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AN OVERLAPPING ADDITIVE SCHWARZ-RICHARDSON METHOD FOR
MONOTONE NONLINEAR PARABOLIC PROBLEMS *

M. MUNTEANUT AND L. F. PAVARINO!

Abstract. We construct and study a scalable overlapping Additive $eRichardson (ASR) algorithm for
monotone nonlinear parabolic problems discretized inithlién time. At each time step, the Additive Schwarz
preconditioner is built using the linear part of the nonéin@perator, partitioning the domain of the problem into
overlapping subdomains, solving local problems on thesel@mains and solving an additional coarse problem
associated with the subdomain mesh. This preconditiortkersapplied to the nonlinear operator using a Richardson
iteration. We prove first an abstract convergence resultlagnl convergence rate estimates showing the scalability of
the ASR algorithm. The results of numerical experimenthéylane confirm the theoretical estimates and illustrate
the performance of the one and two-level ASR algorithm anthénpresence of discontinuous coefficients in the
parabolic operator.
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1. Introduction. In recent years, domain decomposition methods have beended
in different ways to nonlinear problems arising in many agadlon areas. As a first ap-
proach, domain decomposition methods provide precomdit®for the Jacobian system in
a Newton-like iteration. In this context, Schwarz-type qmeditioners have been success-
fully used by Cai et al. to solve problems from various applields, e.g., computational
fluid dynamics [L1, 17], full potential problems 0], cardiac electrical activity45], and un-
steady nonlinear radiation diffusio@T]. Additive Schwarz methods have been used not only
as inner iterations in a Newton-Krylov-Schwarz (NKS) sclegiout also as outer iterations
in nested solvers such as ASPINZ[ 1] or in the nonlinear additive Schwarz method by
Dryja and Hackbuschlf]. Different approaches have been studied by 1@ P0] using the
method of monotone iterations for continuous nonlineap&dl and parabolic PDEs and by
Boglaev f] using monotone Schwarz methods at the discrete level fgyusarly perturbed
reaction-diffusion problems. Extensions of the classaziditive and multiplicative Schwarz
methods have been studied by Tai and Espe#thl32] for convex programming problems
and by BadeaZ] for constrained minimization problems.

In this paper, we follow instead the work of Cai and Dryfl for monotone elliptic
problems and extend it to monotone nonlinear paraboliclprob. The main idea is to build
an overlapping additive Schwarz preconditioner for thedinpart of the operator, partition-
ing the domain of the problem into overlapping subdomaiolsjisg local problems on these
subdomains, and solving an additional coarse problem ededavith the subdomain mesh.
This preconditioneris then applied to the nonlinear omenasing a Richardson iteration. The
linearity of the preconditioner allows us to employ the meohnical tools of the classical
abstract theory of additive Schwarz methods (see, €8]),[and prove an abstract conver-
gence result for the resulting iterative method. With tlésuit, we can then obtain precise
convergence estimates for the Additive Schwarz-Richarqd®R) method applied to the
time discretization of monotone nonlinear parabolic peois. The two-level ASR method
turns out to be scalable and with a convergence rate depgndiy on the ratidd /§ as in the
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linear case, wheré/ is the subdomain characteristic size anthe overlap size. Without a
coarse space, the one-level ASR method can still have aartngiper bound if the time step
sizer is small enough. Otherwise, the convergence rate depentieeomtior/(HJ§) and
scalability is lost as in the linear case. In case of geneovedlapé = C H, these estimates
agree with the estimates obtained by Caid] for linear parabolic problems.

The rest of the paper is organized as follows. In Secfipwe introduce the nonlin-
ear parabolic problem, its main properties and time diszagon. In Sectior8, we define the
ASR method in both its functional and matrix form. An abstiGanvergence resultis givenin
Sectiond, where we prove some technical lemmas leading to the maitt &fsTheoren.7.

In Sectionb, this abstract result is applied to the time discretizatibour nonlinear parabolic
problem and convergence rate estimates are obtained foobet and two-level ASR meth-
ods. Sectiorb concludes the paper with the results of several numeriga¢éxents in the

plane, confirming the theoretical results obtained andtitating the scalability of the ASR
method. We also compare the ASR method with the Linearly iciiituler method, based
on solving an appropriate linear system involving the Jéaolf the nonlinear operator by
using GMRES with the Additive Schwarz preconditioner as BR\and we show that the
ASR method is asymptotically less expensive.

2. Continuous and discrete nonlinear parabolic problems.We consider a polyhedral
domainQ c R?, d = 2,3, with Lipschitz continuous bounda?, the spaces

V={ve H(Q):v=00nT; C 99, meas(I'1) >0}, L*(Q),

and the nonlinear formh : H'(Q) x H*(Q2) — R satisfying the following properties:

1. bis Lipschitz continuousiL > 0 such thatyv, w, z € H* (),
|b(v, 2) = b(w, 2)| < Ll|v — w|| (o) - |2l (0

2. bisbounded3C > 0 such thatb(v, w)| < C(1 + [[v|[ 1 @)l a1 (@),
Vo, w € HY(Q);

3. bis hemicontinuousvu, v,w € H' (), the functionn — b(u + av, w) is contin-
uous;

4. bis strictly monotoneb(v, v — w) — b(w,v —w) > 0, Yo, w € H (), and equality
holds only forv = w;

5. bis linearin its second argumertitv, > a;w;) = Y a;b(v, w;), Yo, w; € H' (),
3 i=1

Vo €R,i=1,...,n =
6. b(v,v) > el vl %10y — col[vll 1) — eallvl[2a ) — c2, Yo € HY(€),
wherec > 0,¢9 > 0,¢; > 0, ¢y > 0 are constants.
We consider the following nonlinear parabolic problem: egivu, € L?*(Q) and
f e L2((0,7);V*), findu € W = {u € L*((0,T);V), v € L*((0,T);V*)}, such
that

< (t),w > +b(u(t),w) =< f(t),v >, ¥t € (0,T)\ Ey, Yw €V,
(2.1) { w(0) = o,

whereE,, C (0,T) is a set of measure zero that depends on the funetion

The continuous problen2(l) is discretized implicitly in time by the backward Euler
method and in space by the finite element method. We supposariplicity that the time
interval (0, T) is discretized with a uniform time step= 7'/M into M equal subintervals
and that the domaif? is discretized with a regular finite element triangulatibnwith mesh
sizeh. The associated piecewise linear finite element spade defined by

Vi, = {v|v is continuous on Q, v|y is linear Vk € 75, v =0o0n T }.
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We denote byu;* € Vj, the finite element approximation of a functien € V' at time

tim

t"™ = mr7and letf™ = %/ f(t)dt. We then obtain the following fully discrete problem:
tm—1

given an arbitrary sequencéul} < L*(Q) of approximations ofu®, such that

%in%) [[ul — || = 0, find u} € V},, such that

u — !
(2.2) <h%,v> +b(upt,v) =< f" 0 >, Yv € V.

Results on the existence and uniqueness of the solutioneoflidtrete and continu-
ous parabolic problems can be found, e.g.,38, [Theorems 45.3 and 46.4], respectively.
The convergence of the discrete solution to the continuasie presented in3p, Theo-
rems 46.4 and 47.1].

3. An Additive Schwarz-Richardson algorithm. Since in the rest of the paper we
only consider discrete functions, for simplicity, we drayetindicesh andm and denote by

u both the finite element approximatian= " u;¢; of the continuous solution in the finite

j=1
element basi§¢;, j = 1,...,n} of V,, and its vector representation=[u1, ..., u,].
Problem @.2) can then be written as the nonlinear algebraic system,

(3.1) B(u) = g,
where
B(u) = [Bi,...,B,)", with  Bj = (u,¢;) + 7b(u, ¢;),
fI: [gla"'agn]Ta Wlth g_] :T<fm7¢j > +(u;1n_17¢7)

Following the abstract Schwarz theory, presented, e.33) we consider a family of
subspace®; C Vj,i = 0,..., N, and interpolation (or extension) operatdts : V; — Vj,,
and assume thaf, admits the decomposition

N
Vi =Y RV
=0

We suppose that there exists a symmetric, continuous andcigeebilinear form
a:V xV — R, such that

(3.2) b(u,v) = a(u,v) + b(u,v),

with b a nonlinear form, monotone and Lipschitz continuous witbsichitz constank. Non-
linear formsb(u, v) with such a structure arise, e.qg., in the field of computatietectrocar-
diology, where research on parallel solvers for the assedinonlinear parabolic reaction-
diffusion models (known as monodomain and bidomain modets)rrently very active; see,
e.g., B5, 13,30, 22, 24, 21, 23, 28].

Since the bilinear form

ar(u,v) = (u,v) + 7a(u,v)

defines a scalar product dn, we can introduce local symmetric, positive definite biine
formsa-, ; : V; x V; — R, and we make the standard three assumptions of the abstract
Schwarz theory (se&B] for more details):
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e stable decompositiorthere exists a constanyy, such that every, € V4, admits a
N
decompositiont = > RTw;, u; € V;, i = 0,..., N that satisfies
=0
N
(3.3) Z i(uiyug) < Clar(u,u);
=0

e strengthened Cauchy-Schwarz inequaliye;; € [0,1]¢,7 = 1,..., N, such that
Yu; € Vi, VUJ‘ S V;

(3.4) |aT(RTuZ,R uj)| < eja-(R; ul,RT )1/2 (R;‘-Fuj,R;‘-Fuj)l/z;

(we denote by (€) the spectral radius of the matidk= (¢;;))
e local stability: there existso > 0, such that

(3.5) ar (R wi, R} w;) < wayi(ui,u;), Yu; € Vi, 0<i < N.
We define the “projection”-like operatoéi Vi, — V; by
(3.6) i i(Qi (), vi) = (u, R v;) + 7b(u, R v;), Yoi € Vi, u €V,
and their extension®; : V;, — RI'V; c V}, defined by

Qi(u) = R Qs(u) and Q(u) = Z Qi(u).

Let A, ; = (@r.i(b;, 1)), be the matrix representation of the local bilinear faimy.
LEMMA 3.1. The matrix form of)(u) is

(37) Q(u) = M~ B(u),

N _ —1
whereM = (Z RZTA;_%Rz) :
i=0 '
Proof. Let {s/¥, k = 1,...,n;} be a basis of the local subspade ThenQ;(u) € V;
can be written ag); (v) = Y Q;(u)'! and the two terms in3(6) become
I

ari(Qi(w),v) = ari(Y_ Qi)Y vfwk) = ZZQZ Y (W), U)ol
k
= "ok > AR Qi(u)! = o] A- Qi (),
and

(u, R vi) + 7b(u, R v;) = (u, Y (R} vi)'¢) + 7b(u, Y (R
=1 =1

n

Z R vZ u, ¢p) + 70(u i RTvl

=1 =1

= (R vi)" B(u).
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The definition ofQ; () implies
vl A, ;Qi(w) = (RTv)T B(w), Yui € Vi, u € Vi,
and consequently
AiQi(u) = RiB(u),  Yu€e V.
The matrix form ofQ; (u) is then
@Z(u) = g:z R;B(u).
SinceQ; (u) = RTQ;(u), the matrix form ofQ; (u) is

Qi(u) = RT /T;;RiB(u).

Hence,
N N N
Q(u)=>_ Qi(u)=> RIA!RiB(u) = M~'B(u),
=0 =0

-1
N ~
whereM = <Z RiTAT,%Ri) .0
i=0
REMARK 3.2. Since the matrix\ is symmetric and positive definite, it defines the
M-norm||ul|pm = (ul Mu)'/2.
We defineg; = Q;(u*), whereu* is the exact solution of3.1), i.e: B(u*) = §. We
consider the nonlinear system

(3.8) Qu) =g,

N
whereg = Y g;. Asinthe linear case (se&9, p. 150]),g can be computed without knowing

1=0
the exact solutiom™, since

N N N _
§=> gi=»_ Qiu)=> RI'A_;RB(u*)=M"'B(u*) = Mg
1=0 =0 =0

Using the matrix form of the nonlinear operatgrand the definition of, it is straightforward
to prove that the nonlinear systeB{u) = ¢ is equivalent to the nonlinear systepiu) = g.
In other words, we use the symmetric positive definite past peconditioner for the original
nonlinear system. This idea has already been used by Cai af@4Kfor nonsymmetric or
indefinite problems. We can then define the Additive SchviRichardson (ASR) algorithm
for Problem B.1).

ASR algorithm: given initial guesses’, 7 = Q(u") — g and a stopping criterion,
iterate fork = 0, 1, ... until convergence

solve the preconditioned systemMr* = B(u*) — g,

(3.9) update the solution: uFtl =k — Nk,

where) is a properly chosen parameter; see Theofem
We prove in the next section that the ASR iterations conviéryés chosen properly, and
its convergence rate depends on the paramétgrs;;, w defined previously.
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4. An abstract convergence result.In order to prove our main result, Theorefrv,
we need a few technical results established in the next fewnlas. We start by recalling a
lemma due to Zhang3f], that plays an important role in proving the equivalenceneen
[+ lla, @and|] - [[ar-

LEMMA 4.1. Let P; be the projection- I|ke operator fron’ onto V; defined by

a”(Pu vi) = a-(u, RTv;), v; € Vi and Pyq = Z RT P, = M~'A.. Then
1=0

(4.2) aT(Pgdlw u) = min Z r (i, u;).
u; €V; i=0
u=> Rlu;

LEMMA 4.2. The M —norm anda, —norm are equivalent, i.e.,
1
@Ilull'h <ull7, < 2w(1 + p(E)[ul34;
0

where Cy,w and p(€) are the constants defined in the three assumptions of theaabst
Schwarz theory, inequalitie8.Q—(3.5.

Proof. a) Lower bound.Using Lemma4.1 and the stable decomposition assumption
(3.3), we have

ul|j = v Mu = u" AL A7 Mu = a, (A7 Mu, u)
N

= ar(Pyglu,u) <Y ar i (ui,ui) < Cllulf2
i=0

N
b) Upper boundLet = Y R7w;. From the strengthened Cauchy-Schwarz inequality
1=1
(3.4) and the local stability assumptio8.p), it follows that

N N
a, (@,u) = Z aT(RiTui,RjTuj) < Z eijaT(RlTui,RlTui)l/QaT(RjTuj,RjTuj)l/Q
ij=1 i,5=1

N N
< p(E)Z (R ul,R u;) < p(€ Z (g, ug).
i=1 el

Each element, € V;, can be written as = RZ v, + @. Using the bilinearity of., the local
stability assumption and the last bound, we have

ar(u,u) = ar (R uo + a4, R uo + ) = a-(RE uo, RY o) + ar (4, @) + 2a, (RY uo, @)
N

< war o(ug, ug) + p(&)w Z ari(ui, wi) + 2a, (RE uo, ).
i=1

Since2a, (R uo, @) < 2a,(REug, REuo)?a, (u,7)"/? < ar (REuo, RYuo) + a- (7, 7),
we obtain

N
ar(u,u) < 2w(l+ p(€ Z (g, ug), VUZEM,U—ZRTUZ
=0 1=0
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Taking the minimum over the all decompositionscdind using Lemmé.1, we conclude
ar(u,u) < 2w(l+ p(€)) min ZdTﬂi(ui,ui) =2w(1 + p(€))ar (P, u,u)
u; €V, i
u="> Rlu,

= 20(1+ p(&))l[ull}4 D )
LEMMA 4.3.There exists a constang = oz >0, such that
0

(Q(u+2) = Q(u), 2)m = &oll2l[3, Yu, 2 € Vh.

Proof. The definition ofQ(u), the linearity ofb in the second argument, the strict mono-
tonicity of b, and the lower bound of Lemn¥a2imply

(Qu+2) = Q(u), 2)m = 2" M(Q(u + 2) — Q(u))
= 2T MM (B(u + 2) — B(u))
= 2" (B(u+ 2) - B(u))

= zi(bj(u+2) — bj(u)

j=1

=z [(u+2,¢;) + mh(u+ 2, ;) — (u, &) — 7b(u, ¢;)]

j=1

= (2, %0) +7 [bu+2,Y 20;) —b(u, Y 2ié))
j=1 =1 =1

=(z,2)+7[blu+z,2)—b(u,2)]

= N2l 47 [but 2,2) = b, 2)] = 1212,

1 2
> C_§||Z||M'

Using a particular decomposition of we are able to give another proof of this lemma. Since
P,q is invertible (see33, Lemma 2.5]), we can decompose Vj, asz = ) R z;, where
J

Zj = ﬁjpatilz,
ar(z,2) =ar(u+z,2)—ar(u,z) = Z lar(u+ z, szj) — ar(u, Rszj)}
=3 (@@t 2),2) = Q). )] = Yo7 [blu+ 2, B 2) — b, B =)

J

=3 (@@t 2),2) = ry (@), )] = 7 B+ 2,2) = blu,2)]

Using the monotonicity o, we can write

ar(2,2) < Z irj(Qj(u+2) — Qj(u), z5).
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By the definition ofz;, ﬁj = E;lejAT, P,y = M~'A,, and we have
||z|| <Zam (u+2) Zz Am[ (u+z) — @(u)}

= Z PTATJA i [B(u+ z) — B(u)]

-7 (Z ﬁjTRj) [B(u+ z) — B(u)]

()" (Z ATRT (ET})TRj) [B(u +2) - B(w)]

=T (P A- M7 [Bu+ 2) — B(w)] = 27 (A7 M)T A M7 [B(u+ 2) — B(u)]
= T MT(AT)T A M [Blut 2) - B(w)] = 2" M[Q(u + 2) — Q(u)]
= (2, Q(u+2) — QM) .

We conclude the proof by using Lemmi&. 0
LEMMA 4.4.Fori =0,1,..., N, we have that

a)||Qi(ut+z)—Qi(w)ll; <w [aT(z, Qi(u+2) = Qi(w)) + 7b(u+ 2, Qi(u + 2) — Qs(u))
—TI;(u, Qi(u+2)—Qi(uw)|;

b) [|Qi(u + 2) = Qi(w)|la, < w(1+cL)||2]la,- B
Proof. a) Using the definition of);, the local stability assumption, the definition@f,
the linearity ofa.-, and the Lipschitz continuity df, we have,

1Qi(u + 2) = Qi(w)]2,
= ar(Qi(u + 2) — Qi(u), Qi(u + 2) — Qi(u))
= ar (R (Qi(u + 2) = Qi(w)), R (Qi(u + 2) — Qi(u)))
< wiir (Qs(u + 2) — Qi(w), Qi(u + 2) — Qi(u))
=w [(u +2, R (Qsu + 2) — Qi(w))) + mb(u + 2, RY (Q(u + 2) — Qs(u)))

—(u, R (Qiu + 2) = Qi(w))) = 7d(u, R (Qi(u + 2) = Qi(w)))
=w((z,Qi(u+ 2) = Qi(u) + 7a(z, Qi(u + 2) — Qi(u))+
mh(u+ 2, Qi(u+ 2) — Qi(u)) — 7b(u, Qi(u + 2) — Qi(u))].
b) By the Cauchy-Schwarz inequality, we have
1Qi(u+2) = Qs(w)]]z,
w |2l Qi (u + 2) = Qi(w)lla, + 7LI|2]] - ||Qi(u + 2) — Qi(w)|]| -
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The coercivity of the bilinear forna(-, -) implies thatr||z||* < cra(z,2) < ca-(z, z) and
consequently we havgi (u+z) = Qi(u)|[;, < w(l+cL)||zla, [|Qi(u+2) = Qi(u)la, . O

LEMMA 4.5. There exists a constanf2 = 2w2(p(£)% 4 1)(1 + ¢L)? > 0, such that

1Q(u+2) = Qu)lla, < b1ll2lla,, Yu,v € Vi.

Proof. DefineQ(u) = Z Q;(u), as in the proof of the upper bound of Lemh& The

bilinearity of a,, the def|n|t|on of@Q;(u), and the strengthened Cauchy-Schwarz inequality,
imply that

N

1Q(u+2) = QlIz, < p(€) Y ar(Qilu+ 2) — Qi(u), Qilu+ 2) — Qi(u)).

i=1

From Lemma4.4, we obtain
| Qu+2) — Qu)|l2,
N
< wp(&) Y far (2, Qilu + 2) — Qi)+

i=1

+7b(u+ 2, Qilu + 2) = Qi(w) — 7b(u, Qi(u + 2) — Qs (u))]

< pE)w [ar (2, Qu+ 2) = Q) + h(u + 2, Qlu + 2) — Q(w) — 7h(u, Qu + 2) — Q(u)
< p(E)w(l+ cL)|2lla, [|Q(u + 2) = Q(u)la,
Hence,
(4.2) 1Q( +2) = Q)lla, < p(E)w(L+ L)|zlla, -
SinceQ(u) = Qo(u) + Q(u), relation ¢.2) and Lemmat.4 give us

| Qu+2) — QMIIZ, < 2/lQo(u+2) — Qo(w)ll5, +2[|Q(u + 2) — Qu)|IZ,

< 2w+ rL)P[I2IZ, +20p(E)w (1 + TL)|2][7, = 20 (1 + 7L)* (1 + p(€)*)]I2]13,. O

LEMMA 4.6. There exists a constant = C25,22w(1 + p(€)), such that

1Q(u+2) — Qu)|[R4 < ull2|3n.

Proof. This bound is a direct consequence of Lemfrizand Lemmat.5:
1Q(u+2) — Qw34 < CFlIQ(u + 2) — QuIIZ,
< C3oll=Ils,

< G367 20 (1 + p(€))l|zlI34- O
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Using these lemmas, we are now in a position to prove the nwiaergence result for
our ASR method.

THEOREM 4.7. If 0 < X < 24/6%, then theASR method for Problem3.8) con-
verges, i.e.,

[lu* = |34 < POV*[Ju® = u*[[34,

where P(\) = 1 — 2)\Jp + A?67 and &y, &, are the constants defined in Lemsa and
Lemmad.6, respectively.

Proof. Lete? = u* —u* andr® = Q(u*) — Q(u*) be the error and the residual at step
Then

ekJrl — ukJrl —ut = uk _ A’I’k —ut = ek o A’I’k,
and
M2, = (M1, ) pa(eb — Ak, eF — M) o
— lle* 13 — 2A(F, %) pq + X2Ir* |
Lemma4.3with v = u* andz = u* — u* yields
(k) = —(uF — L Q) — Q(u)) ax
= —(u =", Quf —u +u*) — Q(u))
< —ol[e"[%4-
Using Lemmag.6with u = «* andz = «* — u*, we obtain
Il = 11Q(u") — Q(u*)| |34 = Q" —u* +u*) — Qu")[[34 < 0F[]e"[|%4-
Therefore
¥ 134 < (1= 2280 + A%67)|le¥ (134 = P(A)Ile¥ (13-

If we choosed < X < 2% thenP()\) < 1, and we obtain the convergence of the ASR

?1
methodO )
REMARK 4.8. P(\) attains its minimum ak,,,;,, = g—g andP(\pin) =1 — g—g < 1.
1 1

N
REMARK 4.9. If we drop the coarse spatg and definel(u) = > Qi(u), the ASR
i=1

algorithm is convergent. Itis easy to see that in this ¢ase cig ands; = Cop(&)w(14-cL).
REMARK 4.10. The ASR performance depends on the choice of the pteainim the

Richardson iteration. This parameter can be chosen:

i) theoretically, by approximately minimizing the quadegfunction P()\) in Theorem.7 if

the constants§, andd; can be estimated,;

i) numerically, by running a few tests cases (as we have doi®ction6, Figure6.1) and

selecting a value which gives an approximate minimum of tB&Ateration count;

iii) automatically, by using one of the step-length stragsgavailable in the literature of nu-

merical optimization, such as the one describe®ij;[see the results reported in Section

Table6.2

We remark that the numerical results of Figird show that the ASR iteration count is not

very sensitive to the choice of near the minimum, but only near the endpoints of the con-

vergence interval.
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5. Convergence estimates for parabolic problemOur additive Schwarz precondi-
tioner is build as in the linear case. We partition the donfaiimto shape regular nonover-
lapping subdomaing;, 1 < ¢ < N, of characteristic diameteil, defining a shape-regular
coarse mesliy. Each subdomaif; is extended to a larger on@;, by adding the elements
of the fine mesHr;, within a distance); from its boundary. We assume that the partition
{Q} satisfies the finite covering assumption (see, e3§]),Jand we denote by = max; J;
the overlap size. Using the above decomposition, a oné-tegthod is defined by the lo-
cal spaced; = {v € H} ()| v|r islinear, VI' € Ty;}, 1 < i < N, and the local
bilinear formsa. ;(u;,v;) = ar(RFu;, RTv;), Yu;, v; € V;, with interpolation operators
RT :V; — V, 1 <i < N. We then build a two-level algorithm by defining the coarsedini
element spac®, = {v € H(Q)| v is continuous and v|r is linear, VI' € Ty} and the
operatorRl’, which interpolates the coarse functions onto the fine mesh.

We consider the variational parabolic problem: giv€ity, ) = uo(z) and right-hand
sideG, findu(t) € H'(Q), such thavt € (ty,T),

(5.1) <%,v> + a(u,v) + (F(u),v) = (G,v),

where

/ Zd: o Ju 00

e 9 D ox;

with a;; € C1(€2), such that;;(z) = aji(x), Vo € Q c Reforalli,j =1,...,dandF a
monotone nonlinear function.

The abstract convergence result of Theorerimow can be applied to get explicit bounds
in terms of the discretization parameters. For simplicitg,consider the simplest case, where
we use exact solvers (i.€., ; (u;, v;) = ar (R u;, RIv;), Yu;, v; € V), so thatw = 1 in the
local stability assumption. We also assume that there an@st/N ° nonzero elements in each
row of £ < N¢, so thatp(£) < N€in the strengthened Cauchy-Schwarz inequality; 8&8g [
Lemma 2.10]. Therefore, we need only to bound the constaim the stable decomposition
assumption.

LEMMA 5.1. The stable decomposition constafit can be bounded by

H .
a) C¢ < C'max {1 + = 5 1+ Hé} ,in the one-level case,

H .
byC2 <C(1+ 5 ) in the two-level case,

whereC' is a constant independent &f, h andJ.

Proof. a) One-level caseFollowing the classical proof for the linear elliptic caseé,
e.g., B3)), we defineu; = R;(I"(0;u)), i = 1,..., N, where{; € Wh> 1 <i < N}
defines a partition of unity anf* is the nodal piecewise linear interpolant on the fine mesh
T,. By the approximations properties &f and the small overlap lemma (s&&S], Lemma
3.10 and egs.(3.20) - (3.23) or the original Lemma 3.11i#]), we obtain

H
(6:2) IRFull o) = 11" Gou)fyp o < © (1+ 55 ) Tl + g7 ol

The equivalence between tiié () —norm and the discretd?(2)—norm implies that

(5.3) (R wiy R i) 12(0) = [11M(0i0)| [0y < Cllull72(0r)-



ETNA

Kent State University
http://etna.math.kent.edu

370 M. MUNTEANU AND L. PAVARINO

Using the coercivity ofi(+, -), (5.2), (5.3, and the finite covering assumption, we have

N N
ZZLT_’Z'(’U@,’U@) = ZCLT(R?UZ,R?UZ) =
i=1

=1 7

(R} wi, Rf wi)r2(0) + Ta(R] ui, R uy)]

-

1

< Z [ R uZ,R UZ)L2(Q)+T|R U1|H1 Q):|

I /\

H
lullZey +7 | (14 5 ) luli @y + H6||u||L2(Q’

H
[( 75 Ml +7 (14 5 ) e

H
C 1+ ||U||L2 Q)‘FT 1+ — |U|?{1(Q)
)

The coercivity of the bilinear formy(-, -) implies that|u|§{1(9) < Ca(u,u) and therefore

N
~ T 9 H
;am(uuui) < C[(l + m) ul[Z20) + 7 (1 + g) a(uvu):|

2>
<ex[oe

H T 9
< Cmax{l + f’l—i_ H_(S} {HUHL?(Q) —i—Ta(u,u)} .

b) Two-level case.Suppose that the coarse mesh is quasi-uniform. Then thedboun
for C2 can be obtained as ir8§] by letting I# : L?(Q2) — V; be the L2—projection
of u, (IHU,’U)L2(Q) = (u,v), Yu € L*(Q), v € Vp, anduy = IHu, w = u — IMuo,
REMARK 5.2. The bound a) of Lemma.1 implies that if the ratior /(H§) is small

enough, then a constant upper bouifl < C (1 + %) still holds for the one-level ASR

algorithm.
REMARK 5.3. In case of small overlap= h, the estimates of Lemntalbecome

H .
a)C? < C'max {1 + = R 1+ Hh} ,in the one-level case,

b)yCz <C (1 + %) ,in the two-level case.

Therefore, in scaled speed-up tests with constant @fié only the two-level ASR algo-
rithm is scalable, since the terny (Hh) asymptotically dominates the one-level bound for
any fixed value ofr. Nevertheless, for a moderate number of subdomains (oel fH

small enough), the one-level bound is dominated by the Brshi + % which yields a

“temporary” scalability; see Figur@.2.

REMARK 5.4. In case of generous overlap= C H, the estimates of Lemnalagree
with the estimates obtained by C4&j, 8] for linear parabolic problems. In such case, Cai
proved that ifr / H? is small enough, then the one-level Schwarz algorithm ibé&aand the
two-level algorithm satisfies an optimal constant boundnb®5.1 extends these estimates
to nonlinear parabolic problems and to the case of variagelap.



ETNA

Kent State University
http://etna.math.kent.edu

OVERLAPPING ASR FOR NONLINEAR PARABOLIC PROBLEMS 371

TABLE 6.1
Comparison of ASR and Linearly Implicit Euler methods (GNBRith AS preconditioner): scaled speed-up
test with fixed subdomain sizé/h = 4, small overlap sizé = h, and increasing number of subdomaiis(and
nodes). iter = iteration counts, cpu = cpu times, err = relaierrors with exact solution.

ASR withA = 0.4 Lin. Impl. Euler: GMRES with AS prec.
one-level two-levels one-level one-level, rest=20| two-levels
N iter cpu | iter cpu | iter cpu | iter cpu | iter cpu err
2% 2 40 0.07| 43 0.07| 10 0.09| 10 0.10| 11 0.07 | 6.76e-3
4x4 70 0.57| 36 0.29| 17 0.15| 17 0.20| 16 0.15| 1.67e-3
6 x 6 123 2.88| 35 0.87| 20 0.59| 20 0.84| 17 0.49 | 7.44e-4
8 x 8 197 11.20| 36 215| 23 1.76 | 20+5 2.93| 16 1.26 | 4.18e-4
10 x 10 | 293 36.80| 36 461 | 26 4.48 | 20+7 7.78| 16 3.02 | 2.67e-4
12 x 12 | 410 99.12| 36 9.07| 29 11.31| 20+9 18.54| 16 6.63 | 1.86e-4
14 x 14 | 549 236.93| 36 16.25| 31 29.12| 20+14 51.33| 16 15.69| 1.36e-4
16 x 16 | 709 511.79| 36 27.08| 34 77.29| 20+16 128.71| 16  37.42| 1.04e-4
18 x 18 | 891 1013.27| 36 43.18| 36 162.50| 20+18 188.71| 16  76.17| 8.26e-5

6. Numerical results. In this section, we report the results of MATLAB numerical ex
periments with the ASR method applied to the nonlinear palialproblem £.1) with the
linear elliptic bilinear form and the nonlinear function

N
a(u,v) = Z/Q o VuVoudr,  f(u) = 0.5u+ u®.

The elliptic coefficientsr; are equal to 1 in Table§.2-6.4, while they are piecewise con-
stant with jump discontinuities across subdomain boumrdan the last tests of Figurés3
and6.4. The domain is the unit squafkeand the right-hand sidgis chosen so that* (¢, x) =
tsin(mz) sin(my) is the exact solution whea; = 1. We considerty = 0, ug(x) = 0,
and we compute the solution fér= 7 = 0.01. The iteration process is stopped when
[7kl[a/]rol|am < 1e—8, and we denote the relative errorbyr = ||u—u*||;2(q) /[|u*|]12(q).-
Comparison between ASR and Linearly Implicit Euler methods We start with a
comparison between our ASR meth@dd) and the Linearly Implicit Euler method, consist-
ing in applying to the original nonlinear probler.p) a single Newton step, see e.g. Deu-
flhard [14], Lang [18], and solve the resulting linear system by GMRES with the ifidel
Schwarz preconditione¥1 defined in 8.7). This method has the advantage of requiring only
the solution of a linear problem per time step, but it regaitftee computation of the Jacobian
of the nonlinear operator. We remark that the Jacobian isieetled in our ASR algorithm
and it might even be practically uncomputable for some ma&alr problems, such as the mon-
odomain and bidomain systems coupled with realistic ionatlets; see Muntean{]. In
our notations, the Linearly Implicit Euler method for thentioear system3.1) B(u™) = §
at time step,,, becomes:

solve the Jacobian systemJj's™ = § — B(u™)
by GMRES with the Additive Schwarz preconditionkt in (3.7),
update the solution: um =™ 4 5™,

whereJ}} is the Jacobian of the nonlinear operaat«™. Given our assumptior(2) on
the structure ofB, this Jacobian matrix also can be written in terms of the inealr form
b(u,v) and the mass matriX/ asJg = M + 7J;", with J;" equal to the Jacobian ofat
u™.

Table6.1compares the two algorithms by reporting their iterationrts (iter) and MAT-
LAB cpu times (cpu) on a PC (Acer Aspire 3680) in a scaled speetést, where the subdo-
main sizeH /h = 4 is kept fixed and the number of subdomains (hence nodes)risased
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TABLE 6.2
ASR scaled speed-up test with fixed subdomainEjZe = 4, small overlap sizé = h, and increasing
number of subdomain¥ (and nodes): ASR with fixed= 0.4 and random RHS (second and third columns); ASR
with step-lenght strategy fox and exact solution (fourth and fifth columns). iter = itemticounts, err = relative
errors with exact solution.

ASRwithA = 0.4 ASR with step-lenght strategy for
random RHS exact solution RHS

one-level | two-levels one-level two-levels

N iter iter iter err iter err
2 X2 40 42 25 6.76e-3| 24 6.76e-3
4x4 70 38 37 1.67e-3| 25 1.67e-3
6 X 6 122 39 69 7.44e-4| 24 7.44e-4
8x8 196 40 117 4.18e-4| 24 4.18e-4
10 x 10 291 42 157 2.67e-4| 27 2.67e-4
12 x 12 407 41 223 1.86e-4| 22 1.86e-4
14 x 14 544 42 - - 25 1.36e-4
16 x 16 703 43 - - 23 1.04e-4
18 x 18 882 43 - - 24 8.26e-5

from 2 x 2 to 18 x 18. For both algorithms the right-hand side is chosen so thateth
act solution isu* given above and we can determine the relative errors (goQrted in the
last column of the table, that decrease proportionally éorttesh refinement (i.e., increasing
subdomains) as expected. In agreement with the theory (ee®@iR5.3), in the one-level
case the number of iterations of both algorithms increasesl less for Linearly Implicit
Euler, column 5), while in the two-level case the iterati@uists remain bounded and both
algorithms are scalable (with a better upper bound of 16 foearly Implicit Euler, column
6, than 36 for ASR, column 3). The cpu times behave accorgdingl, they increase strongly
for the one-level algorithms and show a more moderate iiseréa the two-level algorithms.
The most relevant comparison between the two-level algmst shows that the ASR cpu
times are initially slightly larger than the Linearly Impii Euler cpu times, but as the prob-
lem size increases (fav > 14 x 14) the ASR times equal and then definitely improve over
the Lineary Implicit Euler times (27.08 v. 37.42 sec. fér= 16 x 16 and 43.18 v. 76.17
sec. forV = 18 x 18). These results indicate that ASR can be asymptoticallyeratiicient
than Linearly Implicit Euler as the problem size and numbiesubdomains increase. We
remark that this is only a partial indication because of #méasimplementation of the two al-
gorithms, where the subdomain problems of the Additive Sofaypreconditioners are solved
sequentially; it would be much more significant to compaegeghrallel cpu times for the two
algorithms on modern distributed computing architectvésch is beyond the scope of this
paper).

ASR scalability with random RHS and X step-lenght strategy.Table6.2 reports the
results of a scaled speed-up test analogous to TaliJebut focuses only on the ASR al-
gorithm with minimal overlapy = h. In the left part of the table (columns 2 and 3), the
parameter\ is again fixed at 0.4 but the RHS is randomly distributed. kn riight part of
the table (column 4 and 5)\ is chosen by the step-length strategy 8][(columns 4 and
5) and the RHS is again the one associated to the exact soltitigiven above. The results
confirm that in the one-level case the number of ASR iterati@er) increases, while in the
two-level case this number remains bounded and the ASRitdgors scalable. The step-
length strategy for the selection afyields better iteration counts (around 22 - 27 iterations)
than the fixed\ = 0.4 selection (around 36 iterations), but at the expense of ahrtarger
cpu time (not shown). The results with a random right-hadé sihow the same scalability
of the two-level ASR algorithm, only with slightly largeeitation counts (now with an upper
bound of 43 iterations).
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TABLE 6.3
ASR standard speed-up test with fixed meshisizel /48, small overlap sizé = h, and increasing number of
subdomainsV (of decreasing siz&/ /). ASR with fixed\ = 0.4 (second and third columns); ASR with step-lenght
strategy for\ (fourth and fifth columns). iter = iteration counts, err = etlve errors with exact solution.

A=04 A: step-length strategy
one-level two-levels one-level two-levels
N iter err iter err iter err iter err

2x2 | 155 1.74e-4 70 1.74e-4) 86 1.74e-4) 43 1.74e-4
4x4| 192 1.74e-4) 58 1.74e-4| 114 1.74e-4) 32 1.74e-4
6x6 | 245 1.74e-4) 47 1.74e-4) 149 1.74e-4) 27 1.74e-4
8x 8| 301 1.74e-4) 41 1.74e-4| - - 23 1.74e-4
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400

ASR iterations

200

100~

0 L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

FIG. 6.1.ASR iterations counts as a function of the parameteN = 2 x 2, overlap siz&) = h.

ASR standard speed-up.We study the ASR performance in a standard speed-up test
where the global problem size is fixeld £ 1/48) and the number of subdomains s increased
from 2 x 2 to 8 x 8, hence decreasing the ratlé/h. The same quantities (iter and err) of
Table 6.2 are reported in Tablé.3. As predicted by the theory, only in the two-level case,
the ASR iteration counts improve as the subdomain Aiz#ecreases, since the ter(Hh)
dominates the one-level bound in Remarkb).

ASR dependence on\. Figure6.1 confirms the theoretical prediction of Theoren?,
showing the ASR iteration counts as a function of the paraméior N = 2 x 2 subdomains,
overlapd = h, and two mesh sizels = 1/8 (continuous line)h = 1/16 (dashed line). The
explicit formula of Theorend.7 shows that the parabola()\) attains its minimum inside a
right interval of 0 and tends to 1 at its endpoints; correstiogly, the ASR convergence rate
attains a minimum inside an intervdl, o), « > 0 and degenerates at the interval endpoints.

ASR dependence ory. Table 6.4 shows that the ASR iteration counts improve with
increasing overlap siz& for both the one- and two-level ASR algorithms, in agreetmétin
Lemma5.1l In the two-level case, the improvement becomes irrelef@nbverlap sizes
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TABLE 6.4
Effect of increasing the overlap siZén one- and two-level ASR methods for fixed meshtsizel /48, number
of subdomaingv = 2 x 2, A = 0.4 iter = iteration counts, err = relative errors with exact sdion.

overlap size| one-level two-levels
1) iter err iter err
h 155 1.74e-4 70 1.74e-4
2h 82 1.74e-4) 46 1.74e-4
3h 59 1.74e-4] 37 1.74e-4
4h 49 1.74e-4| 37 1.74e-4

one—level ASR iterations

30 I I I I I
2

8 10 12 14
1/H

FIG. 6.2. One-level ASR iterations counts for increasing number btlemainsl /H and different time-step
sizesr, fixed ratioH/h = 4,6 = h.

larger thar3h.

ASR scalability dependence orr. Figure6.2reports a different validation of the one-
level bound by reducing the time-step sizeand performing a scaled speed-up test as in
Table6.2(H /h fixed and small overlap = k). While we already know that for a given value
of 7 the one-level ASR algorithm is not scalable (Renfakand Table5.2), we nevertheless
expect a reduction af to give bounded iteration counts up to a critical number ditkumains
N, (“temporary” scalability) since the first term dominates timnaximum in Remark.3a),
while for N > N, we expectincreasing iteration counts since the seconddeminates the
maximum in Remarlks.3a). The results in Figuré.2 show that this is indeed the case: for
T=1e—3, N, ~4x4,forr=5e—4, N, ~6 x 6and forr = le — 4, N, ~ 12 x 12.

ASR performance for elliptic coefficients with jump discontinuities across subdo-
mains. Finally, Figures6.3 and 6.4 report the ASR results when the coefficiemts of
the linear elliptic operator are piecewise constant anggmejump discontinuities across
subdomain boundaries. We considered a decompositiéhiofo 7 x 7 subdomains with
H/h =4, § = h; we chose a larger toleran¢e = 1e — 4 in the stopping criterion in order
to test the convergence (or lack thereof) of the unprecaditl algorithm, up to a maximum
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111111 |1]|1 o; one-level| two-levels | no prec
1111111 iter iter iter
111)o0;|0;l0;i 1111 102 63 17 -
1/1|o0;|0i|0o; |11 10~1! 66 17 -
1(1)|o; |0 ]|o; | 1|1 1 77 17 29818
1111111 10 76 17 -
11111 ]1]1 102 72 17 -

FiG. 6.3.Iteration counts of one- and two-level ASR method Witk 0.4 for a test problem with discontinuous
coefficients; in the linear elliptic operator; the domain is decomposetifV = 7 x 7 subdomains (left panel, with
values ofo; indicated),H/h = 4, tol = le — 4

0O(-3|1]0|-1|2|0
212|10(1]-3|3]|0

1/0(-2]2]3|2]|1 one-level| two-levels
2|1-3|2|0|2]1]|-3 iter iter
3(0(12|0]|1|3 40 | 17
3/1|10(3]-3|3]|0
o(-1(1(2|-2|3]|-3

FIG. 6.4. Iteration counts of one- and two-level ASR method witk- 0.4 for a test problem with random
discontinuous coefficiert; in the linear elliptic operator; the domain is decomposetitv = 7 x 7 subdomains
(left panel), with indicated the values of the exponentin the coefficients; = 10%i, H/h = 4, tol = 1le — 4

number of iterationsnazit = 3 - 10*. We first considered a configuration where inside the
3 x 3 central subdomaing,; (see Figures.3 left) the elliptic coefficientsr; have varying
values ranging frome — 2 to 1le + 2, while they are equal to 1 in the other surrounding sub-
domains. The table in Figui@3, right, show that the two-level ASR method is unaffected
by the size of the discontinuity, the one-level is almostfiatéed but with iteration counts
more than four times larger, and the unpreconditioned Radwn iteration essentially does
not converge withinmaxit iterations. We also considered a second configuration wtere
coefficientsr; = 10% have random exponents given in Figures.4, left, with a variation of
six orders of magnitude. The two-level ASR iteration cowartsthe same as before (17), the
one-level iteration counts are a bit better (40) and the ecqnditioned method again does
not converge.
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