
Electronic Transactions on Numerical Analysis.
Volume 28, pp. 168-173, 2008.
Copyright  2008, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University 
etna@mcs.kent.edu

VARIABLE-PRECISION ARITHMETIC CONSIDERED PERILOUS
— A DETECTIVE STORY ∗

DIRK LAURIE†

In memory of Gene Golub

The scene of the crime.In 2002, I was interested in computations to very high preci-
sion, having been challenged by Nick Trefethen to compute a number he calledτ to 10 000
digits. This number is the sum of ten other numbers, each of which was defined by a difficult
computational problem. The story is told in [1].

Before barging in to use unfamiliar software on those reallyhard problems, I needed to
acquire faith in the chosen multiple-precision package, Pari-GP [12], by using it on some
easier computational problems that I knew well.

I started by implementing a variant of the Golub-Welsch algorithm [7]. This has become
the standard procedure for the calculation of Gaussian quadrature formulas from their Jacobi
matrices, canonized in Gautschi’s software package ORTHPOL [6]. Moreover, I already had
working code in Octave [3], an open-source Matlab clone. Of course, this is just a toy problem
to test the software — an actual computation of an integral to10 000 digits would not employ
Gaussian quadrature. See [1, Chapters 1, 3 and 9] for a discussion of methods better suited
to very high precision.

In the version of Pari-GP I used, the floating-point support consists of a high-level inter-
face to the GNU multiprecision package [4].

The body of the victim. All went well for the standard quadrature formulas. Next, I
tried computing a seven-point Gauss-Kronrod formula [9] by the method described in [10].
Three of the points in this formula also belong to the three-point Gaussian rule.

Using Pari-GP’s default precision (96 bits, about 29 digits) the non-negative nodes and
their weights came out as follows:

j xj wj

0 5.331911574339452454E-29 0.4509165386584741424
1 0.4342437493468025580020715029 0.4013974147759622229 050518188
2 0.7745966692414833770358530799 0.2684880897
3 0.9604912687080202834235070925 0.1046562260264672651 938238563

In the case of the nodesx0 andx2 that are also nodes of the 3-point
Gaussian formula, the weightsw0 andw2 have been grievously mutilated,
with respectively only 64-bit and 32-bit accuracy still being recognizable.

The prime suspect.Unlike IEEE arithmetic, which has a fixed-length mantissa, Pari-GP
(like most algebraic packages that offer high-precision floating point) works with variable-
precision arithmetic. This is usually considered to be a good thing. Here is a small demonstra-
tion, with the internal representation printed out in hexadecimal below each number, omit-
ting the first word, which contains exponent and sign information. (The actual arithmetic
is genuine binary floating point, though.) Note that even though only 29 decimal digits of
cos(100*Pi) are printed, the internal representation of its mantissa contains seven words:

∗Received January 29, 2007. Accepted for publication November 18, 2007. Recommended by L. N. Trefethen.
†Department of Mathematical Sciences, University of Stellenbosch, Stellenbosch, South Africa

(dlaurie@na-net.ornl.gov ).

168



ETNA
Kent State University 
etna@mcs.kent.edu

the precision has automatically been increased. Note, too,thatcos(100*Pi) is not a per-
fectly accurate value ofcos(100π), since100*Pi is only a three-word representation of
100π.

100*Pi
314.1592653589793238462643383
9d1462ce aa19d7b9 39bafcfd

cos(100*Pi)
1.000000000000000000000000000
ffffffff ffffffff ffffffff ffffffff
ffffffff fffe0000 00000000

1-cos(100*Pi)
2.088097429759527848 E-53
80000000 00000000

1.-cos(100*Pi)
2.524354897 E-29
80000000

The interesting part is what happens in the two subtractions. The integer1 is taken to
have the same precision ascos(100*Pi) , and the first five words of the difference is now
zero. By the principles of variable-precision arithmetic,only a two-word mantissa remains.
When subtracted from1. , which is assumed to have the default three-word precision,only a
one-word mantissa (the shortest possible) is retained. These shortened mantissas show up in
the decimal printout too.

The investigating officer immediately suspected that exactly this culprit
was at work in mutilating the weightsw0 andw2.

A plea of “not guilty”. As can be seen clearly from the above demonstration, because
of cancellation, fewer significant bits remain after the subtraction. Shortening the mantissa
is justified by the fact that there is no information available about the bits that would have
followed. In fixed-precision arithmetic, and in some other implementations of variable pre-
cision, zeros would have been appended to make the mantissa length the same as that of
the operands. There is no reason to suppose that the lost bitsshould have been all zeros.
When later multiplications in fixed-precison arithmetic create extra nonzero bits, those bits
are spurious.

Thus, this implementation of variable-precision arithmetic is a
responsible, public-spirited citizen who by shortening the mantissa warns
you about the precision loss.

Cross-examination by the prosecution.If the argument of the previous section is valid,
then the numbers calculated by IEEE fixed-precision 53-bit floating point should be inaccu-
rate, because the same cancellation would occur. These are:

j xj wj

0 0.000000000000000 0.450916538658474
1 0.434243749346803 0.401397414775962
2 0.774596669241483 0.268488089868334
3 0.960491268708020 0.104656226026468

In particular, we know from the variable-precision computation that an intermediate result in
the computation ofw2 contained no more than32 significant bits.

However,w2 happens to be an exact rational number,

w2 =
12500

46557

.
= 0.2684880898683334407285692807,

169



ETNA
Kent State University 
etna@mcs.kent.edu

showing that all fifteen decimal digits shown of the 53-bit result are in fact correct.
The prosecution submits that variable precision, whether maliciously or
by neglect, needlessly squandered valuable correct digits.

An accomplice.
Name: Rational implicitly shifted QL algorithm
Known aliases: TQL, PWK, GG.

An n-point Gaussian quadrature rule is intimately related to ann × n symmetric trian-
gular matrixT, known as the Jacobi matrix of the Gaussian rule in question. HereT has
diagonal elementsak, k = 1, 2, . . . , n, and subdiagonal elements

√
bk, k = 1, 2, . . . , n− 1.

A Kronrod rule also has a Jacobi matrix, in which the numbersak andbk are rational
numbers that can be found by the process described in [10].

The Golub-Welsch algorithm essentially consists of applying the implicitly shifted QR
algorithm [13] to T. The standard implementation of this algorithm involves at each step the
transformation ofT by an orthogonal matrix of the form

Q1 = G1,2G2,3 · · ·Gn−1,n,

whereGi,i−1 is a rotation matrix in the(i, i − 1) plane. The great contribution of Golub and
Welsch was to observe that if these rotations are simultaneously applied to the first row of the
identity matrix, thus obtaining the first row of the normalized eigenvector matrix ofT, then
this row equals

[±c
√

w1,±c
√

w2, . . . ,±c
√

wn],

wherec is a constant.
In the QR-based weight computation, one formse

T

1 Q1, wheree
T

1 = [1, 0, . . . , 0]. Thus
the rotations are applied toeT

1 from its left to its right, creating nonzeros as far as it goes. If
the QL algorithm is used instead, the transformation matrixhas the form

Q2 = Gn,n−1Gn−1,n−2 · · ·G2,1

(not the same rotation matricesGi,i−1). In forminge
T

1 Q2, the rotations are applied from the
right of e

T

1 to its left. OnlyG2,1 has any effect on the row; the other rotations operate on
zeros. ThuseT

1 Q2 = e
T

1 G2,1. As noted in [11], if an eigenvaluexj is used as shift, the first
element will then bec

√
wj = cos θ1, with the samec as before, andcos θk the(1, 1) element

of Gk+1,k.

This observation allows a square-root-free version [11] of the Golub-Welsch algorithm.
We start from a square-root-free versionTQLof the tridiagonal QL algorithm, such as those
by Pal, Walker and Kahan (PWK) [13, p.169] or by Gates and Gragg (GG) [5]. These algo-
rithms recursively generate

Ck = cos2 θk, Sk = sin2 θk, k = n − 1, n − 2, . . . , 1,

using rational operations only. The suggested procedure is:
• First find all the nodes byTQLusing the usual shoft strategies [13, §8-14].
• For each nodexj in turn, applyTQLwith shift xj , thenC1 = c2wj .

Can it be the case that this version of the TQL algorithm conspires with
variable precision to yield an unreliable result?

170



ETNA
Kent State University 
etna@mcs.kent.edu

Character evidence in favour of the accomplice.In the inner loop of the PWK algo-
rithm, the following statement appears:

if C=0 then P=oldC*BB else P=gammaˆ2/C

The GG algorithm also contains the same statement.
Parlett goes on to say [13, p.168–9] that this formula, testing as it does whether a floating-

point number is exactly 0, “appears to invite disaster” but “this is not the case”.
The PWK algorithm . . . avoids tolerances without sacrificingeither
stability or elegance.
Beresford N. Parlett,The Symmetric Eigenvalue Problem, [13, p.164]

Forensic evidence.Whenx is a Gaussian node in a(2m + 1)-point Kronrod formula,
then it is shown in [10] thatx is an eigenvalue of the trailingm × m submatrix of the Jacobi
matrix T2m+1 of the Kronrod rule. In that case, the TQL algorithm with shift x inevitably
transformsT2m+1 to a tridiagonal matrix with a zero element near the middle ofthe codiag-
onal.

Maybe this is a good place to note that another of Gene Golub’scontributions to this area,
as part of the formidable team responsible for [2], is the invention of a method that implicitly
makes use of the existence ofT2m+1 without ever actually forming it. That method, based on
arrowhead divide-and-conquer, is reported in [2] to be in many cases more accurate than the
method in [10]; it may well be less sensitive to the vagaries of variable precision.

The zero element in the transformedT2m+1 shows up as a valueγk which should be zero,
but because of roundoff usually is instead a very small number. Moreover,γk is produced by
subtraction and has very few significant bits: in variable precision,γk is truncated to single
precision.

Sinceγk is not exactly zero, the branchP = γ2
k/Ck+1 is taken in the TQL algorithm, so

that all further quantities depend onγk and thus have single precision only. The divisorCk

can be shown to contain the factorγ2
k, and appears to be a very, very small number indeed.

However,γk−1 has the formaCk + bγk, and thus contains the factorγk. In the expres-
sionγ2

k−1
/Ck, the numerator and denominator both contain the factorγ2

k. When computed
in floating-point arithmetic, they are both formed by multiplications involving the same im-
precise value ofγk, which therefore cancels when the quotient is formed.

This is the reason why the PWK algorithm does not, in fact, invite disaster.

Saving the life of the victim. When a smallγk arises, it should be promoted to full
precision. Even though the extra zero bits are spurious, this does not matter becauseγk

cancels out whenγ2
k−1

/Ck is formed. The promotion causes later calculations to be done to
full precision.

The TQL algorithm, modified in this way, gives in 96-bit variable-precision arithmetic a
valuew̃2 such that

12500/46557 − w̃2

.
= -3.997586568E-29 .

The verdict. When the numerator and denominator are both small, they contain the
same inaccurate small factor, which cancels to leave an accurate quotient. This fact is es-
tablished only by careful analysis, and variable-precision floating point cannot be blamed for
being ignorant of it.

Accordingly, the defendant is found Not Guilty. However, this Court is of
the opinion that variable-precision floating point is perilous, and its use
should be restricted to qualified professionals.

171



ETNA
Kent State University 
etna@mcs.kent.edu

Appeal to the High Court. When the same algorithm is programmed in Maple, a
Maple 7 run gives the results to full working precision. It istempting to point the finger
at Pari/GP as the profligate squanderer of useful digits, whereas Maple conserves them fru-
gally. That would be totally misleading, as shown by anotherexample, adapted from one
given by Henrici [8, §1.4].

We calculate

f(x) = 1010x

(

100
∑

k=0

x2k

(2k)!
−

100
∑

k=0

x2k+1

(2k + 1)!

)

whenx = 25.13274122871834590770114707 exactly. (That is8π rounded to 28 significant
digits.)

First Maple 7.
> Digits:=28;

Digits := 28

> x:=25132741228718345907701147066/10000000000000000 00000000000.;
x := 25.13274122871834590770114707

> fx:=1e10*x*(sum(’(-x)ˆ(2*k)/(2*k)!’,’k’=0..100)+\
sum(’(-x)ˆ(2*k+1)/(2*k+1)!’,’k’=0..100));

fx := 3.056528377627073124903438081
Twenty-eight digits bid and made — impressive.

Next Pari-GP.
? \p28

realprecision = 28 significant digits
? x=25132741228718345907701147066/100000000000000000 0000000000.
%64 = 25.13274122871834590770114707
? fx=1e10*x*(sum(k=0,100,(-x)ˆ(2*k)/(2*k)!)+\

sum(k=0,100,(-x)ˆ(2*k+1)/(2*k+1)!))
%65 = 3.056532957
A meagre ten digits only.

But are those Maple digits really correct? The two sums add upto a partial sum of the
alternating series fore−x, with the first neglected term beingx202/202! < 2.3 10−97. Thus
we know that

f(x) = 1010xe−x .
= 3.0565325771596754517992069,

a figure on which both packages agree. Thus only the first five ofthe Maple digits, and the
first seven of the Pari-GP digits, are in fact correct.

Before we start applauding Pari-GP for its well-founded caution, let us calculatef(x) as
a single sum instead of the difference of two sums.
? fx=1e10*x*(sum(k=0,201,(-x)ˆ(k)/(k)!))
%70 = 3.0565325897403036531889966825
Now Pari-GP has also been unable to detect the precision loss. For this insidious cause of
inaccuracy, Henrici coined the term ‘smearing’.

The point is not that Pari-GP is good and Maple bad or vice versa. The point is that in
any variable-precision package, a decision is made on how totreat numbers given as data, or
arising in intermediate results, which are represented in floating-point format to a precision
lower than working precision. Do we promote them to full membership of the high-precision

172



ETNA
Kent State University 
etna@mcs.kent.edu

club, or do we treat them and all their associates as second-class citizens? Sometimes the
first course is proper, sometimes the second, and it takes careful analysis to tell which. The
decision of the Low Court is upheld.

REFERENCES

[1] F. BORNEMANN, D. LAURIE, S. WAGON, AND J. WALDVOGEL, The SIAM 100-Digit Challenge: A Study
in High-Accuracy Numerical Computing, SIAM, Philadelphia, 2004.

[2] D. CALVETTI , G. H. GOLUB, W. B. GRAGG, AND L. REICHEL, Computation of Gauss-Kronrod quadrature
rules, Math. Comp., 69 (2000), pp. 1035–1052.

[3] J. W. EATON, GNU Octave. http://www.octave.org .
[4] F. S. FOUNDATION, The GNU MP Bignum Library. http://www.swox.com/gmp .
[5] K. GATES AND W. B. GRAGG, Notes on TQR algorithms, J. Comput. Appl. Math., 86 (1997), pp. 195–203.
[6] W. GAUTSCHI, Algorithm 726: ORTHPOL – a package of routines for generating orthogonal polynomials

and Gauss-type quadrature rules, ACM Trans. Math. Software, 20 (1994), pp. 21–62.
[7] G. H. GOLUB AND J. H. WELSCH, Calculation of Gauss quadrature rules, Math. Comp., 23 (1969), pp. 221–

230.
[8] P. HENRICI, Essentials of Numerical Analysis, Wiley, New York, 1982.
[9] A. S. KRONROD, Nodes and Weights of Quadrature Formulas, Consultants Bureau, New York, 1965.

[10] D. P. LAURIE, Calculation of Gauss-Kronrod quadrature formulas, Math. Comp., 66 (1997), pp. 1133–1145.
[11] , Accurate recovery of recursion coefficients from Gaussian quadrature formulas, J. Comput. Appl.

Math., 112 (1999), pp. 165–180.
[12] Pari/GP, http://pari.math.u-bordeaux.fr . (An interactive programming environment for doing

formal computations on recursive types, including rational and multiprecision floating-point numbers,
polynomials and truncated power series.)

[13] B. N. PARLETT, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, 1980.

173

http://www.octave.org
http://www.swox.com/gmp
http://pari.math.u-bordeaux.fr

