instead we consider

[u v] A [u v ]
which results in th& x 2 matrix

b
[ rovauy = | A S

wherep () is a2 x 2 matrix function of), each entry of which is a measure of the fauf\)
from (2.6).

In [6] Golub and Meurant show how a block method can be used to genguadrature
formulas. We will describe this process here in more defHile integralff FN) du(N) is
now a2 x 2 symmetric matrix and the most genefélnode quadrature formula is of the form

b K
/ FO) du(n) = S W £(T))W; + error, (32)
a ]:1

with 7; andW; being symmetri@ x 2 matrices. Equation3(2) can be simplified using
T; = Q;AQ5

whereQ); is the eigenvector matrix antl; the2 x 2 diagonal matrix containing the eigenval-
ues. Hence,

K K
S W F(TH)W; = WiQ; £ (A)QT W,
j=1

Jj=1
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and, writing
W;Q; f(A))QF W = f(A)zz] + f(A2)zozs
with z, = W;Q;e;, for k = 1,2, we get for the quadrature rule
K

[ 50 = 3 s, v+ o

Jj=1

wheret; is a scalar and; is a vector with two components.
We now describe how to obtain the scalar notlesnd the associated vectors. In [6]
it is shown that there exist orthogonal matrix polynomiaiststhat

Api—1(A) = pi(N)Bj + pi—1(A)Mj +pj (N B/,
with po(A) = I andp_1 (A) = 0. We can write the last equation as

Alpo(A)s - p—1(N)] = [Po(A), - .-, -1 (M) Tk + [0, ..., 0, pr (A) Bk],

with
M, B{
By M, BY
Bkx_o Mgk-1 Bf_,
Brx-1 Mg
which is a block-triangular matrix. Therefore, we can deflmequadrature rule as
b 2K
/ FO)dp(N) =D f(N)viv] +error, (3.4)
a le

where2K is the order of the matri€x, \; is one of its eigenvalues, ang; is the vector
consisting of the first two elements of the correspondingnadized eigenvector.

To compute the matriced/; and B;, we use the block Lanczos algorithm, which was
proposed by Golub and Underwood i8).[ Let X, be anN x 2 given matrix, such that

XX, = I,. Let Xy = 0 be anN x 2 matrix. Then, forj = 1, ..., we compute
M; = X[ AX;,
Rj = AX; - X;M; - X; 1B}y, (3.5)
Xj+1Bj = Rj

The last step of the algorithm is tligR decomposition of?; (see B]) such thatX; is N x 2,
with X7 X; = I,. The matrixB; is 2 x 2 upper triangular. The other coefficient matfix;
is 2 x 2 and symmetric. The matrik; can eventually be rank deficient, and in that cBse
is singular. The solution of this problem is given Bj.[

3.2. Block KSS methods.We are now ready to describe block KSS methods. For each
wave numbew = —N/2 +1,..., N/2, we define

Ry(w)=1] &, u" |
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and then compute th@ R factorization

Ro(w) = X3 (w)Bo(w),

which yields
R - 1 efun
Xiw) = [ & w/lucl ] Bol)=| o pari |,
where
u” =u" — e effu".

We then carry out the block Lanczos iteration describe®if) to obtain a block-tridiagonal

matrix

Mi(w) Bi(w)?

B1 (W) M2 (w) BQ (w)H

Tk (w) = ‘ - -

Br_2(w) Mg_1(w) Bg_1(w)?
BK, 1 (w) MK (w)

Now, we can express each Fourier component of the approxistdiition at the next time
step as

[, = [B{' Ef exp(—Tk (w)At)E12 By |, (3.6)
where
1 0
0 1
E12=[81 92}2 00
0 0

The computation ofs, exp(—Tx (w)At) E15 consists of evaluating the eigenvalues and eig-
envectors of7x (w), in order to obtain the nodes and weights for Gaussian qtiaéraas
described earlier in this section.

3.3. Implementation. In [18], it was demonstrated that recursion coefficients for all
wave numbersy = —N/2+1, ..., N/2, can be computed simultaneously by regarding them
as functions ofv, and using symbolic calculus to apply differential opersitanalytically as
much as possible. As a result, KSS methods requif& log V) floating-point operations
per time step, which is comparable to other time-steppinthaus. The same approach can
be applied to block KSS methods. For both types of methodsitbe shown that for &'-
node Gaussian rule or block Gaussian rifeapplications of the operatdry to the previous
solutionu™ are needed.

4. Convergence analysisWe now examine the convergence of block KSS methods by
first investigating their consistency and stability. Aswhan [13, 17], the original KSS
methods are high-order accurate in time, but are also éixpiethods that possess stability
properties characteristic of implicit methods, so it isidebthat block KSS methods share
both of these traits with their predecessors.
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4.1. Consistency.As shown in [7], the error in aK-node block Gaussian quadrature
rule of the form 8.4) is

b 2K

(2K)
R(f) = f@K;i” / L0 (@.1)

It follows (see P]) that the rule is exact for polynomials of degree u#6 — 1. The above
form of the remainder can be obtained using results frogh [

THEOREMA4.1. Let L be a self-adjointnth-order positive definite differential operator
onC, ([0, 2x]) with coefficients ilBL y ([0, 27]), and letf € BLx ([0, 27]). Assume that for
eachw = —N/2 +1,..., N/2, the recursion coefficients ir8(3) are computed on 8 N-
point uniform grid. Then a block KSS method that usds-aode block Gaussian rule to
compute each Fourier componéiit'],, (w = —N/2 + 1,..., N/2) of the solution to {.1)-
(1.3), satisfies the relations

[@'l, — a(w,At)| = 0(AX), w=-N/2+1,...,N/2,

wherei(w, At) is the corresponding Fourier component of the exact sahugibtimeAt.

Proof. The result follows immediately from the substitution &f\) = e~*2* into the
quadrature error4( 1), and the elimination of spatial error from the computatdthe recur-
sion coefficients, by refining the grid to the extent necessaresolve all Fourier components
of pointwise products of function&l

4.2. Stability for the one-node caseWhenK = 1, we simply havel; (w) = M (w),
where

M1 (w) =

efLye, el Lyul’/[lug]| } _ (4.2)

H ~
{[UZ] Lyeéo/l[ubllz i Lyug/|ug|3

We now examine the stability of the 1-node method in the cdserep(x) = p = constant.
We then have

pw? +4q el (q-up)/[[ugl> }
)

n ~ A n n n n (43)
w?(q-eu)/|luplls (w7 Lyul/ a3

=

where the notatioffu - v) is used to denote component-wise multiplication of the wesat

andv. We use the notatioffi to denote the mean of a functigifz) defined on[0, 2], and

defineg(z) = ¢(x) — g. We denote byj the vector with componentg]; = ¢(x;).
Becausel/; (w) is Hermitian, we can write

Ml(w) = Ul(w)Al(w)Ul(w)H.
The Fourier componeriti”*1],, is then obtained as follows:
[0, = [Bo(w)" exp(~Ti (@) At) Bo(w)]
= [Bo(w)"Uy(w) exp(—A1 (w)At)U (@) Bo(w)]

e e@)at | uir(w) w9 (w) } [ edun }
u12(w) Uz (w)
= Hull(w)|26—>\1(w)At + ‘um(w)‘Qe—)\z(w)At]é‘Ijun

Huar (W)ugy (w)e M)A e 2()

e—)\l(w)At

= [ ull(w) ulg(w)

+ w12 (w)uge(w) [ug |2
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This simple form of the approximate solution operator ysetide following result. For con-
venience, we denote byy (At) the matrix such that™t! = Sy (At)u”, for given N and

At, and writeSy (At)™ in place of[SN(At)}

THEOREM4.2. Letg(x) in (1.4) belong toB Ly, ([0, 2]) for a fixed integetM. Then,
for the problem {.1)-(1.3), the block KSS method witki = 1 is unconditionally stable. That
is, givenT > 0, there exists a constanty, independent oV and At, such that

|Sn (A" < Cr, (4.4)

for0 < nAt <T.
Proof. Because\;(w) > Amin(Lx) > 0, and the rows and columns bf (w) have unit
2-norm, it follows that

[|u11(w)|26—)\1(w)At + |U12(w)|2€_>\2(w)At:| < e—Amin(LN)At-

We now consider the remaining portion of each Fourier corepgn
[t @)z (@)e M DA 4 g (w)ugs (@)™ A Jlul.

By the orthogonality of the rows df; (w), we can rewrite this as

A (W)At _ ,—Aa(w) At} u

Un(w)uzl(w) € u||2'

By direct computation of the elements bf (w), whose columns are the eigenvectors of
71 (w), we obtain

&7 (a-up)
[z loy/(pe? + @ — [z ] Lyusy /[uz][3)2 + 4 Lyuz)?/[uz 3

U1 (w)u21 (w) = —

Furthermore, for each integerand At > 0, we have
|e_)‘1(“)At — e_)‘Z(“’)At| < At|Ag(w) = A (w)].

To see this, note that akt = 0, g,,(At) = e M WAL _ =2(«)Al has slopey/, (0) =
A2(w) — A (w). However, its slope becomes less steefhasncreases from 0, because its
first and second derivatives At = 0 are of opposite sign. Furthermorg,(At) has only
one critical number and one inflection point, it approaches 0t — oo, and it is equal to
zero atAt = 0. It follows that for each integev,

st (@)uar (@) [ 20— Az | < CAteL (G- u”)],

where

O A1 (w) = Ag(w)
= sup ~ / ’ =)
wez \/(pw? + q — [ur|H Lyul /|[ur[5)? + 4(elf Lyur)?/|[up]3

the least upper bound of a sequence that converges t@.il as co. We conclude that
HS‘N(At)H < (L) Tl o0) At
2 ’

from which the result followd
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We can now prove that the method converges. For conveniesgcgefine the 2-norm of
a functionu(z, t) to be the vector 2-norm of the restrictionwfz, t) to the spatial grid:

1/2
lu(-t)]]2 = (Z lu(jAz,t)| ) . (4.5)

We also say that a method is convergent of ordern) if there exist constant§’; andC,,
independent of the time stelot and grid spacing\z = 27 /N, such that

fu(-,t) —u(, )]s < CLAL™ + CAz", 0<t<T. (4.6)

THEOREM 4.3. Let the exact solutioni(z,t) of the problem 1.1)-(1.3) belong to
C?([0, 27]) for eacht in [0, T]. Letg(x) in (1.4) belong toB L ([0, 2]) for some integed/.
Then, the 1-node block KSS method, applied to this prob&oworivergent of orde(l, p).

Proof. Let S(At) be the solution operator for the problefin1)-(1.3). As with §N(At),
we use the notatiofi(At)™ in place of[S(At)]™ for simplicity. For any nonnegative integer
and fixed grid sizeV, we define

E, = N7Y2|S(A)" f — Sn (A" f|a. 4.7
Then, there exist constantg, C,; andC such that

Eny1=N"2|S(A™f — Sy (At)"+1f||2
= N7V2||S(AD)S(AL)" f — Sn (A SN (A" f2
NTV2|S(AnS(A)" f - SN(At) (At)™f
+IN (A)S(AL)" f — Sn (A)SN (A" |2
< N7V2|S(ans(an" f - SN( £)S(AL)" [l
+NTV2| SN (ADS(AH)" f — Sn (A1) Sy (A" fl2
< NTV2|S(Abu(t,) — SN(At)“(tn)HZ"' 1SN (A1) |12 B,
< C1AE + CoAtAZP + e“AE,,,
where the spatial error arises from the truncation of theiEoseries of the exact solution. It
follows that
cT _

e
By < eCAL _

(C’lAt2 + CoAtAzP) < Cy At + CoAzP, (4.8)

for constants’; andC, that depend only off".

It is important to note that although stability and convexggewere only shown for the
case where the leading coefficierit:) is constant, it has been demonstrated that KSS meth-
ods exhibit similar stability on more general problems,tsas in [L3] where it was applied
to a second-order wave equation with time steps that greatgeded the CFL limit. Fur-
thermore, 13] also introduced homogenizing similarity transformatidhat can be used to
extend the applicability of theoretical results concegrstability that were presented in that
paper, as well as the one given here.

4.3. Stability for the multi-node case. For the casd< > 1, we have

[ﬁn—i-l AH u” Z |u1 2 —)\j(w)At + ”u ||2 Zulj UQJ —)\j (w)At_
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The first summation is bounded ly *1(2)A*, The second summation isZg-node block
Gaussian quadrature approximatioredf exp(— Ly At)u”, which is given by

[ug; [l2fexp(—=T1(w)At)]12.

Its Taylor expansion begins as follows:
2K 1
[ullla Y g (w)ug;(w)e 2 = —Atell(q-ul) + 5Atz’éﬁ’Lﬁvugj + O(AH%).
j=1

Because
el L3 u" = 2pw?e(q - u”) + lower-order terms
which is a negative scalar multiple of the first-order ternthia Taylor series of
el exp(—LyAt)u”,

it follows that forw sufficiently large and\¢ sufficiently small,
2K
luZfla Y wij(w)ug;(w)e X8 < Atjell (G- ul)| = Atlell (@-u™).  (4.9)
j=1

However, this is not sufficient to conclude that uncondiostability is achieved as in the
1-node case. Future work will continue this analysis, bguFe4.1 offers evidence of such
unconditional stability, in the form of a “proof by MLAB”. For several values af, we plot
the function

[[u[|2[exp(=T1 (w)At)]1o
efl(q-u)

gw(At) = (4.10)
and observe that, (At) < At, thatis, @.9) holds, not just for sufficiently smalhz and A,
but forall Az € (0,27] andAt € (0,T]. This experiment was performed on the operator

Lu = —ugze + ET fo1(2)u,

where the coefficienE™ f, 1 (x) is defined below in Sectiof.1, in such a way as to have the
smoothness of a function that is only once continuouslyediiftiable.

5. Numerical results. In this section, we will present numerical results to corspthe
original KSS method (as described it3]) to the new block KSS method, when applied to
parabolic problems. The comparisons will focus on the amguof the temporal approxima-
tions employed by each method, for these reasons:

e parabolic problems tend to yield smooth solutions, so aiEourterpolant defined
on a grid of reasonable size is sufficient to accurately ssprethe solution;

e is not straightforward to quantify the effect of the spati@cretization error on
the accuracy of Krylov subspace spectral methods, as itasfévd. Unless grid
refinement is used during the Lanczos process, such eremtaffhe recursion co-
efficients, which in turn affect the quadrature nodes andjiatsj and therefore the
accuracy of the temporal approximation of each componehng tiuncation of the
Fourier series introduces additional spatial error, ddpgnon the smoothness of
the solution. A thorough analysis of the spatial discreitraerror will be deferred
for future work.

For convenience, we denote by K$S(the original KSS method witli’ Gaussian nodes,
and by KSS-BK) the block KSS method witlik” block Gaussian nodes.
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FIGURE 4.1. Experimental verification that#(9) holds for selected values &t andw. The functiory., (At)
is defined in4.10. The solid red line is the ling = At.

5.1. Construction of test casesWe introduce some differential operators and functions
that will be used in the experiments described in this sec#s most of these functions and
operators are randomly generated, we will denotefhyR,, . .. the sequence of random
numbers obtained using MATLAB’s random number generatord after setting the gener-
ator to its initial state. These numbers are uniformly dstied on the interva(0, 1).

We will make frequent use of a two-parameter family of fuos, defined on the interval
[0, 27]. First, we define

ﬁkm—Re{ > ﬂ(w)(lel)““*”eW}, G k=01,..., (5.1)
|w|<N/2
w#0
where
filw) = Rini2winN/2)—1 T iRjN 12wt N/2)- (5.2)

The paramete)j indicates how many functions have been generated in thigoiasince
setting MATLAB’s random number generator to its initialtgtaand the parametérindicates
how smooth the function is. Figutel shows selected functions from this collection.

In many cases, it is necessary to ensure that a function itiyeosr negative, so we
define the translation operatats™ and £~ by

E*f(@) = f(@)~ min_f(z)+1,

E™f(@) = f(x) ~ mox f(@)~1
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j=0, k=0 j=0, k=3

X X

FIGURE 5.1. Functions from the collectioif; . (), for selected values gfand.

We define a similar two-parameter family of functions definadhe rectangl@, 2] x
[0, 27]:

gj,k<x,y)=Re{ > gj<w>s><1+|w|>—<’“+”(1+|§|>—(’““>ei<w+5y>}7 (5.3)
|wl],[E]<N/2
w&F#0

wherej andk are nonnegative integers, and

G5 (W, &) = RjN2 L o[N (w4 N/2—1)+(4+N/2)] -1
FiR N2 42N (wt N/2-1)+ (64 N/2)]- (5.4)

Figure5.2shows selected functions from this collection.
In all experiments, the solutions’) (z, t) are computed using time step\s = 27, for
j=0,...,5. Unless otherwise noted, the error estimates are obtayedrbputing

[u (1) —u® (D)
[u® (-, Dl

This method of estimating the error assumes that(z, t) is a sufficiently accurate approx-
imation to the exact solution. This assumption has been rioally verified, by compar-
ing v(®) against approximate solutions computed using establistetdods, and by compar-
ing «(%) against solutions obtained using various methods withlsmiane steps.

In [18] and in Sectiorb.30f this paper, errors measured by comparison to exact eahuti
of problems with source terms, further validate the consrog behavior. It should be noted
that we are not seeking a sharp estimate of the error, bugrrathindication of the rate of
convergence, and for this goal it is sufficient to us® as an approximation to the exact
solution.
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=0, k=3 =1, k=3

FIGURE 5.2. Functions from the collection; ;. (x, y), for selected values gfandk.

5.2. Constant leading coefficient.We now show the accuracy of our approach for
higher space dimensions. We solve a variable-coefficieattdmguation with randomly gener-
ated coefficients as discussed in Sectioh

First, we solve the parabolic problems

2
%(m,t) — %(w,t) — E7 fio(z)u(z,t) =0, xz € (0,2m), t>0,
u(z,0) = E+f0’3(x), 0<z<2m, (5.5)
u(z,t) = u(x + 2m,t), t>0,
and
ou _ 2
5($7yat) - AU(Z’,:%t) -F 93,2(3373/)”(3771:) — 0> §x>’y0)’ € (0’ 27T) ’
u(z,y,0) = E*gsa(z,y). (.y) € (0,202, )

u(z,y,t) = u(x + 27, t) = u(x,y + 2, t), t>0,

In [18], it is shown that the methods for efficiently computing teeursion coefficients gen-
eralizes in a straightforward manner to higher spatial dsmans. The results are shown in
Figures5.3and5.4, and Table$.1and5.2, and compared to those obtained using the original
KSS method. In the 2-D case, the variable coefficient of th& FDsmoothed to a greater
extent than in the 1-D case, because the prescribed deeayf the Fourier coefficients is im-
posed in both the- andy-directions. This results in greater accuracy in the 2-Cecaich

is consistent with the result proved ih7] that the local truncation error varies linearly with
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1-D, variable potential, N=128

relative error

KSS(2) T
~ — — KSS-B(2)
T

1
1 1/2 1/4 1/8 1/16 1/32
time step

1-D, variable potential, N=256
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— — — KSS-B(2)
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1 1/2 1/4 1/8 1/16 1/32
time step

FIGURE 5.3. (a) Top plot: estimates of relative error in the approximatgution of £.5) at’7" = 1. Solutions
are computed using the original 2-node KSS method (solidejuand a 2-node block KSS method (dashed curve),
both with NV = 128 grid points. (b) Bottom plot: estimates of relative errortire approximate solution of the same
problem, using the same methods, with= 256 grid points. In both cases, the methods use time stefps- 27,
j=0,...,5.

the variation in the coefficients. We see that significantiager accuracy, and temporal order
of accuracy, is obtained with block KSS methods, in both amktao space dimensions.

In an attempt to understand why the block KSS method is sggmifly more accurate, we
examine the approximate solution operator for the simpde cdl/A’ = 1. As shown in [L3],
the original 1-node KSS method is equivalent to the simplitisigy

Sn(At) = e CAHT — AtV), (5.7)

whereL = C' + V is a splitting of the differential operatdt, in which C' is obtained by
averaging the coefficients df. On the other hand, the 1-node block KSS method is not
equivalent to such a splitting, because every node and wefghe quadrature rule used to
compute each Fourier component is influenced by the solérion the previous time step.

Furthermore, an examination of the nodes for both methogsate that, for the original
KSS method, all of the nodes used to comgitet!],, tend to be clustered aroued L yé,,,
whereas with the block KSS method half of the nodes are ckedteear this value, and the
other half are clustered near” ¥ L yu”, so the previous solution plays a much greater role
in the construction of the quadrature rules. A similar dffgas achieved with the original
KSS method by using a Gauss-Radau rule in which the presionibge was an approximation
of the smallest eigenvalue &fy, and while this significantly improved accuracy for paraol
problems, as shown il }], the solution-dependent approach used by the block metiades
more sense, especially if the initial data happens to bdlatsci.
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TABLE 5.1
Estimates of relative error and temporal order of convelggin the approximate solution of problerd.%)
atT = 1, using 2-node original and block Krylov subspace spectretrads. Error is the relative difference, in the
2-norm, between approximate solutions and a solution ceetpusing a smaller time step, since no exact solution
is available. N denotes the number of grid points aid denotes the time step used.

Method N At Error Order

1 | 0.0025
1/2 | 0.00064
128| 1/4 | 0.00014| 2.21
1/8 | 2.8e-005
1/16 | 5.8e-006
KSS(2) 1/32 | 1.2e-006
1 | 0.0012
1/2 | 0.00035
256 | 1/4 | 8.2e-005| 2.16
1/8 | 1.7e-005

1/16 | 3.4e-006
1/32 | 6.8e-007

1 1.5e-005
1/2 | 9.3e-007
128 | 1/4 | 8e-008 | 3.41
1/8 | 8.1e-009
1/16 | 9e-010
KSS-B(2) 1/32 | 1.1e-010
1 | 3.8e-006
1/2 | 2.8e-007
256 | 1/4 | 3e-008 | 3.24
1/8 | 3.6e-009

1/16 | 4.2e-010
1/32 | 5.1e-011

5.3. Variable leading coefficient. We now apply a 2-node block Krylov subspace spec-
tral method to the problem

ug = (a(2)ug)y + F(z,t), =€ (0,2m), t>0, (5.8)
where
F(z,t) = sin(z — t) + (a(x) sin(z — t)),. (5.9)
With periodic boundary conditions and the initial conditio
u(x,0) = cosz, (5.10)

the exact solution igos(x — t). Fora(z), we use a smooth functian,(z) = E* £ ;(z), as
defined in 6.1). In [18], it was shown that the original KSS method compared favgrab
the standard ODE solvers provided imW.AB in terms of accuracy and efficiency. We now
compare that method to our new block approach.

Table 5.3 lists the relative errors for various time steps and gri@sizThe errors are
obtained by comparing the approximate solution to the knexact solution in the 2-norm.
While the temporal order of accuracy and relative errors ameparable, it should be noted
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2-D, variable potential, N=16

relative error
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FIGURE 5.4. (a) Top plot: estimates of relative error in the approximatgution of £.6) at’ 7" = 1. Solutions
are computed using the original 2-node KSS method (solidejuand a 2-node block KSS method (dashed curve),
both with N = 16 grid points per dimension. (b) Bottom plot: estimates ddtigk error in the approximate solution
of the same problem, using the same methods, Witk 32 grid points per dimension. In both cases, the methods
use time stepAt =277, =0,...,5.

that for the block method, not only are the errors smalldrablarger time steps they are much
less sensitive to the increase in the number of grid poiats the original KSS method, which
loses some accuracy on the finer grid. The error estimatedso@lotted in Figuré.5.

5.4. Systems of coupled PDEIn [14], KSS methods were generalized to apply to sys-
tems of coupled PDE by choosing appropriate basis functibhe same basis functions can
readily be employed by the block approach. We thereforeyapploriginal and block 2-node
KSS methods to the hyperbolic system

% = fg'g(x)% + fra(@)v(z,t), x € (0,2m), t>0,
% = f;'g(x)% + f33(z)u(z, ), x € (0,2m), t>0,
u(z,0) = fZ:B(CE), x € (0,2m), (5.11)
v(z,0) = f;‘B(z), x € (0,2m),
u(z,t) = u(x + 2m,t), t>0,
v(x,t) = v(x + 2m,t), t>0.

Figure 5.6 and Table5.4 report the results of applying the original and block 2-n&&S
methods to this problem. We observe that both methods aktevexpected temporal order
of convergence, but once again block KSS methods are signifjcmore accurate.
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points per dimension, and¢ denotes the time step used.

TABLE 5.2
Estimates of relative error and temporal order of convergein the approximate solution 05.6) at7" = 1,

using 2-node original and block Krylov subspace spectrahmés. Error is the relative difference, in the 2-norm,

between approximate solutions and a solution computedywsismaller time stepN denotes the number of grid

Method | N | At Error Order
1 0.0023
1/2 | 0.00059
16 | 1/4 | 0.00011| 2.52
1/8 | 1.8e-005
1/16 | 2.7e-006
KSS(2) 1/32 | 3.7e-007
1 0.0018
1/2 | 0.00042
32| 1/4 | 7.5e-005| 2.63
1/8 | 1.1e-005
1/16 | 1.6e-006
1/32 | 2.1e-007
1 1.8e-005
1/2 | 2.3e-006
16 | 1/4 | 3.3e-007| 3.02
1/8 | 4e-008
1/16 | 4.5e-009
KSS-B(2) 1/32 | 5.2e-010
1 | 4.6e-006
1/2 | 3.6e-007
32| 1/4 | 3.6e-008| 3.25
1/8 | 4.1e-009
1/16 | 4.9e-010
1/32 | 5.9e-011

Although it is straightforward to apply the block approaotsystems of PDE as well as
scalar equations, the essential tasks of efficiently implging the block algorithm, and an-
alyzing its stability for hyperbolic systems, are lessigtiforward. Furthermore, the spatial
discretization of such a system yields a system of ODEs ofdima u, = Au where A is
not necessarily symmetric, and while KSS methods have hemgessfully applied to such
systems (seelf)]), it is necessary to investigate the limitations of thiplgability, as the
unsymmetric Lanczos algorithm is much more susceptibleempture breakdown than its

symmetric counterpart.

5.5. The matrix exponential. We now consider the problem of computing= e~ “4v
for a given symmetric positive definite matrix and vectorv. One approach, described
in[12], is to apply the Lanczos algorithm tbwith initial vectorv to obtain, at the end of the
jth iteration, an orthogonal matriX; and a tridiagonal matrif; such thatX] AX; = Tj.
Then, we can compute the approximation

WwW; =¢€

A

v & [lv]2X;e”

T;

er.

(5.12)

However, the effectiveness of this approach, for generdepends on the eigenvaluesAif
if the eigenvalues are not clustered, which is the cadedfises from a stiff system of ODEs,
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1-D, variable leading coefficient, N=128
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FIGURE 5.5. (a) Top plot: estimates of relative error in the approximatdution of £.8), (5.10, (1.3), at
T = 1. Solutions are computed using the original 2-node KSS rdetbalid curve), and a 2-node block KSS
method (dashed curve). Both methods Dse= 128 grid points. (b) Bottom plot: estimates of relative error in
the approximate solution of the same problenifat= 1. Solutions are computed using the same methods, with
N = 256 grid points. In both cases, the methods use time steps 2=7,7 =0, ..., 5.

a good approximation cannot be obtained using a small nuwiiéerations. This can be
alleviated using an outer iteration of the form

WT—H %e*AAtw}”, m=0,1,..., wl=v, (5.13)

for someAt < 1, where the total number of outer iteratiohssatisfies\ At = 1. However,
this approach is not practical &£ must be chosen very small.

An alternative is to use the approach employed by KSS metlcodsputing each compo-
nent ofw using its own approximation to the matrix exponential. $ipeadly, for the original
KSS method, we apply the Lanczos algorithm4awith initial vectorse; ande; + v, for
some small constat wheree; is thejth standard basis vector. For the block KSS method,
we apply the block Lanczos algorithm t with initial blocks Ry = [ e Vv ] We then
use block Gaussian quadrature as described in Segtion

Figure5.7 and Table5.5 describe the results of applying all three methods in the cas
whereA is a N x N symmetric positive definite matrix, withh = 64 and N = 128. The
elements ofd are given by

aij = —p" by, (5.14)

wherep = 0.2, the matrixB is defined byB = C7C, and thec;; are random numbers uni-
formly distributed between 0 and 1, so thats, with high probability, diagonally dominant.
We use time stepAt = 277, for j = 1,2,...,6, and compare our approximations to the
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TABLE 5.3
Estimates of relative error and temporal order of conveieim the approximate solution d@.g), (5.10), (1.3),
using 2-node original and block Krylov subspace spectrahmés. Error is the relative difference, in the 2-norm,
between the exact solutiar(z,t) = cos(x — t) and the computed solution @& = 1. N denotes the number of
grid points andAt denotes the time step used.

Method N At Error Order

1 | 5.8e-005
1/2 | 8.7e-006
128 | 1/4 | 1.3e-006| 2.74
1/8 | 1.8e-007
1/16 | 2.7e-008
KSS(2) 1/32 | 4.3e-009
1 | 8.3e-005
1/2 | 1.2e-005
256 | 1/4 | 1.6e-006| 2.89
1/8 | 2e-007

1/16 | 2.7e-008
1/32 | 3.7e-009

1 | 1.9e-005
1/2 | 1.6e-006
128 | 1/4 | 2.2e-007| 2.7
1/8 | 4.1e-008
1/16 | 7.6e-009
KSS-B(2) 1/32 | 1.6e-009
1 | 1.9e-005
1/2 | 1.5e-006
256 | 1/4 | 2.1e-007| 2.76
1/8 | 3.6e-008

1/16 | 6.8e-009
1/32 | 1.4e-009

vectorw obtained by using the WMrLAB functionexpm We see not only that the block KSS
method is significantly more accurate than both the origi®% method and the Lanczos ap-
proximation given by%.12), but it achieves the higher order of convergence, and tigeai
KSS method does not even converge at all, in fact diverginghithe larger matrix.

6. Discussion.In this concluding section, we consider various generadina of the
problems and methods considered in this paper.

6.1. Higher space dimensionlIn [18], it is demonstrated how to compute the recursion
coefficientsa; andg; for operators of the fornlbu = —pAw + ¢(z, y)u, and the expressions
are straightforward generalizations of those given in i8ect.3 for the one-dimensional
case. It is therefore reasonable to suggest that, for aperaf this form, the consistency
and stability results given here for the one-dimensionséageneralize to higher dimensions.
This will be investigated in the near future.

6.2. Discontinuous coefficients As shown in [Lg], discontinuous coefficients reduce
the accuracy of KSS methods, because they introduce sigmifépatial discretization error
into the computation of recursion coefficients. Furthermdor the stability result reported
in this paper, the assumption that the coefficients are baitdtl is crucial. Regardless,
this result does not apply to problems in which the coeffisieare particularly rough or
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hyperbolic system, N=64 grid points
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FIGURE5.6. (a) Top plot: estimates of relative error in the approximatgution of 6.11) at7" = 1. Solutions
are computed using the original 2-node KSS method (solideduand a 2-node block KSS method (dashed curve).
Both methods us&/ = 64 grid points for each unknown. (b) Bottom plot: estimatesedative error in the
approximate solution of the same problenfat= 1. Solutions are computed using the same methods With 128
grid points for each unknown. In both cases, the methodsimsestepsA\t =279, =0,...,5.

discontinuous, because Gibbs’ phenomenon prevents tiseiete Fourier transforms from
being uniformly bounded for alN. Ongoing work, described irLf], involves the use of the
polar decomposition3(1) to alleviate difficulties caused by such coefficients.

6.3. The wave equation.In [11], KSS methods were applied to the second-order wave
equation with Dirichlet boundary conditions, thus demaomtstg that they are applicable to
“true” IBVP, as opposed to the problems discussed in thigp#pat include periodic bound-
ary conditions. It was shown that each Fourier componert@sblution is computed with
O(At*K) accuracy. The block KSS methods presented in this paperasily e applied
to the wave equation, as only the integrands differ, not thedepture rules. In13], it was
shown that the 1-node KSS method for the wave equation, whki@nd-order accurate in
time, is unconditionally stable when the leading coeffitisrconstant. Stability analysis for
the block KSS methods applied to this problem still remainiset carried out.

6.4. Summary. We have proved that for parabolic variable-coefficient PBlB¢ck KSS
methods are capable of computing Fourier components ofollaé@n with greater accuracy
than the original KSS methods, and they possess similailistgiroperties. By pairing
the solution from the previous time step with each trial fiorcin a block and applying
the Lanczos algorithm to them together, we obtain a blocks&an quadrature rule that is
better suited to approximating a bilinear form involvingtiodunctions, than the approach
of perturbing Krylov subspaces in the direction of the solut While the latter approach
has already shown much promise for the problem of computiegptoduct of a function
of a matrix and a vector by employing componentwise appraiions, we see that the new
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TABLE 5.4

Estimates of relative error and temporal order of convergein the approximate solution of problem 11)
atT = 1, using 2-node original and block Krylov subspace spectretrads. Error is the relative difference, in the
2-norm, between approximate solutions and a solution ceetpusing a smaller time step, since no exact solution
is available. N denotes the number of grid points aid denotes the time step used.

Method N At Error Order
1 0.00096
1/2 | 0.0001
64 | 1/4 | 1.2e-005| 3.02
1/8 | 1.4e-006
1/16 | 1.7e-007
KSS(2) 1/32 | 2.1e-008
1 0.0057
1/2 | 0.00043
128 | 1/4 | 0.00013| 3.06
1/8 | 1.6e-005
1/16 | 5e-007
1/32 | 6e-008
1 0.00013
1/2 | 9.5e-006
64 | 1/4 | 9.2e-007| 3
1/8 | 1e-007
1/16 | 1.2e-008
KSS-B(2) 1/32 | 1.5e-009
1 0.00012
1/2 | 1.4e-005
128 | 1/4 | 1.7e-006| 3.01
1/8 | 2.7e-007
1/16 | 2.1e-008
1/32 | 2.6e-009

block approach shows even more promise, and for more geapretalems of this type.
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FIGURE 5.7. Estimates of relative error in the computationwf= e~ 4%y using original and block 3-node
KSS methods, and the Lanczos algorithm as describédig)(with j = 3, whereA is an N x N matrix defined in
(5.14), andv is a discretization of the function(xz) = 1 + sin z + sin 2z on a uniformN-point grid, for N = 64
and N = 128. The vectomw is computed using the outer iteratiod. {3, with At = 2=, forj = 1,1,...,6.
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TABLE 5.5
Estimates of relative error and temporal order of convergein the computation ofv = e~ “4*v using
original and block 3-node KSS methods, and the Lanczos ighgoras described in5(12 with j = 3, where A
isan N x N matrix defined in%.14), andv is a discretization of the function(z) = 1 + sinz + sin 2z on
a uniform N-point grid, for N = 64 and N = 128. The vectorw is computed using the outer iteratiof.(3,
with At =277 forj =1,1,...,6.

Method N At Error Order
1/2 0.092
1/4 0.025
64 | 1/8 0.0054 | 1.58
1/16 | 0.00096
1/32 | 0.00023

KSS(3) 1/64 | 0.0002
1/2 | 048
1/4 | 088
128 | 1/8 7 -2.37

1/16 | 2e+002
1/32 | 3.5e+002
1/64 | 9.6e+002
1/2 0.011
1/4 0.0032
64 | 1/8 | 0.00067 | 2.83
1/16 | 0.00011
1/32 | 1.4e-005

KSS-B(3) 1/64 | 1.8e-006
1/2 | 0.082
14 | 0.01

128 | 1/8 | 0.0023 2.6
1/16 | 0.00046
1/32 | 7.5e-005

1/64 | 1e-005
1/2 0.59
1/4 0.27
64 | 1/8 0.09 1.9
1/16 | 0.025
1/32 | 0.0067
Lanczos(3) 1/64 | 0.0017
1/2 0.83
1/4 0.54
128 | 1/8 0.24 1.71
1/16 | 0.084
1/32| 0.025

1/64 | 0.0069



