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Abstract. This paper presents a modification of Krylov subspace spectral (KSS) methods, which build on the
work of Golub, Meurant and others, pertaining to moments and Gaussian quadrature to produce high-order accurate
approximate solutions to variable-coefficient time-dependent PDEs. Whereas KSS methods currently use Lanczos
iteration to compute the needed quadrature rules, our modification uses block Lanczos iteration in order to avoid
the need to compute two quadrature rules for each component of the solution, or use perturbations of quadrature
rules. It will be shown that, under reasonable assumptions onthe coefficients of the problem, a 1-node KSS method
is unconditionally stable, and methods with more than one nodeare shown to possess favorable stability properties
as well. Numerical results suggest that block KSS methods are significantly more accurate than their non-block
counterparts.
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1. Introduction. Consider the following initial-boundary value problem in one space
dimension,

ut + Lu = 0, on (0, 2π) × (0,∞), (1.1)

u(x, 0) = f(x), 0 < x < 2π, (1.2)

with periodic boundary conditions

u(0, t) = u(2π, t), t > 0. (1.3)

The operatorL is a second-order differential operator of the form

Lu = −(p(x)ux)x + q(x)u, (1.4)

wherep(x) is a positive function andq(x) is a positive smooth function. It follows thatL is
self-adjoint and positive definite.

In [15, 17] a class of methods, called Krylov subspace spectral (KSS) methods, was
introduced for the purpose of solving time-dependent, variable-coefficient problems such as
this one. These methods are based on the application of techniques developed by Golub and
Meurant in [6], originally for the purpose of computing elements of the inverse of a matrix, to
the elements of the matrix exponential of an operator. In these references it has been shown
that KSS methods, by employing different approximations ofthe solution operator for each
Fourier component of the solution, achieve higher-order accuracy in time than other Krylov
subspace methods (see, for example, [12]) for stiff systems of ODE, and, as shown in [13],
they are also quite stable, considering that they are explicit methods.
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In this paper, we consider whether these methods can be enhanced in terms of accuracy,
stability, or any other measure, by using a single block Gaussian quadrature rule to compute
each Fourier component of the solution, instead of two standard Gaussian rules. KSS methods
take into account the solution from the previous time step only through a perturbation of initial
vectors used in Lanczos iteration. While this enables KSS methods to handle stiff systems
very effectively by giving individual attention to each Fourier component, and also yields
high-order operator splittings (see [14]), it is worthwhile to consider whether it is best to
use quadrature rules whose nodes are determined primarily by each basis function used to
represent the solution, instead of the solution itself. Intuitively, a block quadrature rule that
uses a basis function and the solution should strike a betterbalance between the competing
goals of computing each component with an approximation that is, in some sense, optimal
for that component in order to deal with stiffness, and giving the solution a prominent role in
computing the quadrature rules that are used to evolve it forward in time.

Section2 reviews the main properties of KSS methods, including algorithmic details
and results concerning local accuracy. They use perturbations of quadratic forms to compute
Fourier components of the solution, where the perturbationis in the direction of the solution
from the previous time step. In Section3, we present the modified KSS method that uses
block Lanczos iteration to approximate each Fourier component of the solution by a single
Gaussian quadrature rule. In Section4, we study the convergence behavior of the block
method. Numerical results are presented in Section5. In Section6, various extensions and
future directions are discussed.

2. Krylov subspace spectral methods.We begin with a review of the main aspects of
KSS methods. LetS(t) = exp(−Lt) represent the exact solution operator of the problem
(1.1)-(1.3), and let〈·, ·〉 denote the standard inner product on[0, 2π]

〈f(x), g(x)〉 =

∫ 2π

0

f(x)g(x) dx.

Krylov subspace spectral methods, introduced in [15, 17], use Gaussian quadrature on the
spectral domain to compute the Fourier components of the solution. These methods are time-
stepping algorithms that compute the solution at timest1, t2, . . ., wheretn = n∆t for some
choice of∆t. Given the computed solutioñu(x, tn) at timetn, the solution at timetn+1 is
computed by approximating the Fourier components that would be obtained by applying the
exact solution operator tõu(x, tn), i.e.,

û(ω, tn+1) =

〈

1√
2π

eiωx, S(∆t)ũ(x, tn)

〉

. (2.1)

Krylov subspace spectral methods approximate these components with higher-order temporal
accuracy than traditional spectral methods and time-stepping schemes. We briefly review how
these methods work.

We discretize the functions defined on[0, 2π] on anN -point uniform grid with spacing
∆x = 2π/N . With this discretization, the operatorL and the solution operatorS(∆t) can
be approximated byN × N matrices that represent linear operators on the space of grid
functions, and the quantity (2.1) can be approximated by a bilinear form

û(ω, tn+1) ≈
√

∆x ê
H
ω SN (∆t)un. (2.2)

In this formula, we have

[êω]j =
1√
N

eiωj∆x, [un]j = u(j∆x, tn),
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and

SN (t) = exp(−LN t), [LN ]jk = −p[D2
N ]jk + q(j∆x), (2.3)

whereDN is a discretization of the differentiation operator that isdefined on the space of
grid functions. Our goal is to approximate (2.2) by computing an approximation to

[ûn+1]ω = ê
H
ω u

n+1 = ê
H
ω SN (∆t)un. (2.4)

In [6] Golub and Meurant describe a method for computing quantities of the form

u
T f(A)v, (2.5)

whereu andv areN -vectors,A is anN × N symmetric positive definite matrix, andf is
a smooth function. Our goal is to apply this method withA = LN , whereLN was defined
in (2.3), f(λ) = exp(−λt) for somet, and the vectorsu andv are derived from̂eω andu

n.
The basic idea is as follows: since the matrixA is symmetric positive definite, it has real

eigenvalues

b = λ1 ≥ λ2 ≥ · · · ≥ λN = a > 0,

and corresponding orthogonal eigenvectorsqj , j = 1, . . . , N . Therefore, the quantity (2.5)
can be rewritten as

u
T f(A)v =

N
∑

j=1

f(λj)u
T
qjq

T
j v.

We leta = λN be the smallest eigenvalue,b = λ1 be the largest eigenvalue, and define
the measureα(λ) by

α(λ) =



































0, if λ < a,
N

∑

j=i

αjβj , if λi ≤ λ < λi−1, i = 2, . . . , N,

N
∑

j=1

αjβj , if b ≤ λ,

(2.6)

with αj = u
T
qj andβj = q

T
j v. If this measure is positive and increasing, then the quantity

(2.5) can be viewed as a Riemann-Stieltjes integral

u
T f(A)v = I[f ] =

∫ b

a

f(λ) dα(λ).

As discussed in [3, 4, 5, 6], the integralI[f ] can be bounded using either Gauss, Gauss-
Radau, or Gauss-Lobatto quadrature rules, all of which yield an approximation of the form

I[f ] =
K

∑

j=1

wjf(tj) + R[f ],

where the nodestj , j = 1, . . . ,K, as well as the weightswj , j = 1, . . . ,K, can be obtained
using the symmetric Lanczos algorithm ifu = v, and the unsymmetric Lanczos algorithm if
u 6= v; see [10].



ETNA
Kent State University 

http://etna.math.kent.edu

KSS METHODS WITH BLOCK LANCZOS 89

In the caseu 6= v, there is the possibility that the weights may not be positive, which
destabilizes the quadrature rule; see [1] for details. Therefore, it is best to handle this case by
rewriting (2.5) using decompositions such as

u
T f(A)v =

1

δ
[uT f(A)(u + δv) − u

T f(A)u], (2.7)

whereδ is a small constant. Guidelines for choosing an appropriatevalue forδ can be found
in [17, Section 2.2].

Employing these quadrature rules yields the following basic process (for details see [15,
17] for computing the Fourier coefficients ofun+1 from u

n):

for ω = −N/2 + 1, . . . , N/2
Choose a scaling constantδω

Computeu1 ≈ ê
H
ω SN (∆t)êω

using the symmetric Lanczos algorithm
Computeu2 ≈ ê

H
ω SN (∆t)(êω + δωu

n)
using the unsymmetric Lanczos algorithm

[ûn+1]ω = (u2 − u1)/δω

end

It is assumed that when the Lanczos algorithm (symmetric or unsymmetric) is employed,
K iterations are performed to obtain theK quadrature nodes and weights. It should be noted
that the constantδω plays the role ofδ in the decomposition (2.7), and the subscriptω is
used to indicate that a different value may be used for each wave numberω = −N/2 +
1, . . . , N/2. Also, in the presentation of this algorithm in [17] a polar decomposition is
used instead of (2.7), and it is applied to sines and cosines instead of complex exponential
functions.

This algorithm has high-order temporal accuracy, as indicated by the following theorem.
Let BLN ([0, 2π]) = span{e−iωx}N/2

ω=−N/2+1 denote a space of bandlimited functions with at
mostN nonzero Fourier components.

THEOREM 2.1. Let L be a self-adjointm-th order positive definite differential opera-
tor on Cp([0, 2π]) with coefficients inBLN ([0, 2π]), and letf ∈ BLN ([0, 2π]). Then the
preceding algorithm, applied to the problem (1.1)-(1.3), is consistent, i.e.,

[û1]ω − û(ω,∆t) = O(∆t2K),

for ω = −N/2 + 1, . . . , N/2.
Proof. See [17, Lemma 2.1, Theorem 2.4].
The preceding result can be compared to the accuracy achieved by an algorithm, de-

scribed by Hochbruck and Lubich in [12], for computingeA∆t
v for a given matrixA and

vectorv using the unsymmetric Lanczos algorithm. As discussed in [12], this algorithm can
be used to compute the solution of some ODEs without time-stepping, but this becomes less
practical for ODEs arising from a semi-discretization of problems such as (1.1)-(1.3), due
to their stiffness. In this situation, it is necessary to either use a high-dimensional Krylov
subspace, in which case reorthogonalization is required, or one can resort to time-stepping,
in which case the local temporal error is onlyO(∆tK), assuming aK-dimensional Krylov
subspace. Regardless of which remedy is used, the computational effort needed to compute
the solution at a fixed timeT increases substantially.

The difference between Krylov subspace spectral methods and the approach described
in [12] is that in the former a differentK-dimensional Krylov subspace is used for each
Fourier component, instead of the same subspace for all components as in the latter. As
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can be seen from numerical results comparing the two approaches in [17], using the same
subspace for all components causes a loss of accuracy as the number of grid points increases,
whereas Krylov subspace spectral methods do not suffer fromthis phenomenon.

Using a perturbation of the form (2.7) is only one approach for computing bilinear forms
such as (2.5) in the case whereu 6= v. In [13], this approach was numerically stabilized
by the use of formulas for the derivatives of the nodes and weights with respect to the pa-
rameterδ. However, two quadrature rules are needed to compute each component, as well
as the unsymmetric Lanczos algorithm, which is much less well-behaved than its symmetric
counterpart. A polar decomposition may be used, but that also requires two quadrature rules,
although the symmetric Lanczos algorithm can be used for both. An approach that requires
only one quadrature rule per component involves block Lanczos iteration. The result is a
block-tridiagonal Hermitian matrix, from which the nodes and weights for the quadrature
rule can be obtained. It is worthwhile to examine whether a block approach might be more
effective than the original algorithm.

3. Block formulation. In this section, we describe how we can compute elements of
functions of matrices using block Gaussian quadrature. We then present a modification of
KSS methods that employs this block approach.

3.1. Block Gaussian quadrature. If we compute (2.5) using the formula (2.7) or the
polar decomposition

1

4
[(u + v)T f(A)(u + v) − (v − u)T f(A)(v − u)], (3.1)

then we would have to run the process for approximating an expression of the form (2.5) with
two starting vectors. Instead we consider

[

u v
]T

f(A)
[

u v
]

which results in the2 × 2 matrix
∫ b

a

f(λ) dµ(λ) =

[

u
T f(A)u u

T f(A)v
v

T f(A)u v
T f(A)v

]

,

whereµ(λ) is a2×2 matrix function ofλ, each entry of which is a measure of the formα(λ)
from (2.6).

In [6] Golub and Meurant show how a block method can be used to generate quadrature
formulas. We will describe this process here in more detail.The integral

∫ b

a
f(λ) dµ(λ) is

now a2×2 symmetric matrix and the most generalK-node quadrature formula is of the form

∫ b

a

f(λ) dµ(λ) =
K

∑

j=1

Wjf(Tj)Wj + error, (3.2)

with Tj andWj being symmetric2 × 2 matrices. Equation (3.2) can be simplified using

Tj = QjΛjQ
T
j ,

whereQj is the eigenvector matrix andΛj the2× 2 diagonal matrix containing the eigenval-
ues. Hence,

K
∑

j=1

Wjf(Tj)Wj =

K
∑

j=1

WjQjf(Λj)Q
T
j Wj ,
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and, writing

WjQjf(Λj)Q
T
j Wj = f(λ1)z1z

T
1 + f(λ2)z2z

T
2 ,

with zk = WjQjek for k = 1, 2, we get for the quadrature rule

∫ b

a

f(λ) dµ(λ) =

K
∑

j=1

f(tj)vjv
T
j + error,

wheretj is a scalar andvj is a vector with two components.
We now describe how to obtain the scalar nodestj and the associated vectorsvj . In [6]

it is shown that there exist orthogonal matrix polynomials such that

λ pj−1(λ) = pj(λ)Bj + pj−1(λ)Mj + pj−2(λ)BT
j−1,

with p0(λ) = I2 andp−1(λ) = 0. We can write the last equation as

λ[p0(λ), . . . , pK−1(λ)] = [p0(λ), . . . , pK−1(λ)]TK + [0, . . . , 0, pK(λ)BK ],

with

TK =















M1 BT
1

B1 M2 BT
2

. ..
. . .

.. .
BK−2 MK−1 BT

K−1

BK−1 MK















, (3.3)

which is a block-triangular matrix. Therefore, we can definethe quadrature rule as

∫ b

a

f(λ) dµ(λ) =

2K
∑

j=1

f(λj)vjv
T
j + error, (3.4)

where2K is the order of the matrixTK , λj is one of its eigenvalues, anduj is the vector
consisting of the first two elements of the corresponding normalized eigenvector.

To compute the matricesMj andBj , we use the block Lanczos algorithm, which was
proposed by Golub and Underwood in [9]. Let X0 be anN × 2 given matrix, such that
XT

1 X1 = I2. Let X0 = 0 be anN × 2 matrix. Then, forj = 1, . . . , we compute

Mj = XT
j AXj ,

Rj = AXj − XjMj − Xj−1B
T
j−1, (3.5)

Xj+1Bj = Rj .

The last step of the algorithm is theQR decomposition ofRj (see [8]) such thatXj is N ×2,
with XT

j Xj = I2. The matrixBj is 2 × 2 upper triangular. The other coefficient matrixMj

is 2 × 2 and symmetric. The matrixRj can eventually be rank deficient, and in that caseBj

is singular. The solution of this problem is given in [9].

3.2. Block KSS methods.We are now ready to describe block KSS methods. For each
wave numberω = −N/2 + 1, . . . , N/2, we define

R0(ω) =
[

êω u
n

]
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and then compute theQR factorization

R0(ω) = X1(ω)B0(ω),

which yields

X1(ω) =
[

êω u
n
ω/‖un

ω‖2

]

, B0(ω) =

[

1 ê
H
ω u

n

0 ‖un
ω‖2

]

,

where

u
n
ω = u

n − êωê
H
ω u

n.

We then carry out the block Lanczos iteration described in (3.5) to obtain a block-tridiagonal
matrix

TK(ω) =















M1(ω) B1(ω)H

B1(ω) M2(ω) B2(ω)H

. . .
. ..

. ..
BK−2(ω) MK−1(ω) BK−1(ω)H

BK−1(ω) MK(ω)















.

Now, we can express each Fourier component of the approximate solution at the next time
step as

[ûn+1]ω =
[

BH
0 EH

12 exp(−TK(ω)∆t)E12B0

]

12
(3.6)

where

E12 =
[

e1 e2

]

=















1 0
0 1
0 0
...

...
0 0















.

The computation ofEH
12 exp(−TK(ω)∆t)E12 consists of evaluating the eigenvalues and eig-

envectors ofTK(ω), in order to obtain the nodes and weights for Gaussian quadrature, as
described earlier in this section.

3.3. Implementation. In [18], it was demonstrated that recursion coefficients for all
wave numbersω = −N/2+1, . . . , N/2, can be computed simultaneously by regarding them
as functions ofω, and using symbolic calculus to apply differential operators analytically as
much as possible. As a result, KSS methods requireO(N log N) floating-point operations
per time step, which is comparable to other time-stepping methods. The same approach can
be applied to block KSS methods. For both types of methods, itcan be shown that for aK-
node Gaussian rule or block Gaussian rule,K applications of the operatorLN to the previous
solutionu

n are needed.

4. Convergence analysis.We now examine the convergence of block KSS methods by
first investigating their consistency and stability. As shown in [13, 17], the original KSS
methods are high-order accurate in time, but are also explicit methods that possess stability
properties characteristic of implicit methods, so it is desired that block KSS methods share
both of these traits with their predecessors.
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4.1. Consistency.As shown in [7], the error in aK-node block Gaussian quadrature
rule of the form (3.4) is

R(f) =
f (2K)(η)

(2K)!

∫ b

a

2K
∏

j=1

(λ − λj) dµ(λ). (4.1)

It follows (see [2]) that the rule is exact for polynomials of degree up to2K − 1. The above
form of the remainder can be obtained using results from [19].

THEOREM 4.1. Let L be a self-adjointmth-order positive definite differential operator
onCp([0, 2π]) with coefficients inBLN ([0, 2π]), and letf ∈ BLN ([0, 2π]). Assume that for
eachω = −N/2 + 1, . . . , N/2, the recursion coefficients in (3.3) are computed on a2KN -
point uniform grid. Then a block KSS method that uses aK-node block Gaussian rule to
compute each Fourier component[û1]ω (ω = −N/2 + 1, . . . , N/2) of the solution to (1.1)-
(1.3), satisfies the relations

∣

∣[û1]ω − û(ω,∆t)
∣

∣ = O(∆t2K), ω = −N/2 + 1, . . . , N/2,

whereû(ω,∆t) is the corresponding Fourier component of the exact solution at time∆t.
Proof. The result follows immediately from the substitution off(λ) = e−λ∆t into the

quadrature error (4.1), and the elimination of spatial error from the computationof the recur-
sion coefficients, by refining the grid to the extent necessary to resolve all Fourier components
of pointwise products of functions.

4.2. Stability for the one-node case.WhenK = 1, we simply haveT1(ω) = M1(ω),
where

M1(ω) =

[

ê
H
ω LN êω ê

H
ω LNu

n
ω/‖un

ω‖2

[un
ω]

H
LN êω/‖un

ω‖2 u
H
ω LNu

n
ω/‖un

ω‖2
2

]

. (4.2)

We now examine the stability of the 1-node method in the case wherep(x) ≡ p = constant.
We then have

T1(ω) =

[

pω2 + q̄ ê
H
ω (q̃ · un

ω)/‖un
ω‖2

[un
ω]

H
(q̃ · êω)/‖un

ω‖2 [un
ω]HLNu

n
ω/‖un

ω‖2
2

]

, (4.3)

where the notation(u · v) is used to denote component-wise multiplication of the vectorsu

andv. We use the notationf to denote the mean of a functionf(x) defined on[0, 2π], and
defineq̃(x) = q(x) − q. We denote bỹq the vector with components[q̃]j = q̃(xj).

BecauseM1(ω) is Hermitian, we can write

M1(ω) = U1(ω)Λ1(ω)U1(ω)H .

The Fourier component[ûn+1]ω is then obtained as follows:

[ûn+1]ω =
[

B0(ω)H exp(−T1(ω)∆t)B0(ω)
]

12

=
[

B0(ω)HU1(ω) exp(−Λ1(ω)∆t)U1(ω)HB0(ω)
]

12

=
[

u11(ω)e−λ1(ω)∆t u12(ω)e−λ2(ω)∆t
]

[

u11(ω) u21(ω)

u12(ω) u22(ω)

] [

ê
H
ω u

n

‖un
ω‖2

]

= [|u11(ω)|2e−λ1(ω)∆t + |u12(ω)|2e−λ2(ω)∆t]êH
ω u

n

+[u11(ω)u21(ω)e−λ1(ω)∆t + u12(ω)u22(ω)e−λ2(ω)∆t]‖un
ω‖2.
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This simple form of the approximate solution operator yields the following result. For con-
venience, we denote bỹSN (∆t) the matrix such thatun+1 = S̃N (∆t)un, for givenN and

∆t, and writeS̃N (∆t)n in place of
[

S̃N (∆t)
]n

.

THEOREM 4.2. Let q(x) in (1.4) belong toBLM ([0, 2π]) for a fixed integerM . Then,
for the problem (1.1)-(1.3), the block KSS method withK = 1 is unconditionally stable. That
is, givenT > 0, there exists a constantCT , independent ofN and∆t, such that

‖S̃N (∆t)n‖ ≤ CT , (4.4)

for 0 ≤ n∆t ≤ T .
Proof. Becauseλi(ω) > λmin(LN ) > 0, and the rows and columns ofU1(ω) have unit

2-norm, it follows that
[

|u11(ω)|2e−λ1(ω)∆t + |u12(ω)|2e−λ2(ω)∆t
]

≤ e−λmin(LN )∆t.

We now consider the remaining portion of each Fourier component,
[

u11(ω)u21(ω)e−λ1(ω)∆t + u12(ω)u22(ω)e−λ2(ω)∆t
]

‖un
ω‖2.

By the orthogonality of the rows ofU1(ω), we can rewrite this as

u11(ω)u21(ω)
[

e−λ1(ω)∆t − e−λ2(ω)∆t
]

‖un
ω‖2.

By direct computation of the elements ofU1(ω), whose columns are the eigenvectors of
T1(ω), we obtain

u11(ω)u21(ω) = − ê
H
ω (q̃ · un

ω)

‖un
ω‖2

√

(pω2 + q̄ − [un
ω]HLNun

ω/‖un
ω‖2

2)
2 + 4(êH

ω LNun
ω)2/‖un

ω‖2
2

.

Furthermore, for each integerω and∆t ≥ 0, we have

|e−λ1(ω)∆t − e−λ2(ω)∆t| ≤ ∆t|λ2(ω) − λ1(ω)|.

To see this, note that at∆t = 0, gω(∆t) = e−λ1(ω)∆t − e−λ2(ω)∆t has slopeg′ω(0) =
λ2(ω) − λ1(ω). However, its slope becomes less steep as∆t increases from 0, because its
first and second derivatives at∆t = 0 are of opposite sign. Furthermore,gω(∆t) has only
one critical number and one inflection point, it approaches 0as∆t → ∞, and it is equal to
zero at∆t = 0. It follows that for each integerω,

∣

∣

∣
u11(ω)u21(ω)

[

e−λ1(ω)∆t − e−λ2(ω)∆t
]

‖un
ω‖2

∣

∣

∣
≤ C∆t|êω(q̃ · un)|,

where

C = sup
ω∈Z

λ1(ω) − λ2(ω)
√

(pω2 + q̄ − [un
ω]HLNun

ω/‖un
ω‖2

2)
2 + 4(êH

ω LNun
ω)2/‖un

ω‖2
2

,

the least upper bound of a sequence that converges to 1 as|ω| → ∞. We conclude that
∥

∥

∥
S̃N (∆t)

∥

∥

∥

2
≤ e(−λmin(L)+C‖q̃‖∞)∆t,

from which the result follows.
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We can now prove that the method converges. For convenience,we define the 2-norm of
a functionu(x, t) to be the vector 2-norm of the restriction ofu(x, t) to the spatial grid:

‖u(·, t)‖2 =





N−1
∑

j=0

|u(j∆x, t)|2




1/2

. (4.5)

We also say that a method is convergent of order(m,n) if there exist constantsCt andCx,
independent of the time step∆t and grid spacing∆x = 2π/N , such that

‖u(·, t) − u(·, t)‖2 ≤ Ct∆tm + Cx∆xn, 0 ≤ t ≤ T. (4.6)

THEOREM 4.3. Let the exact solutionu(x, t) of the problem (1.1)-(1.3) belong to
Cp([0, 2π]) for eacht in [0, T ]. Letq(x) in (1.4) belong toBLM ([0, 2π]) for some integerM .
Then, the 1-node block KSS method, applied to this problem, is convergent of order(1, p).

Proof. Let S(∆t) be the solution operator for the problem (1.1)-(1.3). As with S̃N (∆t),
we use the notationS(∆t)n in place of[S(∆t)]n for simplicity. For any nonnegative integern
and fixed grid sizeN , we define

En = N−1/2‖S(∆t)nf − S̃N (∆t)nf‖2. (4.7)

Then, there exist constantsC1, C2 andC such that

En+1 = N−1/2‖S(∆t)n+1f − S̃N (∆t)n+1f‖2

= N−1/2‖S(∆t)S(∆t)nf − S̃N (∆t)S̃N (∆t)nf‖2

= N−1/2‖S(∆t)S(∆t)nf − S̃N (∆t)S(∆t)nf

+S̃N (∆t)S(∆t)nf − S̃N (∆t)S̃N (∆t)nf‖2

≤ N−1/2‖S(∆t)S(∆t)nf − S̃N (∆t)S(∆t)nf‖
+N−1/2‖S̃N (∆t)S(∆t)nf − S̃N (∆t)S̃N (∆t)nf‖2

≤ N−1/2‖S(∆t)u(tn) − S̃N (∆t)u(tn)‖2 + ‖S̃N (∆t)‖2En

≤ C1∆t2 + C2∆t∆xp + eC∆tEn,

where the spatial error arises from the truncation of the Fourier series of the exact solution. It
follows that

En ≤ eCT − 1

eC∆t − 1
(C1∆t2 + C2∆t∆xp) ≤ C̃1∆t + C̃2∆xp, (4.8)

for constants̃C1 andC̃2 that depend only onT .
It is important to note that although stability and convergence were only shown for the

case where the leading coefficientp(x) is constant, it has been demonstrated that KSS meth-
ods exhibit similar stability on more general problems, such as in [13] where it was applied
to a second-order wave equation with time steps that greatlyexceeded the CFL limit. Fur-
thermore, [13] also introduced homogenizing similarity transformations that can be used to
extend the applicability of theoretical results concerning stability that were presented in that
paper, as well as the one given here.

4.3. Stability for the multi-node case.For the caseK > 1, we have

[ûn+1]ω = ê
H
ω u

n
2K
∑

j=1

|u1j(ω)|2e−λj(ω)∆t + ‖un
ω‖2

2K
∑

j=1

u1j(ω)u2j(ω)e−λj(ω)∆t.
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The first summation is bounded bye−λ1(L)∆t. The second summation is aK-node block
Gaussian quadrature approximation ofê

H
ω exp(−LN∆t)un

ω, which is given by

‖un
ω‖2[exp(−T1(ω)∆t)]12.

Its Taylor expansion begins as follows:

‖un
ω‖2

2K
∑

j=1

u1j(ω)u2j(ω)e−λj(ω)∆t = −∆t êH
ω (q̃ · un

ω) +
1

2
∆t2êH

ω L2
Nu

n
ω + O(∆t3).

Because

ê
H
ω L2

Nu
n
ω = 2pω2

ê
H
ω (q̃ · un

ω) + lower-order terms,

which is a negative scalar multiple of the first-order term inthe Taylor series of

ê
H
ω exp(−LN∆t)un

ω,

it follows that forω sufficiently large and∆t sufficiently small,
∣

∣

∣

∣

∣

∣

‖un
ω‖2

2K
∑

j=1

u1j(ω)u2j(ω)e−λj(ω)∆t

∣

∣

∣

∣

∣

∣

≤ ∆t|êH
ω (q̃ · un

ω)| = ∆t|êH
ω (q̃ · un)|. (4.9)

However, this is not sufficient to conclude that unconditional stability is achieved as in the
1-node case. Future work will continue this analysis, but Figure4.1 offers evidence of such
unconditional stability, in the form of a “proof by MATLAB ”. For several values ofω, we plot
the function

gω(∆t) =

∣

∣

∣

∣

‖un
ω‖2[exp(−T1(ω)∆t)]12

êH
ω (q̃ · un)

∣

∣

∣

∣

(4.10)

and observe thatgω(∆t) ≤ ∆t, that is, (4.9) holds, not just for sufficiently small∆x and∆t,
but forall ∆x ∈ (0, 2π] and∆t ∈ (0, T ]. This experiment was performed on the operator

Lu = −uxx + E+f0,1(x)u,

where the coefficientE+f0,1(x) is defined below in Section5.1, in such a way as to have the
smoothness of a function that is only once continuously differentiable.

5. Numerical results. In this section, we will present numerical results to compare the
original KSS method (as described in [13]) to the new block KSS method, when applied to
parabolic problems. The comparisons will focus on the accuracy of the temporal approxima-
tions employed by each method, for these reasons:

• parabolic problems tend to yield smooth solutions, so a Fourier interpolant defined
on a grid of reasonable size is sufficient to accurately represent the solution;

• is not straightforward to quantify the effect of the spatialdiscretization error on
the accuracy of Krylov subspace spectral methods, as it is two-fold. Unless grid
refinement is used during the Lanczos process, such error affects the recursion co-
efficients, which in turn affect the quadrature nodes and weights, and therefore the
accuracy of the temporal approximation of each component. The truncation of the
Fourier series introduces additional spatial error, depending on the smoothness of
the solution. A thorough analysis of the spatial discretization error will be deferred
for future work.

For convenience, we denote by KSS(K) the original KSS method withK Gaussian nodes,
and by KSS-B(K) the block KSS method withK block Gaussian nodes.
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FIGURE 4.1. Experimental verification that (4.9) holds for selected values of∆t andω. The functiongω(∆t)
is defined in (4.10). The solid red line is the lineg = ∆t.

5.1. Construction of test cases.We introduce some differential operators and functions
that will be used in the experiments described in this section. As most of these functions and
operators are randomly generated, we will denote byR1, R2, . . . the sequence of random
numbers obtained using MATLAB’s random number generatorrand after setting the gener-
ator to its initial state. These numbers are uniformly distributed on the interval(0, 1).

We will make frequent use of a two-parameter family of functions, defined on the interval
[0, 2π]. First, we define

f0
j,k(x) = Re

{

∑

|ω|<N/2
ω 6=0

f̂j(ω)(1 + |ω|)−(k+1)eiωx

}

, j, k = 0, 1, . . . , (5.1)

where

f̂j(ω) = RjN+2(ω+N/2)−1 + iRjN+2(ω+N/2). (5.2)

The parameterj indicates how many functions have been generated in this fashion since
setting MATLAB’s random number generator to its initial state, and the parameterk indicates
how smooth the function is. Figure5.1shows selected functions from this collection.

In many cases, it is necessary to ensure that a function is positive or negative, so we
define the translation operatorsE+ andE− by

E+f(x) = f(x) − min
x∈[0,2π]

f(x) + 1,

E−f(x) = f(x) − max
x∈[0,2π]

f(x) − 1.
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FIGURE 5.1. Functions from the collectionfj,k(x), for selected values ofj andk.

We define a similar two-parameter family of functions definedon the rectangle[0, 2π]×
[0, 2π]:

gj,k(x, y) = Re

{

∑

|ω|,|ξ|<N/2
ωξ 6=0

ĝj(ω, ξ)(1 + |ω|)−(k+1)(1 + |ξ|)−(k+1)ei(ωx+ξy)

}

, (5.3)

wherej andk are nonnegative integers, and

ĝj(ω, ξ) = RjN2+2[N(ω+N/2−1)+(ξ+N/2)]−1

+iRjN2+2[N(ω+N/2−1)+(ξ+N/2)]. (5.4)

Figure5.2shows selected functions from this collection.
In all experiments, the solutionsu(j)(x, t) are computed using time steps∆t = 2−j , for

j = 0, . . . , 5. Unless otherwise noted, the error estimates are obtained by computing

‖u(j)(·, 1) − u(5)(·, 1)‖
‖u(5)(·, 1)‖ .

This method of estimating the error assumes thatu(5)(x, t) is a sufficiently accurate approx-
imation to the exact solution. This assumption has been numerically verified, by compar-
ing u(5) against approximate solutions computed using establishedmethods, and by compar-
ing u(5) against solutions obtained using various methods with smaller time steps.

In [18] and in Section5.3of this paper, errors measured by comparison to exact solutions
of problems with source terms, further validate the convergence behavior. It should be noted
that we are not seeking a sharp estimate of the error, but rather an indication of the rate of
convergence, and for this goal it is sufficient to useu(5) as an approximation to the exact
solution.
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FIGURE 5.2. Functions from the collectiongj,k(x, y), for selected values ofj andk.

5.2. Constant leading coefficient.We now show the accuracy of our approach for
higher space dimensions. We solve a variable-coefficient heat equation with randomly gener-
ated coefficients as discussed in Section5.1.

First, we solve the parabolic problems

∂u

∂t
(x, t) − ∂2u

∂x2
(x, t) − E−f1,2(x)u(x, t) = 0, x ∈ (0, 2π), t > 0,

u(x, 0) = E+f0,3(x), 0 < x < 2π,

u(x, t) = u(x + 2π, t), t > 0,

(5.5)

and

∂u

∂t
(x, y, t) − ∆u(x, y, t) − E−g3,2(x, y)u(x, t) = 0, (x, y) ∈ (0, 2π)2,

t > 0,

u(x, y, 0) = E+g3,3(x, y), (x, y) ∈ (0, 2π)2,

u(x, y, t) = u(x + 2π, t) = u(x, y + 2π, t), t > 0,

(5.6)

In [18], it is shown that the methods for efficiently computing the recursion coefficients gen-
eralizes in a straightforward manner to higher spatial dimensions. The results are shown in
Figures5.3and5.4, and Tables5.1and5.2, and compared to those obtained using the original
KSS method. In the 2-D case, the variable coefficient of the PDE is smoothed to a greater
extent than in the 1-D case, because the prescribed decay rate of the Fourier coefficients is im-
posed in both thex- andy-directions. This results in greater accuracy in the 2-D case, which
is consistent with the result proved in [17] that the local truncation error varies linearly with
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FIGURE 5.3. (a) Top plot: estimates of relative error in the approximatesolution of (5.5) at T = 1. Solutions
are computed using the original 2-node KSS method (solid curve), and a 2-node block KSS method (dashed curve),
both withN = 128 grid points. (b) Bottom plot: estimates of relative error inthe approximate solution of the same
problem, using the same methods, withN = 256 grid points. In both cases, the methods use time steps∆t = 2−j ,
j = 0, . . . , 5.

the variation in the coefficients. We see that significantly greater accuracy, and temporal order
of accuracy, is obtained with block KSS methods, in both one and two space dimensions.

In an attempt to understand why the block KSS method is significantly more accurate, we
examine the approximate solution operator for the simple case ofK = 1. As shown in [13],
the original 1-node KSS method is equivalent to the simple splitting

S̃N (∆t) = e−C∆t(I − ∆tV ), (5.7)

whereL = C + V is a splitting of the differential operatorL, in which C is obtained by
averaging the coefficients ofL. On the other hand, the 1-node block KSS method is not
equivalent to such a splitting, because every node and weight of the quadrature rule used to
compute each Fourier component is influenced by the solutionfrom the previous time step.

Furthermore, an examination of the nodes for both methods reveals that, for the original
KSS method, all of the nodes used to compute[ûn+1]ω tend to be clustered aroundêH

ω LN êω,
whereas with the block KSS method half of the nodes are clustered near this value, and the
other half are clustered near[un

ω]HLNu
n
ω, so the previous solution plays a much greater role

in the construction of the quadrature rules. A similar effect was achieved with the original
KSS method by using a Gauss-Radau rule in which the prescribed node was an approximation
of the smallest eigenvalue ofLN , and while this significantly improved accuracy for parabolic
problems, as shown in [17], the solution-dependent approach used by the block methodmakes
more sense, especially if the initial data happens to be oscillatory.
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TABLE 5.1
Estimates of relative error and temporal order of convergence in the approximate solution of problem (5.5)

at T = 1, using 2-node original and block Krylov subspace spectral methods. Error is the relative difference, in the
2-norm, between approximate solutions and a solution computed using a smaller time step, since no exact solution
is available.N denotes the number of grid points and∆t denotes the time step used.

Method N ∆t Error Order
1 0.0025

1/2 0.00064
128 1/4 0.00014 2.21

1/8 2.8e-005
1/16 5.8e-006

KSS(2) 1/32 1.2e-006
1 0.0012

1/2 0.00035
256 1/4 8.2e-005 2.16

1/8 1.7e-005
1/16 3.4e-006
1/32 6.8e-007

1 1.5e-005
1/2 9.3e-007

128 1/4 8e-008 3.41
1/8 8.1e-009
1/16 9e-010

KSS-B(2) 1/32 1.1e-010
1 3.8e-006

1/2 2.8e-007
256 1/4 3e-008 3.24

1/8 3.6e-009
1/16 4.2e-010
1/32 5.1e-011

5.3. Variable leading coefficient.We now apply a 2-node block Krylov subspace spec-
tral method to the problem

ut = (a(x)ux)x + F (x, t), x ∈ (0, 2π), t > 0, (5.8)

where

F (x, t) = sin(x − t) + (a(x) sin(x − t))x. (5.9)

With periodic boundary conditions and the initial condition

u(x, 0) = cos x, (5.10)

the exact solution iscos(x − t). Fora(x), we use a smooth functionas(x) = E+f0
0,3(x), as

defined in (5.1). In [18], it was shown that the original KSS method compared favorably to
the standard ODE solvers provided in MATLAB in terms of accuracy and efficiency. We now
compare that method to our new block approach.

Table5.3 lists the relative errors for various time steps and grid sizes. The errors are
obtained by comparing the approximate solution to the knownexact solution in the 2-norm.
While the temporal order of accuracy and relative errors are comparable, it should be noted
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FIGURE 5.4. (a) Top plot: estimates of relative error in the approximatesolution of (5.6) at T = 1. Solutions
are computed using the original 2-node KSS method (solid curve), and a 2-node block KSS method (dashed curve),
both withN = 16 grid points per dimension. (b) Bottom plot: estimates of relative error in the approximate solution
of the same problem, using the same methods, withN = 32 grid points per dimension. In both cases, the methods
use time steps∆t = 2−j , j = 0, . . . , 5.

that for the block method, not only are the errors smaller, but at larger time steps they are much
less sensitive to the increase in the number of grid points than the original KSS method, which
loses some accuracy on the finer grid. The error estimates arealso plotted in Figure5.5.

5.4. Systems of coupled PDE.In [14], KSS methods were generalized to apply to sys-
tems of coupled PDE by choosing appropriate basis functions. The same basis functions can
readily be employed by the block approach. We therefore apply the original and block 2-node
KSS methods to the hyperbolic system

∂u

∂t
= f+

0,3(x)
∂v

∂x
+ f−

1,3(x)v(x, t), x ∈ (0, 2π), t > 0,

∂v

∂t
= f+

2,3(x)
∂u

∂x
+ f−

3,3(x)u(x, t), x ∈ (0, 2π), t > 0,

u(x, 0) = f+
4,3(x), x ∈ (0, 2π),

v(x, 0) = f+
5,3(x), x ∈ (0, 2π),

u(x, t) = u(x + 2π, t), t > 0,

v(x, t) = v(x + 2π, t), t > 0.

(5.11)

Figure5.6 and Table5.4 report the results of applying the original and block 2-nodeKSS
methods to this problem. We observe that both methods achieve the expected temporal order
of convergence, but once again block KSS methods are significantly more accurate.
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TABLE 5.2
Estimates of relative error and temporal order of convergence in the approximate solution of (5.6) at T = 1,

using 2-node original and block Krylov subspace spectral methods. Error is the relative difference, in the 2-norm,
between approximate solutions and a solution computed using a smaller time step.N denotes the number of grid
points per dimension, and∆t denotes the time step used.

Method N ∆t Error Order
1 0.0023

1/2 0.00059
16 1/4 0.00011 2.52

1/8 1.8e-005
1/16 2.7e-006

KSS(2) 1/32 3.7e-007
1 0.0018

1/2 0.00042
32 1/4 7.5e-005 2.63

1/8 1.1e-005
1/16 1.6e-006
1/32 2.1e-007

1 1.8e-005
1/2 2.3e-006

16 1/4 3.3e-007 3.02
1/8 4e-008
1/16 4.5e-009

KSS-B(2) 1/32 5.2e-010
1 4.6e-006

1/2 3.6e-007
32 1/4 3.6e-008 3.25

1/8 4.1e-009
1/16 4.9e-010
1/32 5.9e-011

Although it is straightforward to apply the block approach to systems of PDE as well as
scalar equations, the essential tasks of efficiently implementing the block algorithm, and an-
alyzing its stability for hyperbolic systems, are less straightforward. Furthermore, the spatial
discretization of such a system yields a system of ODEs of theform ut = Au whereA is
not necessarily symmetric, and while KSS methods have been successfully applied to such
systems (see [15]), it is necessary to investigate the limitations of this applicability, as the
unsymmetric Lanczos algorithm is much more susceptible to premature breakdown than its
symmetric counterpart.

5.5. The matrix exponential. We now consider the problem of computingw = e−A
v

for a given symmetric positive definite matrixA and vectorv. One approach, described
in [12], is to apply the Lanczos algorithm toA with initial vectorv to obtain, at the end of the
jth iteration, an orthogonal matrixXj and a tridiagonal matrixTj such thatXT

j AXj = Tj .
Then, we can compute the approximation

wj = e−A
v ≈ ‖v‖2Xje

−Tje1. (5.12)

However, the effectiveness of this approach, for generalv, depends on the eigenvalues ofA:
if the eigenvalues are not clustered, which is the case ifA arises from a stiff system of ODEs,
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FIGURE 5.5. (a) Top plot: estimates of relative error in the approximatesolution of (5.8), (5.10), (1.3), at
T = 1. Solutions are computed using the original 2-node KSS method (solid curve), and a 2-node block KSS
method (dashed curve). Both methods useN = 128 grid points. (b) Bottom plot: estimates of relative error in
the approximate solution of the same problem atT = 1. Solutions are computed using the same methods, with
N = 256 grid points. In both cases, the methods use time steps∆t = 2−j , j = 0, . . . , 5.

a good approximation cannot be obtained using a small numberof iterations. This can be
alleviated using an outer iteration of the form

w
m+1
j ≈ e−A∆t

w
m
j , m = 0, 1, . . . , w

0
j = v, (5.13)

for some∆t ≪ 1, where the total number of outer iterationsM satisfiesM∆t = 1. However,
this approach is not practical if∆t must be chosen very small.

An alternative is to use the approach employed by KSS methods, computing each compo-
nent ofw using its own approximation to the matrix exponential. Specifically, for the original
KSS method, we apply the Lanczos algorithm toA with initial vectorsej andej + δv, for
some small constantδ, whereej is thejth standard basis vector. For the block KSS method,
we apply the block Lanczos algorithm toA with initial blocksR0 =

[

ej v
]

. We then
use block Gaussian quadrature as described in Section3.1.

Figure5.7 and Table5.5 describe the results of applying all three methods in the case
whereA is aN × N symmetric positive definite matrix, withN = 64 andN = 128. The
elements ofA are given by

aij = −ρ|i−j|bij , (5.14)

whereρ = 0.2, the matrixB is defined byB = CT C, and thecij are random numbers uni-
formly distributed between 0 and 1, so thatA is, with high probability, diagonally dominant.
We use time steps∆t = 2−j , for j = 1, 2, . . . , 6, and compare our approximations to the
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TABLE 5.3
Estimates of relative error and temporal order of convergence in the approximate solution of (5.8), (5.10), (1.3),

using 2-node original and block Krylov subspace spectral methods. Error is the relative difference, in the 2-norm,
between the exact solutionu(x, t) = cos(x − t) and the computed solution atT = 1. N denotes the number of
grid points and∆t denotes the time step used.

Method N ∆t Error Order
1 5.8e-005

1/2 8.7e-006
128 1/4 1.3e-006 2.74

1/8 1.8e-007
1/16 2.7e-008

KSS(2) 1/32 4.3e-009
1 8.3e-005

1/2 1.2e-005
256 1/4 1.6e-006 2.89

1/8 2e-007
1/16 2.7e-008
1/32 3.7e-009

1 1.9e-005
1/2 1.6e-006

128 1/4 2.2e-007 2.7
1/8 4.1e-008
1/16 7.6e-009

KSS-B(2) 1/32 1.6e-009
1 1.9e-005

1/2 1.5e-006
256 1/4 2.1e-007 2.76

1/8 3.6e-008
1/16 6.8e-009
1/32 1.4e-009

vectorw obtained by using the MATLAB functionexpm. We see not only that the block KSS
method is significantly more accurate than both the originalKSS method and the Lanczos ap-
proximation given by (5.12), but it achieves the higher order of convergence, and the original
KSS method does not even converge at all, in fact diverging for the the larger matrix.

6. Discussion. In this concluding section, we consider various generalizations of the
problems and methods considered in this paper.

6.1. Higher space dimension.In [18], it is demonstrated how to compute the recursion
coefficientsαj andβj for operators of the formLu = −p∆u+ q(x, y)u, and the expressions
are straightforward generalizations of those given in Section 4.3 for the one-dimensional
case. It is therefore reasonable to suggest that, for operators of this form, the consistency
and stability results given here for the one-dimensional case generalize to higher dimensions.
This will be investigated in the near future.

6.2. Discontinuous coefficients.As shown in [18], discontinuous coefficients reduce
the accuracy of KSS methods, because they introduce significant spatial discretization error
into the computation of recursion coefficients. Furthermore, for the stability result reported
in this paper, the assumption that the coefficients are bandlimited is crucial. Regardless,
this result does not apply to problems in which the coefficients are particularly rough or
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FIGURE 5.6. (a) Top plot: estimates of relative error in the approximatesolution of (5.11) at T = 1. Solutions
are computed using the original 2-node KSS method (solid curve), and a 2-node block KSS method (dashed curve).
Both methods useN = 64 grid points for each unknown. (b) Bottom plot: estimates of relative error in the
approximate solution of the same problem atT = 1. Solutions are computed using the same methods, withN = 128
grid points for each unknown. In both cases, the methods use time steps∆t = 2−j , j = 0, . . . , 5.

discontinuous, because Gibbs’ phenomenon prevents their discrete Fourier transforms from
being uniformly bounded for allN . Ongoing work, described in [16], involves the use of the
polar decomposition (3.1) to alleviate difficulties caused by such coefficients.

6.3. The wave equation.In [11], KSS methods were applied to the second-order wave
equation with Dirichlet boundary conditions, thus demonstrating that they are applicable to
“true” IBVP, as opposed to the problems discussed in this paper that include periodic bound-
ary conditions. It was shown that each Fourier component of the solution is computed with
O(∆t4K) accuracy. The block KSS methods presented in this paper can easily be applied
to the wave equation, as only the integrands differ, not the quadrature rules. In [13], it was
shown that the 1-node KSS method for the wave equation, whichis 3rd-order accurate in
time, is unconditionally stable when the leading coefficient is constant. Stability analysis for
the block KSS methods applied to this problem still remains to be carried out.

6.4. Summary. We have proved that for parabolic variable-coefficient PDE,block KSS
methods are capable of computing Fourier components of the solution with greater accuracy
than the original KSS methods, and they possess similar stability properties. By pairing
the solution from the previous time step with each trial function in a block and applying
the Lanczos algorithm to them together, we obtain a block Gaussian quadrature rule that is
better suited to approximating a bilinear form involving both functions, than the approach
of perturbing Krylov subspaces in the direction of the solution. While the latter approach
has already shown much promise for the problem of computing the product of a function
of a matrix and a vector by employing componentwise approximations, we see that the new
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TABLE 5.4
Estimates of relative error and temporal order of convergence in the approximate solution of problem (5.11)

at T = 1, using 2-node original and block Krylov subspace spectral methods. Error is the relative difference, in the
2-norm, between approximate solutions and a solution computed using a smaller time step, since no exact solution
is available.N denotes the number of grid points and∆t denotes the time step used.

Method N ∆t Error Order
1 0.00096

1/2 0.0001
64 1/4 1.2e-005 3.02

1/8 1.4e-006
1/16 1.7e-007

KSS(2) 1/32 2.1e-008
1 0.0057

1/2 0.00043
128 1/4 0.00013 3.06

1/8 1.6e-005
1/16 5e-007
1/32 6e-008

1 0.00013
1/2 9.5e-006

64 1/4 9.2e-007 3
1/8 1e-007
1/16 1.2e-008

KSS-B(2) 1/32 1.5e-009
1 0.00012

1/2 1.4e-005
128 1/4 1.7e-006 3.01

1/8 2.7e-007
1/16 2.1e-008
1/32 2.6e-009

block approach shows even more promise, and for more generalproblems of this type.
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TABLE 5.5
Estimates of relative error and temporal order of convergence in the computation ofw = e−At

v using
original and block 3-node KSS methods, and the Lanczos algorithm as described in (5.12) with j = 3, whereA

is an N × N matrix defined in (5.14), andv is a discretization of the functionv(x) = 1 + sin x + sin 2x on
a uniformN -point grid, for N = 64 andN = 128. The vectorw is computed using the outer iteration (5.13),
with ∆t = 2−j , for j = 1, 1, . . . , 6.

Method N ∆t Error Order
1/2 0.092
1/4 0.025

64 1/8 0.0054 1.58
1/16 0.00096
1/32 0.00023

KSS(3) 1/64 0.0002
1/2 0.48
1/4 0.88

128 1/8 7 -2.37
1/16 2e+002
1/32 3.5e+002
1/64 9.6e+002
1/2 0.011
1/4 0.0032

64 1/8 0.00067 2.83
1/16 0.00011
1/32 1.4e-005

KSS-B(3) 1/64 1.8e-006
1/2 0.082
1/4 0.01

128 1/8 0.0023 2.6
1/16 0.00046
1/32 7.5e-005
1/64 1e-005
1/2 0.59
1/4 0.27

64 1/8 0.09 1.9
1/16 0.025
1/32 0.0067

Lanczos(3) 1/64 0.0017
1/2 0.83
1/4 0.54

128 1/8 0.24 1.71
1/16 0.084
1/32 0.025
1/64 0.0069


