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A ROBUST AND EFFICIENT PARALLEL SVD SOLVER
BASED ON RESTARTED LANCZOS BIDIAGONALIZATION *

VICENTE HERNANDEZ!, JOS E. ROMANT, AND ANDRES TOMAST

Abstract. Lanczos bidiagonalization is a competitive method for conmgué partial singular value decompo-
sition of a large sparse matrix, that is, when only a subséi@singular values and corresponding singular vectors
are required. However, a straightforward implementatiorhefalgorithm has the problem of loss of orthogonality
between computed Lanczos vectors, and some reorthogora@lizathnique must be applied. Also, an effective
restarting strategy must be used to prevent excessive guaivitiie cost of reorthogonalization per iteration. On the
other hand, if the method is to be implemented on a distributemhang parallel computer, then additional precau-
tions are required so that parallel efficiency is maintairethe number of processors increases.

In this paper, we present a Lanczos bidiagonalization ghaeeimplemented in SLEPc, a software library for
the solution of large, sparse eigenvalue problems on phcaifeputers. The solver is numerically robust and scales
well up to hundreds of processors.
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1. Introduction. The computation of singular subspaces associated witk taegest
or smallest singular values of a large, sparse (or strugfuratrix A is commonplace. Ex-
ample applications are the solution of discrete ill-poseabjems [L7], or the construction
of low-rank matrix approximations in areas such as signat@ssing 13] and information
retrieval p]. This paper focuses on Lanczos bidiagonalization, a nuethat can be compet-
itive in this context because it exploits matrix sparsity.

The problem of computing the singular value decompositi®vil) of a matrixA can
be formulated as an equivalent eigenvalue problem, usinig$tance the cross product ma-
trix A*A. The Lanczos bidiagonalization algorithm can be deducewh ftanczos tridiag-
onalization applied to these equivalent eigenproblemsréfore, it inherits the good prop-
erties as well as the implementation difficulties presentanczos-based eigensolvers. It is
possible to stop after a few Lanczos steps, in which case veéoRayleigh-Ritz approxima-
tions of the singular triplets. On the other hand, loss di@gbnality among Lanczos vectors
has to be dealt with, either by full reorthogonalization palcheaper alternative, such as par-
tial reorthogonalizationd5, 26]. Block variants of the method have been proposed; seg, e.g.
[16]. Also, in the case of slow convergence, restarting teagsdoecome very important in
order to keep the cost of reorthogonalization bounded. e techniques are intended for
numerical robustness as well as computational efficienasthErmore, if these properties are
to be maintained in the context of parallel computing, thedittonal tuning of the algorithm
may be required. Therefore, it becomes apparent that ingléng an industrial-strength
SVD solver based on Lanczos bidiagonalization requiregefacombination of a number
of different techniques.

In this paper, we present a thick restart Lanczos bidiagratédn procedure imple-
mented in SLEPc, the Scalable Library for Eigenvalue Probmmputations19, 20].

*Received November 30, 2007. Accepted July 18, 2008. Publishkne on January 19, 2009. Recommended
by Daniel Kressner.

fInstituto ITACA, Universidad Polécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
({vhernand,jroman,antodo }@itaca.upv.es ). Work partially supported by the Valencia Regional Ad-
ministration, Directorate of Research and Technology Teansinder grant number GV06/091, by Universidad
Politecnica de Valencia, under program number PAID-04-07, anchbyQentro para el Desarrollo Tecnologico
Industrial (CDTI) of the Spanish Ministry of Industry, Taosim and Commerce through the CDTEAM Project (Con-
sortium for the Development of Advanced Medicine Technasyi

68



ETNA
Kent State University
http://etna.math.kent.edu

PARALLEL SVD SOLVER BASED ON LANCZOS BIDIAGONALIZATION 69

The proposed Lanczos bidiagonalization algorithm is basefiill reorthogonalization
via iterated Classical Gram-Schmidt, and its main goal iethuce the number of synchro-
nization points in the parallel implementation, while ntaining numerical robustness and
fast convergence. Some of the techniques presented heeealger applied to the Arnoldi
eigensolver in a previous work by the authdt8][ The implemented bidiagonalization algo-
rithm is used as a basis for a thick-restarted SVD solverairto that proposed by Baglama
and Reichel ]].

The text is organized as follows. First, Sectidhd provide a general description of
the Lanczos bidiagonalization method, discuss how to déhllass of orthogonality among
Lanczos vectors, and review the thick-restarted strategyihgular value solvers. Then,
Section5 gives some details about the SLEPc implementation. Fin8kctionss and 7
show some numerical and performance results obtained gliniplementation.

2. Lanczos bidiagonalization. The singular value decomposition of anx n complex
matrix A can be written as

A=UxV*, (2.1)
whereU = [uq, ..., U] IS anm xm unitary matrix U*U = 1),V = [vq,...,v,]isannxn
unitary matrix ¢/ *V = I), andX is anm x n diagonal matrix with nonnegative real diagonal
entriesy;; = oy, fori = 1,...,min{m,n}. If Aisreal,U andV are real and orthogonal.

The vectorsy; are called the left singular vectors, theare the right singular vectors, and
the o; are the singular values. In this work, we will assume withoss of generality that
m > n. The singular values are labeled in descending oedek; oo > -+ - > o,.
The problem of computing the singular tripléts;, u;, v;) of A can be formulated as an
eigenvalue problem involving a Hermitian matrix related4toeither
1. thecross productmatrix, A* A, or
2. thecyclicmatrix, H(A) = [ /(1)* 61
The singular values are the nonnegative square roots ofgeev@lues of the cross product
matrix. This approach may imply a severe loss of accurachénstnallest singular values.
The cyclic matrix approach is an alternative proceduredataids this problem, at the expense
of significantly increasing the cost of the computation. éNibtat we could also consider the
alternative cross product matrixA*, but that approach is unfeasible under the assumption
thatm > n.
Computing the cross product matrix explicitly is not recoemded, especially in the case
of A sparse. Bidiagonalization was proposed by Golub and Katigraf a way of tridiago-
nalizing the cross product matrix without forming it exjliz. Consider the decomposition

A = PBQ", (2.2)

where P and () are unitary matrices, an® is anm x n upper bidiagonal matrix. Then
the tridiagonal matrix3* B is unitarily similar toA* A. Additionally, specific methods exist
(e.g., [L1]) that compute the singular values 8f without forming B* B. Therefore, after
computing the SVD of3,

B= XYY", (2.3)

it only remains to combine2(3) and @.2) to get the solution of the original probler.()
with U = PX andV = QY.

Bidiagonalization can be accomplished by means of Househdlansformations or al-
ternatively via Lanczos recurrences. The latter approaotore appropriate for sparse matrix
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computations and was already proposedLli],[hence it is sometimes referred to as Golub-
Kahan-Lanczos bidiagonalization.

The Lanczos bidiagonalization technique can be deriveoh fseveral equivalent per-
spectives. Consider a compact version#),

where the zero rows of the bidiagonal matrix have been rethawe, thereforepP, is now
anm x n matrix with orthonormal columngy,, is a unitary matrix of orden that is equal
to Q of (2.2), andB,, is a square matrix of order that can be written as

a3
ay [
az 3
B, = P, AQ, = . (2.4)
Qp—1 ﬁn—l
a’,L

The coefficients of this matrix are real and giverrby= p; Aq; andj3; = p; Aq;41, wherep;
andg; are the columns aP,, and@,,, respectively. Itis possible to derive a double recurrence
to compute these coefficients together with the vegtorandg;, since after choosing; as
an arbitrary unit vector, the other columnsif and@,, are determined uniquely (apart from
a sign change, and assumiddhas full rank andB,, is unreduced).

Pre-multiplying €.4) by P,,, we have the relationl@,, = P, B,,. Also, if we transpose
both sides ofZ.4) and pre-multiply byQ,,, we obtainA*P, = Q,,B;:. Equating the first
k < n columns of both relations results in

A* Py = QiBj;, + Brqiti€, (2.6)

where By, denotes thé& x k leading principal submatrix aB,,. Analogous expressions can
be written in vector form by equating thiéh column only,

Agj = Bi_1pj—1 + a;pj, (2.7)
A'pj = a;q; + Bigjt1-

These expressions directly yield the double recursion

ajp; = Agq; — Bj-1pj-1, (2.8)
Bigj+1 = A'pj — o4, (2.9)
with a; = ||Ag; — Bj—1pj—1ll2 and 3; = ||A*p; — «;q,||2, since the columns aP,, and

Q,, are normalized. The bidiagonalization algorithm is buittnh (2.8) and @.9); see Algo-
rithm 1.

Equations 2.5) and @.6) can be combined by pre-multiplying the first one by, result-
ing in

A" AQy, = Qi B}, By + axfBrqr 165 (2.10)

The matrixB; By, is symmetric positive definite and tridiagonal. The conidass that Algo-
rithm 1 computes the same information as the Lanczos tridiagaitadiz algorithm applied
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ALGORITHM 1 (Golub-Kahan-Lanczos Bidiagonalization).
Choose a unit-norm vectay
SetGy =0
Forj=1,2,... )k
pj = Aq; — Bj—1pj—1
a; = |Ip;l2
pj = pj/y
41 = A"pj — a;q;
Bi = lgj+1ll2
Gj+1 = qj+1/B;

end

to the Hermitian matrixA* A. In particular, the right Lanczos vectajs computed by Algo-
rithm 1 constitute an orthonormal basis of the Krylov subspace

Kr(A*A, q1) = span{q, A" Aqy, . . ., (A*A)k_lql}.

Another way of combiningZ.5) and @.6) is by pre-multiplying the second one by giving
in this case the equation

AA*P, = PkBkBZ + 6kAQk+lelt~

In contrast to 2.10), this equation does not represent a Lanczos decompqdimause the
vector Agx1 is not orthogonal tdP;, in general. However, usin@ (7) we get

AA* Py, = P,ByBj; + Bipres, + Butkr1Pri16)
= Pu(BikBj; + Bierer) + BrQhr1Pr+165,

where the matrixB;, B; + Biexe; is also symmetric positive definite and tridiagonal. Thus,
a similar conclusion can be drawn for matr4*, and the left Lanczos vectogg span the
Krylov subspacéeC, (AA*, py).

There is an alternative way of deriving Algorithinwhich further displays the intimate
relation between Lanczos bidiagonalization and the usmaétterm Lanczos tridiagonaliza-
tion. The idea is to apply the standard Lanczos algorithniéoctyclic matrix,H (A4), with
the special initial vector

q1

It can be shown that the generated Lanczos vectors are then

0 ] and zy; = [ B } 2.11)

J

and that the projected matrix aftek Lanczos steps is

[ 0 (5]
ap 0 B
Bi 0
Ty — az 0 f
B2 O

Qf
Qe 0
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That is, two steps of this procedure compute the same intiwmas one step of Algorithri.
Moreover, it is easy to show that there is an equivalencestoamation with the odd-even
permutation (also called perfect shuffle) that madps into the cyclic matrixH (By). Note
that, in a computer implementation, this procedure woulgiire about twice as much storage
as Algorithm1, unless the zero components in the Lanczos vectikl)(are not stored
explicitly.

Due to these equivalences, all the properties and impleatientconsiderations of Lanc-
zos tridiagonalization (se&], [24], [27] or [29]) carry over to Algorithml. In particular,
error bounds for Ritz approximations can be computed vesjlyeaAfter k Lanczos steps,
the Ritz valuess; (approximate singular values af) are computed as the singular values
of By, and the Ritz vectors are

U; = Pray, U = QrYi,

wherex; andy; are the left and right singular vectors 8. With these definitions, and
equationsZ.5-(2.6), it is easy to show that

~ ~ * ~ ~ ~ *
Av; = o515, A%y = 00; + Brgrr1€,i-

The residual norm associated to the Ritz singular trifieta,, v;), defined as

=

Irille = (1A% — &vtill3 + | A" % — 6:0:(13) *
can be cheaply computed as
[7ille = Brlerail. (2.12)

3. Dealing with loss of orthogonality. As in the case of the standard Lanczos tridiag-
onalization algorithm, Algorithni diverts from the expected behaviour when run in finite
precision arithmetic. In particular, after a sufficient rhanof steps the Lanczos vectors start
to lose their mutual orthogonality, and this happens tagretlith the appearance of repeated
and spurious Ritz values in the set of singular valueB pf

The simplest cure for this loss of orthogonality is full @gjonalization. In Lanczos bidi-
agonalization, two sets of Lanczos vectors are computdd|lsmthogonalization amounts to
orthogonalizing vectop; explicitly with respect to all the previously computed leétnczos
vectors, and orthogonalizing vectgy,; explicitly with respect to all the previously com-
puted right Lanczos vectors. Algorithenshows this variant with a modified Gram-Schmidt
(MGS) orthogonalization procedure. Note that in the corapai of p; it is no longer nec-
essary to subtract the terf_,p;_, since this is already done in the orthogonalization step;
a similar remark holds for the computationgf. ; .

This solution was already proposed in the seminal paper bybGand Kahan15], and
used in some of the first implementations, such as the blodorein [L6]. The main ad-
vantage of full orthogonalization is its robustness, siadbogonality is maintained to full
machine precision (provided that reorthogonalizatiomipleyed, see Sectionfor details).

Its main drawback is the high computational cost, which graw the iteration proceeds.

An alternative to full orthogonalization is to simply igrmotoss of orthogonality and
perform only local orthogonalization at every Lanczos sfEjpis technique has to carry out
a post-process of matriky;, in order to determine the correct multiplicity of the comguit
singular values as well as to discard the spurious onesghém further detalils.

Semiorthogonal techniques try to find a compromise betwekarid local orthogonal-
ization. One such technique is partial reorthogonalizgtid)], which uses a cheap recurrence
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ALGORITHM 2 (Lanczos Bidiagonalization with Full Orthogonalizatjon
Choose a unit-norm vectay
Forj=1,2,...,k

pj = Agj
Fori=1,2,....7—1
Y =Dpip;
Pj =Dj —VPi
end
a; = [|pjll2
pj =pj/oy
qjy1 = A'p;
Fori=1,2,...,5
Y =4 G+
qj+1 = qj+1 — V4G
end
Bi = lgj+1ll2
Gj+1 = j+1/ 0
end

to estimate the level of orthogonality, and applies someective measures when it drops be-
low a certain threshold. This technique has been adapte@iseh P5] to the particular case
of Lanczos bidiagonalization. In this case, two recurreraze necessary, one for monitoring
loss of orthogonality among right Lanczos vectors, and thermne for left Lanczos vectors.

However, these alternatives to full orthogonalizationrasevery meaningful in the con-
text of restarted variants, discussed in Sectortfirst, the basis size is limited so the cost
of full orthogonalization does not grow indefinitely. Sedoprurrently there is no reliable
theory background on how to adapt semiorthogonal techsitputhe case in which a restart
is performed. InT] an attempt is done to extend semi-orthogonalization asodked eigen-
vectors in the context of an explicitly restarted eigensplun the case of thick restart, the
technique employed in this paper, numerical experimentsechout by the authors show
that orthogonality with respect to restart vectors mustrifereed explicitly in each iteration,
negating the advantage of semiorthogonal techniques.

One-sided variant.There is a variation of Algorithrd that maintains the effectiveness of
full reorthogonalization, but with a considerably reducedt. This technique was proposed
by Simon and Zhadl]. The idea comes from the observation that, in the Lanczdisfo-
nalization procedure without reorthogonalization, theslef orthogonality of left and right
Lanczos vectors go hand in hand. If we quantify the level dfiagonality of the Lanczos
vectorsP; and();, computed in finite precision arithmetic, as

n(Py) = |1 = B;Pilla, n(Q;) = |1 —Q;Qslla,

then it can be observed that at a given Lanczos gtef P;) and(Q;) differ in no more
than an order of magnitude, except maybe wiignbecomes very ill-conditioned. This
observation led Simon and Zha to propose what they calledribesided version, shown in
Algorithm 3.

Note that the only difference of Algorith@with respect to Algorithn? is thatp; is no
longer orthogonalized explicitly. Still, numerical expeents carried out by Simon and Zha
show that the computeéj vectors maintain a similar level of orthogonality@;
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ALGORITHM 3 (One-Sided Lanczos Bidiagonalization).
Choose a unit-norm vectaj
Setfy =0
Forj=1,2,...,k

pj = Ag; — Bj—1pj—1
o = |lp;»
pj =pj/a;
qj+1 = A'p;
Fori=1,2,...,7
Y =G g+t
qj+1 = qj+1 — V4i
end
B = lgj+1ll2
Gj+1 = qj+1/5;
end

When the singular values of interest are the smallest ones, th may become ill-
conditioned. A robust implementation should track thisnévand revert to the two-sided
variant when a certain threshold is exceeded.

4. Restarted bidiagonalization. Restarting is a key aspect in the efficient implemen-
tation of projection-based eigensolvers, such as thosedb@s Arnoldi or Jacobi-Davidson.
This topic has motivated an intense research activity inmegears. These developments are
also applicable to Lanczos, especially if full reorthod@adion is employed. In this section,
we adapt the discussion to the context of Lanczos bidiagratein.

The number of iterations required in the Lanczos bidiagaatbn algorithm (i.e., the
value ofk) can be quite high if many singular triplets are requested, @so depends on
the distribution of the singular values, as convergencéois f1 the presence of clustered
singular values. Increasingtoo much may not be acceptable, since this implies a growth
in storage requirements and, sometimes more importangvetiyiof computational cost per
iteration in the case of full orthogonalization. To avoidstproblem, restarted variants limit
the maximum number of Lanczos steps to a fixed valuend when this value is reached the
computation is re-initiated. This can be done in different/s:

Explicit restart consists of rerunning the algorithm withbatter” initial vector. In Al-
gorithms 1-3, the initial vector isq;, so the easiest strategy is to replagewith the right
Ritz vector associated to the approximate dominant singalae. A block equivalent of this
technique was employed ia§]. In the case that many singular triplets are to be compitted,
is not evident how to build the ney . One possibility is to computg as a linear combina-
tion of a subset of the computed Ritz vectors, possibly apglg polynomial filter to remove
components in unwanted directions.

Implicit restart is a much better alternative that elimesathe need to explicitly compute
a new start vectog;. It consists of combining the Lanczos bidiagonalizatioogesss with
the implicitly shifted QR algorithm. Thé-step Lanczos relations described th5-(2.6)
are transformed and truncated to ordek k&, and then extended again to order The
procedure allows the small-size equations to retain thevaelt spectral information of the
full-size relations. A detailed description of this tealuné can be found in], [21], [23]
and [26].

An equivalent yet easier to implement alternative to impliestart is the so-called thick
restart, originally proposed in the context of Lanczosiagdnalization 2. We next de-
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scribe how this method can be adapted to Lanczos bidiagatialn, as proposed ii].

The main idea of thick-restarted Lanczos bidiagonalizaitoto reduce the fulk-step
Lanczos bidiagonalization2(5)-(2.6), to the following one

AQe+1 = Pri1Bega, 4.1)
A" Pryy = Qe By + Bey1des2€) 41, 4.2)

where the value of < & could be, for instance, the number of wanted singular vallias

key point here is to build the decomposition @f1)-(4.2) in such a way that it keeps the
relevant spectral information contained in the full decosipon. This is achieved directly
by setting the first columns ofQ,.,; to be the wanted approximate right singular vectors, and
analogously inP,. ; the corresponding approximate left singular vectors. ritli@ shown {]

that itis possible to easily build a decomposition thaiss@s these requirements, as described
in the following.

We start by defining),,, as

Qo1 = [01, D2, -+ ., Doy Q1) 4.3)

that is, the Ritz vector§; = Qy; together with the last Lanczos vector generated by Algo-
rithm 1. Note that this matrix has orthonormal columns bec#isg. 1 = 0 by construction.
Similarly, defineP,;, as

PZ-&-I = [ﬂ17a27"'aa€7ﬁf+l]a (44)

with @; = Ppa;, andpesq @ unit-norm vector computed @s,1 = f/||f|2, wheref is the
vector resulting from orthogonalizindq,; with respect to the first left Ritz vectorsi;,

¢
[ =Aqk41 — Zﬁzﬂz

i=1

It can be shown that the orthogonalization coefficients @odmputed ag; = (;e;x;; note
that these values are similar to the residual bound®.it?, but here the sign is relevant. The
new projected matrix is

o1 p1
g2 P2
By = :
o0 Pe
Q41

whereda,, 1 = [ f]|2, so that £.1) holds. To complete the form of a Lanczos bidiagonaliza-
tion, it only remains to defing,,1 andge» in (4.2), which turn out to b3, = ||g||» and
Ge+2 = g/l gll2, whereg = A*po1 — Gut1qp+1.

Itis shown in [L] that the Lanczos bidiagonalization relation is maintdifélgorithm 1
isrun forj = ¢+ 2,...,k, starting from the values Q§g+1 and g, o indicated above,
thus obtaining a new full-size decomposition. In this cdise,projected matrix is no longer
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ALGORITHM 4 (Thick-restart Lanczos Bidiagonalization).
Input: Matrix A, initial unit-norm vectory;, and number of steps
Output: ¢ < k Ritz triplets
1. Build an initial Lanczos bidiagonalization of order
2. Compute Ritz approximations of the singular triplets
3. Truncate to a Lanczos bidiagonalization of oréler
4. Extend to a Lanczos bidiagonalization of oréer
5. Check convergence and if not satisfied, go to step 2

bidiagonal, but it takes the form

o1 p1
02 P2

~ 0’ A
Bk — 4 ~p€
Qi1 Pott

g1 Pr-1
o

where the values without tilde are computed in the usual wigly Algorithm 1.

When carried out in an iterative fashion, the above procedas@ts in Algorithmd. The
step 4 can be executed by a variation of AlgoritBnas illustrated in Algorithnd. Starting
from the new initial vectorg, 1, this algorithm first computes the corresponding left @iiti
vectorpyy1, and then proceeds in the standard way.

ALGORITHM 5 (One-Sided Lanczos Bidiagonalization — restarted).
Det1 = Aqes
Fori=1,2,...,¢

De41 = Pey1 — PiDi
end
Forj=0¢+1,0+2,....k

a; = [pjll2

pj =i/

gj+1 = A*p;

Fori=1,2,...,j

Y =4 ¢+
dj+1 = 4j+1 — V4;
end

Bi = llgj+1ll2

Gj+1 = Qj+1/5;

Ifj <k

Pi+1 = Agjt1 — Bip;
end
end
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5. Parallelimplementation in SLEPc. This work is framed in the context of the SLEPc
project. SLEPc, the Scalable Library for Eigenvalue Prob@mputationsi9, 20, is a par-
allel software library intended for the solution of largpasse eigenvalue problems. A collec-
tion of eigensolvers is provided, that can be used for difietypes of eigenproblems, either
standard or generalized ones, both Hermitian and non-Heammivith either real or complex
arithmetic. SLEPc also provides built-in support for spadransformations such as shift-
and-invert. In addition, a mechanism for computing paiagular value decompositions
is also available, either via the associated eigenprob({emoss product or cyclic matrix) or
with Lanczos bidiagonalization as described in this paper.

SLEPc is an extension of PETSc, the Portable, Extensiblékitdor Scientific Com-
putation f], and therefore reuses part of its software infrastrugtpeeticularly the matrix
and vector data structures. PETSc uses a message-pasgjngnpming paradigm with stan-
dard data distribution of vectors and matrices, i.e., bgksdaf rows. With this distribution of
data across processors, parallelization of the Lanczasdadalization process (Algorithf)
amounts to carrying out the following three stages in pakall

1. Basis expansion. In the case of Lanczos bidiagonalizatiee method builds two
bases, one associated4cand another tod*, so this stage consists of a direct and transpose
sparse matrix-vector product. In many applications, th&imaector product operation can
be parallelized quite efficiently. This is the case in meakdd computations, in which, if
the mesh is correctly partitioned in compact subdomaintg deeds to be exchanged only
between processes owning neighbouring subdomains.

2. Orthogonalization. This stage consists of a series dbveperations such as inner
products, additions, and multiplications by a scalar.

3. Normalization. From the parallelization viewpoint, t@mputation of the norm is
equivalent to a vector inner product.

The matrix vector products at the core of the Lanczos proaessmplemented with
PETSc's MatMult and MatMultTranspose operations. Theseratjpns are optimized for
parallel sparse storage and even allow for matrix-freer-deéned matrix-vector product
operations; seed] for additional details. PETSc matrices are stored in casged sparse
row (CSR) format so the MatMult operation achieves good eanlemory efficiency. This
operation is implemented as a loop that traverses the nanfaatrix elements and stores
the resulting vector elements in order. However, the MatMahspose operation writes the
resulting vector elements in a non-consecutive orderjrigrirequent cache block copies to
main memory. This difference in performance is evident eigllg in the case of rectan-
gular matrices. In order to achieve good sequential effigieBLEPCc stores the matrit*
explicitly. This detall is transparent to the user and it bandeactivated to reduce memory
usage. We will center our discussion on the orthogonatinaaind normalization stages, and
assume that the implementation of the basis expansion labdéea The test cases used for
the performance analysis presented in Seciibave been chosen so that basis expansion has
a negligible impact on scalability. Also, in those matrities decision on the explicit storage
of A* makes little difference.

Vector addition and scaling operations can be paralleltzetlly, with no associated
communication. Therefore, the parallel efficiency of thihogonalization and normalization
steps only depends on how the required inner products aferped. The parallelization of
avector inner product requires a global reduction opengaa all-reduce addition), which on
distributed-memory platforms has a significant cost, gngaiith the number of processes.
Moreover, this operation represents a global synchranizgioint in the algorithm, thus
hampering scalability if done too often. Consequentlybglaeduction operations should
be eliminated whenever possible, for instance by groupaggther several inner products
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in a single reduction. The multiple-vector product openmataccomplishes all the individual
inner products with just one synchronization point and foyghe same communication cost
as just one inner product. A detailed analysis of these tgales applied to the Arnoldi
method for eigenproblems has been published by the auth@rs [

As a consequence, classical Gram-Schmidt (CGS) orthogatiah scales better than
the MGS procedure used in Algorithipbecause CGS computes all the required inner prod-
ucts with the unmodified vectar; .1, that is,c = Qg;+1, and this operation can be carried
out with a single communication. However, CGS is known to bmerical unstable when
implemented in finite precision arithmetic. This problemn & solved by iterating the CGS
procedure, until the resulting vector is sufficiently ogboal to working accuracy. We will
refer to this technique as selective reorthogonalizatidrsimple criterion can be used to
avoid unnecessary reorthogonalization ste&fys This criterion involves the computation of
the vector norms before and after the orthogonalizatiore Fdrallel overhead associated to
the first vector norm can be eliminated by joining its comneation with the inner products
corresponding to the computation of the orthogonalizatioefficientsc. The explicit com-
putation of the second norm can be avoided with a simple tgqakrused in14]. The basic
idea is to estimate this norm starting from the original n@¢b@fore the orthogonalization),
by simply applying the Pythagorean theorem as described iiatthis section. Usually, at
most one reorthogonalization is necessary in practicegpadth provision has to be made for
a second one to handle specially ill-conditioned cases.

Another parallel optimization that can be applied to Algjom 5 is to postpone the nor-
malization ofp; until after the orthogonalization af; ;. This allows for the union of two
global communications, thus eliminating one synchromzapoint. As a side effect, the
basis expansion has to be done with an unnormalized vectothis is not a problem pro-
vided that all the computed quantities are corrected as asdhe norm is available. This
technique was originally proposed i&F in the context of an Arnoldi eigensolver without
reorthogonalization.

Applying all the above mentioned optimizations to Algonitts results in Algorithmé.

In this algorithm, lines 7 and 14 are the CGS orthogonaliratitep, and lines 17 and 19
are the CGS reorthogonalization step. The selective regotialization criterion is checked
in line 16, typically with a value of) = 1//2 as suggested ird] 28]. In this expression,
p represents the norm gf_, before the orthogonalization. This value is computed expfj
as discussed later in this section. In contrast, the norenafthogonalizationy;, is estimated
in lines 15 and 20. These estimations are based on the folipvélation due to lines 14
and 19,

¢j+1 = Qi1 — Qjc, (5.1)

whereg;1 andqj,, denote the vector before and after reorthogonalizatiospeetively,
and Q¢ is the vector resulting from projecting, onto span{qi,q2,...,¢;}. In exact
arithmetic, qj ;4 i_s orthogonal_to this subspace and it is possible to applyPyteagorean
theorem to the right-angled triangle formed by these thestors

lgj+113 = lgjall3 + 1Qsell3 - (5.2)

Since the columns af; are orthonormal, the wanted norm can be computed as

i all = /gyl = 0, (5.3)

In deriving 6.3), we have assumed thl, , is orthogonal tapan{qi, g2, - .., ¢;} and
that the columns of); are orthonormal. These assumptions are not necessaigfieshin
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ALGORITHM 6 (One-Sided Lanczos Bidiag. — restarted, with enhanceshent

1 pot1 = Aqes
2 Fori=1,2,...,¢

3 Det1 = Pev1 — Pibi

4 end

5 Forj=¢0+1,0+42,... )k

6 gj+1=A"p;

7 c=Q5qj+

8 p=gj+1ll2

9 aj = |p;ll2

10 pj=ps/a

11 qj+1 = qj+1/

12 c=c/a;j

13 p=p/a;

14 Gj+1 = g1 — Qjc

15 Bi=1\/p? = g:l sz
16 If 8; <mnp

17 c=Qjqj+

18 p=gj+1ll2

19 Gj+1 = qj+1 — Q¢
20 B; = \V p? — ?:1 012
21 end

22 Qi1 = Qj+1/5;

23 Ifj <k

24 pj+1 = Agjt1 — Bip;
25 end

26 end

finite precision arithmetic, and for this reason we consitlas an estimation of the norm.
Usually, these estimates are very accurate becausg tbefficients are very small compared
to [|g; 413, that is,q;11 andg, , have roughly the same norm.

The first estimate (line 15) may be inaccuratg;if; is not fully orthogonal after the first
orthogonalization. This does not represent a problem ®ntdrmalization stage, because in
that case the criterion would force a reorthogonalizattep and then a new norm estimation
would be computed. Although the reorthogonalization dote may seem less trustworthy,
due to the use of estimates, the numerical experimentsideddn Sectiort reveal that this
algorithm is as robust as Algorith In very exceptional caselq; 1|3 could be as small
asd 7_, ¢Z, sothatitis safer to discard the estimate and to computedira explicitly. This
implementation detail is omitted from Algorithéin order to maintain its readability.

The second major enhancement incorporated into Algorshimthat the computation
of «; and the normalization of; are delayed until after the computationf., = A*p;
(these operations appear at the beginning of the loop inrilgo 5). Thus,¢;+1 must be
corrected with this factas; in line 11,

@1 = APy = A% 'p; = a; ' A'pj = a; g4, (5.4)
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102 F .

FIGURE 6.1. Maximum relative error for each of the test matrices.

wherep’; denotes the vectgy; after the normalization, ang . ; denotes the vectay; ., after
the correction. In lines 12 and 138andp are also corrected as

—1 —1 —1
d=Qidi = Qja; g1 = Qigin =0y ¢ (5.5)

P = djillz = oy gisallz = o gl = o5 . (5.6)

In Algorithm 6, the communications associated with operations in line€&n be joined
together in one multiple reduction message. In the same thaypperations in lines 17
and 18 can also be joined in one message. The rest of the iopstatith the exception of
the two matrix-vector products in lines 6 and 24, can be ebeekim parallel trivially (without
communication). Therefore, the parallel implementatibAlgorithm 6 needs only one (or
two if reorthogonalization is needed) global synchronara per iteration. This is a huge
improvement over Algorithnd, that hasj + 2 synchronizations per iteration.

6. Numerical results. Algorithms5 and6 are not equivalent when using finite preci-
sion arithmetic. Therefore, their numerical behaviour ningsanalyzed. In order to check the
accuracy of the computed singular values and vectors, suegded relative errors are com-
puted explicitly after the finalization of the Lanczos pregelf any of these values is greater
than the required tolerance, then the bound used in theistpppterion @.12) is considered
incorrect.

In this section, we perform an empirical test on a set of pgablem matrices, using
the implementation referred to in Sectibnwith standard double precision arithmetic. The
analysis consists of measuring the relative error when ctimgpthe 10 largest singular val-
ues of non-Hermitian matrices from the Harwell-Boeifig][and NEP P] collections. These
165 matrices come from a variety of real applications. Fdg test, the solver is config-
ured with tolerance equal t)~" and a maximum of 30 basis vectors. This relative error is
computed as

_ VI Av — ol + [[A*ui — o3
o

&i

(6.1)

for every converged singular value and its associated vectarsandu;.
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TABLE 7.1

Statistics and sequential execution times on Xeon clusteitie AF23560 matrix. Times are given in seconds
and percentages are computed with respect to total time.

Algorithm 5 Algorithm 6

Vector dot products 1,122 1,911
Matrix-vector products 116 116
Restarts 3 3
Total execution time 0.84 (100%) 1.22 (100%)
Vector dot products execution time 0.10 (12%) 0.22 (18%)
Vector AXPY execution time 0.36 (43%)  0.60 (49%)

Matrix-vector products execution time  0.34 (40%)  0.34 (28%

TABLE 7.2
Statistics and sequential execution times on Xeon clustarthe PRE2 matrix. Times are given in seconds
and percentages are computed with respect to total time.

Algorithm 5 Algorithm 6

Vector dot products 3,225 5,108
Matrix-vector products 300 300
Restarts 9 9
Total execution time 86.58 (100%) 82.42 (100%)
Vector dot products execution time 12.61 (15%) 14.27 (17%)
Vector AXPY execution time 56.26 (65%)  49.68 (60%)

Matrix-vector products execution time  12.97 (15%) 12.96%)

The results obtained running Algorithron these tests are shown in Figl, where each
dot corresponds to the maximum relative error for one matitkin the collections. Only
in three casesaRc130,wesT0156, andPORES1), both Algorithm6 and5 produce some
singular triplets with a residual larger than the toleraringhese cases, there is a difference of
six orders of magnitude between the largest and smallespetad singular values, and this
causes instability in the one-sided variants. Howeveggli@ge errors can be avoided simply
by explicitly reorthogonalizing the left Lanczos vectgrsat the end of the computation.

7. Performance analysis.In order to assess the parallel efficiency of the proposed al-
gorithm (Algorithm®6) and compare it with the original one (AlgorithB), several test cases
were analyzed on two different computer platforms. In adisth cases the solver was re-
quested to compute 10 eigenvalues with tolerance skt t6, using a maximum of 30 basis
vectors.

On one hand, two square matrices arising from real appticativere used for measuring
the parallel speed-up. These matrices are AF23560 (ordé6@3with 460,598 non-zero
elements) from the NEPZ] collection, and PRE2 (order 659,033 with 5,834,044 nomze
elements) from the University of Florida Sparse Matrix €otlon [LO]. The speed-up is
calculated as the ratio of elapsed time withbrocessors to the fastest elapsed time with one
processor. On the other hand, a synthetic test case is usaddlyzing the scalability of the
algorithm, measuring the scaled speed-up with variablblpno size.

The first machine consists of 55 biprocessor nodes with &®neon processors at
2.8 GHz with 2 Gbytes of RAM, interconnected with an SCI netwim a 2-D torus con-
figuration. SLEPc was built with Intel compilers (version 1@vith -O3 optimization level)
and the Intel MKL version 8.1 library. Due to memory hardweoatention problems, only
one processor per node was used in the tests reported irettisrs As shown in Tables.1
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FIGURE 7.2. Speed-up with AF23560 (left) and PRE2 (right) matrices omeastrum computer.

and7.2, both algorithms carry out the same number of matrix-vegtoducts and restarts for
both problems. Although Algorithré performs more vector dot products than Algoritm
due to reorthogonalization, the sequential executiongdiare similar, with an advantage of
the proposed algorithm for the larger problem. This is du¢ghtofact that CGS with re-
orthogonalization exploits the memory hierarchy bettentiMGS. These tables also show
the execution times for the different operations. The Isrgxecution time corresponds to
the vector AXPY operations that are used in the orthogoatidin phase and in the computa-
tion of the Ritz vectors during restart (Egs3and4.4). Regarding the benefits of explicitly
storing A* versus using MatMultTranspose, in these cases the gaindy/lperceptible, only
about 0.08% reduction in the overall time.

As expected, Figur&.1 shows that Algorithnt has better speed-up than Algorittsn
with the AF23560 matrix. However, both algorithms show adyspeed-up with the larger
PRE2 matrix. In this case, the communication time is shaddwethe high computational
cost of this problem and relative low number of processors.

These two tests were repeated on the MareNostrum computander to extend the
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FIGURE 7.3. Scaled speed-up (left) and MFlop/s rate per processor fyigith random tridiagonal matrix on
MareNostrum computer.

analysis to more processors. This computer is configuredcasster of 2,560 JS21 blades
interconnected with a Myrinet network. Each blade has twd BowerPC 970MP dual-core
processors at 2.3 GHz and 2 Gbytes of main memory. The IBM Xbi@giler with default
optimization and the ESSL library were used to build SLEPhe $equential behaviour of
the two algorithms on this machine is similar to the one reggbpreviously in Tables.1
and7.2 Results with the AF23560 and PRE2 matrices (Fig) show the clear advantage

of Algorithm 6 over Algorithm5 as the number of processors increases. The implementation
described in this work obtained a quasi-linear performamgeovement up to 384 processors
with the PREZ2 test problem.

In these fixed size problems, the work assigned to each mocegts smaller as the
number of processors increases, thus limiting the perfocamavith a large number of pro-
cessors. To minimize this effect, the size of local data nieskept constant, that is, the
matrix dimension must grow proportionally to the number mfqessorsp. For this analysis,
a square non-symmetric tridiagonal matrix with randomiestinas been used, with a dimen-
sion of 100,000 x p. The scaled speed-up shown in the left plot of Figis almost linear
up to 448 processors, with a slight advantage for Algorithrilowever, the proposed algo-
rithm has significantly better throughput and gets close¢h¢éomachine’s peak performance,
as shown in the right plot of Fig..3.

8. Discussion.In this paper, an optimized thick-restarted Lanczos bioliedjzation al-
gorithm has been proposed in order to improve parallel effiy in the context of singular
value solvers. This algorithm is based on one-sided fulthegonalization via iterated Clas-
sical Gram-Schmidt and its main goal is to reduce the numbsyrmchronization points in
their parallel implementation. The thick restart techiiduas proved to be effective in most
cases, guaranteeing fast convergence with moderate meatpryements.

The performance results presented in Sectishow that the proposed algorithm achieves
good parallel efficiency in all the test cases analyzed, aates well when increasing the
number of processors.

The SLEPc implementation of the algorithm analyzed in tlapgry represents an effi-
cient and robust way of computing a subset of the largesutngalues, together with the
associated singular vectors, of very large and sparseaeatimn parallel computers. How-



84

ETNA
Kent State University
http://etna.math.kent.edu

V. HERNANDEZ, J. E. ROMAN AND A. TOMAS

ever, the standard Rayleigh-Ritz projection used by theesas generally inappropriate for
computing small singular values. Therefore, as a futurekwibremains to implement also
the possibility of performing a harmonic Ritz projectios,@oposed in]].
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