
Electronic Transactions on Numerical Analysis.

Volume 28, pp. 95-113, 2007.

Copyright  2007, Kent State University.

ISSN 1068-9613.

ETNA
Kent State University

etna@mcs.kent.edu

A REFINED UNSYMMETRIC LANCZOS EIGENSOLVER FOR COMPUTING

ACCURATE EIGENTRIPLETS OF A REAL UNSYMMETRIC MATRIX∗

JEAN CHRISTOPHE TREMBLAY† AND TUCKER CARRINGTON JR.†

Dedicated to Gene Golub on the occasion of his 75th birthday

Abstract. For most unsymmetric matrices it is difficult to compute many accurate eigenvalues using the prim-

itive form of the unsymmetric Lanczos algorithm (ULA). In this paper we propose a modification of the ULA. It is

related to ideas used in [J. Chem. Phys. 122 (2005), 244107 (11 pages)] to compute resonance lifetimes. Using the

refined ULA we suggest, the calculation of accurate extremal and interior eigenvalues is feasible. The refinement is

simple: approximate right and left eigenvectors computed using the ULA are used to form a small projected matrix

whose eigenvalues and eigenvectors are easily computed. There is no re-biorthogonalization of the Lanczos vectors

and no need to store large numbers of vectors in memory. The method can therefore be used to compute eigenvalues

of very large matrices. The idea is tested on several matrices.

Key words. Eigenproblem, unsymmetric matrices, Lanczos algorithm

AMS subject classifications. 15A18, 65F15, 65F50

1. Introduction. Scientists and engineers frequently need to compute many eigenvalues

of large real matrices, i.e. to solve

(1.1) GX(R) = X(R)Λ ,

where X(R) is a matrix of right eigenvectors, x(R), and Λ is a diagonal matrix whose diag-

onal elements are eigenvalues; see for example [1, 6, 8, 12, 32]. They prefer eigensolvers

that require little memory and are simple to implement. Of course, an eigensolver that is

CPU efficient is also advantageous. For symmetric matrices the Lanczos procedure without

re-orthogonalization is often the best choice, see [7, 9, 10, 14, 27, 28, 29, 31]. Using this

procedure it is possible to compute eigenvalues by storing only two vectors. Eigenvectors

can be obtained either by re-generating the Lanczos vectors or by storing them on disk. The

method is simple and easy to use. For unsymmetric matrices, on the other hand, the known

eigensolvers have important deficiencies. For the purpose of computing many eigentriplets

(eigenvalues, right eigenvectors x(R), and left eigenvectors x(L)), the best unsymmetric ma-

trix eigensolvers are based either on the Arnoldi algorithm or on the unsymmetric Lanczos

algorithm. In this paper we assume that the matrix G always has a complete set of eigenvec-

tors.

The Arnoldi algorithm is an orthogonal Krylov projection method [17, 36]. It has the

important disadvantage that it requires storing many vectors in memory. Vectors must be

stored in memory because every Arnoldi vector is orthogonalized against all of the previous

computed Arnoldi vectors. It would be very costly to orthogonalize by reading previous

Arnoldi vectors from disk because the orthogonalization is done at each iteration. The CPU

cost of the orthogonalization also increases with the number of iterations. These problems

are to some extent mitigated by using the implicitly restarted Arnoldi (IRA) technique [33].

It is implemented in the ARPACK code which is widely used and appreciated [23, 42].

The unsymmetric Lanczos algorithm (ULA) is an oblique projection method that uses

two separate Krylov spaces, for G and G
∗, where ∗ denotes the conjugate transpose [5, 17].

∗Received December 22, 2006. Accepted for publication July 19, 2007. Recommended by D. B. Szyld. This

work has been supported by the Natural Sciences and Engineering Research Council of Canada and the Fonds

québécois de la recherche sur la nature et les technologies.
†Département de chimie, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal (Québec) H3C

3J7, Canada ({jc.tremblay,tucker.carrington}@umontreal.ca).

95

ETNA
Kent State University

etna@mcs.kent.edu

96 J. C. TREMBLAY AND T. CARRINGTON JR.

The ULA has the advantage that its use requires the storage of only four vectors, but the

important disadvantage that in its primitive form it does not always yield accurate eigenvalues.

The formal memory advantage of the ULA is, of course, useless if one is not able to compute

accurate eigentriplets.

Due in part to the inaccuracy of the ULA, the most popular approach for solving the

unsymmetric eigenproblem is the Implicitly Restarted Arnoldi (IRA) idea and the ARPACK

program [33, 42]. A cleverly designed restarting algorithm contracts a Krylov subspace with

p vectors to a Krylov subspace with k < p vectors. The contraction can be done to facilitate

the convergence of eigenvalues whose magnitude, or real part, or imaginary part, is largest

or smallest [23, 42]. The algorithm is repeatedly restarted until the desired eigenvalues have

converged. ARPACK is robust and stable. The memory cost of the method is determined by

the need to store p Arnoldi vectors in memory to perform the orthogonalization. Increasing p
increases both the memory cost and the CPU cost of the orthogonalization, but decreases the

number of necessary restarts. ARPACK has been widely applied and is considered a method

of choice [21, 22, 40]. For extremal eigenvalues its most important disadvantage is the need to

store p vectors in memory. If the size of the matrix G is large, one requires a lot of memory in

order to use ARPACK. In addition, to reliably obtain interior eigenvalues with ARPACK one

must either use a large p (which is usually impractical) or a spectral transformation. The use

of ARPACK for interior eigenvalues is discussed in [2, 19]. Using a spectral transformaton is

costly, especially if the matrix is so large that it cannot be factorized.

To compute (interior or extremal) eigenvalues of a very large matrix with ARPACK one

requires a prohibitive amount of memory and it is therefore tempting to endeavor to improve

the ULA. Modifying the ULA, without losing its memory advantage, so that accurate eigen-

values and eigenvectors can be computed, would drastically reduce the memory cost of eigen-

computations with very large matrices. The ULA (see section 2) uses two sets of biorthogonal

vectors. Several authors have proposed modifications of the ULA. Conceptually, the simplest

way to use the ULA to determine accurate eigenvalues is to re-biorthogonalize the two sets

of Lanczos vectors. However, it is difficult to achieve biorthogonality that is good enough

to ensure accurate eigenvalues. In addition, re-biorthogonalization significantly increases the

CPU cost and negates the anticipated memory advantage of the ULA. The look-ahead modi-

fication is designed to deal with problems introduced by small normalizing factors [16, 30]. It

does improve the accuracy of eigenvalues computed with the ULA and can be used with any

of the other modifications described below. Day [13] has proposed a scheme for maintaining

semi-biorthogonality. He shows that using this approach it is possible to compute eigenvalues

accurate to “from full to half relative precision” but, to make the method work, all Lanczos

vectors must either be stored in memory or read from disk at each re-biorthogonalization

step. This significantly increases the memory cost or the calculation time. In [11], Cullum

and Willoughby show that if the coefficients of the recursion relations are chosen so that

the tridiagonal matrix is symmetric (but complex) accurate eigenvalues can be computed for

some test problems. This is a low-memory method and it is simple to use but requires com-

plex arithmetic. Using complex Lanczos vectors increases the memory and CPU costs by

about a factor of two.

In this paper we show that it is possible to use Lanczos vectors to compute accurate

eigenvalues and eigenvectors without storing vectors spanning Krylov space(s) in memory

(we do no re-biorthogonalization of the Lanczos vectors). It is also possible to compute inte-

rior eigenvalues. To compute eigenvalues of a real matrix, we evaluate matrix-vector products

in real arithmetic. The new idea is simple: we use approximate right and left eigenvectors

obtained from the ULA to build a projected matrix which we diagonalize using a standard

method. In effect we are using the ULA to compute vectors that have large components along

ETNA
Kent State University

etna@mcs.kent.edu

A REFINED UNSYMMETRIC LANCZOS EIGENSOLVER 97

the eigenvector directions. The eigenvectors obtained from the ULA are not accurate, but

they can be used to compute accurate eigenvalues and eigenvectors. We call this approach

the refined unsymmetric Lanczos eigensolver (RULE). Although the word refined occurs in

the name, the method is not directly related to that of [20]. It is built upon ideas introduced

in [37].

The RULE’s principle advantage is that it enables one to compute many eigenvalues of

a large matrix without storing more than about a dozen vectors in memory. The number of

eigenvalues (and eigenvectors) one can compute, from one tridiagonal matrix, is much larger

than the number of vectors that one must store in memory. The RULE is a good alternative to

ARPACK if the matrix for which eigenvalues are desired is so large that it is not possible to

store many vectors in memory, or if one wishes interior eigenvalues. It makes it possible to

extract accurate eigenvalues from large Krylov spaces. Although our numerical experiments

(see section 4) show that the RULE works well for many difficult problems it is not backward

stable. Nevertheless, it provides a means of computing eigentriplets of matrices for which the

memory ARPACK requires exceeds that of the computer.

2. The standard unsymmetric Lanczos algorithm. The unsymmetric Lanczos algo-

rithm is an iterative process for generating two sets of biorthogonal vectors, {vj }
m
j=1 and

{wj}
m
j=1 , which span two Krylov subspaces [5, 17],

K(m){G,v1} = span {v1 ,Gv1 , . . . ,G
m−1

v1} , and

K(m){G∗,w1} = span {w1 ,G
∗
w1 , . . . , (G

∗)m−1
w1} .

The two sets of Lanczos vectors may be obtained from the two three-term recurrence relations

ρk+1vk+1 = rk+1 = Gvk − αkvk − γkvk−1 ,

ξ∗k+1wk+1 = sk+1 = G
∗
wk − α∗

kwk −
ρ∗kδk
δk−1

wk−1 ,

where γk = ξkδk/δk−1 , δk = wk
∗
vk , αk = wk

∗
Gvk/δk , and ρk and ξk normalize rk and

sk , respectively. The procedure is started by choosing two random starting vectors (v1 and

w1) and by setting γ1 = ρ1 = 0. In matrix form these relations are written

GVm = VmTm + ρm+1vm+1e
∗
m ,

G
∗
Wm = Wm∆

−1

m T
∗
m∆m + ξ∗m+1wm+1e

∗
m ,

where Vm and Wm are matrices whose columns are the first m vectors vk and wk , respec-

tively, and ∆m = diag(δ1 , δ2 , . . . , δm). The scalars αk , ρk , and γk are elements of the

tridiagonal matrix Tm = ∆
−1

m W
∗
mGVm ,

Tm =

















α1 γ2
ρ2 α2 γ3

ρ3 α3

. . .

. . .
. . . γm
ρm αm

















.

Eigenvalues of the matrix Tm are computed by solving

TmZ = ZΘm .

Some of the eigenvalues of Tm approximate eigenvalues of G. There is some flexibility

in the definition of ρk and ξk . We choose to normalize so that δk = wk
∗
vk = 1 and

ETNA
Kent State University

etna@mcs.kent.edu

98 J. C. TREMBLAY AND T. CARRINGTON JR.

∆
−1

m T
∗
m∆m = T

∗
m . This choice will be assumed for the remainder of the paper. In pseudo-

code the algorithm is:

Algorithm 1. Unsymmetric Lanczos

Choose v1 and w1 such that w∗
1v1 = 1;

r = Gv1 ;

s = G
∗
w1 ;

for k = 1, 2, . . . ,m
αk = w

∗
kr;

r = r − αkvk ;

s = s− α∗
kwk ;

r = r − (r∗wk)vk ;

s = s− (s∗vk)wk ;

if (‖r‖ = 0 or ‖s‖ = 0), stop;

δ̃k = r
∗
s;

if (δ̃k = 0), stop;

ρk+1 = |δ̃k |
1/2;

γk+1 = δ̃k
∗
/ρk+1 ;

vk+1 = r/ρk+1 ;

wk+1 = s/γ∗k+1 ;

r = Gvk+1 − γk+1vk ;

s = G
∗
wk+1 − ρ∗k+1wk ;

end.

Breakdown or near breakdown can occur when δ̃k ≃ 0. However, in our experience, it never

occurred and we shall not discuss it further. Breakdown can be dealt with using look-ahead

methods [16, 30].

As the number of iterations increases, roundoff errors will ineluctably lead to loss of

biorthogonality of the Lanczos vectors. When an eigenvalue converges, the correspond-

ing eigenvectors will contaminate successive Lanczos vectors and near copies of converged

eigenvalues will be generated. Increasing the size of the Krylov subspace will increase the

number of near copies. For the Hermitian case this phenomenon was first explained by Paige

[27, 28, 29]. In that case, if nothing is done to minimize the loss of orthogonality, multi-

ple copies of converged eigenvalues appear. Cullum and Willoughby denoted unconverged

eigenvalues of the matrix Tm “spurious” eigenvalues and developed a practical procedure for

identifying the spurious eigenvalues of a matrix Tm that is Hermitian [9, 10]. Copies of con-

verged eigenvalues are equal to machine precision and cause no problem. For non-Hermitian

matrices the “copies” are not nearly as close and it is harder to distinguish between spurious

and good eigenvalues. To a large degree this problem can be overcome by choosing the co-

efficients in the recursion relations so that the tridiagonal matrix is complex symmetric [11],

but to minimize CPU and memory costs we wish to use real arithmetic. In real arithmetic and

using the ULA: (1) in general, it is not possible to find a Krylov subspace size m for which

an eigenvalue of the matrix Tm accurately approximates an eigenvalue of the matrix G; (2)

for each nearly converged eigenvalue of the matrix G there is a cluster of closely spaced

eigenvalues of Tm , but the norm of differences between eigenvalues in the cluster may be so

large that it is difficult to identify the cluster and impossible to determine an accurate value

for the eigenvalue; (3) the width of the clusters increases with m; and (4) it is not possible to

use the procedure Cullum and Willoughby developed to remove spurious eigenvalues from

clumps of eigenvalues. The inadequacy of the ULA is well known [3, 4, 5, 39].

ETNA
Kent State University

etna@mcs.kent.edu

A REFINED UNSYMMETRIC LANCZOS EIGENSOLVER 99

Consider the following example. We use Matlab 7 commands to create a random matrix

of size N = 300

(2.1)
RAND(’SEED’,0);

Gext = RAND(N) .

Eigenvalues computed with Matlab’s EIG routine are shown in Figure 2.1.

FIG. 2.1. Distribution of eigenvalues of the matrix Gext .

One eigenvalue is well isolated. It is the eigenvalue of largest magnitude and is real. Its

condition number,

cλ =
1

|x(L)
∗x(R)|

,

is 1.001. The ULA with m = 300 produces many approximate copies of this eigenvalue, see

Table 2.1. Even for this isolated well-conditioned eigenvalue, the imperfect copies makes it

hard to extract accurate eigenvalues from a large tridiagonal matrix.

Figure 2.2 shows the evolution of the error associated with the isolated eigenvalue. The

error is defined as the the norm of the difference between the exact (computed with Matlab’s

EIG) eigenvalue and the average of the near copies in a cluster generated by the ULA. Two

eigenvalues θj and θk are deemed to be in a cluster if

(2.2) |θk − θj | ≤ η max(|θk |, |θj |) ,

where η is a user defined tolerance [4]. For the matrix Gext , with the best possible value ofm,

the eigenvalue accuracy is quite good (14 significant digits). The best possible value ofm can

be determined by using the procedure outlined by Cullum and Willoughby for the complex

symmetric Lanczos algorithm [10]. The error associated with the average of the eigenvalues

of the cluster eigenvalues for m = 300 is quite large. Nevertheless with some effort (i.e., by

finding the right m) the ULA can be used to compute an isolated extremal eigenvalue.

ETNA
Kent State University

etna@mcs.kent.edu

100 J. C. TREMBLAY AND T. CARRINGTON JR.

TABLE 2.1

Selected eigenvalues of the 300 × 300 tridiagonal matrix that correspond to the isolated eigenvalue and an

interior eigenvalue of the matrix Gext . The eigenvalues of matrix Gext obtained with Matlab’s EIG are λ1 =

150.234556208130 and λ2 = 3.609257224171 + 3.069961788177i.

Approximate eigenvalue Error

150.234556208117 1.2989E-11

150.234556208121 8.9813E-12

150.234556208126 3.9790E-12

150.234556208129 9.9476E-13

150.234556208129 9.9476E-13

150.234556209596 1.4660E-09

150.234556220968 1.2838E-08

150.234556241745 3.3615E-08

150.234556268333 6.0203E-08

150.234556296133 8.8003E-08

150.234556320339 1.1221E-07

150.234556336769 1.2864E-07

3.609257227317 + 3.069961798318i 1.0617E-08

3.609257246703 + 3.069961858171i 7.3531E-08

3.609256887624 + 3.069962297111i 6.1014E-07

3.609254779439 + 3.069965061303i 4.0854E-06

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 10 20 30 40 50 60 70 80 90 100

A
b

s
o

lu
te

 e
rr

o
r

Number of unsymmetric Lanczos iterations

FIG. 2.2. Error in an extremal extremal, isolated eigenvalue of the matrix Gext computed with the ULA.

Unfortunately, it is much harder to compute an eigenvalue that is not isolated (cf. Ta-

ble 2.1). For interior eigenvalues all of the copies are further than 10−8 from the exact eigen-

values and it is impossible to find a tridiagonal matrix for which eigenvalues are very close to

the desired exact eigenvalues of the matrix Gext . We find that using a simple Gram-Schmidt

re-biorthogonalization is not good enough to get accurate interior eigenvalues (although it

does reduce the number of matrix-vector products required to achieve an error of ∼ 10−8).

We shall now show that approximate right and left eigenvectors, obtained from the ULA with

a single value of m, can be used to obtain many accurate eigenvalues.

ETNA
Kent State University

etna@mcs.kent.edu

A REFINED UNSYMMETRIC LANCZOS EIGENSOLVER 101

3. Refined unsymmetric Lanczos eigensolver. As briefly explained at the end of the

introduction we use approximate right and left eigenvectors obtained from the ULA to de-

termine accurate eigenvalues and eigenvectors of a general matrix G. To do this we must

store Lanczos vectors on disk (they are not accessed during the iteration and we do not re-

biorthogonalize them) and calculate eigenvalues in groups. Because one typically needs only

a small fraction of the eigenvalues of a huge matrix a small number of groups will be required.

Although the RULE is designed for computing only a small fraction of the total number of

eigenvalues, it may easily be used to calculate hundreds of eigenvalues. If a smaller number

of eigenvalues is desired a Jacobi-Davidson algorithm would be a good alternative [15, 18].

We use the ULA with v1 = w1 = a “random” vector to compute an unsymmetric

tridiagonal matrix Tm for a large value of m. We transform the matrix Tm to obtain a

complex symmetric tridiagonal matrix with the same eigenvalues,

(3.1)

T̂m = Ω
− 1

2 TmΩ
1

2

=





















α1 (ρ2γ2)
1

2

(ρ2γ2)
1

2 α2 (ρ3γ3)
1

2

(ρ3γ3)
1

2 α3

. . .

. . .
. . . (ρmγm)

1

2

(ρmγm)
1

2 αm





















,

where Ω = diag(1, ρ2ω1

γ2
, ρ3ω2

γ3
, . . . , ρmωm−1

γm
) and ωj is the j’th diagonal element of Ω. The

matrix Ω is obtained recursively. In a FORTRAN implementation of the RULE, eigenval-

ues of the symmetric tridiagonal matrix T̂m are computed using the CMTQL1 routine Cul-

lum and Willoughby employ in their complex symmetric and unsymmetric Lanczos proce-

dures [10]. We prefer to use the symmetric tridiagonal matrix T̂m and CMTQL1 because

CMTQL1 exploits the symmetry to reduce both the CPU cost and the memory cost of calcu-

lating the eigenvalues. Our Matlab RULE routine simply uses EIG to diagonalize the matrix

T̂m . In a region of the spectrum in which we wish eigenvalues of the matrix G we form

clusters of eigenvalues of the matrix T̂m . To do so we build a list of the eigenvalues θi ,
i = 1, . . . ,m. For one eigenvalue in the list, θk , we compute |θk − θj | for all other eigen-

values in the list. Eigenvalues θj in the same cluster, see (2.2), are removed from the list

before making the cluster associated with another eigenvalue. Clusters with more than one

eigenvalue contain near copies introduced by round-off error. If there are no near copies a

cluster will contain only one eigenvalue; many clusters do only have one eigenvalue. A pro-

cedure for identifying spurious eigenvalues in the symmetric case was developed by Cullum

and Willoughby [9, 10]. We use similar ideas to identify spurious eigenvalues for the un-

symmetric problem. A complex symmetric tridiagonal matrix T2 is formed by removing

the first column and the first row of matrix T̂m . The matrix T2 is then diagonalized to ob-

tain its eigenvalues, θ̃i . Isolated eigenvalues (i.e. one-eigenvalue clusters) of matrix T̂m that

differ from isolated eigenvalues of matrix T2 by less than η max(|θ̃i |, |θj |) are identified as

spurious. Doing the Cullum and Willoughby spurious test enables us to avoid calculating

approximate eigenvectors that correspond to the eigenvalues of matrix Tm that are not close

to any of the eigenvalues of matrix G, without excluding vectors whose eigenvalues are close

to those of the matrix G. For each non-spurious cluster we compute an average eigenvalue.

These average eigenvalues are used as shifts with inverse iteration [41, pp. 619–633], to de-

termine approximate right and left eigenvectors of the matrix Tm (one pair for each cluster).

The inverse iteration algorithm we use is:

ETNA
Kent State University

etna@mcs.kent.edu

102 J. C. TREMBLAY AND T. CARRINGTON JR.

Algorithm 2. Two-sided inverse iteration

Choose random starting vectors z
j
r and z

j
l ;

Factorize LU = (λ̂j I− Tm);
for i = 1, 2, . . .

Solve LUz̃ = z
j
r ;

z
j
r = z̃/‖z̃‖;

Solve U
∗
L
∗
z̃ = z

j
l ;

z
j
l = z̃/‖z̃‖;

Evaluate θ
(i)
j =

z
j

l

∗

Tmz
j
r

z
j

l

∗

z
j
r

;

Exit if converged;

end.

Here, λ̂j is an approximate eigenvalue or average eigenvalue obtained from the diagonaliza-

tion of the matrix T̂m , and z
j
r and z

j
l are the associated right and left eigenvectors of matrix

Tm . The Ritz value θ
(i)
j is used to monitor the convergence of the jth pair of eigenvectors.

Inverse iteration is terminated at i = mj , if θ
(i)
j and θ

(i−1)
j differ by less than 10−13|λ̂j |.

Typically five or fewer inverse iteration steps are required for each converged {zj
r , z

j
l } pair.

There are alternatives to inverse iteration. Any method with which one can exploit the tridi-

agonal structure of the matrix Tm could be used, e.g., shift and invert Arnoldi could be used

because the factorization of a tridiagonal matrix can be easily computed and stored.

After having computed, for each eigenvalue or average value, eigenvectors of the matrix

Tm we determine approximate left and right eigenvectors of the matrix G by reading Lanczos

vectors vk and wk from disk and combining them according to

(3.2) rj =
m

∑

k=1

z
j
r (k)vk , lj =

m
∑

k=1

z
j
l (k)wk ,

where rj and lj are approximate jth right and left eigenvectors of matrix G, and z
j
r (k) (z

j
l (k))

is the kth component of z
j
r (z

j
l). If η is small it can happen that several rj and lj vectors are

nearly parallel. This occurs if several of the clusters contain eigenvalues of the matrix Tm

associated with one exact eigenvalue of the matrix G. To minimize the near linear dependance

of the vectors rj and lj and to reduce the number of the {zj
r , z

j
l } pairs we retain only pairs for

which Ritz values obtained from inverse iteration differ by more than η max(|θ
mj

j |, |θmk

k |).
The right eigenvectors rj , j = 1, . . . , k, where k is the number of retained approximate

eigenvectors, are the columns of a matrix we denote Rk . The vectors lj , j = 1, . . . , k, are

the columns of a matrix we denote Lk . One might also avoid nearly parallel vectors by

increasing η, but if η is too large, eigenvalues of the matrix Tm associated with two or more

exact eigenvalues will be lumped into a single cluster and one will miss eigenvalues. One

could actually use the RULE with η = 0 (i.e. cluster width of zero). This would eliminate

any possibility of missing closely-spaced eigenvalues, but it would increase the number of

{zj
r , z

j
l } pairs to compute, and increase the number of vectors rj and lj to assemble and

therefore make the calculation more costly.

To numerically solve (1.1) we replace

(3.3) X(R) ≃ X̂(R) = RkY(R) .

This yields,

GRkY(R) = RkY(R)Λ̃ ,

ETNA
Kent State University

etna@mcs.kent.edu

A REFINED UNSYMMETRIC LANCZOS EIGENSOLVER 103

where Λ̃ is an approximation for Λ in (1.1). After multiplying both sides from the left by the

conjugate transpose of Lk , we obtain the generalized eigenvalue problem,

(3.4) GkY(R) = SkY(R)Λ̃ ,

where Gk = L
∗
kGRk and Sk = L

∗
kRk . The matrix Sk is an overlap matrix of two sets of

vectors. This oblique Rayleigh-Ritz-type procedure works because the better the approxi-

mate eigenvector spaces, the better the eigenvalues obtained from the projected matrix [34,

pp. 280–289]. For experiments we have done, the eigenvalues of (3.4) are accurate eigenval-

ues of G and accurate right eigenvectors can be obtained using (3.3). A matrix of approximate

left eigenvectors, X(L), is obtained from

(3.5) X
∗
(L) ≃ X̂

∗
(L) = Y

∗
(L)L

∗
k ,

where the matrix Y(L) is defined by

Y
∗
(L)Gk = Λ̃Y

∗
(L)Sk ,

and is computed simultaneously with the matrix of right eigenvectors Y(R). If one wishes

more eigenvalues it is necessary to compute additional approximate eigenvectors (from the

same Lanczos vectors) and to form another matrix Gk . Using the approximate eigenvectors

to build the matrix Gk enables us to extract accurate eigenvalues from the Krylov spaces,

but it does not change the subspaces themselves. The convergence rate of the RULE will

be determined by the Krylov subspaces of the ULA which are to some extent affected by

roundoff error.

The new method can be summarized as follows:

Algorithm 3. Refined Unsymmetric Lanczos Eigensolver (RULE)
1. Compute m steps of the Unsymmetric Lanczos Algorithm 1;

2. Form the matrix T̂m in (3.1) and compute its eigenvalues;

3. Form clusters of eigenvalues of T̂m and for each cluster compute
an average;

4. Identify clusters with only one eigenvalue that are spurious;
5. Select shifts for non-spurious eigenvalue clusters in the spectral

region of interest;
6. For each shift compute right and left eigenvectors of Tm using

inverse iteration Algorithm 2;
7. Keep only eigenvectors of Tm with distinct Ritz values;
8. Assemble approximate left and right eigenvectors of matrix G

according to (3.2);
9. Project matrix G onto these vectors according to (3.4);

10. Solve the complex generalized eigenvalue problem using the QZ
algorithm [5].

We choose a value of m and generate Lanczos vectors. If the associated matrix T̂m has

eigenvalues in the spectral region of interest, the matrix Gk is formed and (3.4) is solved. If

the matrix T̂m does not have eigenvalues in the spectral region of interest or if the eigenval-

ues computed with the RULE are not converged, we increase m and calculate more Lanc-

zos vectors. Increasing m cannot ruin the approximate eigenvectors so there is no need

to carefully search for the best m. To obviate the need to store a large number of ap-

proximate eigenvectors in memory, eigenvalues are calculated in groups by repeating steps

5 to 10 of Algorithm 3. To compute eigenvalues with the largest/smallest, real/imaginary

part/norm we use approximate eigenvectors whose corresponding eigenvalues are those with

the largest/smallest, real/imaginary part/norm. To calculate interior eigenvalues close to a

target value we use approximate eigenvectors associated with the eigenvalues close to the

target.

ETNA
Kent State University

etna@mcs.kent.edu

104 J. C. TREMBLAY AND T. CARRINGTON JR.

4. Numerical experiments. Many numerical experiments were done using both Matlab

and FORTRAN programs. With Matlab we have computed extremal eigenvalues of “random”

and Riemann matrices generated using Matlab routines and of Tolosa matrices from the Ma-

trix Market [43]. Also using Matlab we have computed interior eigenvalues of PDE matrices

from the Matrix Market. Eigentriplets of the AIRFOIL matrix, available from Matrix Market,

and a matrix we constructed to determine energies and lifetimes of metastable states of the

HCO radical were computed using a FORTRAN implementation of the RULE. In all cases η
was chosen to be the square root of the machine precision.

4.1. Random matrix generated with (2.1). The random matrices of different size, ob-

tained using (2.1), all had one isolated, extremal eigenvalue. In section 2 it is mentioned that

it is possible to use the ULA to obtain a good approximation for the isolated eigenvalue if

and only if a tridiagonal matrix of the optimal size is used. The smallest error that can be

achieved, by choosing the best possible value of m, with the ULA is of the order of 10−13.

For other (non isolated) eigenvalues, even with an optimal m, the ULA does poorly. Interior

eigenvalue errors are of the order of 10−8. Both ARPACK and our implementation of the

RULE yield extremal and non-extremal eigenvalues with absolute errors less than 10−13 and

there is no need to select an optimal value of m.

4.2. Riemann matrices. We have computed eigenvalues of different Riemann matrices,

the largest of which is of size N = 5000. The matrices are associated with the Riemann

hypothesis and can be generated with Matlab using the function

Grie = GALLERY(’RIEMANN’,N) .

For more details, the reader is referred to the Matrix Computation Toolbox available on the

website of Professor N. Higham [44]. The complex eigenvalue distribution for the matrix is

shown in Figure 4.1.

FIG. 4.1. Distribution of eigenvalues of the RIEMANN5000 matrix.

We decided to focus on eigenvalues with large imaginary parts since they are located near the

convex hull of the spectrum but do not have the largest norms. Due to the fact that the desired

eigenvalues with large imaginary parts are close to the convex hull the ULA should work

ETNA
Kent State University

etna@mcs.kent.edu

A REFINED UNSYMMETRIC LANCZOS EIGENSOLVER 105

fairly well [5]. The convergence behavior of a typical eigenvalue computed with the ULA is

similar to that shown in Figure 2.2. Although the ULA is expected to work well, the minimum

error is greater than 10−9 for all eigenvalues reported in Table 4.1. The error, defined as the

norm of the difference between the average of the nearly degenerate copies and the eigenvalue

computed with Matlab’s EIG, increases asm is increased further. The 12 eigenvalues with the

largest absolute imaginary parts computed with the RULE are presented in Table 4.1. Note

that the refinement decreases the eigenvalue error by many orders of magnitude. Some errors

are reduced by 4 orders of magnitude.

TABLE 4.1

Error in selected eigenvalues of the RIEMANN5000 matrix.

Eigenvalue ULA∗ RULE∗∗ ARPACK† |x∗
(L)x(R)|

2.024454 − 34.08310i 3.3E-9 4.5E-11 7.4E-11 5.9558E-03

2.024454 + 34.08310i 3.3E-9 4.2E-11 7.4E-11 5.9558E-03

84.80854 − 34.24698i 9.4E-8 1.3E-10 9.0E-11 9.2899E-03

84.80854 + 34.24698i 9.4E-8 1.5E-10 9.0E-11 9.2899E-03

76.12058 − 51.07108i 1.5E-8 3.0E-10 2.3E-10 5.7480E-03

76.12058 + 51.07108i 1.5E-8 2.9E-10 2.3E-10 5.7480E-03

152.9928 − 43.53188i 4.3E-8 4.5E-11 2.4E-11 4.1720E-02

152.9928 + 43.53188i 4.3E-8 4.6E-11 2.4E-11 4.1720E-02

257.0954 − 47.71716i 6.4E-7 3.4E-11 3.0E-11 8.9580E-02

257.0954 + 47.71716i 6.4E-7 3.2E-11 3.0E-11 8.9580E-02

417.5244 − 48.37068i 4.5E-8 3.3E-11 2.3E-11 1.5945E-01

417.5244 + 48.37068i 4.5E-8 3.5E-11 2.3E-11 1.5945E-01

∗ 475 Lanczos iterations; 950 matrix-vector products
∗∗ 475 Lanczos iterations; 962 matrix-vector products

† ARPACK parameters: k = 12, p=150, 7 restarts, 1116 matrix-vector products

In the fourth column of Table 4.1 we report results obtained with ARPACK. Eigenvalues

computed with ARPACK are also accurate. For some matrices eigenvalues computed with

the RULE will be more accurate than those computed with ARPACK, for others the reverse

will be true. We do not claim that eigenvalues computed with the RULE will always be

more accurate. Nonetheless the RULE has the important advantage that it requires much less

memory. Is this advantage obtained by sacrificing efficiency (i.e. increased CPU cost)?

The efficiency of the RULE can be assessed on the basis of the number of matrix-vector

products required to determine accurate eigenvalues (doing the matrix-vector products is the

most time-consuming part of the calculation). Although the RULE requires matrix-vector

products with both G
∗ and G and ARPACK needs only matrix-vector products with G the

number of RULE matrix-vector products (962) required is similar to the number of required

ARPACK matrix-vector products (1116). Over and above those required to do the 475 Lanc-

zos iterations the RULE requires only 12 matrix-vector products. The additional 12 are nec-

essary for building the matrix Gk . The cost of an ARPACK calculation includes not only the

cost of doing the matrix-vector products but also the cost of the orthogonalization. We have

chosen the ARPACK parameter p to approximately minimize the number of matrix-vector

products. With this choice the number of ARPACK and RULE matrix-vector products is sim-

ilar but the memory cost of the RULE is much less. It would have been possible to choose

a smaller p to reduce the memory cost of ARPACK, but this would increase the number of

restarts and the number of matrix-vector products (increasing p decreases the CPU cost but

increases the memory cost). These results show that, for this problem, the RULE is not only

ETNA
Kent State University

etna@mcs.kent.edu

106 J. C. TREMBLAY AND T. CARRINGTON JR.

accurate but also efficient in terms of CPU time.

4.3. TOLOSA matrices. The TOLOSA matrices were used in the stability analysis of

an airplane in flight. The eigenvalues of interest are the three with the largest imaginary parts.

For more detail we refer the reader to the Matrix Market [43]. The desired eigenvalues are

located on the convex hull of the spectrum (cf. Figure 4.2).

FIG. 4.2. Distribution of eigenvalues of the TOLS2000 matrix.

Matrices of size 90, 340, 1090 and 2000 were studied. Using both the RULE and ARPACK it

is easy to converge many eigenvalues of the three smaller matrices. We therefore focus on the

largest matrix. Table 4.2 shows eigenvalue errors. The accuracy of the eigenvalues computed

with the ULA for TOLS2000 is poor.

TABLE 4.2

Error in extremal eigenvalues of the TOLS2000 matrix.

Eigenvalue ULA∗ RULE∗∗ ARPACK† |x∗
(L)x(R)|

−723.2940 − 2319.859i 5.4E-05 6.3E-07 2.5E-09 7.8574E-04

−723.2940 + 2319.859i 5.4E-05 6.3E-07 2.5E-09 7.8574E-04

−726.9866 − 2324.992i 4.8E-06 8.8E-11 1.4E-07 7.8360E-04

−726.9866 + 2324.992i 4.8E-06 8.5E-11 1.4E-07 7.8360E-04

−730.6886 − 2330.120i 6.7E-07 1.2E-11 4.6E-08 7.8148E-04

−730.6886 + 2330.120i 6.7E-07 1.2E-11 4.6E-08 7.8148E-04

∗ 170 Lanczos iterations; 340 matrix-vector products
∗∗ 170 Lanczos iterations; 346 matrix-vector products

† ARPACK parameters: k = 6, p=300, 2 restarts, 888 matrix-vector products

The convergence behavior of the ULA for the eigenvalue of TOLS2000 with the third

largest imaginary part is presented in the top panel of Figure 4.3. The associated cluster

width is shown in the lower panel. As was also true for the RIEMANN matrices, the width of

the cluster increases significantly when the first copy appears. As more copies accumulate the

ETNA
Kent State University

etna@mcs.kent.edu

A REFINED UNSYMMETRIC LANCZOS EIGENSOLVER 107

width of the cluster of nearly degenerate copies increases further. The ULA is indeed poor,

for example, the absolute error is never less than 10−5 for the eigenvalue shown in Figure 4.3.

In contrast, eigenvalues obtained with the RULE are quite accurate (and about as accurate as

those computed with ARPACK).

 0.0001

 0.001

 0.01

 0.1

 1

 10

A
b

s
o

lu
te

 e
rr

o
r

0e+00

1e-03

2e-03

3e-03

 50 100 150 200 250 300 350 400 450 500

W
id

th

Number of unsymmetric Lanczos iterations

FIG. 4.3. Convergence and cluster width of an extremal eigenvalue of TOLS2000 obtained with the ULA.

4.4. PDE matrices. In this subsection we show that it is possible to use the RULE to

compute interior eigenvalues. Without using a spectral transformation one can do this by

using the SM option of ARPACK, but this requires storing many vectors in memory. To

test the computation of interior eigenvalues with the RULE we have used matrices obtained

by discretizing a 2-D elliptic differential equation with a five-point central finite difference

scheme. On Matrix Market the matrix we use is called PDE2961 [43]. In Figure 4.4 we show

the spectrum of the matrix of size N = 2961. The approximate eigenvectors we use are

those whose corresponding eigenvalues lie in a rectangular box of width 0.5 and height 0.1i
centered at a target value of 8.3 + 0.35i. Again, the convergence behaviour of an eigenvalue

computed with the ULA is similar to that depicted in Figure 2.2. Errors for eigenvalues close

to the target are reported in Table 4.3. It is clear that the ULA is poor and that refinement

improves the eigenvalues significantly. Although only eigenvalues close to the target are

shown, all extremal eigenvalues are also well converged. An advantage of the RULE is that

one does not need tridiagonal matrices of different size for different eigenvalues. All of the

eigenvalues are extracted from one large tridiagonal matrix. This makes the method simple

to use.

It is possible to compute the eigenvalues in Table 4.3 by applying ARPACK to (G−σI),
choosing σ to be in the centre of the desired spectral region, and using the SM option to

extract eigenvalues with the smallest magnitude. Increasing p and therefore increasing the

number of vectors stored in memory decreases the number of required matrix-vector products.

We find that if p = 100 and k = 50 the number of vectors is not too large and 1385 matrix-

vector products is enough to converge the eigenvalues in Table 4.3. Note also that because

σ is complex, the cost of each ARPACK matrix-vector product, the cost of the ARPACK re-

orthogonalisation, and the memory required to store the Arnoldi vectors are approximately

doubled.

ETNA
Kent State University

etna@mcs.kent.edu

108 J. C. TREMBLAY AND T. CARRINGTON JR.

FIG. 4.4. Distribution of eigenvalues of the PDE2961 matrix.

TABLE 4.3

Interior eigenvalues of the PDE2961 matrix. The chosen target is 8.3+0.35i. The error is defined as the norm

of the difference between computed and exact values.

Refined eigenvalue ULA∗ RULE∗∗ |x∗
(L)x(R)|

7.831661 + 0.3970848i 7.4E-09 2.4E-12 3.0064E-02

7.928410 + 0.2564949i 3.3E-07 3.0E-11 2.0611E-03

8.130354 + 0.4211668i 1.0E-08 6.3E-14 5.3381E-02

8.240396 + 0.2678090i 3.8E-08 3.0E-13 3.8846E-03

8.465128 + 0.4423992i 2.7E-09 1.4E-14 8.1620E-02

8.600357 + 0.2746980i 9.4E-08 1.1E-13 6.3615E-03

∗ 450 Lanczos iterations; 900 matrix-vector products
∗∗ 450 Lanczos iterations; 906 matrix-vector products

4.5. AIRFOIL matrix. The AIRFOIL matrix of matrix market is a good test as the ma-

trix is large (23 560), but small enough that benchmark eigenvalues can be computed with a

direct method. The matrix is obtained by modeling flow over airfoils with a finite difference

representation of the Navier-Stokes equations. More details can be found on the Matrix Mar-

ket [43]. We focus on the eigenvalues of largest magnitude for which both ARPACK and the

RULE should work well. The spectral distribution is depicted in Figure 4.5. As can be seen

from Table 4.4 accurate eigenvalues are indeed obtained using both the RULE and ARPACK

with a fairly small number of iterations. The error is defined as the absolute difference be-

tween an eigenvalue computed with Householder/QR [5] and either the RULE or ARPACK.

The residuals are right eigenvector residuals defined by [4],

(4.1) residual =
||Gxj − λ̃jxj ||2

||G||
1

.

ETNA
Kent State University

etna@mcs.kent.edu

A REFINED UNSYMMETRIC LANCZOS EIGENSOLVER 109

-300

-200

-100

 0

 100

 200

 300

-160 -140 -120 -100 -80 -60 -40 -20 0

Im
[e

ig
e

n
v
a

lu
e

]

Re[eigenvalue]

FIG. 4.5. Distribution of eigenvalues of the AF23560 matrix.

The matrix-vector product count slightly favours ARPACK in this case. The ARPACK results

were obtained with a residual tolerance parameter equal to the machine precision.

4.6. Lifetimes of states of HCO. The imaginary part of the complex energy of a res-

onance state is related to the lifetime of the state [35, 38]. The most popular approach for

computing resonance states uses a complex absorbing potential (CAP) to enforce appropriate

boundary conditions. The operator equation to be solved is,

(4.2)
(

Ĥ + ukŴ (r)
)

ψk = Ekψk ,

where Ĥ is a Hamiltonian operator, Ŵ (r) is a CAP depending on the dissociation coordinate

r, and Ek is the complex resonance energy; uk is a function of Ek . If uk is chosen appropri-

ately and the operators are represented in a discrete variable representation (DVR) basis [24],

(4.2) may be written as a quadratic matrix eigenvalue problem. There is some freedom in

the choice of uk ; different choices yield different quadratic eigenvalue problems. We choose

uk= i
√

(σ − Ek) so that after linearizing the quadratic eigenvalue problem in the standard

fashion [5], we obtain an unsymmetric eigenvalue problem,

(4.3) Gxk = ukxk ,

where

(4.4) G =

(

0 I

H− σI W

)

is a real matrix and xk =
(

ψk

ukψk

)

. To obtain accurate resonance lifetimes one usually pre-

multiplies the CAP by a parameter δcap and computes eigenvalues for several values of δcap
to find the optimal absorbing potential. We choose σ large enough to ensure that for many

states the Ek computed from the eigenvalues of matrix G are close to the actual resonance

energies. For more detail the reader is referred to [25, 26, 37].

ETNA
Kent State University

etna@mcs.kent.edu

110 J. C. TREMBLAY AND T. CARRINGTON JR.

TABLE 4.4

Error in extremal eigenvalues of the AF23560 matrix.

Eigenvalue ULA∗ RULE∗∗ ARPACK† RULE residual |x∗
(L)x(R)|

−37.18288 + 200.1360i 1.1E-08 7.1E-13 2.3E-07 3.3E-08 0.21239

−37.18288 − 200.1360i 1.1E-08 4.3E-13 2.3E-07 3.5E-08 0.21239

−37.14444 + 200.2190i 3.8E-09 7.4E-13 4.8E-07 1.1E-07 0.21716

−37.14444 − 200.2190i 3.8E-09 5.8E-13 4.8E-07 9.1E-08 0.21716

−42.81924 + 200.1356i 7.5E-08 1.1E-12 1.9E-07 1.2E-07 0.21236

−42.81924 − 200.1356i 7.5E-08 7.0E-13 1.9E-07 7.0E-08 0.21236

−42.85767 + 200.2186i 9.0E-08 9.5E-13 3.5E-07 8.3E-08 0.21713

−42.85767 − 200.2186i 9.0E-08 5.5E-13 3.5E-07 8.9E-08 0.21713

−40.00075 + 225.7328i 1.2E-08 6.5E-13 8.6E-07 4.7E-08 0.26668

−40.00075 − 225.7328i 1.2E-08 3.7E-13 8.6E-07 2.2E-08 0.26668

−40.00074 + 225.7714i 3.4E-09 7.4E-13 8.4E-07 2.9E-08 0.26530

−40.00074 − 225.7714i 3.3E-09 1.1E-12 8.4E-07 2.8E-08 0.26530

−40.00010 + 229.5187i 1.1E-08 3.1E-13 6.2E-07 3.9E-08 0.22165

−40.00010 − 229.5187i 1.1E-08 1.1E-13 6.2E-07 3.3E-08 0.22165

−40.00095 + 229.5291i 1.2E-08 5.7E-13 8.0E-07 7.7E-08 0.22236

−40.00095 − 229.5291i 1.2E-08 1.5E-13 8.0E-07 2.9E-08 0.22236

−40.00045 + 259.5435i 1.2E-10 1.0E-12 4.8E-07 2.2E-07 0.41406

−40.00045 − 259.5435i 1.4E-10 7.6E-13 4.8E-07 8.7E-08 0.41406

−40.00041 + 259.5534i 9.0E-11 6.9E-13 1.6E-06 1.9E-07 0.41406

−40.00041 − 259.5534i 1.6E-10 4.1E-13 1.6E-06 6.2E-08 0.41406

∗ 125 Lanczos iterations; 250 matrix-vector products
∗∗ 125 Lanczos iterations; 270 matrix-vector products

† ARPACK parameters: k = 20, p=50, 6 restarts, 172 matrix-vector products

The physically interesting eigenvalues, i.e. the bound states and the resonances, are lo-

cated on and close to the imaginary axis, respectively. Because they are not extremal eigenval-

ues and because their condition numbers are large, it is difficult to compute them accurately.

The DVR basis necessary to converge all low-lying resonance states of the HCO molecule

gives rise to a real unsymmetric matrix G of size 184000, which is far too big to be diago-

nalized with direct methods on the computers we use. Table 4.5 shows some eigenvalues for

HCO in the region Im[λ] ≥ 55 and |Re[λ]| ≤ 0.1, associated with narrow resonances and

bound states. Because the RULE is a two-sided method we obtain simultaneously right and

left eigenvectors. This makes it straightforward to compute condition numbers (last column).

To test the quality of the RULE results, we compute right eigenvector residuals. The ac-

curacy of the eigenvalues computed with the RULE is good. With 3000 Lanczos iterations it

is possible to compute not only the eigenvalues in Table 4.5 but also many others. The eigen-

values reported in Table 4.5 can be computed with fewer than 3000 iterations. Increasing the

number of iterations does not adversely affect the quality of the eigenvalues. In constrast, the

accuracy of eigenvalues computed with the ULA deteriorates as the number of iterations is

increased (cf. Figures 2.2, and 4.3). Figure 4.6 shows the convergence of the residual, com-

puted with the RULE, for the eigenvalue λ̃ = −0.000000000001+70.00861i. The condition

number of this eigenvalue is ∼ 102. Despite the large condition number, the residual is less

than ∼ 10−9 with 2200 Lanczos iterations. If the number of Lanczos iterations is increased

the residual oscillates about an average value of ∼ 10−8. Similar oscillations are observed

for most of the residuals. The oscillations appear to be due to fluctuations in the quality of the

basis vectors rj , lj used to form the matrix Gk . The quality of the rj , lj depends on the size

of the Krylov subspaces used to compute them. The fluctuations do not significantly affect

ETNA
Kent State University

etna@mcs.kent.edu

A REFINED UNSYMMETRIC LANCZOS EIGENSOLVER 111

TABLE 4.5

Selected narrow resonance states of the HCO molecule. The residual error is defined as the norm of the residual

vectors.

Refined eigenvalue RULE residual |x∗
(L)x(R)|

0.000000000001608 + 99.63317i 4.3E-09 2.007E-02

0.000000000423172 + 94.06122i 4.3E-09 2.126E-02

−0.000000000030880 + 89.78747i 2.0E-07 2.227E-02

0.000000000017839 + 88.24727i 7.6E-08 2.266E-02

0.000000000000180 + 86.54286i 1.3E-08 2.311E-02

0.000000000000180 + 86.54286i 1.9E-09 2.392E-02

0.000000000013164 + 82.15547i 1.9E-07 2.434E-02

−0.000000000000079 + 80.30376i 1.6E-08 2.490E-02

−0.000000000003208 + 78.87198i 2.0E-08 2.535E-02

0.000000000002248 + 77.02845i 8.2E-09 2.596E-02

−0.000000000000226 + 75.73480i 2.5E-09 2.640E-02

−0.000000000000173 + 75.02610i 9.3E-09 2.665E-02

−0.000000000046711 + 73.83727i 3.4E-08 2.708E-02

−0.000000000044467 + 73.27523i 1.8E-08 2.729E-02

0.000000000000506 + 71.77733i 3.2E-09 2.786E-02

−0.000000000001369 + 70.00861i 2.3E-09 2.856E-02

−0.001503206670272 + 69.62269i 1.2E-08 2.872E-02

−0.001616758817681 + 69.28458i 1.1E-07 2.886E-02

−0.001799287965362 + 68.97843i 7.1E-07 2.899E-02

0.000000192654410 + 68.91187i 1.1E-06 2.902E-02

−0.001958836517186 + 68.69687i 4.1E-06 2.910E-02

Number of unsymmetric Lanczos iterations: 3000

the accuracy of the eigenvalues since to eleven significant digits they do not depend on the

number of Lanczos iterations.

5. Conclusion. In a previous paper [37] we used the idea of projecting onto approxi-

mate eigenvectors, computed from the ULA, to determine lifetimes of metastable states by

calculating many eigentriplets. In this paper we have generalized the approach and made

it more robust. In [37] we did not project a matrix onto its own approximate eigenspaces,

instead we projected one matrix onto approximate eigenspaces of another, related, matrix.

Other important differences between the approach of the this paper and the method used in

[37] are: (1) In [37] approximate eigenvectors were obtained by searching for the best value

of m for each eigenvalue; we have found that this is not necessary. (2) In [37] we solved a

special (factorizable) generalized eigenvalue problem and in this paper we solve the unsym-

metric eigenproblem. (3) We have modified the way clusters are defined and approximate

eigenvectors are retained to ensure that we do not miss eigenvalues.

In this paper we show that a simple refinement makes it possible to extract accurate

eigenvalues from the Krylov subspaces obtained from the ULA. We call the procedure the

RULE. Using several test matrices we have shown that the RULE yields accurate extremal

and interior eigenvalues. For all the eigenvalues in the tables we have computed eigenvectors

and residuals. To use the RULE there is no need to store a large number of vectors in memory

and no need to re-biorthogonalize Lanczos vectors. This makes it possible to use the RULE

with very large matrices to compute large numbers of eigenvalues. One of the key advantages

of the RULE is its ability to make use of large Krylov subspaces. The CPU cost of the RULE

ETNA
Kent State University

etna@mcs.kent.edu

112 J. C. TREMBLAY AND T. CARRINGTON JR.

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 500 1000 1500 2000 2500 3000

R
e

s
id

u
a

l

Number of unsymmetric Lanczos iterations

FIG. 4.6. Residual of an eigenvalue associated with a resonance of HCO.

is close to or less than that of ARPACK. To use the RULE one must store vectors on disk but

reading them from disk does not take significant computer time because they are only used

after the tridiagonal matrix has been generated. It is important to stress that the refinement we

propose is very inexpensive. We typically compute eigenvalues in groups of about 20 or less.

For each group of 20 the cost of the refinement is only 20 additional matrix-vector products.

Acknowledgments. We thank Rich Lehoucq, Chris Paige, Andreas Stathopoulos, Michiel

Hochstenbach, Yvan Notay, and a referee who made suggestions for improving the manuscript.

REFERENCES

[1] P. ARBENZ, U. L. HETMANIUK, R. B. LEHOUCQ, AND R. S. TUMINARO, A comparison of eigensolvers

for large-scale 3D modal analysis using AMG-preconditioned iterative methods, Internat. J. Numer.

Methods Engrg., 64 (2005), pp. 204-236.

[2] J. BAGLAMA, D. CALVETTI, AND L. REICHEL, Iterative methods for the computation of a few eigenvalues

of a large symmetric matrix, BIT, 36 (1996), pp. 400-421.

[3] Z. BAI, Error analysis of the Lanczos algorithm for the nonsymmetric eigenvalue problem, Math. Comp., 62

(1994), pp. 209-226.

[4] Z. BAI, D. DAY, AND Q. YE ABLE: An adaptive block-Lanczos method for non-Hermitian eigenvalue prob-

lems, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 1060-1082.

[5] Z. BAI, J. DEMMEL, J. DONGARRA, A. RUHE, AND H. A. VAN DER VORST, eds., Templates for the

Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia, 2000.

[6] J. G. L. BOOTEN AND H. A. VAN DER VORST, Cracking large-scale eigenvalue computations, part I:

algorithms, Comput. Phys., 10 (1996), pp. 239-242.

[7] M. J. BRAMLEY AND T. CARRINGTON JR. A general discrete variable method to calculate vibrational

energy levels of three- and four-atom molecules, J. Chem. Phys., 99, (1993), pp. 8519-8541.

[8] T. CARRINGTON JR., Methods for calculating vibrational energy levels, Can. J. Chem., 82 (2003), pp. 900-

914.

[9] J. K. CULLUM AND R. A. WILLOUGHBY, Computing eigenvalues of very large symmetric matrices-an im-

plementation of a Lanczos algorithm with no reorthogonalization, J. Comput. Phys., 44 (1981), pp. 329-

358.

[10] , Lanczos Algorithms for Large Symmetric Eigenvalue Computations. Volume 1, Theory, Birkhäuser,

Boston, 1985.

[11] , A practical procedure for computing eigenvalues of large sparse nonsymmetric matrices, in Large

Scale Eigenvalue Problems, J. K. Cullum and R. A. Willoughby, eds., North-Holland, Amsterdam, 1986.

[12] E. R. DAVIDSON, The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors

of large real symmetric matrices, J. Comput. Phys., 17 (1975), pp. 87-94.

ETNA
Kent State University

etna@mcs.kent.edu

A REFINED UNSYMMETRIC LANCZOS EIGENSOLVER 113

[13] D. DAY, An efficient implementation of the nonsymmetric Lanczos algorithm, SIAM J. Matrix Anal. Appl.,

18 (1997), pp. 566-589.

[14] U. ELSNER, V. MEHRMANN, F. MILDE, R. A. RÖMER, AND M. SCHREIBER, The Anderson model of

localization: a challenge for modern eigenvalue methods, SIAM J. Sci. Comput., 20 (1999), pp. 2089-

2102.

[15] D. R. FOKKEMA, G. L .G. SLEIJPEN, AND H. A. VAN DER VORST, Jacobi-Davidson style QR and QZ

algorithms for the partial reduction of matrix pencils, SIAM J. Sci. Comput., 20 (1998), pp. 94-125.

[16] R. W. FREUND, M. GUTKNECHT, AND N. M. NACHTIGAL, An implementation of the look-ahead Lanczos

algorithm for non-Hermitian matrices, SIAM J. Sci. Comput., 14 (1993), pp. 137-158.

[17] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, 2nd ed., Johns Hopkins University Press, Balti-

more, 1989.

[18] M. E. HOCHSTENBACH AND G. L. G. SLEIJPEN, Two-sided and alternating Jacobi–Davidson, Linear Al-

gebra Appl., 358 (2003), pp. 145–172.

[19] S. HUANG AND T. CARRINGTON JR., Calculating interior eigenvalues and eigenvectors with an implicitly

restarted and a filter diagonalization method, Appl. Numer. Math., 37 (2001), pp. 307-317.

[20] Z. JIA, Refined iterative algorithms based on Arnoldi’s process for large unsymmetric eigenproblems, Linear

Algebra Appl., 259 (1997), pp. 1-23.

[21] R. B. LEHOUCQ, S. K. GRAY, D. H. ZHANG, AND J. C. LIGHT, Vibrational eigenstates of four-atom

molecules: a parallel strategy employing the implicitly restarted Lanczos method, Comput. Physics

Comm., 109 (1998), pp. 15-26.

[22] R. B. LEHOUCQ AND J. A. SCOTT, An evaluation of software for computing eigenvalues of sparse nonsym-

metric matrices, Preprint MCS-P547-1195, Argonne National Laboratory.

[23] R. B. LEHOUCQ, D. C. SORENSEN, AND C. YANG, ARPACK Users’ Guide: Solution of Large-Scale Eigen-

value Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia, 1998.

[24] J. C. LIGHT AND T. CARRINGTON JR., Discrete variable representations and their utilization Adv. Chem.

Phys., 114 (2000), pp. 263-310.

[25] V. A. MANDELSHTAM AND A. NEUMAIER, Further generalization and numerical implementation of pseu-

dotime Schrödinger equations for quantum scattering calculations, J. Theor. Comput. Chem., 1 (2002),

pp. 1-12.

[26] A. NEUMAIER AND V. A. MANDELSHTAM, Pseudotime Schrödinger equation with absorbing potential for

quantum scattering calculations, Phys. Rev. Lett., 86, (2001), pp. 5031-5034.

[27] C. C. PAIGE, The Computation of Eigenvalues and Eigenvectors of Very Large Sparse Matrices., PhD thesis,

University of London, 1971.

[28] , Computational variants of the Lanczos method for the eigenproblem, J. Inst. Math. Appl., 10 (1972),

pp. 373–381.

[29] , Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric matrix, J. Inst. Math. Appl.,

18 (1996), pp. 341-349.

[30] B. N. PARLETT, D. R. TAYLOR AND Z. A. LIU, A look-ahead Lanczos algorithm for unsymmetric matrices,

Math. Comp., 44 (1985), pp. 105-124

[31] P.-N. ROY AND T. CARRINGTON JR., An evaluation of methods designed to calculate energy levels in

a selected range and application to a (one-dimensional) Morse oscillator and (three-dimensional)

HCN/HNC, J. Chem. Phys., 103 (1995), pp. 5600-5612.

[32] F. SARTORETTO, G. GAMBPMATO, AND G. PINI, Accelerated simultaneous iterations for large finite ele-

ment eigenvalues, J. Comput. Phys., 81 (1989), pp. 53-69.

[33] D. C. SORENSEN, Implicit application of polynomial filters in a k−step Arnoldi method, SIAM J. Matrix

Anal. Appl., 13 (1992), pp. 357-385.

[34] G. W. STEWART, Matrix Algorithms, Volume II: Eigensystems, SIAM, Philadelphia, 2001.

[35] J. R. TAYLOR, Scattering Theory, Wiley, New York, 1972

[36] L. N. TREFETHEN AND D. BAU, III, Numerical Linear Algebra, SIAM, Philadelphia, 1997.

[37] J. C. TREMBLAY AND T. CARRINGTON JR., Computing resonance energies, widths, and wave functions

using a Lanczos method in real arithmetic, J. Chem. Phys., 122 (2005), pp. 244107:1-11.

[38] D. G. TRUHLAR ed., Resonances in Electron-Molecule Scattering, Van der Waals Complexes, and Reactive

Chemical Dynamics, American Chemical Society, Symposium Series No. 263, Washington, 1984.

[39] H. I. VAN DER VEEN AND K. VUIK, Bi-Lanczos with partial orthogonalization, Comput. & Structures, 56

(1995), pp.605-613.

[40] J. S. WARSA, T. A. WAREING, J. E. MOREL, J. M. MCGHEE, AND R. B. LEHOUCQ, Krylov subspace

iterations for deterministic k−eigenvalue calculations, Nucl. Sci. Eng., 147 (2004), pp. 26-42.

[41] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Oxford University Press, New York, 1988.

[42] http://www.caam.rice.edu/software/ARPACK/

[43] http://math.nist.gov/MatrixMarket/

[44] http://www.ma.man.ac.uk/∼higham/mctoolbox/

