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Abstract. The problem of computing the quantum dynamical entropy introduced by Alicki and Fannes requires
the trace of the operator functionF (Ω) = −Ω log Ω, whereΩ is a non-negative, Hermitean operator. Physical
significance demands that this operator be a matrix of large order. We study its properties and we derive efficient
algorithms to solve this problem, also implementable on parallel machines with distributed memory. We rely on a
Lanczos technique for large matrix computations developedby Gene Golub.
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1. Introduction. Fundamental in the theory of classical non-linear dynamicsis the so-
called Kolmogorov-Sinai (K-S.) entropy, a quantity that, when positive, implies chaos [4].
One can safely say that it is the single most important piece of information that one can
get on a dynamical system, and surely it is the single most employed word in all dynamics.
Various techniques for its computation exists, and its linkto Lyapunov exponents via Pesin’s
formula [13] makes it an effective tool. In quantum mechanics, on the other hand, a plurality
of quantities can rightly claim to correspond to K-S. entropy, for they tend to this latter in
the classical limit. None of these, though, is simply computable, nor a quantum analogue
of Pesin’s relation exists at the present moment. These difficulties stem ultimately from the
basic fact that trajectories are not defined for quantum systems. In this paper, I study a version
of “quantum entropy” due to Alicki and Fannes [1] that is based on the notion ofcoherent
histories. It requires the computation of a complex Hermitean, large,non–negative full matrix
Ω and of the trace of the matrix function−Ω log(Ω). I develop computational schemes that
render viable the numerical analysis of this quantity for systems of physical interest. In this
endeavor, I rely on an algorithm developed by Bai, Fahey and Golub [5] to deal with large
scale matrix computation problems.

The plan of this paper is the following: in the next section I introduce the matrixΩ under
investigation, with a few words on its quantum mechanical origin that also help to understand
the breadth and scope of its algorithmic requirements. Readers with deeper interests in dy-
namics will find reference to the original literature, whilenumerical analysts desiring to grasp
the essence of the computational problem may just focus on the linear algebra nature of the
equations.

In section3 I studyΩ and its symmetries. Then, in section4, I derive a recursion relation
for computingΩ at increasing values of an integer “time”M . This has been originally devel-
oped in [3]. A deeper analysis of its properties, performed in section5, permits us to set up a
parallel algorithm for the computation ofΩ at different values ofM . In section6, this idea is
implemented in two algorithms for the computation of the matrix–vector productΩW . The
first algorithm runs conveniently on parallel machines withdistributed memory, the second
minimizes the memory storage requirements to achieve the largest possible matrix size given
the finite memory space available on any single computer. These algorithms are instrumental
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in setting up a Lanczos-Montecarlo technique for the computation of the trace of(−Ω log Ω)
due to Golub, as discussed in section7. Numerical results are presented in section8 and an
improvement of Golub’s confidence interval estimation is presented in section9. Finally, a
Lanczos-Montecarlo technique for the direct calculation of the Jacobi matrix associated with
the spectral measure ofΩ is introduced and tested in section10. The need for a numerical
treatment of A-F entropy arises particularly in the field of quantum chaos and decoherence:
the Conclusions briefly mention this problem and summarize the work.

2. Quantum dynamical entropy. Quantum evolution takes place in the Hilbert space
H associated with a physical system [14]. While in most circumstances this space is infinite
dimensional, we shall assume a finite dimensional reduction, of dimensionN , without dealing
here with the reduction problem. Therefore, we shall let{en}n=0,...,N−1 be the canonical
basis ofH = C

N and(·, ·)H be the usual scalar product in this space. Quantum evolutionin
H is effected stroboscopically by a unitary operatorU : the “wave-vector”ψ ∈ H specifying
the state of the system at timet is mapped intoUψ, the state at timet+ 1.

Although no specification of the nature ofU other than it can be numerically computed is
necessary here and although we shall present quite general algorithms, for sake of illustration
we shall use in this paper two paradigmatic examples. The first is the operatorU with matrix
elements

Ukl =
1√
N
e−(πil2/N)e2πikl/N ,(2.1)

that corresponds to free classical motion on the one-dimensional torusS1 = R/Z, a stable,
completely integrable system.

The second example is the so-calledquantum catunitary evolution operatorUcat = KU ,
whereU has been defined in eq. (2.1) andK is the operator with matrix elements

Kkl =
1√
N
eiπl2/Nδk,l,(2.2)

whereδk,l is the Kronecker delta. The operatorUcat is the quantum mechanical version of
the renownArnol’d cat mapof classical mechanics [4], a chaotic systems with positive K-S.
entropy. For a derivation of this operator, its physical relevance and mostly the relations with
FFT; see [7].

Clearly, given an initial stateψ, quantum evolution yields the componentsψn(j) :=
(en, U

jψ)H at any future (or past) timej ∈ Z. According to standard usage, the probability
that the quantum system is found in staten at time j is given by the square modulus of
ψn(j). As in classical dynamics, “coarse graining” measurement can be effected, when the
state vectorψ is not analyzed in all its components, but only in groups of them. Formally, if
{Pk}k=0,...,L is a family of projection operators, so thatI =

∑

k Pk, we can also “measure”
the projection ofψ on the range ofPk, that is, compute the scalar product(ψ, Pkψ)H.

To make things easier, without renouncing anything essential, in this paper we shall
consider two orthogonal projectionsP0 andP1, on half of the Hilbert space each, like in a
head/tail experiment: takeN = 2p and let

Pk =

(1+k)p−1
∑

n=kp

ene
T
n , k = 0, 1.(2.3)

Given these premises, a “quantum history” of a vectorψ is the result of effecting the unitary
quantum evolutionU preceded at each time by projection on either the head or the tail half
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of the Hilbert space: readers familiar with the double-slitexperiment might think of the
motion of a particle hitting at integer times a sequence of screens with two slits. According
to common usage in symbolic dynamics, Greek letters denote sequence of symbols, like
σ = (σ0, σ1, . . . , σM−1). These latter are vectors of lengthM , and are also called “words”
in symbolic dynamics. Greek letter with subscripts, likeσi, are therefore the components
of these vectors, i.e. symbols in the alphabet (in our choice, either zero or one). With this
notation, the quantum history of the vectorψ is

ψσ = (UPσ
M−1

) · · · (UPσ
0
)ψ.(2.4)

For convenience of notation we shall put

Uσj := UPσj
, j = 0, . . . ,M − 1.(2.5)

The “amplitude”(ψσ, ψσ) should be compared with the measure of the classical phase space
with symbolic dynamics given by the “word”σ. In both classical and quantum dynamics
these probabilities add up to one:

∑

σ(ψσ, ψσ) = 1. In quantum mechanics, though, interfer-
ence reigns and the products(ψσ, ψσ′) are non-null also whenσ 6= σ′.

Complexity of the motion is quantified in classical dynamicsby certain summations over
non-null amplitudes of sequencesσ, of course averaged with respect to the initial conditions.
In the Alicki–Fannes (A-F) quantum formulation [3], entropy is derived by the spectrum of
the decoherence matrixD with entriesDσ,σ′ , defined by

Dσ,σ′ :=
1

N
Tr(UσM−1

† · · ·Uσ
0
†Uσ′

0 · · ·Uσ′
M−1),(2.6)

where the dagger indicates the adjoint and clearlyU† = U−1, P †
k = Pk. Observe thatD is a

2M × 2M square matrix, Hermitian, of unit-trace and non-negative,so that the quantum A-F
entropy associated with the unitary evolutionU and the family of projections{Pk} can be
defined as

S(U, {Pk}) = Tr(−D logD).(2.7)

Entropy is therefore the trace of the function of a matrix whose entries are themselves ob-
tained by traces of product of operators overH. In addition, notice that in dynamics one is
interested in the large–time behavior (here, largeM ): it is then clear that computation ofS via
eqs. (2.6),(2.7) is a formidable task, of exponentially increasing computational complexity.
Yet, the structure revealed by eq. (2.6) permits a reduction of size independent ofM .

In fact, observe that the right hand side of (2.6) can be seen as a scalar product, in
the space of square matrices of sizeN , between the vectorsV σ := Uσ

0 · · ·UσM−1 and
V σ′

:= Uσ′
0 · · ·Uσ′

M−1 . Then, the non-null eigenvalues in the spectrum ofD coincide, with
their multiplicities, with those of the operatorΩ acting inK as:

Ω :=
1

N

∑

σ

V σ(V σ, ·)K,(2.8)

where the scalar product is taken in the new space of matrices, K. Full detail will be provided
in the next section. Observe here thatK has dimensionalityN2: therefore,Ω has maximal
rank smaller than that ofD wheneverM ≥ 2 log2N , a condition that is easily realized. On
the other hand, notice that a major physical problem requires the analysis of the “classical
limit” of quantum mechanics, that in turn requiresN also to be large [7]. We are really facing
a challenging problem.
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In this paper we study computational techniques to evaluatethe A-F entropy

S(U, {Pk}) = Tr(−Ω log Ω).(2.9)

In the next section we define precisely the metric inK and we studyΩ and its symmetries.

3. The matrix Ω. In this section, we explore the symmetries of the matrixΩ. Recall
first thatΩ acts inK, the space of complex square matrices of sizeN . K is endowed with the
scalar product

(V,W )K := Tr(V †W ).(3.1)

Ω acts inK as

ΩW =
1

N

∑

σ

V σ(V σ,W )K, W ∈ K,(3.2)

where the summation ranges over all binary sequences of length M , σj ∈ {0, 1}, for j =
0, . . . ,M − 1. In this equation we have set

V σ := UσM−1 · · ·Uσ
0 := (UPσ

M−1
) . . . (UPσ

0
).(3.3)

U is any unitary operator overCN (the dynamics) and the projection operatorsPi, i = 0, 1,
have been defined in eq. (2.3).

An orthonormal basis forK can be constructed as

Eij := eie
T
j , i, j = 1, . . . , N.(3.4)

Let us compute the matrix elements ofΩ in this basis:

Ωj1,j2,k1,k2
:= (Ej1,j2 ,ΩEk1,k2

)K =
1

N

∑

σ

(Ej1,j2 , V
σ)K(V σ, Ek1,k2

)K(3.5)

=
1

N

∑

σ

Tr(E†
j1,j2

V σ) Tr(V σ†Ek1,k2
) .

Traces are then explicitly written as:

Tr(E†
j1,j2

V σ) =
∑

i

(ei, ej2)H(ej1 , V
σei)H = (ej1 , V

σej2)H,(3.6)

Tr(V σ†

Ek1,k2
) = (ek2

, V σ†ek1
)H = (ek1

, V σek2
)∗H,

where scalar products inH appear and where the asterisk denotes complex conjugation.
Therefore, the matrix elements ofV σ are featured in the final formula forΩ, that reads:

Ωj1,j2,k1,k2
=

1

N

∑

σ

(ej1 , V
σej2)H(ek1

, V σek2
)∗H :=

1

N

∑

σ

V σ
j1j2(V

σ
k1k2

)∗.(3.7)

Take now into account the product form of the operatorV σ, eq. (3.3) and notice that
V σej2

is null unlessej2
belongs to the range ofPσ0

, that is,j2 ∈ Iσ0
, the set of indices

corresponding to theσ0-th half of Hilbert space:

Iσ0
= [σ0p, (σ0 + 1)p− 1].(3.8)
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For the same reason,k2 must belong to the same set, and therefore the matrixΩ is the direct
sum of two square matrices of maximal rankp = N/2, half of the original. We can therefore
consider only one of these at a time, when computing the A-F entropy, eq. (2.9), that is
additive over the two subspaces. To fix the notation, in the following we shall let implicitly
σ0 = 0, andj2, k2 ∈ I0, the other case being trivially obtained. Also, with abuse of notation,
but without danger of confusion, from now onK will denote the space spanned byEi,j ,
i = 0, . . . , N − 1 andj = 0, . . . , p− 1 (recall thatN = 2p).

Finally, inspection of eq. (3.7) also reveals the symmetry

Ωj1,j2,k1,k2
= Ω∗

k1,k2,j1,j2 ,(3.9)

so thatΩ is a Hermitian operator inK.

4. Time dependence ofΩ. We have noticed at the end of section2 that the dimension
of K does not depend onM , the “time”, that is, the length of the symbolic wordσ. Yet, Ω
obviously does, so that from now on we will indicate this dependence explicitly as a super-
script: ΩM will be theΩ matrix at “time”M . Now, summation over all words of lengthM
in eq. (3.7) might lead us to believe that we are still facing an exponentially growing compu-
tational cost. For these reasons, it is important to examinein detail the “time” dependence of
the problem.

Not to overburden the notation, since the scalar products ofthis section will all be in the
spaceH, we are allowed to drop the relative subscript. Let us start from the computation of
V σ

j1j2
. The vector/wordσ can be written as(σ′, σM−1), whereσ′ is now a vector of length

M − 1. Accordingly,V σ = UPσM−1
V σ′

. Inserting an identity into the definition ofV σ
j1j2

we get

(ej1 , V
σej2) =

∑

j3

(ej1 , UPσ
M−1

ej3)(ej3 , V
σ′

ej2) =
∑

j3

U
σM−1

j1j3
V σ′

j3j2 .(4.1)

A quite similar equation holds for(ek1
, V σek2

). Using these facts in eq. (3.7) we get

ΩM
j1,j2,k1,k2

=
1

N

∑

σ′,σ
M−1

∑

j3,k3

U
σM−1

j1j3
(U

σM−1

k1k3
)∗V σ′

j3j2(V
σ′

k3k2
)∗

=
∑

σ
M−1

∑

j3,k3

U
σM−1

j1j3
(U

σM−1

k1k3
)∗ΩM−1

j3,j2,k3,k2
.(4.2)

Summations in this equation range from1 toN for the indicesj3 andk3, and on0 and1 for
the variablesσi. In intuitive terms, one can explain this formula in the words of a knowledge-
able reviewer: the left-hand side is the overlap between two“world-lines” (or trajectories) of
time-extentM , whose end-points are(j1, j2) and(k1, k2). It can be expressed as a sum over
all possible ancestors at time(M − 1), each with their respective overlap and time-evolution.

Equation (4.2) is the basis of a recursive technique initialized by letting M = 1 in
eq. (3.7),

Ω1
j1,j2,k1,k2

=
1

N

∑

σ
0
=0,1

V
σ
0

j1j2
(V

σ
0

k1k2
)∗.(4.3)

When implemented directly [3], this technique requires a storage of the order ofN4/4 com-
plex quantities, while the computation of the A-F entropy

S(U, {Pk},M) = Tr(−ΩM log ΩM )(4.4)
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calls for the diagonalization of a square matrix of sizeN2/2. Needless to say, it becomes
soon impossible to meet these requirements asN grows. It is the purpose of the present
paper to show how they can be significantly eased. In the next section we analyze the nature
of the recurrence, in order to tackle the memory requirementfirst. We then face the entropy
computation problem.

5. Partitioning the ΩM matrix. It is now fundamental to examine in closer detail the
nature of the recurrence in eq. (4.2). First of all, although somehow evocative, it doesnot
mean thatΩM is theM -th power ofΩ1, seen as an operator overK. Nonetheless, eq. (4.2)
implies a remarkable property. In fact, observe that the indicesj2 andk2 appear unchanged at
l.h.s. and r.h.s. Therefore, we defineΩM (j2, k2) as the square matrix of sizeN , with indices
j1, k1 and entriesΩM

j1,j2,k1,k2
. What we have just observed can be formalized by saying that:

LEMMA 5.1 (Sectorization).The sector matrixΩM (j2, k2) can be computed recursively
according to eqs. (4.2),(4.3).

This lemma is of paramount importance in the numerical implementation:
LEMMA 5.2 (Storage and Computational Complexity).

i) The sector matrixΩM (j2, k2) can be computed with6MN4 floating point opera-
tions (f.p.o’s). Its computation requires a storage of3N2 complex entries (c.e’s).

ii) The full matrixΩM can be computed with3M(N6/4 +N5/2) f.p.o’s and stored in
an array ofN4/8 +N5/4 c.e’s. It can be computed sector by sector with a storage
of 3N2 complex entries (c.e’s).

Proof. Matrix iteration (4.2) requires6N2 f.p.o’s for each entry ofΩM (j2, k2), so that
the full (j2, k2) sector can be computed with6N4 f.p.o’s. Although there arep2 = N2/4
different sectors inΩM , the symmetry property, eq. (3.9), implies that onlyp(p + 1)/2 =
N2/8+N/4 of them are fully independent and can be obtained choosingj2 ≥ k2. (Additional
redundancy in the diagonal sectors, that is, those withj2 = k2 exists but will not be exploited,
because it only provides sub-leading improvements in both computation time and storage size
parameters).

The two matricesV σ can be conjunctly stored in a squareN byN matrix with complex
entries. In fact, we have seen thatV σej2

is null unlessj2 ∈ Iσ0
. In addition, the matrix

iteration (4.2) requires only two memory arrays of sizeN2.
REMARK 5.3. Notice that the previous lemmas unveil the possibilityof parting the

computation ofΩM over parallel machines with distributed memory.

6. Computing the matrix-vector product ΩMW . Of particular relevance for the Lanc-
zos technique that we shall outline in section7 is the computation of the matrix-vector product
ΩMW , whereW is a vector inK. When not necessary, in this section we shall drop the index
M . The heart of our technique is an application of Lemma5.1.

Algorithm 1 : Computation of the(j2, k2) sector of the productW = ΩW .
• for j1 = 1, . . . , N

– compute the sector productW j1(j2, k2) =
∑

k1
ΩM

j1,k1
(j2, k2)Wk1,k2

– accumulate into the result vectorW : W j1,j2 →W j1,j2 +W j1(j2, k2)
• end

Algorithm 1 requires a storage ofN2 c.e’s forW andW , andN2 c.e’s for the sector of the
matrixΩM . Computational complexity is2N2 f.p.o’s.

Algorithm 2 : Computation of the matrix-vector productW = ΩW .
• for j2 = 1, . . . , N/2 andk2 = 1, . . . , N/2, j2 ≤ k2

– execute Algorithm 1 and the conjugate Algorithm 1’ stemmingfrom the sym-
metry property (3.9)

– accumulate the results into the vectorW j1,j2• end



ETNA
Kent State University 
etna@mcs.kent.edu

196 G. MANTICA

It is readily seen that if we want to use Algorithm 2 (a serial application of Algorithm 1)
for the computation of the full matrix-vector productΩW , the computational complexity is of
N4/2 +N3 f.p.o’s. In addition, we need to store theN2/8 +N/4 independent sectors ofΩ,
action that requires a full storage ofN4/8 +N3/4 c.e’s: this is a serious memory limitation
that may limit significantly the Hilbert dimensionN that can be numerically simulated. We
have devised two procedures to overcome this limitation.

Algorithm 3 : Computation of the matrix-vector productW = ΩW on parallel comput-
ers with distributed memory andP processorsπ1, . . . , πP .

1. order the set of labels(j2, k2) with j2 ≥ k2, and distribute them among theP
processors as equally as possible

2. transmit the input vectorW to all processors
3. in each processorπl

• for each pair(j2, k2) assigned to processorπl

– execute Algorithm 1 and the conjugate Algorithm 1’ stemmingfrom the
symmetry property (3.9)

– accumulate the results into the vectorW
l

j1,j2
• end

4. accumulate the vectorsW
l

j1,j2 produced in all processorsπl, l = 1, . . . , P , into the
result vectorW j1,j2 .

Memory requirement of Algorithm 3 isN4/8P +N3/4P +bN2 c.e’s on each processor
and computational complexity isN4/2 + N3 f.p.o’s, that can be executed in a real time
proportional to(N4/2 + N3)/P seconds. We assume that the sectors ofΩM had been
previously computed and stored in each processor. Notice that processors communication—
usually, a time-demanding operation—is limited to steps 2 and 4 and consists of the total
transmission ofN2 c.e’s. This is also the sole significant transmission also when computing
the matrixΩM : Lemma5.1is actually the statement of a parallelization property.

On the other hand, with or without parallel computers, one can drastically diminish the
memory requirement, at the expense of increasing computation time:

Algorithm 4 : Computation of the matrix-vector productW = ΩMW with minimal
storage requirement.

• for each label(j2, k2) with j2 ≥ k2

– compute the sector matrixΩM (j2, k2)
– execute Algorithm 1 and the conjugate Algorithm 1’ stemmingfrom the sym-

metry property (3.9)
– accumulate the results into the vectorW j1,j2

• end
Algorithm 4 attains the minimal memory requirement of6N2 c.e’s. Computation time

is augmented by the need of computing the matrixΩM , that brings the total computational
complexity to grow like3

4MN6 + 3
2MN5. This may become significant in the Lanczos

algorithm that we shall describe in the next section.

7. Computation of the entropy: The algorithm of Golub et al. Computation of the
spectrum ofΩ by full-matrix techniques is not viable asN grows. Yet, we are interested not
so much in the spectrumper se, as in the entropy function (4.4). Therefore, in view of the
results of sections5 and6, the Lanczos’ technique developed by Golub et al. [5] becomes
an interesting possibility. In this section, we sketch the details that permit the application of
Golub’s algorithms 1 and 2 of reference [5] without major modifications. We shall refer to
them as G1 and G2.

In essence, G1 is based on the construction of the tridiagonal representation ofΩ in the
Krylov basis [9] associated with a randomly chosen initial vectorWi ∈ K. For complexΩ,
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differing from Golub’s case, we choose the entries ofW in the set of complex numbers
{±1,±i} with equal probability [6]. Wi is then conveniently normalized.Ω is Hermitian and
its tridiagonal representation is real.

This tridiagonal matrix is then easily diagonalized, and the entropy

Si := (Wi,−Ω log(Ω)Wi)

is estimated via Gaussian summation. In addition, since thespectrum ofΩ is contained in
the set[0, 1], Gauss-Radau formulae can also be employed. Sincef(x) = −x log(x) is
the integrand for the computation of the entropy, it is readily found that the derivatives off
satisfy the relationsf (2n)(x) < 0 andf (2n+1)(x) > 0 for all x > 0 andn ≥ 1, so that
Gaussian summation and Gauss-Radau with a prescribed eigenvalue atx = 1 both provide
upper bounds to the quantity(Wi, f(Ω)Wi)K, while Gauss-Radau with prescribed eigenvalue
at zero yields a lower bound. In the following, we shall indicate withSl

i the lower bound
obtained with the Gauss-Radau formula with prescribed eigenvalue at zero, and withSu

i the
upper bound obtained by the usual Gauss formula.

The Monte-Carlo algorithm G2 consists in taking a statistical average over a large num-
ber of realizations of the random vectorWi, i = 1, . . . , I, of the values provided by the
algorithm G1. The predicted value forS is then the mean of the average upper and lower
bounds, and a confidence interval is derived on the basis of Hoeffding’s inequality. We shall
come back to this statistical estimate later.

We ran algorithm G2 endowed with algorithm 3 of the previous section for matrix-vector
multiplication on a cluster of parallel computers with MPI communication protocol. The
dimension of the Hilbert space wasN = 27 (corresponding toΩM of size213), M ranged
from 1 to 30, the dimension of the Jacobi matrix was six (sevenfor Gauss-Radau) and the
number of trial vectors,I, was 1000. In this paper, we show data obtained with 14 processors,
also to underline the fact that our algorithm is not bound to work with a number of processors
equal to a power of two. Figure7.1 displays the timeTΩ (in real seconds) spent by each
processor in the matrix computation part, eq. (4.2), in each iteration fromM to M + 1 and
the timeTL required by the Lanczos algorithm, again at each iteration.

8. The algorithm of Golub et al.: Results. We can now start by showing results ob-
tained for the quantum cat evolutionUcat. Figure8.1displays a sample ofI = 1000 realiza-
tions of the algorithm G1 withM = 11 andN = 27 and six Gaussian points. Upper values
Su

i and lower valuesSl
i are almost coincident for the same sample item (the largest differ-

enceδ := max{Su
i − Sl

i , i = 1, . . . , I} is about3.7 10−3), while different samples feature
a much larger range, of amplitude 0.59917. In keeping with Golub’s notation this value is
Umax−Lmin, whereUmax := max{Su

i , i = 1, . . . , I} andLmin := min{Sl
i , i = 1, . . . , I}.

In Table8.1 we report these data forM ranging from 1 to 14. According to algorithm
G2, it is then possible to extract from this table statistical estimates ofS(U, {Pk},M). Before
doing that, though, we observe thatδ is always several orders of magnitude smaller that
Umax − Lmin. Moreover, we want to further analyse the sample dataSu

i , or Sl
i for that

matter.

9. Experimental statistical analysis and improved probabilistic bounds. We have
observed at the end of the previous section that the sample variationsUmax − Lmin are or-
ders of magnitude larger than the upper-lower bound differences and indeed we have reasons
to believe this to be the general case. Then, it is not worth spending computer time to com-
pute the Gauss-Radau formula: we shall now consider uniquely the Gaussian summation.
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FIG. 7.1. Computation time versus processor indexl (l = 0, . . . , 13) of algorithm G2 and G3. Units are real
seconds.TΩ (red +’s) is the time required for updating theΩM matrix withN = 27, whileTL (green x’s, value
divided by ten for graphical convenience) is the time required by the Lanczos algorithm G1 repeated forI = 1000
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TABLE 8.1
Statistical data extracted fromI = 1000 samples of the quantum cat evolution withN = 27 and six Gaussian

points. Symbols are defined in the text.

M δ Umax Lmin Umax − Lmin

1 0.365320e-03 0.128128e-01 0.364302e+01 0.363021e+01
2 0.925000e-04 0.674307e-01 0.347163e+01 0.340420e+01
3 0.522670e-03 0.297215e+00 0.315047e+01 0.285326e+01
4 0.107000e-04 0.806697e+00 0.360842e+01 0.280172e+01
5 0.960000e-05 0.111395e+01 0.377458e+01 0.266063e+01
6 0.720000e-05 0.168792e+01 0.335986e+01 0.167194e+01
7 0.620000e-05 0.202631e+01 0.364741e+01 0.162110e+01
8 0.690000e-05 0.243792e+01 0.373945e+01 0.130153e+01
9 0.730000e-05 0.305548e+01 0.397821e+01 0.922735e+00

10 0.997000e-04 0.347071e+01 0.415136e+01 0.680642e+00
11 0.137570e-02 0.379457e+01 0.439375e+01 0.599170e+00
12 0.593880e-02 0.416238e+01 0.458430e+01 0.421922e+00
13 0.375400e-02 0.446022e+01 0.474224e+01 0.282027e+00
14 0.323500e-03 0.457285e+01 0.483109e+01 0.258243e+00

Accordingly, our final formula for the entropy will be

S(U, {Pk},M) ∼ S̄ :=
1

I

I
∑

i=1

Su
i ,(9.1)
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FIG. 8.1. Sample entropies lower boundsSl
i
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i

(red +’s) for M = 11 and six
Gaussian points versus sample numberi. Data sets are almost coincident, on the scale of the figure. The horizontal
dotted line is the sample average.

whereSu
i indicates the Gaussian summation result forSi := (Wi,−ΩM log(ΩM )Wi). We

now turn to the problem of deriving a confidence interval forS(U, {Pk},M).
Clearly,Su

i is a realization of a random variable of meanµ and finite varianceη2: there-
fore, the sample averagēS is itself a random variable, with the same mean, and standard
deviationη/

√
I. In addition, because of the central limit theorem, the distribution of S̄ tends

to the normal, whenI tends to infinity, and we might think of using this fact to improve the
Hoeffding’s bounds.

In the case at hand, moreover, theindividual sample valuesSi appears to be approxi-
mately normally distributed, the more so the larger the value ofM : this is apparent in Fig-
ure9.1, where we compare the Gaussian distribution functionF (z) := 1

2 (erf(z)+1) with the
experimental distribution functionsF of the standardized random variablesz := (Si −µ)/η.
All quantities (includingµ andη) are estimated from theI = 1000 samples of the previous
section, and various values ofM are reported.

Therefore, we can safely assume that the sample meansS̄ are normally distributed to
high precision, and we can derive a confidence interval of probability p according to the
standard valuesz(1+p)/2 of common usage in statistics:

S̄ ± z(1+p)/2
η√
I

:= S̄ ± ZG
p

1√
I
.(9.2)

Confidence intervals derived via Hoeffding’s inequality have the same form (9.2), where
ZG

p = ηz(1+p)/2 is replaced byZH
p :

ZH
p := (Umax − Lmin)

√

1

2
log(

2

1 − p
);(9.3)

the usual Chebyshev inequality yields in turn eq. (9.2) with ZT
p given by

ZT
p :=

η√
1 − p

.(9.4)
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i

, standardized to zero mean and
unit variance, versusz andM (red dots). Green lines: distribution function of the normal random variableF (z)
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TABLE 9.1
Confidence valuesZp with p = 0.99 for the same case of Table8.1.

M ZH
p ZT

p ZG
p

1 0.590861e+01 0.458289e+01 0.106781e+01
2 0.554075e+01 0.535940e+01 0.124874e+01
3 0.464403e+01 0.470522e+01 0.109632e+01
4 0.456015e+01 0.451669e+01 0.105239e+01
5 0.433051e+01 0.366327e+01 0.853543e+00
6 0.272129e+01 0.296183e+01 0.690107e+00
7 0.263854e+01 0.250148e+01 0.582845e+00
8 0.211840e+01 0.195064e+01 0.454500e+00
9 0.150187e+01 0.153929e+01 0.358653e+00

10 0.110783e+01 0.117137e+01 0.272929e+00
11 0.975224e+00 0.893929e+00 0.208285e+00
12 0.686731e+00 0.660134e+00 0.153811e+00
13 0.459033e+00 0.457901e+00 0.106691e+00
14 0.420323e+00 0.336077e+00 0.783060e-01

In Table9.1 we report theZp values withp = 0.99 for the same case of Table8.1. We
observe that while Chebyshev’s and Hoeffding’s inequalities give comparable results (the
former being indeed better than the latter in most cases) thenormal estimate is superior (that
is, narrower) by a factor of about four at this value ofp. In terms of computer time, this means
a most significant reduction of a factor of 16 inI, the number of Lanczos’ evaluations needed
to attain the same accuracy.
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10. The Jacobi matrix of the spectral measure ofΩ. In this section we propose an
alternative to the algorithm G2 just presented and utilized. According to the latter, a Jacobi
matrix is computed for each random vectorWi, i = 1, . . . , I. We want now to compute a
single Jacobi matrix for the estimation of the entropy functionS(U, {Pk},M). In this section,
Ω will be a shorthand notation forΩM .

Technically, the Jacobi matrices computed in the algorithmG2 correspond to the spec-
tral measuresνi defined as follows: letΨj be the eigenvectors ofΩ andλj the associated
eigenvalues. For anyx ∈ R let δx be the atomic measure atx. Then,νi is the measure

νi :=
∑

j

δλj
|(Wi,Ψj)K|2.(10.1)

In physics, this measure is called the “local density of states”. Entropy, in turn, is the integral
of the functionf(x) = −x log(x) with respect toν, the spectral measure ofΩ, called the
“density of states” in the physics literature:

ν :=
∑

j

δλj
.(10.2)

It is therefore the Jacobi matrix ofν that we need to compute.
To do this, recall thatΩ is an operator fromK to itself. Introduce the linear spaceL of

such operators, endowed with a scalar product just as done inK: for anyΘ,Ξ ∈ L

(Θ,Ξ)L := Tr(Θ†Ξ),(10.3)

where obviously the trace is taken in the new space: for anyΘ ∈ L

Tr(Θ) :=
∑

k,l

(Ek,l,ΘEk,l)K,(10.4)

beingEk,l, k = 0, . . . , N − 1, l = 0, . . . , N/2 − 1 the basis vectors ofK, given by eq. (3.4)
and by the remark at the end of section3.

Define the sequence of polynomialspn(Ω) of degreen in L initialized byp−1(Ω) = 0,
p0(Ω) = I (0 andI being the null operator and the identity inL) that satisfy the three-term
relation

Ωpn(Ω) = bn+1pn+1(Ω) + anpn(Ω) + bnpn−1(Ω),(10.5)

with real coefficientsan, bn ≥ 0, n = 0, . . .. The definition is unique if we enforce that
these polynomials (each of which is an operator inL) be orthogonal with respect to the scalar
product (10.3) and normalized forn > 0:

(pn(Ω), pm(Ω))L = δn,m.(10.6)

Of course, these arenot the orthogonal polynomials of a measure overL: as a matter of fact,
the coefficientsan andbn do depend onΩ. Yet, they serve our scope:

LEMMA 10.1. The coefficientsan and bn, n = 0, . . . , are the entries of the Jacobi
matrix of the measureν associated with the Hermitian matrixΩ.

Proof. We start by observing that
∫

dν = N2/2 = (p0(Ω), p0(Ω))L = Tr(I) = ν0,
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and that

a0 := (p0(Ω),Ωp0(Ω))L = Tr(Ω) =
∑

j

λj = ν1.

ν0 andν1 are the first two moments ofν. Furthermore, it is easily seen that the coefficients
an andbn are constructed as

an = (pn(Ω),Ωpn(Ω))L = Tr(pn(Ω)†Ωpn(Ω)),(10.7)

and

b2n+1 = ((Ω − an)pn(Ω) − bnpn−1(Ω), (Ω − an)pn(Ω) − bnpn−1(Ω))L.(10.8)

and thatTr(g(Ω)) =
∑

j g(λj) =
∫

g(x)dν(x) for any continuous functiong. Therefore,
pn(x) computed via eq. (10.5) with x in place ofΩ and the coefficientsan andbn derived as
above, is then-th orthogonal polynomial ofν.

A Lanczos algorithm for the computation of this Jacobi matrix follows directly from
the previous lemma and can be easily set up, at least in principle. Yet, this algorithm faces
two main computational difficulties. Firstly, it requires computation of the traces (10.7) and
(10.8). Secondly, it requires the storage of three Lanczos vectorspn+1(Ω), pn(Ω), pn−1(Ω),
each of which of sizeN4/4.

The first difficulty can be overcome by the same statistical idea applied in G2: rather
than computing traces as summations over all theN2/2 vectorsEk,l, choose a fixed set of
random vectors{Wi, i = 1, . . . , I}, and estimate the trace in eq. (10.3) as

TrL(Θ) ≃ 1

I

∑

i

(Wi,ΘWi)K.(10.9)

The second difficulty can be avoided by noticing that in so doing computation of the
traces (10.7) and (10.8) only requires the vectorspn(Ω)Wi, that can be obtained via repeated
actions of the matrixΩ in the recursion relation (10.5). Therefore, the resulting algorithm
ends up to be a variation of G2:

Algorithm 5 : Lanczos-Monte Carlo computation of the Jacobi matrix ofν.
• setp0 = I, b0 = 0
• for j = 0, . . . , J

1. seta = 0
– for i = 1, . . . , I

∗ generate the random vectorWi and the three-term sequencepnWi for
n = 0, . . . , j, as well as the vectorΩpjWi

∗ compute the scalar product(pjWi,ΩpjWi)K
∗ accumulate the result into the variablea

– end
2. setaj = a/I
3. setb = 0

– for i = 1, . . . , I
∗ generate the random vectorWi and the three-term sequencepnWi for
n = 0, . . . , j, as well as the vectorXi = (Ω − aj)pjWi − bjpj−1Wi

∗ compute the scalar product(Xi, Xi)K
∗ accumulate the results into the variableb

– end
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4. setbj+1 =
√

b/I
• end

Of course, all the usual precautions to be observed in Lanczos algorithms apply here, like
early terminations for smallb at step 4. Once the Jacobi matrix ofν has been obtained, it can
be easily diagonalized, and Gaussian integration performed. The advantage of this technique
is that diagonalization is performed only once, and it can beeffected at every value ofJ . In
Figure10.1we show the estimated entropy versusM andJ . We notice that good results can
be obtained already atJ = 2. Computation complexity can improve upon that of G2 if the
vectorspj(Ω)Wi can be stored in memory for three consecutive values ofj.
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FIG. 10.1.A-F entropyS for the quantum cat evolution versusM and Jacobi sizeJ (red lines). Here,N = 27.
Sample is sizeI = 1000. The green symbols atJ = 8 report the data obtained with the Algorithm G2. Perfect
accordance is observed.

11. Conclusions. Quantum chaos, two examples.We can now finally enjoy the dis-
play of the A-F entropiesS(U, {Pk},M) versusM as confidence intervals for the two
paradigmatic examples introduced in section2. Notice however that plots displayed refer to
the contribution of theσ0 = 0 sector of the matrix (see eq. (3.8) and the related discussion),
that turns out to correspond exactly to one half of the total value. Figure11.1displays, ver-
susM , thep = 0.99 confidence intervals that, thanks to the normal estimates ofsection9, are
smaller than symbol size. In the former case, the cat map, we observe a linear initial increase
of S(U, {Pk},M), followed by saturation to the maximum attainable valueSmax = log(N).
This termination is induced mathematically from the finiteness of the Hilbert space of the
system, and physically by the effect of quantum interference. In the second case, a sublinear
increase, also with a saturation, is observed.

Physical analysis takes off from this point [7, 3]. In the renown problem of quantum
classical correspondence, this logarithmic time barrier [8] could be beaten following the pre-
scriptions of decoherence [10]: the present work aims at developing analytical and numerical
techniques to address this problem rigorously. It is our conviction that the numerical tech-
niques presented in this paper will open the way to investigations up to now impossible with
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conventional algorithms [2].
In conclusion, I have presented in this paper a series of techniques that will render viable

the computation of the A.F. entropy for systems of physical interest. These techniques rest
on the algorithmic properties of theΩM matrices introduced in the original work [3] and here
systematically investigated, and on a blend of parallel computing algorithms and the Lanczos’
technique of Golub. In addition, I have shown how the normal property of the distribution of
statistical samples permits to largely improve the statistical bounds provided in [5], allowing
a significant reduction in computer time. Finally, an algorithm for the direct computation of
the Jacobi matrix associated to the spectral measure ofΩM has been presented. Its perfor-
mance, in comparison with the previous algorithms, will be the object of further investigation.
Outside the present problem, this last algorithm might haverelevance in the study of singular
continuous measures and of their Fourier transforms [11, 12].
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FIG. 11.1.Confidence intervals for the entropyS with p = 0.99 for the quantum cat evolution (magenta x’s)
and the free rotation (red +’s) versusM . Here,N = 27, and six Gaussian points have been used. Sample size
I = 1000 is such that the confidence interval, although plotted, is smaller than symbol size. The horizontal line is
at S = log(27) and the inclined line has slopes = .3466 ≃ log(2)/2. Notice that data displayed in these plots
are for theσ0 = 0 sector of the matrixΩ: see eq. (3.8).
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Math., 131, Birkḧauser, Basel, 1999, pp. 153–163.

[13] YA . B. PESIN, Characteristic Lyapunov exponents, and smooth ergodic theory, Russian Math. Surveys, 32
(1977), pp. 55–114.

[14] M. C. REED AND B. SIMON, Methods of Modern Mathematical Physics II. Fourier Analysis, Self-
Adjointness, Academic Press, New York, 1975.

http://etna.math.kent.edu/vol.25.2006/pp409-430.dir/pp409-430.html

