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SCHWARZ METHODS OVER THE COURSE OF TIME *

MARTIN J. GANDER!

To the memory of Gene Golub, our leader and friend.

Abstract. Schwarz domain decomposition methods are the oldest domaimgestdion methods. They were
invented by Hermann Amandus Schwarz in 1869 as an analyticbldgigorously prove results obtained by Rie-
mann through a minimization principle. Renewed interest ise¢hmethods was sparked by the arrival of parallel
computers, and variants of the method have been introducearetyzed, both at the continuous and discrete level.
It can be daunting to understand the similarities and sulfferences between all the variants, even for the spetialis

This paper presents Schwarz methods as they were develagieddally. From quotes by major contributors
over time, we learn about the reasons for similarities andesdifferences between continuous and discrete variants.
We also formally prove at the algebraic level equivalencéd@mbn-equivalence among the major variants for very
general decompositions and many subdomains. We finally tracenthivations that led to the newest class called
optimized Schwarz methods, illustrate how they can greatharoe the performance of the solver, and show why
one has to be cautious when testing them numerically.

Key words. Alternating and parallel Schwarz methods, additive, muttgilve and restricted additive Schwarz
methods, optimized Schwarz methods.
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1. The Dirichlet principle and Schwarz’s challenge. An important part of the the-
ory of analytic functions was developed by Riemann based mimanmization principle, the
Dirichlet principle. This principle states that an harnofuinction, which is a function satis-
fying Laplace’s equatiodhu = 0 on a bounded domai with Dirichlet boundary conditions
u = g ondg, is the infimum of the Dirichlet integrall, |Vv|? over all functionsy satisfying
the boundary conditions = g on 912. It was taken for granted by Riemann that the infi-
mum is attained, until Weierstrass gave a counterexammdwfctional that does not attain
its minimum. It was in this context that Schwarz invented fingt domain decomposition
method B8]:

Die unter dem Namen Dirichletsches Princip bekannte Sshlese, wel-

che in gewissem Sinne als das Fundament des von Riemanrclesitwi

ten Zweiges der Theorie der analytischen Functionen ahgase&erden

muss, unterliegt, wie jetzt wohl allgemein zugestandem wiinsichtlich

der Strenge sehr bdgrdeten Einwendungen, deren vdiistlige Entfer-

nung meines Wissens den Anstrengungen der Mathematikeerbischt

gelungen ist.
The Dirichlet principle could be rigorously proved for siteglomains, where Fourier analy-
sis was applicable. Therefore Schwarz embarked on thegbrijdéinding an analytical tool
to extend the Dirichlet principle to more complicated donsai

2. Schwarz methods at the continuous levelThere are two main classical Schwarz
methods at the continuous level: the alternating Schwathadenvented by Schwarz i6§]
as a mathematical tool, and the parallel Schwarz methoddated by Lions in47] for the
purpose of parallel computing.

*Received December 14, 2007. Accepted November 12, 2008 sReblonline on April 2, 2009. Recommended
by Oliver Ernst.
fUniversié de Gegve, Section de Maéimatiques, 2-4 rue du &ire, CP 64, CH-1211 Géwe, Switzerland
(Martin. Gander @ini ge. ch).
1The Dirichlet principle, which can be seen as the foundatibthe part of functional analysis developed by
Riemann, is now widely regarded as not being sufficientlyrogs, and a fully rigorous argument to replace it has
so far eluded all efforts of mathematicians.
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FIGURE 2.1. The first domain decomposition method was introduced by &ehier a complicated domain,
composed of two simple ones, namely a disk and a rectangle.

2.1. The alternating Schwarz method.In order to show that Riemann’s results in the
theory of analytic functions hold, Schwarz needed to findyaraus proof for the Dirichlet
principle, i.e., he had to show that the infimum of the Direthihtegral is attained on arbi-
trary domains. Schwarz presented the fundamental ideacofaigosition of the domain into
simpler subdomains, for which more information is avaiabl

Nachdem gezeigt ist, dasérfeine Anzahl von einfacheren Bereichen die
DifferentialgleichungAu = 0 beliebigen Grenzbedingungen gass inte-
griert werden kann, handelt es sich darum, den Nachweistmef, dass
auch fir einen weniger einfachen Bereich, der aus jenen auf gewissse
zusammengesetzt ist, die Integration der Differenti&dbleng beliebigen
Grenzbedingungen géiss niglich ist?
In Figure 2.1, we show the original domain used by Schwarz, with the aasedidomain
decomposition into two subdomains, which are geometgicalich simpler, namely a disk
Q and a rectangl&,, with interfaced; := 99, N Qs andl’s := 925 N Q. To show that
the equation

Au=0 inQ, wu=g o0noQ, (2.1)

can be integrated (note how the particular choice of woryp&chwarz resembles the inte-
gration of ordinary differential equations) with arbitydsoundary conditions, Schwarz pro-
posed what is now called thedternating Schwarz methoan iterative method which only
uses solutions on the disk and the rectangle, where sofutian be obtained using Fourier
series. The method starts with an initial gue$salongTl’; (see Figure2.1), and then com-

putes iteratively fon = 0, 1, ... the iterates:! ™" andu} ™" according to the algorithm
AU?Jrl = 0 in Qq, AUSJFI = 0 in 0o, (2 2)
u?'H = wuy only, ug"'l = u’f"‘l onlsy, ’

where we omit from now on for simplicity that botf "' andu} ** satisfy the given Dirichlet
condition in @.1) on the outer boundaries of the respective subdomains. &zhwotivated
iteration @.2) using a vacuum pump as an analogy:

Zum Beweise dieses Satzes kann ein Giidergang dienen, welcher mit

dem bekannten, zur Herstellung eines luftéendten Raumes mittelst einer

2After having shown for some simple domains that the partiakdiifitial equatiom\u, = 0 can be integrated
with arbitrary boundary conditions, we have to prove thatdame partial differential equation can be solved as well
on more complicated domains which are composed of the simplerimaesertain fashion.
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zweistiefeligen Luftpumpe dienenden Verfahren grossddygia hat®
Schwarz proved convergence of his alternating method usi@gnaximum principle, and
the proof, also given quite informally by Schwarz with theakgy of the vacuum pump
(which seems surprising, considering its purpose of pgpvigorously Riemann’s deduc-
tions), works as follows: denoting hythe infimum and by: the supremum of the boundary
datag given on the outer boundag)f2 in (2.1), Schwarz starts by imposingon I'; which
completes the boundary conditions on subdoniBinOne can therefore obtain on the disk
(first chamber is pumping). Now he fixes the values of the @miut! alongTl'; (first valve
closed) and thus oft, the boundary conditions are complete and one can solve aec¢he
angular domain to obtain} (second chamber is pumping). Schwarz now observes that the
differenceu} — ul (or alsoul — w) is less thari — u alongT’; by the maximum principle.
Imposing now the value of} alongT'; (second valve closed), a new iteraif can be ob-
tained on the disk2;. The difference:? — u} alongI', is now by a factog; < 1 smaller by
the maximum principle tha6' := u — u, we thus have? — u} < Gq; alongl',. Proceeding
as before orf2,, one obtains:3, and by the maximum principle the differeneg — u} is
alongT'; smaller by a factog, than the difference? — u} alongI'y, and thus alond’; we
haveu3 — u < Gqi1¢2. By induction, and using linearity to see that the quargifieandqgs
are the same for all iterations, one obtains an infinite secpief functions:{ andwf, and
it is easy to show (“es ist nun nicht schwer, nachzuweisdrd) they converge uniformly to
limiting functions defined by

ur = uy + (uf —ui) + (uj —uf) + -
uz = up + (uj —uy) + (U3 — uj) + -
Since the series on the right converge foraéindy, because
(i —u) < Glae)" ™ (3" —uf) < Glae)" o

Schwarz now observes that the functiansandus, agree on botfi'; andI's, and thus must
be identical in the overlap. He therefore concludes thaindu, must be values of the same
functionu satisfying Laplace’s equation on the entire domain.

The argument of Schwarz still lacked some rigor; in pardcat the two corner points
where the two subdomains intersect the subdomains do nibt ce@rlap (the overlap be-
comes arbitrarily small), and it is more delicate to use tlaimum principle. This problem
was studied more carefully by Pierre Louis Lions over a cgrafter Schwarz48]:

We study the same question when we relax the condition oflagweing,

allowing the “boundaries of the two subdomains” to touchhathhoundary

of the original domain. As we will see, if the situation is rmdsically

modified for Dirichlet boundary conditions (in this casey @umalysis is

a minor extension of Schwarz original convergence proo@,will show

that drastic changes occur for Neumann boundary conditions
The Schwarz alternating method can readily be extended te than two subdomains, only
care needs to be taken in the formulation to ensure that tvestevailable information at
the interfaces is always taken, if several choices are IplessiWe define, for a domaif?,
the J overlapping subdomain@;, j = 1,2,...,J, which also defines the order in which
subdomains are updated, and the interfdtgsj # k, by

Tjp = 09N (Qk\ U Ql>, (2.3)

leMj,

3To prove this theorem, one can use an alternating method, whislyreat analogy with a two-level pump to
obtain an air-diluted room.
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FIGURE 2.2. Two different three-subdomain configurations.

with

(1, j—1k+1,...,J}  ifk>4
M), = ) . )
{k+1,...,5—1}, if k<7,

as illustrated in Figur€.2 for two configurations of 3 subdomains. Note that the &g},
can be empty, e.g., if the starting index in its definitionaggker than the ending one. The
algorithm

gu;ﬂrl = f in €,

n+1 n+Ljk )
U Uy, onl',

where the symbol ;;, equals one if > & and zero otherwise, is then a direct generalization
of the alternating Schwarz method for the elliptic equatfan= f and.J subdomains. The
definition of I';;, in (2.3) ensures that the interfadg;, is the part of the interface d#; in
Q. on which2, provides the newest available update for the algorithmhaskample for
three subdomains illustrates in Figr, i.e., none of the subdomains computed aftgtin
the cyclic process can provide newer boundary dati gn Convergence of the method for
many subdomains can be proved similarly as in the origirgiment of Schwarz, provided
that the operatol satisfies a maximum principle. Lions studied the altergafithwarz
method also using a variational approach4ii| [and found a very elegant convergence proof
using projections. He remarked

Let us observe, by the way, that the Schwarz alternating adetieems

to be the only domain decomposition method converging far éntirely

different reasons: variational characterization of thiev&rz sequence and

maximum principle.
While convergence proofs of the Schwarz alternating mettrotgly depend on the under-
lying partial differential equation (PDE) to be solved (for early convergence proof for the
case of elasticity, se&()])), similar methods can be defined for any PDE, even time dagren
ones, which leads to the class of Schwarz waveform relaxatiethods; see for exampled).
The idea of an overlapping subdomain decomposition anceaation is completely general.

(2.4)

2.2. The parallel Schwarz method.At the time when Lions analyzed the alternating
Schwarz method, parallel computers were becoming more awé available, and Lions
realized the potential of the Schwarz method on such cormp#d:

The final extension we wish to consider concerns “paralletsions of the
Schwarz alternating method . .u} ™ is solution of —Aw*! = fin Q;
andu*! = u” onoQ; N Q.
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We call this method thearallel Schwarz methqdn contrast to thealternating Schwarz
method For the historical example of Schwarz in Figaré, the method is given by

Aut =0 inQq, Auy™ =0 in Qy,
n+l _ ,n n+l _ n (25)
uy " =wuy  only, u, " =wuy onls.

The only change is the iteration index in the second trarsoriondition, which makes this
method parallel: given initial guesse$ andu$, one can now simultaneously compute, for
n =0,1,..., both subdomain solutions in parallel. In this simple twsdomain case, there
is, however, no gain, since the sequence computed;cevery two steps coincides with the
sequence computed 6 by the alternating Schwarz method. If many subdomains ae, us
there are no such simple subsequences anymore, and cogipytarallel can pay off. There
is, however, an important point to address in the multisaf@ia case, which Lions discussed
carefully in 47]:

As soon as/ > 3 the situation becomes more interesting. And even if,

as we will see in section Il, each sequengeconverges irf; to v, this

method does not have always a variational interpretatiterins of iterated

projections. A related difficulty is that, using the sequesic

(U} )y (U )ns - ooy (UG)n

it is not always possible to define a single-valued functiefingéd on the
whole domairf2 in a continuous way. In fact, the necessary and sufficient
condition for these two difficulties not to happen is that:

{ for all distincti, j, k € {1,...,J},if ;N Q; # 0 (2.6)

andQ; N Q. # 0, thenQ; N Qy = 0.

This property ensures that, for each subdomain interfat#,gbere is precisely one neigh-
boring subdomain where the boundary data can be taken frbinhvws however only rarely
satisfied in practice. The simple example in FigRrgon the left satisfies?(6), whereas the
one on the right violate2(6), and in the latter case, the formulation of the algorithrorls
gives needs to be modified to specify from which neighborimgdemain boundary data is
taken. One possibility is to use the same interface definii® for the alternating Schwarz
method 2.3), and we obtain the parallel Schwarz method for many subd@ma

Lot = f  inQy,

ht1
n )
; Uy, OnFJk.

U;

A more general definition from where to obtain neighborinigdamain boundary data, which
will be useful later, is to start with a non-overlapping deqmsition(2;, construct an associ-
ated one that is overlapping by choosing that @pbontainsﬁj, i.e.,flj C @4, and then to
define the interfaces;;, by

T = 00, NQy. 2.7)

This definition contains the special one from alternatinigv@rz, and while one can not prove
convergence using variational arguments, the maximunciptetechnique by Schwarz still
applies and convergence follows; sé&]|[

Note that the alternating Schwarz method with many subdasnean also be used in
parallel, one simply needs to assign the same color to suétsmnhich do not touch, and
thus do not need to communicate, and then all those can beadpbidagarallel.
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2.3. Discretization of continuous Schwarz methodsThe alternating and parallel Sch-
warz methods can be discretized to obtain computationds.tdn fact, the first motivation
in computing was very similar to the motivation of Schwarzaimalysis: in the 1970s, fast
Poisson solvers were developed, based on the Fast Fouaigsform P]. These solvers were
however restricted to special geometries, important exasnipeing circular or rectangular
domains. Golub and Mayers showed 89 that Schwarz methods presented the ideal com-
putational tool to generalize such fast solvers to more iggigeometries, using the example
of a T shaped domain:

The two discrete Laplace problems are both Dirichlet pnoislen a rectan-

gle, and can be solved very efficiently by a fast Poisson salgng some

form of Fast Fourier Transform.
Even for the historical model problem of Schwarz in Figarg if we discretize the alternat-
ing Schwarz method2(2) using finite differences or finite elements, enforcing theiface
conditions directly on the right-hand side, we obtain

Alu’fH = fl — Alg'll/g, Agu;_‘—l = f2 — A21U?+1, (28)

where the matricesl; and A are discretizations of the Laplacian, and the matrides

and Ao, are zero matrices, except for the unknowns on the inteffade A,, and for the
unknowns on the interfade, in A5, where the matrix entries are the corresponding entries of
the discretization stencil used. Hence the subproblem amado2; can be solved by a fast
Poisson solver for circular domains, and the subproblemanaih 2, by a fast Poisson
solver for rectangular domains. Note that one might needterpolate in order to transmit
data at the interfaces, in which case the interface matdgesand A5; would also include
these interpolation matrices. The situation does not ahénge have many subdomains, in
this case the discrete algorithm is

j—1 J
n+l n+1 n
Ajuj = fj — E Ajkuk — E Ajkuk,
k=1 k=j+1

where thed;, correspond to the interface definition.§); for a precise algebraic definition
in the case of conforming grids; see Assumptiohin the next section.

Similarly, one obtains for the parallel Schwarz methad), in the case of two subdo-
mains, the parallel discrete iteration

Alu?_‘—l = f1 — Apug, AQ’U;H = fo — Aniuf, (2.9)
and, in the case of many subdomains,
Al = £ =N Ajug, (2.10)
k]

where now thed;, correspond to any interface definition of the forin7j; for the precise
algebraic definition, see RemaBk8in the next section.

3. Discrete Schwarz methods.If we discretize Laplace’s equatior2.(), or a more
general elliptic PDE, we obtain a linear system of the form

Au = f. (3.1)

Schwarz methods have also been introduced directly at gebedic level for such linear
systems, and there are several variants.
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3.1. The multiplicative Schwarz method. In order to obtain a domain decomposition-
like iteration for the discrete systerfi.(), one needs to partition the unknowns in the vector
wu into subsets, similarly as the continuous domain was parétl into subdomains. This
can be achieved by using simple restriction operators: ifwant, for example, to partition
the unknowns into a first and a second set, possibly overigppie can use the restriction
matrices

RIZ ) R2: ) (32)
1 1

which are identically zero, except for the positions intéchby a 1. With these restriction
matrices,R;u gives the first set of unknowns, atithu the second one. One can also de-
fine a restriction of the matrix to the first and second set of unknowns using these same
restriction matrices,

A; =R;AR], j=1,2.
Themultiplicative Schwarz methddee for exampleq] or [69]), is now defined by
urtr = w4+ RTATIR(f — Au™),

1 1 3.3
w't =t REAS Ry (f — Auttr). ¢

This iteration resembles the alternating Schwarz methaow dpes first a solve with the
local matrix A; associated with the first set of unknowns, and then a solve tlvé local
matrix A, associated with the second set of unknowns. It is howeveamnall transparent,
from formulation 3.3), what information is transmitted in the residual from thistfsubset of
unknowns to the second one and vice versa: nothing like #msinission conditions in the
alternating Schwarz method.@) is apparent in the multiplicative Schwarz meth8d3. Is it
possible that the multiplicative Schwarz meth8d3j is just a discretization of the alternating
Schwarz method(2)? If yes, how is the algebraic overlap from the restricticatnices 8.2)
related to the physical overlap in the alternating Schwagthiod ?

Let us take a closer look at the case when Hyeare non-overlapping, i.eR{ Ry +
RY R, = I, the identity matrix. In this case, we can easily partitibe system matrixi, the
right hand sidef and the vectof: accordingly,

S P B 4 B
and we obtain in the first relation of the multiplicative Seww method .3) an interesting
cancellation at the algebraic level: the restricted redidecomes
Ri(f — Au") = f1 — Ajul — Apuy,
and when we apply the local solvi !, a copy ofu? is obtained,
AT'R(f — Au™) = ATH(f) — Argul) — uf.
Inserting this result back into the first relation 8f%), we get

l upt ] { uf } . { ATN(fy — Avu) —uf ]
n+%
Uy

n
us 0

{ AT (F1 — Arpul) } | (3.4)

ug
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FIGURE 3.1. A non-overlapping algebraic decomposition is equivaleran overlapping continuous decom-
position for the underlying PDE with minimal overlap of onesh size.

where theu] terms have canceled. Similarly, using the second relatidheomultiplicative
Schwarz method3(3), we obtain for one full iteration step

[ U?T } _ [ Agl(.ﬂ —A12U5L)1
uy ™t AN (fy — Agiup™)

This relation can be rewritten in the equivalent form
Alu?H = f1 — Apug, AQUSH =fo- A21u?+1, (3.5)

which is identical to 2.8), and we have thus proved that the multiplicative Schwarz me
thod 3.3) without overlap is a discretization of the original altating Schwarz metho®(2)
from 1869, albeit one with minimal overlap, as one can bestfgam the one dimensional
sketch in Figure3.1, even though thé; were non-overlapping at the algebraic level, a subtle
difference between discrete and continuous notations.

Without overlap, the multiplicative Schwarz metha@iJ) is just a block Gauss-Seidel
method, sinced.5) leads in matrix form to the iteration

A1 0 ’Ule_l o 0 —A12 'u{” .fl
]l [0 )[R ] e
So one might wonder why the notation with the restrictionninaes R; was introduced. There
are two reasons: first, with the; and the formulation3.3) one can easily use overlapping
blocks, which is natural for these methods, and difficultédrdthe block Gauss-Seidel for-
mulation @.6); second, with formulation33) there is automatically a global approximate
solutionu™, a feature which is not available i@.8) without an additional selection or aver-
aging procedure to define the solution in the overlap.
In the case of more than two subdomains, the multiplicatslenirz method becomes

wth = w7 L RTASIR(f — A7), j=1,2,...,, (3.7)

and in order to prove a general equivalence result, we nesgisgrassumptions on the inter-
face operatorsl;;, corresponding to the interface definitidh ) of the alternating Schwarz
method @.4).

AssumMPTION3.1. We assume that the operatads;, in the alternating Schwarz me-
thod @.4) satisfy

AjR; + > AjRy=RjA, j=1,....J (3.8)
k#j

which states that all boundary values must be taken from swighbor, and

AjRRipRL =0
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forall j =1,...,Jandm € M;;, defined in 2.3), which is equivalent to stating that always
the most recently computed information must be used.

We will need the following technical Lemma.

LEMMA 3.2. For any given set of subdomain vectais, [ = 1,...,.J, and under
AssumptiorB.1, we have fork # j

j—1 5—1 i ]

Au if k < j,

A‘ikRkZ H (I - RTR;))R]w, = { Ojk ’ othervjise, (3:9)
=1 i=l+1

and
j—1 J J - .
- T T . A kUL if &k > e
ARy, H(I — R; R;) <§ H — R R)R, up) = { ()J otherwise.
- =1 q=p
(3.10)

Proof. To show 8.9), we start with the cask < j: we first split the left-hand side into
three parts,

j—1 j—1
AR > [[ (U= RFR)Rw, = ZAJkRk H — RTR;)RT
1=1 i:l+j1_1 _ =l (3.11)
+ARe [] (- RIR)RTwi + Z Aj Ry, H (I — RTR;))RI w,.
i=k+1 l=k+1 i=l+1

The first sum on the right vanishes, becausekfer j each product contains the term
I — RFRy, and since the terms in the product commute, each term inuhrecentains
Ry (I — RE Ry) which is zero. In the second term on the right 811()), if k¥ = j — 1 the
product is empty, and sindg, R} = I, the term equalsl;,us. If k < j — 1, we obtain

j—1
Aijk H (I — R?Ri)Rguk = AijkRguk = Ajkuk,
i=k+1
where we used Assumptidhl, and thus the second term always equéjsu. Now for the

lasttermin 8.11), if £ = j — 1, the sum is empty and thus the term is zero, arkd<f j — 1,
then

j—1 j—1 j—1
Z Aji Ry, H (I — R R))R]w, = Z ARy R w =0,
I=k+1 =141 I=k+1

where we used Assumptidh 1 twice, and this concludes the proof f@.9) if £ < ;. If
k > 7, zero is obtained fof = 1, because the sum is empty, and far 1, we get

j—1
ZAijk H RTR RTul ZAijleTul = 0,

1=l+1 =1

where we used Assumptidhlagain twice. This concludes the proof Gf9).
To show the second identity (L0), we first note that, fok < j,

JkRkH — RTR;)) =0,
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since the product includes the tedi (I — R Ry), which is the zero matrix. Now if > 7,
then

j—1
ApRi [ [( = BT Ri) = Ajx Ry,

i=1

because foj = 1 the product is empty, and fgr> 1, we use AssumptioB.1. We separate
the remaining sum into three terms,

J J k—1 J
AR > [ U= RIR)RTw, =Y AjRe [[ (I - RIRy)R}u,
p=1

p=1g=p+1 = q=p+1
J J J
+ARe [ U= RIR)R{wr+ > AjRi [[ (I-RIR)R}u,.
q=k+1 p=k+1 q=p+1

(3.12)
The first term on the right vanishes as in the proof of the fitehtity. The second term on
the right in 8.12 can be simplified,

J
ARy [[ (I = RIRy)Rfwp = AjReRfwy, = Ajpuy,
q=k+1

using Assumptior8.1 Finally the last term in3.12 becomes
J J J
> ApRy [[ U-RIR)RIu, = > AjpRpRlu, =0,
p=k+1 q=p+1 p=k+1

using AssumptiorB.1twice, and this concludes the prodf.
THEOREM 3.3. If the initial |terate5u j = 1,...,J of the alternating Schwarz
method 2.4) and the initial iterateu® of the multlphcatlve Schwarz methaBl {) satisfy

J J
u’=>" [] I - BRI R)R] S, (3.13)
j=li=j+1

and Assumptiof3.1 holds, then?.4) and 3.7) generate an equivalent sequence of iterates,

i
Mk

J
I] ¢-RIR)R (3.14)
=j+

1li=j5+1

<.
Il

REMARK 3.4. Condition 8.13 is not a restriction, it simply relates the initial guess of
one algorithm to the initial guess of the other one. If théahguess is not equivalent for the
two methods, they can not produce equivalent iterates.

Proof of Theoren3.3. The proof uses induction twice: we first assume that for a fixed
relation 3.14) holds, and show by induction that this implies the relation

J

J J
nty = [[¢ - RIR: u”—f—z H — RTR;)RT w1, (3.15)
1l —
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forj =0,1,...,J. This relation trivially holds forj = 0. Assuming that it holds foy — 1,
we find from @.7) using the matrix identity3.8), that

wt T =T 4 RTACIR(f — Au'T)

= u"+% + RfA;l <fj - AjRju”Jr% — ZAJkRkun+J’1>
k]

= (I — RTRju"*'7" + RT A} (fj - ZAijku’”jJ]) :
k#j

Now, replacing relation3.15 at j — 1 in the last sum, and using the induction assump-
tion (3.14) at stepn together with Lemm&.2leads to

D ApRiutt T =37 ARy (H ~ R Ri)u +ZH — RI'R) R u "+1>

k#j k;éj i=1 =1 1i=l+1
J
— +1
E Ajkuz + E Ajkuz.
k=j+1

Substituting this result back into the expression &7, we find, using 2.4) and rela-
tion (3.15 atj — 1 again,

v o 7j—1 J
W = (1 R R A (fj—ZA]ku:z*l > )

m=j-+1
j Jj—1
LTS o8 | KA LT AT
=1 =1 i=l+1
J J J
=[[ - RR)) Z II - BRI R)Rw) ™!
i=1 =1 i=l+1

which concludes the first proof by induction. The main re¢8Ii4) can now be proved
by induction onn. By the assumption on the initial iterat&3.{4) holds forn = 0. Thus
assuming it holds fon, we obtain from the first part for this that relation 8.15 holds for

j=0,1,...,J. In particular, forj = J, we have
J J o
uw ™ =[] - RfR)u"+ > [] (I = R Ri)R ™,
i=1 I=1 i=l+1

andHle(I — RTR;) = 0, which completes the proof. O

3.2. The additive Schwarz method.The multiplicative Schwarz method is sequen-
tial in nature, like the alternating Schwarz method, andirzdly the question arises if there
is a more parallel variant, like the parallel Schwarz metbbdions. Dryja and Widlund
studied in P1] a parallel variant, introduced earlier at the continuael by Matsokin and
Nepomnyaschikhd(0], which they call theadditive Schwarz method

The basic idea behind the additive form of the algorithm isvark with
the simplest possible polynomial in the projections. Tfaeethe equation
(Pr+ Py + ...+ Py)up = gj, is solved by an iterative method.
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Using the same notation as before for our two-subdomain hpwdblem, the preconditioned
system proposed by Dryja and Widlund 1] is

(RTAT'R, + RTA'Ry)Au = (RTAT Ry + RYAS'Ry) f. (3.16)
Using this preconditioner for a stationary iterative metlyeelds
u"™ = u" + (RTAT'R) + RTAS'Ry)(f — Au™), (3.17)

and we see that now the two subdomain solves can be done iikepdiiee in the parallel
variant of the Schwarz method proposed by Lions2irs), So is the additive Schwarz itera-
tion (3.17) equivalent to a discretization of Lions’s parallel Schavewvethod? If theR; are
non-overlapping, proceeding like in the multiplicativeh8@rz case using the cancellation
property observed ir3(4), we obtain

n+1 —1 n
Uy _ A7 (f1 — Arpuy) 3.18
{ USH } { Az_l(fz — Ay jul) (3.18)

which can be rewritten in the equivalent form
Alu;”rl = fl — A12UTQL, A2u3+1 = f2 — A21’UJ711, (319)

and is thus identical to the discretization of Lions’s plaiedchwarz method 9) from 1988.
In the algebraically non-overlapping case, the additives&ez method is also equivalent
to a block Jacobi method, since one can rewfité 9 in the matrix form

A1 0 U?Jrl 0 —A12 'll/ll -fl
R e T I P
2 2 21 2 2
The situation changes drastically if tii#&g overlap, which is very natural for these methods.
The reason is that the cancellation@f andu} with »", observed in&.4) in detail for
the multiplicative Schwarz method, and used3nl@ for the additive Schwarz method with
non-overlappingk;, does not work anymore properly in the overlap, since in fhéating
formula 3.17),
n n =1 - Y — n 0

wt =ty | A g “} + [A;(fg — Asyu) - up|
Now, the non-zero termd| ! (f, — Ajou}) — u} from the first subdomain solve and the
non-zero termsi; ' (f, — A u}) — ul from the second subdomain solve overlap, and thus
the current iterate im} andwu} is subtracted twice in the overlap, and a new approximation
from both the first and the second subdomain solve is added.theomodel problem of
the discretized Poisson equation and two subdomains, ishasn in R3] that the spectral
radius of the additive Schwarz iteration operatordri{) equals 1, and that the method fails
to converge in the overlap, while outside of the overlapddurces the same iterates as Lions’s
parallel Schwarz method. This was also noticedif) page 29]:

The proof that these variational formulations are equiviaie the original

ones is obtained via the verification of the relations

k41 .
U1|Ql\Q2, in Q\Qo,
k+1 _ k41 k4l Tk .
U =9 Ujg,, T U, —Ug,, nfs,
Frk+1 .
U2|92\Q1 in Q\Qy,

(hereU* denotes the additive Schwarz iterate, drftithe iterates of Li-
ons’s parallel variant).
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We now prove a non-convergence result in the general caseraf tman two subdomains for
the additive Schwarz iteration

J
"t = u” + ZR‘TAj_lRJ(f _ Au”) (3.20)

j=1

We associate with each unit basis veaipthe index sef; containing all indiceg such that
R;e; # 0, and we denote b/, § the additive Schwarz preconditioner .20,

J
Mys:=Y RIA;'R;,  A;=R;AR]. (3.21)

j=1

THEOREM 3.5. If R;Ae; = O for all j ¢ I, thene; is an eigenvector of the additive
Schwarz iteration operatof — M ;& A with eigenvaluel — |I;|, where|];| is the size of the
index setl;, and hence, ifl;| > 1, the additive Schwarz iteratior3(20 can not converge in
general.

Proof. Forj € I;, we haveRJTRjel = e, sinceRij is the identity on the correspond-
ing subspace, and we obtain

J
(I = MziA)e, = e — Y RIA;'R;Ae

j=1

=e — Y RIA;'R;Ae,— > RJA;'R;AR] Rje,
Jj¢n Jel;

=1 - [L])e,

since by definitiond,; = RjAR;—-F, and by assumptioR; Ae; = 0for j ¢ I;.0

It is interesting to note that in the cas@sd) where Lions’s formulation of the algorithm
can be used, e.g., in Figue2 on the left, the additive Schwarz iteration only stagnatebé
overlap. As in the two-subdomain case, the only non-cotngrgigenmodes have eigenvalue
minus one, and hence one can still conclude aséhthat outside the overlap the iterates of
the discretized parallel Schwarz method of Lions and théigddchwarz iteration coincide,
and the two methods are equivalent. In the general case lkeoweg., in Figur€.2 on the
right, the additive Schwarz method is divergent in the ariand whenever a subdomain
uses information from within the overlap of other subdorsaire.,R;Ae; # 0 for j ¢ I,
there is no longer equivalence between the additive Schitgaietes and the discretization of
Lions’s parallel Schwarz method, since then the additiverzecz method eventually diverges
everywhere.

Several examples for a decomposition of the square into équal overlapping sub-
squares and a discretized Laplace equation are shown imeF3gti We used the classical
five point finite difference stencil on anl x 11 mesh, and a uniform overlap of five mesh
widths. In the upper left figure, the initial error for the ddlet Schwarz iteration3.20 was
chosen equal to 1 in the regions where exactly two subdonmiedap, corresponding to
nodes with|I;] = 2 in Theorem3.5, and zero otherwise. This gives rise to an oscillatory
mode(—1)", shown after two iterations. In the upper right figure, thiéiaherror for the
additive Schwarz iteratior8(20 was chosen equal to 1 in the region where four subdomains
overlap, corresponding tid;| = 4 in Theorem3.5. This gives rise to a growing oscillatory
mode(—3)™, shown after two iterations. In the lower left figure, thetiadierror for the ad-
ditive Schwarz iteration3.20) was chosen equal to 1 at an interface lying in the overlap of
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FIGURE 3.2. Error in the additive Schwarz method after two iteratioms farious initial errors, and the result
of Lions’s parallel Schwarz method on the lower right for 8#me initial error as additive Schwarz on the lower
left.

two subdomains, i.el/;| = 2, but R;Ae; # 0 for j ¢ I;. This does not lead to an eigen-
mode of the additive Schwarz iteration operator, and exa@tker non-converging modes, as
shown after two iterations. Even in the interior of the fimbdomain the maximum error
has already grown from O @033 at iteration step 2, and at iteration 18 the maximum error
equalsl.05 in the interior of the first subdomain: the iteration divesgwerywhere. Finally,
for this same initial error and the same decomposition, vesvsh the lower right figure the
result of the discretized parallel Schwarz methadL() proposed by Lions, also after two
iterations: clearly the method converges very well, theimaxn error is already 0.0461 ev-
erywhere, and the convergence is geometric, as one canafawthe continuous case, using
a discrete maximum principle. Matsokin and Nepomnyaschikt introduced a relaxation
parameterr, in [60] when they studied what was to become the additive Schwaratite
method, and obtained convergence only “for a suitable ehofer,,”, a fact which seems
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to be well known in the numerical linear algebra communitiieve this factor is called the
damping factor; see for example Hackbusét][ who states “the AS iteration converges for
sufficiently smallr”, and [28]. The maximum size of the damping factor is precisely relate
to the problem of the method in the overlap, it has to be smtikn max; ﬁ for conver-
gence, in order to put the eigenvalues- |I;| < —1 into the unit disk; see Theoref5.
Lions’s parallel Schwarz method and its discretization &oev do not need such a damping
factor.

Nevertheless, the preconditioned syst&i @), which for the case of many subdomains
is of the form

J J
> RIAT'RjAu=> RIA;'R;f, (3.22)

j=1 j=1

has a very desirable property for solution with a Krylov noeththe preconditioner is sym-
metric, if A is symmetric. Including a coarse grid correction denoted?gyélglRo in the
additive Schwarz preconditioner, we obtain

J
Myd = RTA;'R; + R{ Ay Ry.
j=1
Dryja and Widlund showed ir2[l] a fundamental condition number estimate for this precon-
ditioner applied to the Poisson equatio], discretized with characteristic coarse mesh size
H, fine mesh sizé and an overlap:
THEOREM 3.6. The condition number of the additive Schwarz preconditiosyestem

satisfies

K(Mys.A) < C (1 + I;) , (3.23)

where the constart' is independent of, H ando.

The additive Schwarz method used as a preconditioner foryeoKmethod is there-
fore optimal in the sense that it converges independentih@®fmesh size and the number
of subdomains, if the ratio off and¢ is held constant. The non-converging modes from
Theorem3.5in the iterative form of the additive Schwarz operatoer M ;3 A are< —1, and
they are bounded from below by the maximum number of subdwsnahich overlap simul-
taneously. Thus, in the additive Schwarz preconditionetesy @.22) with operatorM ;3 A,
they are bounded away from zero and not large. The maximunbauaf subdomains which
overlap simultaneously appears also in the constaint (3.23 [74, page 67], and one could
conjecture that this dependence(dfs removed with restricted additive Schwarz.

3.3. The restricted additive Schwarz method.In 1998, a new family of discrete Schwarz
methods was introduced by Cai and SarKis [
While working on an AS/GMRES algorithm in an Euler simulatiave
removed part of the communication routine and surprisitiggy“then AS”
method converged faster in both terms of iteration coundsGiRU time.
Using the same notation as before for our two-subdomain hpydblem, therestricted ad-
ditive Schwariteration is

u =" + (RTAT'Ry + RY A Ry) (f — Au™),

where the new restriction matricég; are like R;, but with some of the ones in the overlap
replaced by zeros, in order to correspond to a non-overtgpgpécomposition, i.eR¥ Ry +
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FIGURE 3.3. Definition of theR; for a one dimensional example.

PLQTEQ = I, the identity; for an illustration in one dimension, seelf&3.3. As in the case
of the additive Schwarz method, this method can readily beggized ta/ subdomains,

J
™t = w4 ZR;TAJ_lRJ(f _ Au")’ (3.24)

j=1

and the following theorem shows that this method is equitaie a disretization of Lions’s
parallel Schwarz method, the non-converging modes in teday are eliminated by thi;.

THEOREM 3.7. Let A be an invertible matrix, and?; given restriction matricesj =
1,2,...,J, such that thed; := R; AR are invertible. LetR; be their associated non-over-
lapping counterparts. Iff; = R;f, Ajx := (R;A — A;R;)R], andu® = 37| RTu?,
then the restricted additive Schwarz meth@®¢) and the discretized parallel Schwarz
method 2.10 give equivalent iterates, i.ew™ = Z}-le RJTu;P.

Proof. The proof is by induction. Fon = 0 the result holds by assumption. So,
assuming it holds fon, we obtain forn + 1, using that for any vectar™ the identityu" =
>/ RTR;u" holds,

J
"t = un + ZEIJTAJIRJ(]& — Au™)

j=1

J
> RTATN(f,; + AjRju" — R; Au™).
j=1

By the induction hypothesis, we haw¢ = 57 RTwu?, which yields

un+1 _

J
;A (fj +(A;R; — RjA) Y Rfﬂﬁ)

k=1

.M“
=y

1

J

I
KM“

1

J
R} AT (fj - Z&w?) ;
k=1

where we used the definition of;,. Now, in the last sum the terf = j can be excluded,
since

J

Aj; = RjART — A;R;RT = R;ARTR;RT — AjR;RT = A;R;RT — A;R;RT =0,

which concludes the proof by using.(0. O
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REMARK 3.8. The choiced;, = (R;A — A;R;)RY is a very natural one for the dis-
cretized parallel Schwarz method of Lior&s10), since it states precisely that interface values
are taken from a non-overlapping decomposition, as in thérmoous formulationZ.7).

There is no convergence theorem similar to TheoBedror restricted additive Schwarz
[74):

To our knowledge, a comprehensive theory of these algosiibrstill miss-

ing.
There are only comparison results at the algebraic leveldmt additive and restricted ad-
ditive Schwarz, which show that restricted additive Sctaadways has better spectral prop-
erties R9], and partial results when the shape of the subdomains isfiedidsee B]. With
the equivalence of the restricted additive Schwarz metBdtf and the discretized parallel
Schwarz method(10), we can obtain a first general convergence proof for theicesd ad-
ditive Schwarz method in the case where a discrete maximimiple holds: the continuous
convergence proof of Lions indf], based on the maximum principle, then also applies to
the discretized case, and hence to the restricted addithe/&z method by Theore@ 7.
A very elegant convergence proof with convergence factiimases based on the maximum
principle and lower and upper solutions for the continuogsivealent of restricted additive
Schwarz can be found ib9]; similar techniques were also used for time dependentiena®d
in [38].

Unfortunately, the restricted additive Schwarz precdadér is hon-symmetric, even if
the underlying system matrik is symmetric; therefore, for symmetric problems, there is a
trade-off between the additive Schwarz preconditioneirtgas larger condition number and
the restricted additive one being non-symmetric.

4. Problems of classical Schwarz methodsThe classical Schwarz methods we have
seen can be applied to many classes of PDEs; their fundahmdedaof decomposition and
iteration is very general and flexible, both at the contirsuand discrete level. With all this
flexibility however there are also some problems with Sclawaethods, some of which we
discuss in this section, together with ideas of remediems tie literature, which interestingly
all point in the same direction.

4.1. Overlap required. It was Lions who emphasized one of the main drawbacks of the

classical Schwarz methods i#9]:

However, the Schwarz method requires that the subdomagrtapy and

this may be a severe restriction - without speaking of thaaus/or intu-

itive waste of efforts in the region shared by the subdomains
In addition to this evident drawback, Lions might also hawveught about problems with
discontinuous coefficients, where it would be very natusalge a non-overlapping decom-
position with the interface along the discontinuity, or eygoblems where different models
need to be coupled. In such situations, an overlap does mgtitde a natural decomposi-
tion. Lions therefore proposed a modification of the alténgaSchwarz method for a non-
overlapping decomposition, as illustrated in Figdr& The only change in the new variant
lies in the transmission condition, otherwise it is stillisaration by subdomains,

LulT =f inQy, Luy™ =f inQy,
(Ony +p1) U} = (00, +p1)uy onT, (O, +p2)uh™ = (0, +p2)u ™ onT.

With these new Robin transmission conditions, Lions praveld9] using energy estimates
that the new Schwarz method is convergent without overlaphi® case of constant param-
etersp; and an arbitrary number of subdomains. From this analyséscam not see how
the performance depends on the parametersut Lions makes in the last paragraph the
visionary remark:

(4.1)
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FIGURE 4.1. A non-overlapping decomposition.
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FIGURE 4.2.Error in the first, second, third and eighth iterate on the &fbdomain of the alternating Schwarz
algorithm applied to the indefinite Helmholtz equation.

First of all, it is possible to replace the constants in théiRa@onditions

by two proportional functions on the interface, or even lgalar nonlocal

operators,
and then concludes by showing that for a one dimensional hpodlelem, one can choose the
parameters in such a way that the method with two subdomaimgegges in two iterations,
which transforms this iterative method into a direct salver

4.2. Lack of convergence.Another drawback of the classical overlapping Schwarz
method is that there are PDEs for which the method is not cgawe. A well known ex-
ample is the indefinite Helmholtz equation, for which we shiowrigure4.2, the error on the
left subdomain of the alternating Schwarz algorithm withogarlapping two-subdomain de-
composition. We started the iteration with a random ingia¢ss, an issue we will come back
to in the experiments in Figur@2. One can see that while the alternating Schwarz method
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FIGURE 4.3. Comparison of the multiplicative Schwarz method, used atesative solver or as a precondi-
tions, with a multigrid method.

quickly removes the high frequency components in the earparticular low frequency com-
ponent remains. One can show that, for such problems, thapping Schwarz method is
not effective for low frequencies, the convergence factn@ equal to one for these frequen-
cies B0]. Despgés had already worked on this problem in his PhD thesis14]:

L'objectif de ce travail est, aps construction d’une @thode de dcompo-

sition de domaine ada@t au prol#me de Helmholtz, d’en&montrer la

convergenceé.
Interestingly, Desp@s also made just one modification to the algorithm, the shatd fons
did, except that he fixed the choice of the parameters tp;be iw, wherew is the wave
number of the Helmholtz problem, and then used again enstgya&tes to prove convergence
of a non-overlapping variant of the method.

4.3. Convergence speedThe final drawback of the classical Schwarz methods we want
to mention is their convergence speed. We show in Figusa comparison of the multiplica-
tive Schwarz method with two subdomains, as an iterativees@nd as a preconditioner for
a Krylov method, with a standard multigrid solver when agglto the discretized positive
definite problen{n — A)u = f,n > 0. Clearly the multiplicative Schwarz method needs too
many iterations to reduce the residual, compared to thegndlimethod. Even as a precon-
ditioner for a Krylov method, the method is significantlywkr than multigrid. Hagstrom,
Tewarson and Jazcilevich proposed for a non-linear prolitefdl] an idea to improve the
performance of the classical Schwarz method:

In general, [the coefficients in the Robin transmission domts] may be
operators in an appropriate space of function on the boynttzdeed, we
advocate the use of nonlocal conditions.

Similarly, at the discrete level, Tang proposed generdl@ehwarz splittings in13], with
better transmission conditions to improve the performaridke classical Schwarz method:
In this paper, a new coupling between the overlap[ping]sgions is iden-
tified. If a successful coupling is chosen, a fast converg@fithe alternat-

4The goal of this work is, after construction of a domain decositin method adapted to the Helmholtz
problem, to prove that this new method is convergent.
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ing process can be achieved without a large overlap;
see also§7].

Gene Golub also showed me at a recent conference anothesiiig observation at the
discrete level: if one uses for a one dimensional discrétReisson equation a two-block
Jacobi splitting corresponding to a Schwarz method witlicBlet transmission conditions,
the preconditioned problem is of rank two; if one uses howd&leumann transmission con-
ditions, it is of rank one, a result which can be generalizekigher dimensions, and cuts in
half the maximum number of iterations of a Krylov method vittis preconditioner.

In summary, for all the drawbacks we have mentioned from itieeakure, significant
improvements have been achieved by modifying the trangmisonditions. This has led
to a new class of Schwarz methods we call optimized Schwatlkads, and which we will
discuss next, again both at the continuous and discretk leve

5. Optimized Schwarz methods.Optimized Schwarz methods grew out of the com-
ments by Lions and Hagstrom et al. to use more general opsiiatthe Robin transmission
conditions. Nataf et al. for example, state @5[;

The rate of convergence of Schwarz and Schur-type algositeivery sen-
sitive to the choice of interface conditions. The originah®&arz method
is based on the use of Dirichlet boundary conditions. In potdéncrease
the efficiency of the algorithm, it has been proposed to mpthe Dirich-
let boundary conditions with more general boundary cooddi (...) It
has been remarked that absorbing (or artificial) boundangditions are
a good choice. In this report, we try to clarify the questibthe interface
conditions.

5.1. Optimized Schwarz methods at the continuous levelWe consider the classical
alternating Schwarz algorithn2 ) with the modified transmission conditions

Luf™ = f inQy, Luttt = f inQy,

A
Blu"H = B1u£’ onl'y, BQUTH_l = Bgu"H onl's, (5 )

where the linear operatoi$; are acting along the interfaces between the subdomains. For
a large class of second-order problems, including time riéget ones, one can show for a de-
composition into strips that the optimal choice fris 0,,; + DtN;, whereDt N denotes the
non-local Dirichlet to Neumann (or Steklov-Poingaoperator associated with the second-
order elliptic operato. With this choice and a decomposition infesubdomains, the new
Schwarz method converges.irsteps, and is thus a direct solver; sé¢ p5]. Unfortunately,

as theDtN operators are in general non-local in nature, the new dlgaris much more
costly to run, and also much more difficult to implement. Osnéhierefore interested in ap-
proximating the optimal choice by local operators of thexfd#; = 0,,, +p; +7;0- +¢q;0:~,
whered, denotes the tangential derivative at the interface. Ondde(e to determine the
parameterg;, ¢; andr; such that the method is as effective as possible. This isin ge
eral again a difficult problem, but for model situations, lsas the plane decomposed into
two half planes, or a rectangular domain decomposed intoréetangles, the method can
be studied using Fourier analysis. To be more specific, if @resicder the positive definite
equation(n — A)u = f,n > 0, on the plan&) = R? decomposed into the two half planes
Oy = (—o0, L) x RandQy = (0,00) x R, L > 0, then a Fourier transform ipwith Fourier
parametek shows B1] that the contraction factor o6(1) is of the form

2
_ <p+ irk + gk? — /K F n) N

p+irk +qk? 4+ k2 +n
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where we have assumed for simplicity that= p, ¢; = ¢ andr; = r. Denoting byz := ik,
frpe(z) := \/k2 + n, and letting the polynomial(z) := p + irk + ¢k?, we obtain

= o(z.8) = 48(2)7‘](‘PDE(Z) 26*2LfPDE(Z)
p=0lz5) (S(Z)+ prE<z>) , (5.2)

and we would get a similar expression for an arbitrary seaandér PDE for the same model
situation, wherefppg is in general the complex symbol of the associat&dV operator;
see [L]. In order to obtain the fastest in a given class of algorghdetermined by the degree
of the polynomial used for the transmission condition (eng= 0 for Robin transmission
conditions), we need to minimizeover all relevant frequencies, i.e., we search for

inf sup |o(z, 5)| (5.3)
s€Pn ze K

whereP,, is the set of complex polynomials of degreen, and K is a bounded or un-
bounded set in the complex plane. We are thus led to solvetaappsoximation problem,
and the resulting polynomial coefficients give the best jpbsperformance for the associated
optimized Schwarz method and the physical problem at hand.

Chebyshev was the first to study best approximation prohleratvated by the mechan-
ics which link the steam engine to the wheel of a locomot8jeWhich led him to study the
real best approximation problem, i.e., to find the real potyial p on the intervall which
satisfies

min max | f(z) — p(z)], (5.4)

and he made the Russian style remark (in French),
... ladifferencef (z) —p jouira, comme on le sait, de cette prdé&i: Parmi
les valeurs les plus grandes et les plus petites de krdiftef (x) —p entre
les limites, on trouve au moins+ 2 fois la meme valeur nur@rique®
without proving it, which is the famous equioscillation pesty. Only half a century later,
De la Vallee Poussin proved iri]] formally existence, uniqueness and equioscillation ef th
solution for the classical best approximation probléml); Meinardus and Schwedt studied
another half a century later in depth linear and non-linest pproximation problems§7],
and defined the three fundamental mathematical questioichwleed to be addressed for
such problems:
1. Existiert Uir jede stetige Funktiofi(z) eine Minimalbsung?
2. Gibt es zu jedenf(x) genau eine Minimadisung?
3. Wodurch wird die Minimalbsung charakterisieft?
The best approximation problen®.g) from optimized Schwarz methods, which is called
a homographic best approximation problem because of tme édrthe convergence factor
in (5.2), was studied only recently; se# [ For the case without overlap, we have the follow-
ing result, which answers the three major questions of Mdimaand Schwedt for this case.

5... the differencef (z) — p satisfies/ike everybody knowghe following property: among the largest and
smallest values of the differengdz) — p between their limits, one finds at leastt 2 times the same numerical
value.

6 1. Does a minimal solution exist for any continuous functjtf:)? 2. Is there precisely one such minimal
solution for anyf(x)? 3. How is this minimal solution characterized?
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T T T
; — Multiplicative Schwarz
\ — - Multiplicative Schwarz Krylov
i N\ — - Multigrid
100 —— Optimized Schwarz El
N\ XY — - Optimized Schwarz with Krylov

residual norm

I I I I I
0 2 4 6 8 10 12 14 16 18 20

iterations

FIGURE 5.1. Comparison of the classical and optimized multiplicatiebv@arz method, used as an iterative
solver or as a preconditioner, with a multigrid method.

THEOREMS5.1. If L = 0 and K is compact, then for eveny > 0 there exists a unique

solutions},, and there exist at least + 2 pointszy, . .., z,12 in K, such that
sn(2i) — f(2i) sp—f
sy (2i) + f(z1) sht fllo

With overlap, the situation is more delicate:
THEOREMDS.2. Let K be a closed set ift, containing at least + 2 points. Letf satisfy
Rf(z) >0and

Rf(z) — +o0 as z— o0 IinK.

Then, forL small enough, there exists a solutigf) and there exist at least + 2 points
21, .-, 2Znto iN K such that

sn—f Ly
——e
spt+f

n(zi) — f(zi)e—Lf(z,L)
n(zi) + f(z)

In addition, if K is compact, and. satisfiess,, (L)e “s'P-ex ®/(2) < 1, then the solution is
unique.

These key results from best approximation allow us to deatermine most effective trans-
mission conditions in each family of transmission condiidRobin or higher order) for
a given PDE, and thus the associated optimized Schwarz chefoo the case of the positive
definite problem(n — A)u = f, n > 0, we obtain with the parameters fror@1], for the
same comparison with the multigrid method as in Figu@ the results shown in Figuie 1
Clearly, the performance of the method is greatly enhanbedddition, now Krylov accel-
eration does not improve the performance by much, the iteragariant is already close to
optimal without Krylov acceleration, like multigrid for ihsame problem.

Over the last ten years, a lot of research has been devotéddy the optimal choice
of parameters in the transmission conditions of optimizedw&rz methods, and there are
now results available for many classes of PDEs: for steadyrsstric problems12, 13, 31],
and B2, 53] for a first analysis of non-straight interfaces; for adi@tireaction-diffusion

= 0u(L).
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iterations
iterations

0 1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 80 0 1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 80
p p
FIGURE 5.2. Using a zero initial guess and computing a smooth solutibe,gerformance of the optimized

Schwarz method does not seem to depend on the left. When, however, a random initial guess is useden t
right, the dependence appears, as predicted by the theory.

type problemsZ2, 42, 43, 44, 45, 51, 62, 63]; for the indefinite Helmholtz case] 7, 9, 35,
37, 55, 56]. There are also results for evolution problems, where thersthms are called
optimized Schwarz waveform relaxation: for the heat equafd?], for the unsteady ad-
vection reaction diffusion equation,[34, 58], for the second-order wave equati@B] 36],
and for the shallow water equatiof7. There is also work for problems with discontinu-
ous coefficientsg2, 24, 25, 26, 27, 54], and for a more detailed analysis of problems with
corners [L0]. Aninteresting relation between optimized Schwarz meéthend Schwarz meth-
ods for hyperbolic problems using characteristic transiois conditions was found irLf]
for the Cauchy-Riemann equation, and then exploited toveepptimized Schwarz methods
for Maxwell’s equations in17]. In fluid dynamics, optimized transmission conditions aer
studied in [L9]; in particular, for Euler's equations, se&g 20]. For an interesting discrete
approach, see[r, 73] and the thesis by Tarvp].

Special care must be taken in testing these optimized methatherically, in order
to avoid jumping to false conclusions. In particular, whemng scaling experiments for
a diminishing mesh parameter Motivated by results ing1], we applied a non-overlapping
optimized Schwarz method with Robin transmission condgtiand two subdomains to the
model problem(n — A)u = f. Itis known in this case that the optimal parameter in the
transmission condition is

p= (K2 + 1) (K + 1)) (5.5)

where the minimal and maximal frequency can be estimated,hy ~ 7 andkpax ~

#» with [ denoting the length of the interface, ahdhe mesh size; se8]]. Hence the
optimal parameter depends on the mesh iz@ Figure5.2, we show on the left how many
iterations are needed, as a functionppfvhen computing a smooth solution starting with a
zero initial guess. It seems that the optimadloes not depend oh, and the convergence
rate is independent df, which is in sharp contrast to the analysis 81]f In Figure 5.2

on the right we show the same set of experiments, but nowirgiartith a random initial
guess. Now, clearly, the optimaldepends ork, and the convergence rate deteriorates, as
predicted by the analysis ir8]]. What has gone wrong with the first experiment? Starting
with a zero initial guess and computing a smooth solutiorir®arity the error only contains
low frequencies, and thus refiniigdoes not add any high frequencies, the behavior of the
method remains the same. Starting with a random initial geesures that all frequencies
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are present in the error, and the method is really testedstieally, since one would only
use a mesh fine enough to resolve the features in a real applicd@he stars in Figuré.2
denote the optimum according to formua%), where on the left we estimatédg,.. using
the largest frequency in the smooth solution.

5.2. Optimized Schwarz methods at the discrete leveM/e saw that in the continuous
formulation optimized Schwarz methods are obtained froassital ones by changing the
transmission conditions. In the discrete Schwarz methldagver, the transmission con-
ditions no longer appear naturally, as we have seen in tbeimdlations in Sectio3. One
can however show algebraically that it suffices to exchahgestubdomain matrices; in the
multiplicative Schwarz method and the restricted addi®olwarz method, by subdomain
matrices representing discretizations of subdomain problwith Robin or more general
boundary conditions, in order to obtain the same iteratediszsetized optimized Schwarz
methods, provided an algebraic condition holds; §ég [If we take as an example

Lu=(n—Au=f in(0,1)2
and use a finite volume discretization, we obtain the dism@dtsystem
Au=f,
where the system matrix is of the form
T, -I nh?+4 -1
A=—| -1 T, "~ |, T,= -1 nh*+4

The classical subdomain matrices used in the discrete $ztmethods arel; = R; AR} .

In order to obtain optimized subdomain matrio@s one simply replaces id; the interface
diagonal blockd;, by

.1
T:§ﬂ+wﬂ+%%fﬂ) Ty = T, |0, (5.6)

wherep andq are solutions of the associated min-max problem. In nurakliicear algebra
terms, one modifies slightly the diagonal blocks of an oygilag block Jacobi or block
Gauss-Seidel method, where they connect, with neighbdtimcks using formulaX.6), and
obtains a much more efficient method. The impact of this cedaghown in Figuré.3

for the case of a block Gauss-Seidel or multiplicative Satawaethod with small overlap,
where we used for the parameters ingj both low frequency approximations of zeroth and
second-order (TOO and TO2); seH], and the results of the best approximation problem for
this PDE from B1] for a zeroth and second degree polynomial (OO0 and OO23.dieiarly
very beneficial to know these parameters.

6. Conclusions. We have shown that discrete Schwarz methods are discietigaif
continuous Schwarz methods, with the important exceptfdheadditive Schwarz method
with more than minimal overlap, which does not corresporald¢ontinuous iteration per sub-
domain: in order to remain symmetric for symmetric problethe method accepts as a com-
promise non-converging modes in the overlap. These aregVewtreated easily when the
method is used as a preconditioner for a Krylov method, attisé of a few more iterations.
As an alternative, the restricted additive Schwarz methard e used, which corresponds
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FIGURE 5.3. Impact of the different diagonal blocks in the optimizedtiplitative Schwarz method on the
contraction factor of the method.

to a continuous iteration per subdomain introduced by Liom@enely the parallel Schwarz
method, but is non-symmetric, even for symmetric problems.

We have then shown that several drawbacks of the classitale&8z method, namely
the need for overlap, convergence problems for indefinitenHeltz equations, and slow
convergence, have all historically been addressed bydatiag one change in the method:
different transmission conditions. This motivated the elepment of optimized Schwarz
methods, both at the continuous and discrete level, withifidgntly enhanced convergence
properties. At the discrete level, particular care has téalken in the case of the additive
Schwarz method, because of the non-convergent modes ivéhiap, and the need of opti-
mized Schwarz methods to approximate derivatives there.

There are three main open problems in the development ohgetd Schwarz methods:
first, there is no general convergence proof, neither atdhérauous, nor at the discrete level,
for overlapping optimized Schwarz methods, although tleeesinteresting results for the
special case of two subdomains; séé][and [50]. Second, the development of coarse grid
corrections for optimized Schwarz methods is only at thgestaf numerical experiments;
see R2]. Finally, it would be very important to develop algebrdigaoptimized Schwarz
methods based on the matrix alone, in analogy to the algetmalitigrid methods.
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