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A ROBUST AND EFFICIENT PARALLEL SVD SOLVER
BASED ON RESTARTED LANCZOS BIDIAGONALIZATION ∗

VICENTE HERNÁNDEZ†, JOŚE E. ROMÁN†, AND ANDRÉS TOMÁS†

Abstract. Lanczos bidiagonalization is a competitive method for computing a partial singular value decompo-
sition of a large sparse matrix, that is, when only a subset of the singular values and corresponding singular vectors
are required. However, a straightforward implementation of the algorithm has the problem of loss of orthogonality
between computed Lanczos vectors, and some reorthogonalization technique must be applied. Also, an effective
restarting strategy must be used to prevent excessive growthof the cost of reorthogonalization per iteration. On the
other hand, if the method is to be implemented on a distributed-memory parallel computer, then additional precau-
tions are required so that parallel efficiency is maintained as the number of processors increases.

In this paper, we present a Lanczos bidiagonalization procedure implemented in SLEPc, a software library for
the solution of large, sparse eigenvalue problems on parallel computers. The solver is numerically robust and scales
well up to hundreds of processors.
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1. Introduction. The computation of singular subspaces associated with thek largest
or smallest singular values of a large, sparse (or structured) matrixA is commonplace. Ex-
ample applications are the solution of discrete ill-posed problems [17], or the construction
of low-rank matrix approximations in areas such as signal processing [13] and information
retrieval [5]. This paper focuses on Lanczos bidiagonalization, a method that can be compet-
itive in this context because it exploits matrix sparsity.

The problem of computing the singular value decomposition (SVD) of a matrixA can
be formulated as an equivalent eigenvalue problem, using for instance the cross product ma-
trix A∗A. The Lanczos bidiagonalization algorithm can be deduced from Lanczos tridiag-
onalization applied to these equivalent eigenproblems. Therefore, it inherits the good prop-
erties as well as the implementation difficulties present inLanczos-based eigensolvers. It is
possible to stop after a few Lanczos steps, in which case we obtain Rayleigh-Ritz approxima-
tions of the singular triplets. On the other hand, loss of orthogonality among Lanczos vectors
has to be dealt with, either by full reorthogonalization or by a cheaper alternative, such as par-
tial reorthogonalization [25, 26]. Block variants of the method have been proposed; see, e.g.,
[16]. Also, in the case of slow convergence, restarting techniques become very important in
order to keep the cost of reorthogonalization bounded. All these techniques are intended for
numerical robustness as well as computational efficiency. Furthermore, if these properties are
to be maintained in the context of parallel computing, then additional tuning of the algorithm
may be required. Therefore, it becomes apparent that implementing an industrial-strength
SVD solver based on Lanczos bidiagonalization requires a careful combination of a number
of different techniques.

In this paper, we present a thick restart Lanczos bidiagonalization procedure imple-
mented in SLEPc, the Scalable Library for Eigenvalue Problem Computations [19, 20].
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Politécnica de Valencia, under program number PAID-04-07, and by the Centro para el Desarrollo Tecnologico
Industrial (CDTI) of the Spanish Ministry of Industry, Tourism and Commerce through the CDTEAM Project (Con-
sortium for the Development of Advanced Medicine Technologies).

68



ETNA
Kent State University 

http://etna.math.kent.edu

PARALLEL SVD SOLVER BASED ON LANCZOS BIDIAGONALIZATION 69

The proposed Lanczos bidiagonalization algorithm is basedon full reorthogonalization
via iterated Classical Gram-Schmidt, and its main goal is toreduce the number of synchro-
nization points in the parallel implementation, while maintaining numerical robustness and
fast convergence. Some of the techniques presented here were also applied to the Arnoldi
eigensolver in a previous work by the authors [18]. The implemented bidiagonalization algo-
rithm is used as a basis for a thick-restarted SVD solver similar to that proposed by Baglama
and Reichel [1].

The text is organized as follows. First, Sections2-4 provide a general description of
the Lanczos bidiagonalization method, discuss how to deal with loss of orthogonality among
Lanczos vectors, and review the thick-restarted strategy for singular value solvers. Then,
Section5 gives some details about the SLEPc implementation. Finally, Sections6 and 7
show some numerical and performance results obtained with this implementation.

2. Lanczos bidiagonalization.The singular value decomposition of anm×n complex
matrixA can be written as

A = UΣV ∗, (2.1)

whereU = [u1, . . . , um] is anm×m unitary matrix (U∗U = I), V = [v1, . . . , vn] is ann×n
unitary matrix (V ∗V = I), andΣ is anm×n diagonal matrix with nonnegative real diagonal
entriesΣii = σi, for i = 1, . . . ,min{m,n}. If A is real,U andV are real and orthogonal.
The vectorsui are called the left singular vectors, thevi are the right singular vectors, and
theσi are the singular values. In this work, we will assume withoutloss of generality that
m ≥ n. The singular values are labeled in descending order,σ1 ≥ σ2 ≥ · · · ≥ σn.

The problem of computing the singular triplets(σi, ui, vi) of A can be formulated as an
eigenvalue problem involving a Hermitian matrix related toA, either

1. thecross productmatrix,A∗A, or

2. thecyclicmatrix,H(A) =

[

0 A
A∗ 0

]

.

The singular values are the nonnegative square roots of the eigenvalues of the cross product
matrix. This approach may imply a severe loss of accuracy in the smallest singular values.
The cyclic matrix approach is an alternative procedure thatavoids this problem, at the expense
of significantly increasing the cost of the computation. Note that we could also consider the
alternative cross product matrixAA∗, but that approach is unfeasible under the assumption
thatm ≥ n.

Computing the cross product matrix explicitly is not recommended, especially in the case
of A sparse. Bidiagonalization was proposed by Golub and Kahan [15] as a way of tridiago-
nalizing the cross product matrix without forming it explicitly. Consider the decomposition

A = PBQ∗, (2.2)

whereP andQ are unitary matrices, andB is anm × n upper bidiagonal matrix. Then
the tridiagonal matrixB∗B is unitarily similar toA∗A. Additionally, specific methods exist
(e.g., [11]) that compute the singular values ofB without formingB∗B. Therefore, after
computing the SVD ofB,

B = XΣY ∗, (2.3)

it only remains to combine (2.3) and (2.2) to get the solution of the original problem (2.1)
with U = PX andV = QY .

Bidiagonalization can be accomplished by means of Householder transformations or al-
ternatively via Lanczos recurrences. The latter approach is more appropriate for sparse matrix
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computations and was already proposed in [15], hence it is sometimes referred to as Golub-
Kahan-Lanczos bidiagonalization.

The Lanczos bidiagonalization technique can be derived from several equivalent per-
spectives. Consider a compact version of (2.2),

A = PnBnQ∗

n,

where the zero rows of the bidiagonal matrix have been removed and, therefore,Pn is now
anm × n matrix with orthonormal columns,Qn is a unitary matrix of ordern that is equal
to Q of (2.2), andBn is a square matrix of ordern that can be written as

Bn = P ∗

nAQn =



















α1 β1

α2 β2

α3 β3

. . .
. ..

αn−1 βn−1

αn



















. (2.4)

The coefficients of this matrix are real and given byαj = p∗jAqj andβj = p∗jAqj+1, wherepj

andqj are the columns ofPn andQn, respectively. It is possible to derive a double recurrence
to compute these coefficients together with the vectorspj andqj , since after choosingq1 as
an arbitrary unit vector, the other columns ofPn andQn are determined uniquely (apart from
a sign change, and assumingA has full rank andBn is unreduced).

Pre-multiplying (2.4) by Pn, we have the relationAQn = PnBn. Also, if we transpose
both sides of (2.4) and pre-multiply byQn, we obtainA∗Pn = QnB∗

n. Equating the first
k < n columns of both relations results in

AQk = PkBk, (2.5)

A∗Pk = QkB∗

k + βkqk+1e
∗

k, (2.6)

whereBk denotes thek × k leading principal submatrix ofBn. Analogous expressions can
be written in vector form by equating thejth column only,

Aqj = βj−1pj−1 + αjpj , (2.7)

A∗pj = αjqj + βjqj+1.

These expressions directly yield the double recursion

αjpj = Aqj − βj−1pj−1, (2.8)

βjqj+1 = A∗pj − αjqj , (2.9)

with αj = ‖Aqj − βj−1pj−1‖2 andβj = ‖A∗pj − αjqj‖2, since the columns ofPn and
Qn are normalized. The bidiagonalization algorithm is built from (2.8) and (2.9); see Algo-
rithm 1.

Equations (2.5) and (2.6) can be combined by pre-multiplying the first one byA∗, result-
ing in

A∗AQk = QkB∗

kBk + αkβkqk+1e
∗

k. (2.10)

The matrixB∗

kBk is symmetric positive definite and tridiagonal. The conclusion is that Algo-
rithm 1 computes the same information as the Lanczos tridiagonalization algorithm applied
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ALGORITHM 1 (Golub-Kahan-Lanczos Bidiagonalization).
Choose a unit-norm vectorq1

Setβ0 = 0
For j = 1, 2, . . . , k

pj = Aqj − βj−1pj−1

αj = ‖pj‖2

pj = pj/αj

qj+1 = A∗pj − αjqj

βj = ‖qj+1‖2

qj+1 = qj+1/βj

end

to the Hermitian matrixA∗A. In particular, the right Lanczos vectorsqj computed by Algo-
rithm 1 constitute an orthonormal basis of the Krylov subspace

Kk(A∗A, q1) = span{q1, A
∗Aq1, . . . , (A

∗A)k−1q1}.
Another way of combining (2.5) and (2.6) is by pre-multiplying the second one byA, giving
in this case the equation

AA∗Pk = PkBkB∗

k + βkAqk+1e
∗

k.

In contrast to (2.10), this equation does not represent a Lanczos decomposition, because the
vectorAqk+1 is not orthogonal toPk, in general. However, using (2.7) we get

AA∗Pk = PkBkB∗

k + β2
kpke∗k + βkαk+1pk+1e

∗

k

= Pk(BkB∗

k + β2
keke∗k) + βkαk+1pk+1e

∗

k,

where the matrixBkB∗

k + β2
keke∗k is also symmetric positive definite and tridiagonal. Thus,

a similar conclusion can be drawn for matrixAA∗, and the left Lanczos vectorspj span the
Krylov subspaceKk(AA∗, p1).

There is an alternative way of deriving Algorithm1, which further displays the intimate
relation between Lanczos bidiagonalization and the usual three-term Lanczos tridiagonaliza-
tion. The idea is to apply the standard Lanczos algorithm to the cyclic matrix,H(A), with
the special initial vector

z1 =

[

0
q1

]

.

It can be shown that the generated Lanczos vectors are then

z2j−1 =

[

0
qj

]

and z2j =

[

pj

0

]

, (2.11)

and that the projected matrix after2k Lanczos steps is

T2k =

























0 α1

α1 0 β1

β1 0 α2

α2 0 β2

β2 0
. ..

. ..
. .. αk

αk 0

























.
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That is, two steps of this procedure compute the same information as one step of Algorithm1.
Moreover, it is easy to show that there is an equivalence transformation with the odd-even
permutation (also called perfect shuffle) that mapsT2k into the cyclic matrixH(Bk). Note
that, in a computer implementation, this procedure would require about twice as much storage
as Algorithm1, unless the zero components in the Lanczos vectors (2.11) are not stored
explicitly.

Due to these equivalences, all the properties and implementation considerations of Lanc-
zos tridiagonalization (see [3], [24], [27] or [29]) carry over to Algorithm1. In particular,
error bounds for Ritz approximations can be computed very easily. After k Lanczos steps,
the Ritz values̃σi (approximate singular values ofA) are computed as the singular values
of Bk, and the Ritz vectors are

ũi = Pkxi, ṽi = Qkyi,

wherexi andyi are the left and right singular vectors ofBk. With these definitions, and
equations (2.5)-(2.6), it is easy to show that

Aṽi = σ̃iũi, A∗ũi = σ̃iṽi + βkqk+1e
∗

kxi.

The residual norm associated to the Ritz singular triplet(σ̃i, ũi, ṽi), defined as

‖ri‖2 =
(

‖Aṽi − σ̃iũi‖2
2 + ‖A∗ũi − σ̃iṽi‖2

2

)
1

2 ,

can be cheaply computed as

‖ri‖2 = βk|e∗kxi|. (2.12)

3. Dealing with loss of orthogonality. As in the case of the standard Lanczos tridiag-
onalization algorithm, Algorithm1 diverts from the expected behaviour when run in finite
precision arithmetic. In particular, after a sufficient number of steps the Lanczos vectors start
to lose their mutual orthogonality, and this happens together with the appearance of repeated
and spurious Ritz values in the set of singular values ofBj .

The simplest cure for this loss of orthogonality is full orthogonalization. In Lanczos bidi-
agonalization, two sets of Lanczos vectors are computed, sofull orthogonalization amounts to
orthogonalizing vectorpj explicitly with respect to all the previously computed leftLanczos
vectors, and orthogonalizing vectorqj+1 explicitly with respect to all the previously com-
puted right Lanczos vectors. Algorithm2 shows this variant with a modified Gram-Schmidt
(MGS) orthogonalization procedure. Note that in the computation ofpj it is no longer nec-
essary to subtract the termβj−1pj−1, since this is already done in the orthogonalization step;
a similar remark holds for the computation ofqj+1.

This solution was already proposed in the seminal paper by Golub and Kahan [15], and
used in some of the first implementations, such as the block version in [16]. The main ad-
vantage of full orthogonalization is its robustness, sinceorthogonality is maintained to full
machine precision (provided that reorthogonalization is employed, see Section5 for details).
Its main drawback is the high computational cost, which grows as the iteration proceeds.

An alternative to full orthogonalization is to simply ignore loss of orthogonality and
perform only local orthogonalization at every Lanczos step. This technique has to carry out
a post-process of matrixT2k in order to determine the correct multiplicity of the computed
singular values as well as to discard the spurious ones; see [8] for further details.

Semiorthogonal techniques try to find a compromise between full and local orthogonal-
ization. One such technique is partial reorthogonalization [30], which uses a cheap recurrence
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ALGORITHM 2 (Lanczos Bidiagonalization with Full Orthogonalization).
Choose a unit-norm vectorq1

For j = 1, 2, . . . , k
pj = Aqj

For i = 1, 2, . . . , j − 1
γ = p∗i pj

pj = pj − γpi

end
αj = ‖pj‖2

pj = pj/αj

qj+1 = A∗pj

For i = 1, 2, . . . , j
γ = q∗i qj+1

qj+1 = qj+1 − γqi

end
βj = ‖qj+1‖2

qj+1 = qj+1/βj

end

to estimate the level of orthogonality, and applies some corrective measures when it drops be-
low a certain threshold. This technique has been adapted by Larsen [25] to the particular case
of Lanczos bidiagonalization. In this case, two recurrences are necessary, one for monitoring
loss of orthogonality among right Lanczos vectors, and the other one for left Lanczos vectors.

However, these alternatives to full orthogonalization arenot very meaningful in the con-
text of restarted variants, discussed in Section4. First, the basis size is limited so the cost
of full orthogonalization does not grow indefinitely. Second, currently there is no reliable
theory background on how to adapt semiorthogonal techniques to the case in which a restart
is performed. In [7] an attempt is done to extend semi-orthogonalization also to locked eigen-
vectors in the context of an explicitly restarted eigensolver. In the case of thick restart, the
technique employed in this paper, numerical experiments carried out by the authors show
that orthogonality with respect to restart vectors must be enforced explicitly in each iteration,
negating the advantage of semiorthogonal techniques.

One-sided variant.There is a variation of Algorithm2 that maintains the effectiveness of
full reorthogonalization, but with a considerably reducedcost. This technique was proposed
by Simon and Zha [31]. The idea comes from the observation that, in the Lanczos bidiago-
nalization procedure without reorthogonalization, the level of orthogonality of left and right
Lanczos vectors go hand in hand. If we quantify the level of orthogonality of the Lanczos
vectorsP̂j andQ̂j , computed in finite precision arithmetic, as

η(P̂j) = ‖I − P̂ ∗

j P̂j‖2, η(Q̂j) = ‖I − Q̂∗

j Q̂j‖2,

then it can be observed that at a given Lanczos stepj, η(P̂j) andη(Q̂j) differ in no more
than an order of magnitude, except maybe whenBj becomes very ill-conditioned. This
observation led Simon and Zha to propose what they called theone-sided version, shown in
Algorithm 3.

Note that the only difference of Algorithm3 with respect to Algorithm2 is thatpj is no
longer orthogonalized explicitly. Still, numerical experiments carried out by Simon and Zha
show that the computed̂Pj vectors maintain a similar level of orthogonality asQ̂j .
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ALGORITHM 3 (One-Sided Lanczos Bidiagonalization).
Choose a unit-norm vectorq1

Setβ0 = 0
For j = 1, 2, . . . , k

pj = Aqj − βj−1pj−1

αj = ‖pj‖2

pj = pj/αj

qj+1 = A∗pj

For i = 1, 2, . . . , j
γ = q∗i qj+1

qj+1 = qj+1 − γqi

end
βj = ‖qj+1‖2

qj+1 = qj+1/βj

end

When the singular values of interest are the smallest ones, then Bj may become ill-
conditioned. A robust implementation should track this event and revert to the two-sided
variant when a certain threshold is exceeded.

4. Restarted bidiagonalization. Restarting is a key aspect in the efficient implemen-
tation of projection-based eigensolvers, such as those based on Arnoldi or Jacobi-Davidson.
This topic has motivated an intense research activity in recent years. These developments are
also applicable to Lanczos, especially if full reorthogonalization is employed. In this section,
we adapt the discussion to the context of Lanczos bidiagonalization.

The number of iterations required in the Lanczos bidiagonalization algorithm (i.e., the
value ofk) can be quite high if many singular triplets are requested, and also depends on
the distribution of the singular values, as convergence is slow in the presence of clustered
singular values. Increasingk too much may not be acceptable, since this implies a growth
in storage requirements and, sometimes more important, a growth of computational cost per
iteration in the case of full orthogonalization. To avoid this problem, restarted variants limit
the maximum number of Lanczos steps to a fixed valuek, and when this value is reached the
computation is re-initiated. This can be done in different ways.

Explicit restart consists of rerunning the algorithm with a“better” initial vector. In Al-
gorithms1-3, the initial vector isq1, so the easiest strategy is to replaceq1 with the right
Ritz vector associated to the approximate dominant singular value. A block equivalent of this
technique was employed in [16]. In the case that many singular triplets are to be computed,it
is not evident how to build the newq1. One possibility is to computeq1 as a linear combina-
tion of a subset of the computed Ritz vectors, possibly applying a polynomial filter to remove
components in unwanted directions.

Implicit restart is a much better alternative that eliminates the need to explicitly compute
a new start vectorq1. It consists of combining the Lanczos bidiagonalization process with
the implicitly shifted QR algorithm. Thek-step Lanczos relations described in (2.5)-(2.6)
are transformed and truncated to orderℓ < k, and then extended again to orderk. The
procedure allows the small-size equations to retain the relevant spectral information of the
full-size relations. A detailed description of this technique can be found in [6], [21], [23]
and [26].

An equivalent yet easier to implement alternative to implicit restart is the so-called thick
restart, originally proposed in the context of Lanczos tridiagonalization [32]. We next de-
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scribe how this method can be adapted to Lanczos bidiagonalization, as proposed in [1].

The main idea of thick-restarted Lanczos bidiagonalization is to reduce the fullk-step
Lanczos bidiagonalization, (2.5)-(2.6), to the following one

AQ̃ℓ+1 = P̃ℓ+1B̃ℓ+1, (4.1)

A∗P̃ℓ+1 = Q̃ℓ+1B̃
∗

ℓ+1 + β̃ℓ+1q̃ℓ+2e
∗

k+1, (4.2)

where the value ofℓ < k could be, for instance, the number of wanted singular values. The
key point here is to build the decomposition of (4.1)-(4.2) in such a way that it keeps the
relevant spectral information contained in the full decomposition. This is achieved directly
by setting the firstℓ columns ofQ̃ℓ+1 to be the wanted approximate right singular vectors, and
analogously inP̃ℓ+1 the corresponding approximate left singular vectors. It can be shown [1]
that it is possible to easily build a decomposition that satisfies these requirements, as described
in the following.

We start by defining̃Qℓ+1 as

Q̃ℓ+1 = [ṽ1, ṽ2, . . . , ṽℓ, qk+1] , (4.3)

that is, the Ritz vectors̃vi = Qkyi together with the last Lanczos vector generated by Algo-
rithm 1. Note that this matrix has orthonormal columns becauseQ∗

kqk+1 = 0 by construction.
Similarly, defineP̃ℓ+1 as

P̃ℓ+1 = [ũ1, ũ2, . . . , ũℓ, p̃ℓ+1] , (4.4)

with ũi = Pkxi, andp̃ℓ+1 a unit-norm vector computed as̃pℓ+1 = f/‖f‖2, wheref is the
vector resulting from orthogonalizingAqk+1 with respect to the firstℓ left Ritz vectors,̃ui,

f = Aqk+1 −
ℓ

∑

i=1

ρ̃iũi.

It can be shown that the orthogonalization coefficients can be computed as̃ρi = βke∗kxi; note
that these values are similar to the residual bounds in (2.12), but here the sign is relevant. The
new projected matrix is

B̃ℓ+1 =















σ̃1 ρ̃1

σ̃2 ρ̃2

.. .
...

σ̃ℓ ρ̃ℓ

α̃ℓ+1















,

whereα̃ℓ+1 = ‖f‖2, so that (4.1) holds. To complete the form of a Lanczos bidiagonaliza-
tion, it only remains to definẽβℓ+1 andq̃ℓ+2 in (4.2), which turn out to bẽβℓ+1 = ‖g‖2 and
q̃ℓ+2 = g/‖g‖2, whereg = A∗p̃ℓ+1 − α̃ℓ+1qk+1.

It is shown in [1] that the Lanczos bidiagonalization relation is maintained if Algorithm 1
is run for j = ℓ + 2, . . . , k, starting from the values of̃βℓ+1 and q̃ℓ+2 indicated above,
thus obtaining a new full-size decomposition. In this case,the projected matrix is no longer
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ALGORITHM 4 (Thick-restart Lanczos Bidiagonalization).
Input: MatrixA, initial unit-norm vectorq1, and number of stepsk
Output:ℓ ≤ k Ritz triplets

1. Build an initial Lanczos bidiagonalization of orderk
2. Compute Ritz approximations of the singular triplets
3. Truncate to a Lanczos bidiagonalization of orderℓ
4. Extend to a Lanczos bidiagonalization of orderk
5. Check convergence and if not satisfied, go to step 2

bidiagonal, but it takes the form

B̃k =





























σ̃1 ρ̃1

σ̃2 ρ̃2

. . .
...

σ̃ℓ ρ̃ℓ

α̃ℓ+1 βℓ+1

. ..
. ..

αk−1 βk−1

αk





























,

where the values without tilde are computed in the usual way with Algorithm 1.
When carried out in an iterative fashion, the above procedureresults in Algorithm4. The

step 4 can be executed by a variation of Algorithm3, as illustrated in Algorithm5. Starting
from the new initial vector,qℓ+1, this algorithm first computes the corresponding left initial
vectorpℓ+1, and then proceeds in the standard way.

ALGORITHM 5 (One-Sided Lanczos Bidiagonalization – restarted).
pℓ+1 = Aqℓ+1

For i = 1, 2, . . . , ℓ
pℓ+1 = pℓ+1 − ρ̃ipi

end
For j = ℓ + 1, ℓ + 2, . . . , k

αj = ‖pj‖2

pj = pj/αj

qj+1 = A∗pj

For i = 1, 2, . . . , j
γ = q∗i qj+1

qj+1 = qj+1 − γqi

end
βj = ‖qj+1‖2

qj+1 = qj+1/βj

If j < k
pj+1 = Aqj+1 − βjpj

end
end
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5. Parallel implementation in SLEPc. This work is framed in the context of the SLEPc
project. SLEPc, the Scalable Library for Eigenvalue Problem Computations [19, 20], is a par-
allel software library intended for the solution of large, sparse eigenvalue problems. A collec-
tion of eigensolvers is provided, that can be used for different types of eigenproblems, either
standard or generalized ones, both Hermitian and non-Hermitian, with either real or complex
arithmetic. SLEPc also provides built-in support for spectral transformations such as shift-
and-invert. In addition, a mechanism for computing partialsingular value decompositions
is also available, either via the associated eigenproblems(cross product or cyclic matrix) or
with Lanczos bidiagonalization as described in this paper.

SLEPc is an extension of PETSc, the Portable, Extensible Toolkit for Scientific Com-
putation [4], and therefore reuses part of its software infrastructure, particularly the matrix
and vector data structures. PETSc uses a message-passing programming paradigm with stan-
dard data distribution of vectors and matrices, i.e., by blocks of rows. With this distribution of
data across processors, parallelization of the Lanczos bidiagonalization process (Algorithm5)
amounts to carrying out the following three stages in parallel:

1. Basis expansion. In the case of Lanczos bidiagonalization, the method builds two
bases, one associated toA and another toA∗, so this stage consists of a direct and transpose
sparse matrix-vector product. In many applications, the matrix-vector product operation can
be parallelized quite efficiently. This is the case in mesh-based computations, in which, if
the mesh is correctly partitioned in compact subdomains, data needs to be exchanged only
between processes owning neighbouring subdomains.

2. Orthogonalization. This stage consists of a series of vector operations such as inner
products, additions, and multiplications by a scalar.

3. Normalization. From the parallelization viewpoint, thecomputation of the norm is
equivalent to a vector inner product.

The matrix vector products at the core of the Lanczos processare implemented with
PETSc’s MatMult and MatMultTranspose operations. These operations are optimized for
parallel sparse storage and even allow for matrix-free, user-defined matrix-vector product
operations; see [4] for additional details. PETSc matrices are stored in compressed sparse
row (CSR) format so the MatMult operation achieves good cache memory efficiency. This
operation is implemented as a loop that traverses the non-zero matrix elements and stores
the resulting vector elements in order. However, the MatMultTranspose operation writes the
resulting vector elements in a non-consecutive order, forcing frequent cache block copies to
main memory. This difference in performance is evident especially in the case of rectan-
gular matrices. In order to achieve good sequential efficiency, SLEPc stores the matrixA∗

explicitly. This detail is transparent to the user and it canbe deactivated to reduce memory
usage. We will center our discussion on the orthogonalization and normalization stages, and
assume that the implementation of the basis expansion is scalable. The test cases used for
the performance analysis presented in Section7 have been chosen so that basis expansion has
a negligible impact on scalability. Also, in those matricesthe decision on the explicit storage
of A∗ makes little difference.

Vector addition and scaling operations can be parallelizedtrivially, with no associated
communication. Therefore, the parallel efficiency of the orthogonalization and normalization
steps only depends on how the required inner products are performed. The parallelization of
a vector inner product requires a global reduction operation (an all-reduce addition), which on
distributed-memory platforms has a significant cost, growing with the number of processes.
Moreover, this operation represents a global synchronization point in the algorithm, thus
hampering scalability if done too often. Consequently, global reduction operations should
be eliminated whenever possible, for instance by grouping together several inner products
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in a single reduction. The multiple-vector product operation accomplishes all the individual
inner products with just one synchronization point and roughly the same communication cost
as just one inner product. A detailed analysis of these techniques applied to the Arnoldi
method for eigenproblems has been published by the authors [18].

As a consequence, classical Gram-Schmidt (CGS) orthogonalization scales better than
the MGS procedure used in Algorithm5, because CGS computes all the required inner prod-
ucts with the unmodified vectorqj+1, that is,c = Q∗

jqj+1, and this operation can be carried
out with a single communication. However, CGS is known to be numerical unstable when
implemented in finite precision arithmetic. This problem can be solved by iterating the CGS
procedure, until the resulting vector is sufficiently orthogonal to working accuracy. We will
refer to this technique as selective reorthogonalization.A simple criterion can be used to
avoid unnecessary reorthogonalization steps [9]. This criterion involves the computation of
the vector norms before and after the orthogonalization. The parallel overhead associated to
the first vector norm can be eliminated by joining its communication with the inner products
corresponding to the computation of the orthogonalizationcoefficientsc. The explicit com-
putation of the second norm can be avoided with a simple technique used in [14]. The basic
idea is to estimate this norm starting from the original norm(before the orthogonalization),
by simply applying the Pythagorean theorem as described later in this section. Usually, at
most one reorthogonalization is necessary in practice, although provision has to be made for
a second one to handle specially ill-conditioned cases.

Another parallel optimization that can be applied to Algorithm 5 is to postpone the nor-
malization ofpj until after the orthogonalization ofqj+1. This allows for the union of two
global communications, thus eliminating one synchronization point. As a side effect, the
basis expansion has to be done with an unnormalized vector, but this is not a problem pro-
vided that all the computed quantities are corrected as soonas the norm is available. This
technique was originally proposed in [22] in the context of an Arnoldi eigensolver without
reorthogonalization.

Applying all the above mentioned optimizations to Algorithm 5 results in Algorithm6.
In this algorithm, lines 7 and 14 are the CGS orthogonalization step, and lines 17 and 19
are the CGS reorthogonalization step. The selective reorthogonalization criterion is checked
in line 16, typically with a value ofη = 1/

√
2 as suggested in [9, 28]. In this expression,

ρ represents the norm ofqj+1 before the orthogonalization. This value is computed explicitly,
as discussed later in this section. In contrast, the norm after orthogonalization,βj , is estimated
in lines 15 and 20. These estimations are based on the following relation due to lines 14
and 19,

qj+1 = q′j+1 − Qjc , (5.1)

whereqj+1 and q′j+1 denote the vector before and after reorthogonalization, respectively,
and Qjc is the vector resulting from projectingqj+1 onto span{q1, q2, . . . , qj}. In exact
arithmetic,q′j+1 is orthogonal to this subspace and it is possible to apply thePythagorean
theorem to the right-angled triangle formed by these three vectors

‖qj+1‖2
2 = ‖q′j+1‖2

2 + ‖Qjc‖2
2 . (5.2)

Since the columns ofQj are orthonormal, the wanted norm can be computed as

‖q′j+1‖2 =

√

‖qj+1‖2
2 −

∑j

i=1
c2
i . (5.3)

In deriving (5.3), we have assumed thatq′j+1 is orthogonal tospan{q1, q2, . . . , qj} and
that the columns ofQj are orthonormal. These assumptions are not necessarily satisfied in
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ALGORITHM 6 (One-Sided Lanczos Bidiag. – restarted, with enhancements).
1 pℓ+1 = Aqℓ+1

2 For i = 1, 2, . . . , ℓ
3 pℓ+1 = pℓ+1 − ρ̃ipi

4 end
5 For j = ℓ + 1, ℓ + 2, . . . , k
6 qj+1 = A∗pj

7 c = Q∗

jqj+1

8 ρ = ‖qj+1‖2

9 αj = ‖pj‖2

10 pj = pj/αj

11 qj+1 = qj+1/αj

12 c = c/αj

13 ρ = ρ/αj

14 qj+1 = qj+1 − Qjc

15 βj =
√

ρ2 −
∑j

i=1
c2
i

16 If βj < ηρ
17 c = Q∗

jqj+1

18 ρ = ‖qj+1‖2

19 qj+1 = qj+1 − Qjc

20 βj =
√

ρ2 − ∑j

i=1
c2
i

21 end
22 qj+1 = qj+1/βj

23 If j < k
24 pj+1 = Aqj+1 − βjpj

25 end
26 end

finite precision arithmetic, and for this reason we considerit as an estimation of the norm.
Usually, these estimates are very accurate because theci coefficients are very small compared
to ‖qj+1‖2

2, that is,qj+1 andq′j+1 have roughly the same norm.

The first estimate (line 15) may be inaccurate ifqj+1 is not fully orthogonal after the first
orthogonalization. This does not represent a problem for the normalization stage, because in
that case the criterion would force a reorthogonalization step and then a new norm estimation
would be computed. Although the reorthogonalization criterion may seem less trustworthy,
due to the use of estimates, the numerical experiments described in Section6 reveal that this
algorithm is as robust as Algorithm5. In very exceptional cases,‖qj+1‖2

2 could be as small
as

∑j

i=1
c2
i , so that it is safer to discard the estimate and to compute thenorm explicitly. This

implementation detail is omitted from Algorithm6 in order to maintain its readability.

The second major enhancement incorporated into Algorithm6 is that the computation
of αj and the normalization ofpj are delayed until after the computation ofqj+1 = A∗pj

(these operations appear at the beginning of the loop in Algorithm 5). Thus,qj+1 must be
corrected with this factorαj in line 11,

q′j+1 = A∗p′j = A∗α−1

j pj = α−1

j A∗pj = α−1

j qj+1, (5.4)
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FIGURE 6.1. Maximum relative error for each of the test matrices.

wherep′j denotes the vectorpj after the normalization, andq′j+1 denotes the vectorqj+1 after
the correction. In lines 12 and 13,c andρ are also corrected as

c′ = Q∗

jq
′

j+1 = Q∗

jα
−1

j qj+1 = α−1

j Q∗

jqj+1 = α−1

j c, (5.5)

ρ′ = ‖q′j+1‖2 = ‖α−1

j qj+1‖2 = α−1

j ‖qj+1‖2 = α−1

j ρ. (5.6)

In Algorithm 6, the communications associated with operations in lines 7-9 can be joined
together in one multiple reduction message. In the same way,the operations in lines 17
and 18 can also be joined in one message. The rest of the operations, with the exception of
the two matrix-vector products in lines 6 and 24, can be executed in parallel trivially (without
communication). Therefore, the parallel implementation of Algorithm 6 needs only one (or
two if reorthogonalization is needed) global synchronizations per iteration. This is a huge
improvement over Algorithm5, that hasj + 2 synchronizations per iteration.

6. Numerical results. Algorithms 5 and6 are not equivalent when using finite preci-
sion arithmetic. Therefore, their numerical behaviour must be analyzed. In order to check the
accuracy of the computed singular values and vectors, the associated relative errors are com-
puted explicitly after the finalization of the Lanczos process. If any of these values is greater
than the required tolerance, then the bound used in the stopping criterion (2.12) is considered
incorrect.

In this section, we perform an empirical test on a set of real-problem matrices, using
the implementation referred to in Section5, with standard double precision arithmetic. The
analysis consists of measuring the relative error when computing the 10 largest singular val-
ues of non-Hermitian matrices from the Harwell-Boeing [12] and NEP [2] collections. These
165 matrices come from a variety of real applications. For this test, the solver is config-
ured with tolerance equal to10−7 and a maximum of 30 basis vectors. This relative error is
computed as

ξi =

√

‖Avi − σiui‖2
2 + ‖A∗ui − σivi‖2

2

σi

(6.1)

for every converged singular valueσi and its associated vectorsvi andui.
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TABLE 7.1
Statistics and sequential execution times on Xeon cluster with the AF23560 matrix. Times are given in seconds

and percentages are computed with respect to total time.

Algorithm 5 Algorithm 6
Vector dot products 1,122 1,911
Matrix-vector products 116 116
Restarts 3 3
Total execution time 0.84 (100%) 1.22 (100%)
Vector dot products execution time 0.10 (12%) 0.22 (18%)
Vector AXPY execution time 0.36 (43%) 0.60 (49%)
Matrix-vector products execution time 0.34 (40%) 0.34 (28%)

TABLE 7.2
Statistics and sequential execution times on Xeon cluster with the PRE2 matrix. Times are given in seconds

and percentages are computed with respect to total time.

Algorithm 5 Algorithm 6
Vector dot products 3,225 5,108
Matrix-vector products 300 300
Restarts 9 9
Total execution time 86.58 (100%) 82.42 (100%)
Vector dot products execution time 12.61 (15%) 14.27 (17%)
Vector AXPY execution time 56.26 (65%) 49.68 (60%)
Matrix-vector products execution time 12.97 (15%) 12.96 (16%)

The results obtained running Algorithm6 on these tests are shown in Fig.6.1, where each
dot corresponds to the maximum relative error for one matrixwithin the collections. Only
in three cases (ARC130, WEST0156, andPORES1), both Algorithm6 and5 produce some
singular triplets with a residual larger than the tolerance. In these cases, there is a difference of
six orders of magnitude between the largest and smallest computed singular values, and this
causes instability in the one-sided variants. However, these large errors can be avoided simply
by explicitly reorthogonalizing the left Lanczos vectorspj at the end of the computation.

7. Performance analysis.In order to assess the parallel efficiency of the proposed al-
gorithm (Algorithm6) and compare it with the original one (Algorithm5), several test cases
were analyzed on two different computer platforms. In all these cases the solver was re-
quested to compute 10 eigenvalues with tolerance set to10−7, using a maximum of 30 basis
vectors.

On one hand, two square matrices arising from real applications were used for measuring
the parallel speed-up. These matrices are AF23560 (order 23,560 with 460,598 non-zero
elements) from the NEP [2] collection, and PRE2 (order 659,033 with 5,834,044 non-zero
elements) from the University of Florida Sparse Matrix Collection [10]. The speed-up is
calculated as the ratio of elapsed time withp processors to the fastest elapsed time with one
processor. On the other hand, a synthetic test case is used for analyzing the scalability of the
algorithm, measuring the scaled speed-up with variable problem size.

The first machine consists of 55 biprocessor nodes with Pentium Xeon processors at
2.8 GHz with 2 Gbytes of RAM, interconnected with an SCI network in a 2-D torus con-
figuration. SLEPc was built with Intel compilers (version 10.1 with -O3 optimization level)
and the Intel MKL version 8.1 library. Due to memory hardwarecontention problems, only
one processor per node was used in the tests reported in this section. As shown in Tables7.1
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FIGURE 7.1. Speed-up with AF23560 (left) and PRE2 (right) matrices on Xeon cluster.
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FIGURE 7.2. Speed-up with AF23560 (left) and PRE2 (right) matrices on MareNostrum computer.

and7.2, both algorithms carry out the same number of matrix-vectorproducts and restarts for
both problems. Although Algorithm6 performs more vector dot products than Algorithm5
due to reorthogonalization, the sequential execution times are similar, with an advantage of
the proposed algorithm for the larger problem. This is due tothe fact that CGS with re-
orthogonalization exploits the memory hierarchy better than MGS. These tables also show
the execution times for the different operations. The largest execution time corresponds to
the vector AXPY operations that are used in the orthogonalization phase and in the computa-
tion of the Ritz vectors during restart (Eqs.4.3and4.4). Regarding the benefits of explicitly
storingA∗ versus using MatMultTranspose, in these cases the gain is hardly perceptible, only
about 0.08% reduction in the overall time.

As expected, Figure7.1 shows that Algorithm6 has better speed-up than Algorithm5
with the AF23560 matrix. However, both algorithms show a good speed-up with the larger
PRE2 matrix. In this case, the communication time is shadowed by the high computational
cost of this problem and relative low number of processors.

These two tests were repeated on the MareNostrum computer inorder to extend the
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FIGURE 7.3.Scaled speed-up (left) and MFlop/s rate per processor (right) with random tridiagonal matrix on
MareNostrum computer.

analysis to more processors. This computer is configured as acluster of 2,560 JS21 blades
interconnected with a Myrinet network. Each blade has two IBM PowerPC 970MP dual-core
processors at 2.3 GHz and 2 Gbytes of main memory. The IBM XL C compiler with default
optimization and the ESSL library were used to build SLEPc. The sequential behaviour of
the two algorithms on this machine is similar to the one reported previously in Tables7.1
and7.2. Results with the AF23560 and PRE2 matrices (Fig.7.2) show the clear advantage
of Algorithm 6 over Algorithm5 as the number of processors increases. The implementation
described in this work obtained a quasi-linear performanceimprovement up to 384 processors
with the PRE2 test problem.

In these fixed size problems, the work assigned to each processor gets smaller as the
number of processors increases, thus limiting the performance with a large number of pro-
cessors. To minimize this effect, the size of local data mustbe kept constant, that is, the
matrix dimension must grow proportionally to the number of processors,p. For this analysis,
a square non-symmetric tridiagonal matrix with random entries has been used, with a dimen-
sion of100, 000 × p. The scaled speed-up shown in the left plot of Fig.7.3 is almost linear
up to 448 processors, with a slight advantage for Algorithm6. However, the proposed algo-
rithm has significantly better throughput and gets closer tothe machine’s peak performance,
as shown in the right plot of Fig.7.3.

8. Discussion.In this paper, an optimized thick-restarted Lanczos bidiagonalization al-
gorithm has been proposed in order to improve parallel efficiency in the context of singular
value solvers. This algorithm is based on one-sided full reorthogonalization via iterated Clas-
sical Gram-Schmidt and its main goal is to reduce the number of synchronization points in
their parallel implementation. The thick restart technique has proved to be effective in most
cases, guaranteeing fast convergence with moderate memoryrequirements.

The performance results presented in Section7show that the proposed algorithm achieves
good parallel efficiency in all the test cases analyzed, and scales well when increasing the
number of processors.

The SLEPc implementation of the algorithm analyzed in this paper represents an effi-
cient and robust way of computing a subset of the largest singular values, together with the
associated singular vectors, of very large and sparse matrices in parallel computers. How-
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ever, the standard Rayleigh-Ritz projection used by the solver is generally inappropriate for
computing small singular values. Therefore, as a future work, it remains to implement also
the possibility of performing a harmonic Ritz projection, as proposed in [1].
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[20] V. HERNÁNDEZ, J. E. ROMÁN , AND V. V IDAL , SLEPc: A scalable and flexible toolkit for the solution of
eigenvalue problems, ACM Trans. Math. Software, 31 (2005), pp. 351–362.

[21] Z. JIA AND D. NIU, An implicitly restarted refined bidiagonalization Lanczosmethod for computing a partial
singular value decomposition, SIAM J. Matrix Anal. Appl., 25 (2003), pp. 246–265.

[22] S. K. KIM AND A. T. CHRONOPOULOS, An efficient parallel algorithm for extreme eigenvalues of sparse
nonsymmetric matrices, Int. J. Supercomp. Appl., 6 (1992), pp. 98–111.

[23] E. KOKIOPOULOU, C. BEKAS, AND E. GALLOPOULOS, Computing smallest singular triplets with implicitly
restarted Lanczos bidiagonalization, App. Numer. Math., 49 (2004), pp. 39–61.

http://math.nist.gov/MatrixMarket
http://www.mcs.anl.gov/petsc/petsc-as
http://www.cise.ufl.edu/research/sparse/matrices
http://www.grycap.upv.es/slepc


ETNA
Kent State University 

http://etna.math.kent.edu

PARALLEL SVD SOLVER BASED ON LANCZOS BIDIAGONALIZATION 85

[24] L. KOMZSIK, The Lanczos Method: Evolution and Application, Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, 2003.

[25] R. M. LARSEN, Lanczos bidiagonalization with partial reorthogonalization, Tech. Rep. PB-537, Department
of Computer Science, University of Aarhus, Aarhus, Denmark, 1998.
Available athttp://www.daimi.au.dk/PB/537 .

[26] , Combining implicit restart and partial reorthogonalization in Lanczos bidiagonalization, Tech. Rep.,
SCCM, Stanford University, 2001.
Available athttp://soi.stanford.edu/ ˜ rmunk/PROPACK.

[27] B. N. PARLETT, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980. Reissued
with revisions by SIAM, Philadelphia, 1998.

[28] L. REICHEL AND W. B. GRAGG, FORTRAN subroutines for updating the QR decomposition, ACM Trans.
Math. Software, 16 (1990), pp. 369–377.

[29] Y. SAAD , Numerical Methods for Large Eigenvalue Problems: Theory and Algorithms, John Wiley and Sons,
New York, 1992.

[30] H. D. SIMON, The Lanczos algorithm with partial reorthogonalization, Math. Comp., 42 (1984), pp. 115–
142.

[31] H. D. SIMON AND H. ZHA, Low-rank matrix approximation using the Lanczos bidiagonalization process
with applications, SIAM J. Sci. Comput., 21 (2000), pp. 2257–2274.

[32] K. WU AND H. SIMON, Thick-restart Lanczos method for large symmetric eigenvalue problems, SIAM J.
Matrix Anal. Appl., 22 (2000), pp. 602–616.

http://www.daimi.au.dk/PB/537
http://soi.stanford.edu/~rmunk/PROPACK

