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Abstract. The numerical treatment of linear-quadratic regulator (LQR) problems for parabolic partial differ-
ential equations (PDEs) on infinite-time horizons requires the solution of large-scale algebraic Riccati equations
(AREs). The Newton-ADI iteration is an efficient numerical method for this task. It includes the solution of a Lya-
punov equation by the alternating direction implicit (ADI) algorithm at each iteration step. Here, we study the
selection of shift parameters for the ADI method. This leads to a rational min-max problem which has been con-
sidered by many authors. Since knowledge about the exact shape of the complex spectrum is crucial for computing
the optimal solution, this is often infeasible for the large-scale systems arising from finite element discretization of
PDEs. Therefore, several methods for computing suboptimal parameters are discussed and compared on numerical
examples.
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1. Introduction. Optimal control problems governed by partial differential equations
are a topic of current research. Many control, stabilization, and parameter identification prob-
lems can be reduced to the linear-quadratic regulator (LQR) problem, see [10, 13, 21, 22].
Particularly, LQR problems for parabolic systems have been studied in detail in the past 30
years, and several results concerning existence theory and numerical approximation can be
found, e.g., in [21, 22, 24] and the references therein. Gibson [16] and Banks and Kunisch [3]
present approximation techniques to reduce the inherently infinite-dimensional problem of
the distributed regulator problem for parabolic PDEs to (large) finite-dimensional analogues.

The solution of these finite-dimensional problems can be reduced to the solution of a ma-
trix Riccati equation. In the finite-time horizon case, this is a first-order differential equation
and in the infinite–time horizon case an algebraic one, see, e.g., [4, 31].

In Section 1.1, we state the Riccati equations of interest and introduce the matrices and
basic notations used in the remainder. Then, we review the Newton-ADI iteration for the
solution of large-scale matrix Riccati equations in Section 1.2, showing how this involves the
solution of a Lyapunov equation with specially structured matrices by the alternating direction
implicit (ADI) algorithm in every iteration step. Furthermore, we introduce the rational min-
max problem related to the parameter selection problem there, which is the main topic of this
paper. We give a brief summary of Wachspress’ results and a heuristic choice of parameters
described in [28], as well as a Leja point approach [32, 33] in Section 2. In Section 3, we show
how the first two of these methods can be combined to have a parameter computation which
can be applied efficiently even in case of very large systems. Section 4 shows the efficiency
of our method compared to the Wachspress parameters for test examples, where the complete�
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spectrum can still be computed numerically and thus Wachspress’ method can be used to
compute the optimal parameters. Finally, we state some conclusions in Section 5.

1.1. Notation and background. In this paper, we concentrate on solving large sparse
matrix Riccati equations arising in the optimal control of semidiscretized PDEs (see, e.g.,
[6, 9]). Depending on whether the control problems are formulated on infinite- or finite-time
horizons, these Riccati equations are���	��

�������	������ ������������� �"!#� $&%('*)+$&���
(1.1)

or ,�-�.!/��

�������.!0� �1�� �.!#� � �2!3������� $&% '4) $ � �65
(1.2)

respectively. Typically, the coefficient matrices of these Riccati equations have a given struc-
ture (e.g., sparse, symmetric, or low rank). Efficient numerical methods for-large scale prob-
lems have to exploit this structure. The main focus of our research is how this can be achieved
within an ADI parameter selection procedure.

The algebraic Riccati equation (ARE) is a nonlinear system of equations, so it is natural
to apply Newton’s method to find its solutions. This approach has been investigated; details
and further references can be found in [4, 14, 20, 26, 29, 30]. Differential Riccati equations
can efficiently be solved by BDF methods known from ordinary differential equations [8,
12, 15]. This involves solving algebraic equations of type (1.1) in each time step. Thus, an
improvement in the solution of AREs will lead to substantial improvement in solving (1.2).

1.2. Newton-ADI iteration. Observing that the (Frechét) derivative of
� 


at 7 is given
by the Lyapunov operator�98
;: <>= �@?ACBD�"!#$&% '4) $ � 7�E � ������BF�"!3$&% '*) $ � 7�E 5
Newton’s method for AREs can be written asG�H = �-IJ�9K
 : L4MON '4) � 
 B 7 H E 5� HQP ) = �R� H � G�HTS
Then, one step of the Newton iteration for a given starting matrix can be implemented as
shown in Algorithm 1.1.

ALGORITHM 1.1
Newton’s method for AREs

Require: 7VU , such that
� U is stable

1:
� HXW �"!3$&% '*) $ � 7 H

2: Solve the Lyapunov equation
� �H G�H � G�H � H �Y!/� 
 � 7 H �

3: 7 HZP ) W 7 H � G H
Newton’s iteration for AREs can be reformulated as a one-step iteration rewriting it such

that the next iteration is computed directly from the Lyapunov equation in Step 2 of Algo-
rithm 1.1, ���"!#$&% '4) $ � 7 H � � 7 HZP ) � 7 HQP ) ���2!#$&% '4) $ � 7 H ��Y!0� � �� �Y! 7 H $&% '*) $ � 7 H � = !�[ H [ �H S(1.3)
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So we have to solve a Lyapunov equation\ � �]��� \ �Y!�[^[ �
(1.4)

with stable

\
in each Newton step. Equation (1.4) will be solved using the ADI iteration,

which can be written as [36]B \ � �6_a`Tb E � ` '*)dcfe �Y!�[^[ � !3�g` '4) B \ !�_a`Tb E 5B \ � �(_ ` b E � �` �Y!�[h[ � !3� ` '4)icie B \ !�_ ` b E S(1.5)

Note that from (1.3) we see that

\
in (1.4) and (1.5) can be represented as the sum of a

sparse matrix (
�

) and a low-rank perturbation (
!j$&% '*) $ � 7 H ). This allows us to exploit the

Sherman-Morrison-Woodbury formula (see, e.g., [17]) in the solver for (1.5). Therefore, we
consider the problem sparse if

\
has this specific structure. Note that for problems from a

finite element discretization,
�k�2!jl '4)nm

with sparse mass matrix
l

and sparse stiffness
matrix

m
. Despite the fact that, in this case,

�
will in general be dense, the problem can

still be considered sparse as all linear algebra operations required involve only sparse matrix
multiplication, and sparse system solves as

�
never needs to be formed to implement the ADI

method; see [5].
If the shift parameters

_o`
are chosen appropriately, then prqts `fuwvx�y`z�k� with a su-

perlinear convergence rate. In order to make this iteration work for large-scale problems,
we apply the low-rank Newton-ADI method presented in [7, 28] (based upon the iterative
technique by Wachspress [36]) to the AREs.

Practical experience shows that it is crucial to have good shift parameters to get fast
convergence in the ADI process. If the parameters are real1, the error in iterate { is given by| ` �R% ` | ` '4) , where% ` = � B \ �6_ ` b E '*) B \ �(!�_ ` b E B \ ���6_ ` b E '*) B \ !�_ ` b E
and |~} = ��� } !>� . Thus, the error after � iterations satisfies |o� �h� �a|~} , where

� � = �� �`i� ) %g` . Unrolling matrices into vectors in (1.4), one observes that with the Kronecker
products

b�� \ �
and

\ � �yb
also the factors in

%g`
commute and � � � � e �R���F� � � . Therefore,�� | � �� e�� � B � � E �� | } �� e 5C� B � � E ��������� e 5(1.6)

where
�#���i_ ) 5�_ e 5 STSnS 5D_ �;� and

��������� sg��������~�r���n�����
��`i� )
B _o`9!¡  EB _ ` �>  E �����

S
By this, the ADI parameters are chosen in order to minimize

���F� � � , which leads to the
rational min-max problem syqt¢£Z¤+¥ �J¦*§ `i� )+¨ª©ª©ª© ¨ �¬« ���­�®�(1.7)

for the shift parameters
_ `

; see, e.g., [37]. This minimization problem is also known as the
rational Zolotarev problem since, in the real case, i.e., ¯ � \ �#°²± , it is equivalent to the
third of four approximation problems solved by Zolotarev in the 19th century; see [23]. For a
complete historical overview; see [35].

1This is the desired case for efficiency reasons and can be assured in many applications to optimal control
problems for diffusion-reaction-convection equations.
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2. Review of existing parameter selection methods. Many procedures for construct-
ing optimal or suboptimal shift parameters have been proposed in the literature [19, 27, 33,
37]. Most of the approaches cover the spectrum of

\
by a domain ³ °µ´ ' and solve (1.7)

with respect to ³ instead of ¯ � \ � . In general, one must choose among the various approaches
to find effective ADI iteration parameters for specific problems. One could even consider so-
phisticated algorithms like the one proposed by Istace and Thiran [19] in which the authors
use numerical techniques for nonlinear optimization problems to determine optimal parame-
ters. However, it is important to make sure that the time spent in computing parameters does
not outweigh the convergence improvement derived therefrom.

Wachspress [37] computes the optimum parameters when the spectrum of the matrix

\
is real or, in the complex case, if the spectrum of

\
can be embedded in an elliptic function

region (a precise definition will be given in Section 2.2), which often occurs in practice. These
parameters may be chosen real, even if the spectrum is complex, as long as the imaginary
parts of the eigenvalues are small compared to their real parts; see [25, 37] for details. The
method applied by Wachspress in the complex case is similar to the technique of embedding
the spectrum into an ellipse and then using Chebyshev polynomials. In case that the spectrum
is not well represented by the elliptic functions region, a more general development by Starke
[33] describes how generalized Leja points yield asymptotically optimal iteration parameters.
Finally, an inexpensive heuristic procedure for determining ADI shift parameters, which often
works well in practice, was proposed by Penzl [27]. We summarize next these approaches.

2.1. Leja points. Gonchar [18] characterizes the general min-max problem and shows
how asymptotically optimal parameters can be obtained with generalized Leja or Fejér points.
Starke [32] applies this theory to the ADI min-max problem (1.7). The generalized Leja points
are defined as follows. Given ¶ 5d·�°x´ containing the spectra of

b�� \ �
and

\ � �zb
, as well

as arbitrary points ¸ ) 5 STSnS 5 ¸ `�¹ ¶ and º ) 5 STSnS 5 º `»¹ · , then for { �.¼�5O½a5 SnSnS 5 the new points¸ ` P ) ¹ ¶ and º ` P ) ¹ · are chosen recursively in such a way that, with

¾ `¬��¿��À� `�Á � )
¿»! ¸ `¿»! º ` 5

the two conditions sg����Â ��Ã : ¾ `¬��¿�� : � : ¾ `�� ¸ ` P ) � : and sy�Ä�oÂ �ÄÅ : ¾ `���¿�� : � : ¾ `¬� º ` P ) � : are ful-
filled. Bagby [2] shows that the rational functions ¾ ` obtained by this procedure are asymp-
totically minimal for the rational Zolotarev problem.

The generalized Leja points can be determined numerically for a large class of boundary
curves Æ;¶ and Æ · . On the other hand, Wachspress [37] notes that in many situations when the
optimal parameter choice leads to relatively few iterations to attain the prescribed accuracy
based on (1.6), choosing Leja points instead of the Wachspress parameters may lead to poor
convergence. Moreover, the computation of Leja points is quite time-consuming when their
number becomes large.

2.2. Optimal parameters. In this section, we summarize the parameter selection pro-
cedure given in [37].

Define the spectral bounds Ç , È and a sector angle É for the matrix

\
as

Ç � syqr¢Á BÄÊ�Ë�Ì   ÁfÍ E 5 È � sy�Ä�Á B¬Ê�Ë�Ì   ÁOÍ E 5 É �xÎ �Ä¢ '*) sy�Ä�Á ����
Ï s Ì�  ÁfÍÊ�Ë Ì~  Á Í ����

5
(2.1)

where
  ) 5 STSnS 5O �Ð are the eigenvalues of

! \
. It is assumed that the spectrum of

! \
lies inside
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the elliptic functions region determined by Ç , È , É , as defined in [37]: letÑnÒ¬Ó e4ÔÕ� ½¼�� )e B×Ö Ø � ØÖ E 5CÙ^� ½ ÑnÒ¬Ó e ÉÑÚÒ~Ó e Ô !�¼ S
(2.2)

If É�Û Ô , then
ÙkÜÝ¼

and the parameters are real. We defineÞ ) � ¼Ùß�>à Ù e !�¼ 5 Þ �Yá ¼�! Þ ) e 5(2.3)

and the elliptic integrals â and ã viaä/å º 5 Þ~æ �	ç�è} é¬êë ¼�! Þ e Ó qt¢ e ê
5

(2.4)

as â � â � Þ �À� ä(ìOí ½ 5 Þ~î 5 ã � ä(ì Ó qt¢ '4)®ï ÇÈ Þ ) 5 Þ ) î 5(2.5)

where
ä

is the incomplete elliptic integral of the first kind,
Þ

is its modulus, and º is its
amplitude.

With this, we can give a precise definition of the region containing ¯ �ð! \ � . This region
is tangent to the ray

à Þ )Úñ×òtó�ô from the origin at angle É , yielding ¾ � É�õÄâ [37, Section 4.3].
DEFINITION 2.1 [37]. The elliptic function region corresponding to

\
is defined asö � ¾ ��� Ì _��R÷ ¢ �D¿ â 5 Þ � : ¿&� ê ��ø�ù�5ú� � ê � ¼ and : ù : � ¾ Í °x´�5

where ¾ is defined above,
Þ 5 â � â � Þ � are as in (2.3) and (2.5), respectively, and

÷ ¢ is the
well-known Jacobi elliptic function [1, Chapter 16].

The number of the ADI iterations required to achieve
���­�®� e �xû is � �-ü óefý+þ p Ò¬ÿ�� ��� , and

the ADI parameters are given by_ ` �µ! ï ÇaÈÞ ) ÷ ¢ ì �F½ { !�¼×� â½ � 5 Þ�î 5 { �.¼¬5f½a5 SnSTS 5 � 5(2.6)

with the Jacobi elliptic function
÷ ¢ ��� 5 Þ � as in Definition 2.1.

If
Ù Û ¼ , the parameters are complex. We define the dual elliptic spectrum,

Ç 8
�xÎ �Ä¢ � í � !.É ½
	 5 È 8
� ¼Ç 8 5 É 8�� Ô S
Substituting Ç 8 in (2.2), we find thatÔ 8 � É 5CÙ 8 � ½ ÑÚÒ~Ó e ÔÑÚÒ~Ó e É !�¼ S
By construction,

Ù 8
must now be greater than

¼
. Therefore, we may compute the optimum

real parameters
_ 8` for the dual problem. The corresponding complex parameters for the actual

spectrum can then be computed fromÑnÒ¬Ó É ` � ½_ 8` � )¤ K¥ 5(2.7)

yielding _ e ` '4) � à ÇaÈ ñ ò�� ¥ 5 _ e ` � à Ç�È ñ ' ò�� ¥ 5 { �Y¼�5f½o5 STSnS 5�
 ¼�� �½ � S(2.8)
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2.3. Heuristic parameters. The bounds needed to compute optimal parameters are too
expensive to be computed exactly in case of large-scale systems because they need the knowl-
edge of the whole spectrum of

\
. In fact, this computation would be more expensive than the

application of the ADI method itself.
An alternative was proposed by Penzl in [27]. He presents a heuristic procedure which

determines suboptimal parameters based on the idea of replacing ¯ � \ � by an approximation�
of the spectrum in (1.7). Specifically, ¯ � \ � is approximated using the Ritz values com-

puted by the Arnoldi process (or any other large-scale eigensolver). Due to the fact that the
Ritz values tend to be located near the largest magnitude eigenvalues, the inverses of the
Ritz values related to

\ '4)
are also computed to get an approximation of the smallest mag-

nitude eigenvalues of

\
yielding a better approximation of ¯ � \ � . The suboptimal parameters� �.�i_ ) 5 STSnS 5D_�� � are chosen among the elements of this approximation because the function

��� ���d��� ��
B �ú!�_ ) E������ B � !�_ � E ����
B��4�6_ ) E ����� B��*�(_�� E ��becomes small over ¯ � \ � if there is one of the shifts

_ `
in the neighborhood of each eigen-

value. The procedure determines the parameters as follows. First, the element
_ `�¹ �

which
minimizes the function � £Z¤ ¥ « over

�
is chosen. The set

�
is initialized by either

�i_
` � or
the pair of complex conjugates

�i_�`�5��_o` � . Now
�

is successively enlarged by the elements or
pairs of elements of

�
, for which the maximum of the current � � is attained. Doing this,

the elements of
�

giving the largest contributions to the value of � � are successively can-
celed out. Therefore, the resulting � � is nonzero only in the elements of

�
where its value is

comparably small anyway. In this sense, (1.7) is solved heuristically.

2.4. Discussion. In the considered applications from PDE constraint control, we are
mainly concerned with problems where the diffusive part dominates the convection terms.
Thus, the resulting operator has a spectrum with only moderately large imaginary parts com-
pared to the real parts. Only for this kind of problems, Newton-ADI appears to be a suitable
method as for convection-dominated problems, the low-rank property of the solution which
makes the approach feasible for large-scale problems will in general not hold. Hence, we will
assume that the spectrum of

�
is contained in a sector with moderate opening angle in the

left half-plane. Note that from numerical experiments it seems that this property is inherited
by the

� H
in the Newton iteration despite the fact that they will in general be nonsymmetric

even if
�

is symmetric negative definite. In this situation, the Wachspress approach should
always be applicable and lead to real shift parameters in many cases. In problems, where the
reactive and convective terms are absent, i.e., we are considering a plain heat equation and
therefore the spectrum is part of the real axis, the Wachspress parameters are proven to be
optimal. The heuristics proposed by Penzl then require considerably more expensive compu-
tations, and Starke notes in [32] that the generalized Leja approach will not be competitive
here since it is only asymptotically optimal. For the complex spectra case, common strategies
to determine the generalized Leja points generalize the idea of enclosing the spectrum by a
polygonal domain, where the starting roots are placed in the corners. So one needs quite exact
information about the shape of the spectrum there. In practice, this computation will be too
expensive unless one knows some a priori information about the spectrum.

3. Suboptimal parameter computation. In this section, we discuss our new contribu-
tion to the parameter selection problem. The idea is to avoid the problems of the methods
reviewed in the previous section and on the other hand combine their advantages.

Since the important information that we need to know for the Wachspress approach is
the outer shape of the spectrum of the matrix

\
, we will describe an algorithm approximating
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the outer spectrum. With this approximation the input parameters Ç , È , É for the Wachspress
method are determined and the optimal parameters for the approximated spectrum are com-
puted. Obviously, these parameters have to be considered suboptimal for the original prob-
lem, but if we can approximate the outer spectrum using a few Ritz values only, we end up
with a method giving nearly optimal parameters at a drastically reduced computational cost.
Algorithm 3.1 is based on these ideas.

ALGORITHM 3.1
Approximate optimal ADI parameter computation

Require:

\
Hurwitz stable

1: if ¯ � \ �9°>± then
2: Compute the spectral bounds and set Ç � syqr¢/¯ �d! \ � and È � sy�Ä�X¯ �d! \ � ,
3:

Þ ) ��ÖØ ,
Þ � ë ¼�! Þ e) ,

4: â � ä � þ e 5 Þ � , ã � ä � þ e 5 Þ ) � .
5: Compute � and the parameters according to (2.6).
6: else
7: Compute �Ç � syqt¢ Ê�Ë � ¯ �d! \ �d� , �È � sg��� Ê�Ë � ¯ �d! \ �d� and � � �Ö P � Øe .
8: Compute ! largest magnitude eigenvalues "  Á for the shifted matrix

! \ � �$# by an
Arnoldi process or alike.

9: Shift these eigenvalues back, i.e., set
�  Á � "  Á � � .

10: Compute Ç , È , and É from the
�  Á as in (2.1).

11: if
ÙkÜÝ¼

in (2.2) then
12: Compute the parameters by (2.2)–(2.6).
13: else

�
The ADI parameters are complex in this case �

14: Compute the dual variables.
15: Compute the parameters for the dual variables by (2.2)–(2.6).
16: Use (2.7) and (2.8) to get the complex shifts.
17: end if
18: end if

In the following, we discuss the main computational steps in Algorithm 3.1.
Real spectra. In the case where the spectrum is real, we can simply compute the upper

and lower bounds of the spectrum by the Arnoldi (or, if

\ � \ �
, the Lanczos) process

and enter the Wachspress computation with these values for Ç and È , and set É � � , i.e.,
we only have to compute two complete elliptic integrals by an arithmetic geometric mean
process. This is very cheap since it is a quadratically converging scalar computation (see
below). Note that particularly in the symmetric case leading naturally to a real spectrum,
applying the Lanczos process to

\
with its simultaneous convergence to the eigenvalues of

the smallest and largest magnitude [17, Section 9.1], no eigenvalue computation using

\ '*)
is

necessary. In any case, as the accurate computation of Ç , È usually requires only few Arnoldi
or Lanczos steps, the parameter calculation will usually be significantly more efficient than
Penzl’s heuristic which requires many Ritz values of

\
and

\ '4)
.

Complex spectra. For complex spectra, we introduce an additional shifting step to be
able to apply the Arnoldi process more efficiently. Since we are dealing with stable systems2,
we compute the largest and smallest magnitude eigenvalues and use the arithmetic mean of
their real parts as a horizontal shift such that the spectrum is centered about the origin. Now

2Note that the Newton-ADI-iteration assumes that we know a stabilizing initial feedback, or the system is stable
itself.
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Arnoldi’s method is applied to the shifted spectrum to compute a number of largest magnitude
eigenvalues. These will now automatically include the smallest magnitude eigenvalues of the
original system after shifting back. So we can avoid extensive application of the Arnoldi
method to the inverse of

\
. We only need it to get a rough approximation of the smallest

magnitude eigenvalue to determine �Ç and
�È for the shifting step.

The number of eigenvalues we compute can be seen as a tuning parameter here. The
more eigenvalues we compute, the better the approximation of the shape of the spectrum is
and the closer we get to the exact Ç , È , and É , but obviously the computation becomes more
and more expensive. Especially, the dimension of the Krylov subspaces is increasing with the
number of parameters requested and with it the memory consumption in the Arnoldi process.
But in cases where the spectrum is filling a rectangle or an egg-like shape, a few eigenvalues
are sufficient here; compare Section 4.1.

A drawback of this method can be that in case of small (compared to the real parts) imag-
inary parts of the eigenvalues, one may need a large number of eigenvalue approximations
to find the ones with large imaginary parts, which are crucial to determine É accurately. On
the other hand, in that case the spectrum is almost real, and therefore it will be sufficient to
compute the parameters for the approximate real spectrum in most applications.

Computation of the elliptic integrals. The new as well as the Wachspress parameter
algorithms require the computation of certain elliptic integrals presented in (2.4). These are
equivalent to the integralä/å º 5 Þ�æ �Ýç�è} é¬êá �d¼�! Þ e � Ó qr¢ e ê � ÑnÒ¬Ó e ê

��ç�è} é�êá � Þ e) � Ó qt¢ e ê � ÑnÒ¬Ó e ê
S

(3.1)

In the case of real spectra, º � þ e and
ä/å þ e 5 Þ~æ is a complete elliptic integral of the form

# � Ç 5 È ��� ç&%'} é¬êë Ç e ÑnÒ¬Ó e ê � È e Ó qr¢ e ê
and # � Ç 5 È �9� í õ ½)(2� Ç 5 È � , where

(2� Ç 5 È � is the arithmetic geometric mean of Ç and È . The
proof for the quadratic convergence of the arithmetic geometric mean process is given in
many textbooks; see, e.g., [34].

For incomplete elliptic integrals, i.e., the case º Û í õ ½ , an additional Landen’s transfor-
mation has to be performed. Here, first the arithmetic geometric mean is computed as above,
then a descending Landen’s transformation is applied (see [1, Chapter 17]), which comes in
at the cost of a number of scalar tangent computations equal to the number of iteration steps
taken in the arithmetic geometric mean process above.

The value of the elliptic function
÷ ¢ from equation (2.6) is also computed by an arith-

metic geometric mean process; see [1, Chapter 16].
To summarize the advantages of the proposed method, we can say the following.

(i) We compute real shift parameters even in many cases of complex spectra, where
the heuristic method would compute complex ones. This results in a significantly cheaper ADI
iteration considering memory consumption and computational effort, since complex compu-
tations are avoided.

(ii) We have to compute less Ritz values compared to the heuristic method, reducing
the time spent in the computational overhead for the acceleration of the ADI method. In
particular, the number of applications of

\ '*)
in the eigenvalue computations is drastically

reduced or even avoided completely.
(iii) We compute a good approximation of the Wachspress parameters at a drastically

reduced computational cost compared to their exact computation.
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4. Numerical results. For the numerical tests, we used the LyaPack3 software package
[28]. A test program similar to demo r1 from the LyaPack examples is used for the compu-
tation, where the ADI parameter selection is switched between the methods described in the
previous sections. We are here concentrating on the case where the ADI shift parameters can
be chosen real.

4.1. FDM semidiscretized diffusion-convection-reaction equation. Here, we consid-
er the finite difference semidiscretized partial differential equationÆ êÆ � !+* ê ! ì

½Ä�� î �-, ê �R¼�.¬� ê �0/��21��3�����d�+5(4.1)

where ê is a function of time
�
, vertical position

1 ) and horizontal position
1 e on the square

with opposite corners
����5i�¬�

and
�ð¼¬5n¼×�

. The example is taken from the SLICOT collection
of benchmark examples for model reduction of linear time-invariant dynamical systems; see
[11, Section 2.7] for details. It is given in semidiscretized state space model representation:,4 �R� 4 ��$65�587z�Ý� 4 S(4.2)

The matrices
�

,
$

,
�

for this system can be found on the SLICOT web site4.
Figures 4.1(a) and 4.1(b) show the spectrum and sparsity pattern of the system matrix�

. The iteration history, i.e., the numbers of ADI steps in each step of Newton’s method,
is plotted in Figure 4.1(c). There, we can see that in fact the semioptimal parameters work
exactly like the optimal ones by the Wachspress approach. This is what we would expect
since the rectangular spectrum is an optimal case for our idea, because the parameters Ç , È ,
and É are exactly (up to the accuracy of Arnoldi’s method) computed here. Note especially
that for the heuristic parameters even more outer Newton iterations than for our parameters
are required.

4.2. FDM semidiscretized heat equation. In this example, we tested the parameters
for the finite difference semidiscretized heat equation on the unit square

�D�o5n¼J�:93�D�o5T¼×�
:Æ êÆ � !;* ê �0/���1��<� �2�d� S(4.3)

The data is generated by the routines fdm 2d matrix and fdm 2d vector from the ex-
amples of the LyaPack package. Details on the generation of test problems can be found
in the documentation of these routines (comments and MATLAB help). Since the differential
operator is symmetric here, the matrix = is symmetric and its spectrum is real in this case.
Hence, É ��� , and for the Wachspress parameters only the largest and smallest magnitude
eigenvalues have to be found to determine Ç and È . That means we only need to compute
two Ritz values by the Arnoldi process (which here is in fact a Lanczos process because
of symmetry) compared to about 30 (which seems to be an adequate number of shifts) for
the heuristic approach. We used a test example with 400 unknowns here to still be able to
compute the complete spectrum using eig for comparison.

In Figure 4.2, we plotted the sparsity pattern of = and the iteration history for the solution
of the corresponding ARE. We can see (Figure 4.2(b)) that iteration numbers only differ
very slightly. Hence, we can choose quite independently which parameters to use. Since the
Wachspress approach needs a good approximation of the smallest magnitude eigenvalue, it
might be a good idea to choose the heuristic parameters here (even though they are much
more expensive to compute) if the smallest magnitude eigenvalue is known to be close to the
origin (e.g., in case of finite element discretizations with fine meshes).

3http://www.netlib.org/lyapack/ or http://www.tu-chemnitz.de/sfb393/lyapack/ .
4http://www.slicot.org/index.php?site=benchmodred .

http://www.netlib.org/lyapack/
http://www.tu-chemnitz.de/sfb393/lyapack/
http://www.slicot.org/index.php?site=benchmodred
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FIG. 4.1. (a) Sparsity pattern of the FDM semidiscretized operator for equation (4.1) and (b) its spectrum. (c)
Iteration history for the Newton ADI method applied to (4.1).

4.3. FEM semidiscretized convection-diffusion equation. The last example is a sys-
tem appearing in the optimal heating/cooling of a fluid flow in a tube. An application is the
temperature regulation of certain reagent inflows in chemical reactors. The model equations
are Æ êÆ � !+>�* ê � ã ��, ê �	� in ³ 5

ê � ê } on ? in
5

Æ êÆA@ � ¯ ���1! ê � on ? heat )CB ? heat e 5Æ êÆA@ �	� on ? out
S

(4.4)

Here, ³ is the rectangular domain shown in Figure 4.3(a). The inflow ? in is at the left part of
the boundary and the outflow ? out the right one. The control is applied via the upper and lower
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FIG. 4.2. (a) Sparsity pattern of the FDM semidiscretized operator for equation (4.3), and (b) iteration history
for the Newton-ADI method.
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FIG. 4.3. (a) A 2d cross-section of the liquid flow in a round tube. (b) Eigenvalue and shift parameter distributions.

boundaries. We can restrict ourselves to this 2d domain assuming rotational symmetry, i.e.,
nonturbulent diffusion-dominated flows. The test matrices have been created using the COM-
SOL Multiphysics software and

>6�µ� S �)D
, resulting in the eigenvalue and shift distributions

shown in Figure 4.3(b).

Since a finite element discretization in space has been applied here, the semidiscrete
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FIG. 4.4. (a) Sparsity pattern of E and F in (4.5), (b) sparsity pattern of E and F in (4.5) after reordering
for bandwidth reduction, (c) sparsity pattern of the Cholesky factor of reordered F , and (d) iteration history for the
Newton-ADI method.

model is of the form l ,4 � �� 4 �h�$65�57z� �� 4 S(4.5)

This is transformed into a standard system (4.2) using the sparse Cholesky decompositionl �YlHG�l �G (Note that
l

is symmetric positive definite.). Sparse reverse Cuthill-McKee
ordering is used to reduce the fill in in the Cholesky factors; see Figure 4.4(a)-(c) for sparsity
patterns and nonzero counts. Then defining �4 = �Yl �G 4 , � = �.l2'*)G ���l2';�G ,

$ = �.l2'*)G �$ ,
and

� = � ��wl ';�G (without computing any of the inverses explicitly in the code), we end up
with a standard system for �4 having the same inputs

5
as (4.5).

Figure 4.4(d) shows the iteration history for the Newton-ADI method with the suggested
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parameter choices. Note that the heuristic parameters do not appear in the results bar graphics
there. This is due to the fact that the LyaPack software crashed while applying the complex
shift computed by the heuristics. Numerical tests only using the real ones of the heuristic
parameters lead to very poor convergence in the inner loop, which is generally stopped by the
maximum iteration number stopping criterion. Thus, no convergence of the Newton iteration
is obtained.

5. Conclusions. In this paper, we have reviewed existing methods for determining sets
of ADI parameters, and based on this review we suggest a new procedure which combines
the best features of two of those. For the real case, the parameters computed by the new
method are optimal and in many complex cases their performance is quite satisfactory as
one can see in the numerical examples. The computational cost depends only on that of the
Arnoldi process for the matrix involved and on the computation of elliptic integrals. Since
the latter is a quadratically converging scalar iteration, the Arnoldi process is the dominant
computation here, which makes this method suitable for the large-scale systems arising from
finite element discretization of PDEs. The main advantages of the new method are that it is
cheaper to compute than the existing ones and that it avoids complex computations in the
ADI iteration for many cases where the others would result in complex ADI iterations.
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