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AN APPLICATION OF THE FINITE VOLUME METHOD TO THE
BIO-HEAT-TRANSFER-EQUATION IN PREMATURE INFANTS ∗
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Abstract. In this report the development of a finite volume method for the time-accurate simulation of the
temperature distribution in a premature infant inside an incubator or in an open radiant warmer is described. The
real geometry of a premature infant is obtained from MRT-images. The infants thermoregulation is modelled by
the so-called bio-heat-transfer-equation incorporatingsource terms and Neumann boundary conditions. The source
terms describe the metabolic heat production, the blood flowand the respiratorical water loss whereas the Neumann
boundary conditions model the heat transfer by transepidermal water loss, radiation, convection and conduction. The
numerical solution is carried out by the developed finite volume method whose spatial discretization is done by a
3D-mesh-generator from CFD. For the time integration a semi-implicit multistep method is used. The arising large,
sparse linear systems are efficiently solved with a Krylov subspace method. Some successful test runs using real life
data are presented.
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1. Introduction. In Germany7% of all newborn babies are preterm, corresponding to
about 55,000 of about 800,000 newborn babies per year. Reasons for a premature birth may
be diseases of the mother (e.g. high blood pressure, diabetes) or sudden complications like
infections or shocks. But nevertheless for about half of allpremature births no reason can
be found. In order to protect premature infants against heat- and water-losses to their sur-
roundings, against infections and hypoxemia, incubators and open radiant warmers are widely
used. A description of how these devices work and their history of development can be found
in [11], an introduction to the general principles of thermoregulation of premature infants
in [7].

To better understand the thermoregulation of premature infants in a certain micro-climate,
thermoregulatory models and corresponding simulation tools have been developed. Using
them it is possible to gain insight into the involved processes and the complexity of the whole
thermoregulatory system. They are systematic tools for hyperthermia planning and for the
improvement of warming therapy devices. They allow for clinical studies and for the pre-
diction of physiological phenomena without exposing humanbeings to experiments. In a
clinical setting, a sound simulation of the thermoregulation would allow for a proper tun-
ing of the environmental parameter within the incubator with the goal to achieve the optimal
living conditions for the specific newborn.

Hardware simulators (manikins, dummies) are an approach tomodel the thermoregula-
tory system. Because it is difficult to manufacture them and nearly impossible to adjust them
to new parameters, quantitative models have been of keen interest to scientists and engineers
for a long time. The work of Bußmann [4] is a milestone of physiological developments. It
contains a synopsis of the physiological basics of thermoregulation and the development of
a computer model to simulate the dynamic heat transfer processes of a preterm or newborn
baby in an incubator. The processes of molecular heat transfer, metabolic heat production
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and heat transfer due to blood flow are modelled as well as the heat losses over the skin by
transepidermal water loss, radiation, and convection. Furthermore the control mechanisms
thermogenesis without shivering and vasomotoric control of the skin are taken into account.
Nevertheless the disadvantages of the model are obvious. The geometry of an infant is re-
placed by a non-realistic compartment model and only homogeneous temperature profiles can
be computed.

The series of works by Fischer et al. [10], Fenner [8] and Wronna [20] has taken first
steps towards a more realistic modeling. The work [16] presents the development of a numer-
ical method for the time-accurate computation of the temperature distribution inside a prema-
ture infant. It is an essential improvement of the model presented in [4], because it allows for
simulations in realistic 3-dimensional geometries. Furthermore the dynamic evolution of the
temperature distributions can be computed. In addition notonly incubator settings, but also
the conditions of an open radiant warmer are modelled. Besides, the boundary conditions are
modified and a new one for conduction is introduced.

The present paper is a brief summary of [16]. Section2 describes the modeling and
computer simulation of the real geometry of a premature infant by means of MRT-slices and
the use of a CFD-grid-generator. In section3 the mathematical model is outlined. It is an
initial boundary value problem (IBVP) consisting of the bio-heat-transfer-equation (BHTE)
supplemented by initial and boundary Neumann conditions. The BHTE describes the tem-
perature distribution inside the preterm baby taking into account the molecular heat transfer,
metabolic heat production, heat transfer due to blood flow and respiratorical water loss. In or-
der to solve the BHTE numerically, section4 surveys the constituent parts of a finite volume
method. First, finite volume methods are a natural choice forthe numerical solution of the
BHTE because they are directly applicable to its integral form. Second, the use of unstruc-
tured grids is necessary in order to cope with realistic geometries. Finite volume methods
are formulated on general control volumes and hence can easily be employed on unstructured
grids, indeed one can even say that they are especially designed for such grids. In section5
numerical test runs using real life data are presented.

2. Modeling the real geometry of a premature infant. Figure2.1 is an MRT-image
showing a sagittal intersection of a premature infants body. Using a bulk of such MRT-images
in a commercial image processing tool, which supplies segmentation-tools, especially the
Region Growing, a volume image is generated; see Figure2.2. The subsequent application
of the so-called marching cube algorithm (see [15]) to this volume image yields the baby’s
surface and in addition to that a surface triangulation; seeFigure2.3. The implementation
of a finite volume method on a computer requires the decomposition of the computational
domain into sub-domains of a simple shape, so-called control volumes. A control volumeσi

is a subset on which the Gaussian divergence-theorem holds,for example a cube or a prism.
Using the obtained surface triangulation as input data, a grid generator from CFD yields a 3D-
meshD ⊂ R

3 as a model of the infant’s body; see Figure2.4. Here, the interior points were
selected according to the known layer size of the consideredcompartments, starting from the
skin, i.e., from the computed surface triangulation. The computational mesh includes 5,262
surface-triangles and 101,930 control-volumes.

3. Governing equations.This section contains the essence of a thermoregulatory model
described in detail by Ludwig [16]. The baby lies on a mattress in an incubator or in an open
radiant warmer. Its body modelD ⊂ R

3 consists of the compartments head, trunk and pe-
riphery (arms and legs). The head is composed of the 4 layers skin, fat, bone and kernel
(brain), the trunk and the periphery only of the 3 layers skin, fat and kernel. The regular
boundary of the body model is denoted by∂rD ⊂ ∂D. Heren : ∂rD → R

3 is the outer
unit-normal-vector-field upon this regular boundary. The infants are classified by the basic
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FIG. 2.1.MRT-slice FIG. 2.2.Volume image

FIG. 2.3. Surface triangulation
FIG. 2.4. Sagittal and coronal inter-

section of the 3D-mesh

parameters gestational age, post-natal age and weight. Moreover,T (x, t) > 0 denotes the
temperature in Kelvin with space variablex ∈ R

3 and timet ≥ 0 ([x] = m3, [t] = sec.). The
3 functionsλ, c andρ describe the heat conductivity, specific heat and density ofthe involved
tissues. According to Fourier’s fundamental law of molecular heat transfer the heat flux is
given by

J : D × R
∗

+ → R
3, J(x, t) := −λ(x) · ∇T (x, t).

The divergence of the the field−J then describes the molecular heat transfer. The differential
operators∇ anddiv always refer to differentiation in space only. The production terms

QMet(T, x, t), QBlood(T, x, t), QRW (x),
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model the metabolic heat production, the heat transfer due to blood flow and the heat loss due
to respiratorical water loss. Because a detailed derivation would be far beyond the scope of
this report, the reader is referred to [16]. The terms

MTW (T, x, t), Mr(T, x, t), M cv(T, x, t), M cd(T, x, t),

model the heat fluxes over the skin by transepidermal water loss, radiation, convection and
conduction, respectively. Settingκ(x) := ρ(x)c(x), the temperature distributionT : R

3 ×
R+ → R satisfies the bio-heat-transfer-equation

κ(x)
∂T

∂t
(x, t) = div(−J)(x, t) + QMet(x, t) + QBlut(x, t) + QRW (x),

(3.1)
(x, t) ∈ D × R

∗

+

(see [17, 1]), which is supplemented by the initial and boundary conditions

T (x, 0) = T0(x), x ∈ D,(3.2)

< J(x, t), n(x) > = MTW (x, t) + Mr(x, t) + M cv(x, t) + M cd(x, t),
(3.3)

(x, t) ∈ ∂rD × R
∗

+.

HereT0 : D → R is an initial temperature distribution inD. Exact solutions of (3.1) can
only be found in very few cases. Therefore a numerical treatment is often necessary.

4. Finite volume approximation. Since finite volume methods are especially designed
for equations incorporating divergence terms, they are a good choice for the numerical treat-
ment of the bio-heat-transfer-equation (3.1). Their basic idea is to eliminate the divergence-
terms by applying the Gaussian divergence theorem. As a result the order of derivatives
is reduced by one. Furthermore they allow for complex geometries and unstructured grids,
which is another reason to use them for (3.1).

In this section the development of a finite volume method for (3.1), (3.2) and (3.3) is
concisely presented. It consists of a spatial and a time discretization. The former requires a
suitable transformation of the given initial boundary value problem. Subsequently an evolu-
tion equation for mean temperatures on the control-volumesσi is derived. The application
of the method of lines (MOL) then yields a high-dimensional system of ordinary differential
equations (ODE-system). The subsequent time integration is done by the SBDF(3)-method,
which belongs to the class of semi-implicit multistep methods (IMEX-methods). The aris-
ing large, sparse linear systems are efficiently solved by the BiCGStab method with an ILU
preconditioning.

For an introductory analysis of the finite volume technique the reader is referred to [9].

4.1. Spatial discretization. Setting

Q(x, t) := QMet(x, t) + QBlood(x, t) + QRW (x), (x, t) ∈ D × R
∗

+,

ϕ(x, t) := MTW (x, t) + Mr(x, t) + M cv(x, t) + M cd(x, t), (x, t) ∈ ∂rD × R
∗

+,

the given IBVP reads

κ(x)
∂T

∂t
(x, t) = div(−J)(x, t) + Q(x, t), (x, t) ∈ D × R

∗

+,

T (x, 0) = T0(x), x ∈ D,

< J(x, t), n(x) > = ϕ(x, t), (x, t) ∈ ∂rD × R
∗

+.
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In order to apply the finite volume technique, the IBVP has to be transformed into pure
divergence form. This means that the time derivative as wellas the divergence term must not
be multiplied by any function of the space variablex. Consequently, division byκ(x) is not
allowed. Defining the transformed temperature

u : R
3 × R+ → R, u(x, t) := κ(x)T (x, t),

and the transformed heat flux field

v : R
3 × R

∗

+ → R
3, v(x, t) :=

λ(x)

κ(x)
∇u(x, t) −

λ(x)u(x, t)

κ2(x)
∇κ(x),

the BHTE is equivalent to

∂u

∂t
(x, t) = div v(x, t) + Q(x, t), (x, t) ∈ D × R

∗

+(4.1)

(see [3], [20]). Settingu0(x) := κ(x)T0(x), x ∈ D, the transformation of the initial condi-
tion yields

u(x, 0) = u0(x), x ∈ D,(4.2)

whereas the transformed Neumann boundary condition reads

< v(x, t), n(x) > = −ϕ(x, t), (x, t) ∈ ∂rD × R
∗

+.(4.3)

Equations (4.1), (4.2) and (4.3) constitute an IBVP for the transformed temperatureu.
DEFINITION 4.1. Given a non-empty control volumeσi ⊂ D, the (spatial) cell average

of u is defined by

ui(t) :=
1

|σi|

∫

σi

u(x, t)dx, t ∈ R
∗

+,

where|σi| denotes the volume ofσi.
Let σi ⊂ D be a non-empty control volume. The evolution in time of the associated cell

average is described by

dui

dt
(t) =

1

|σi|

∫

σi

∂u

∂t
(x, t)dx =

1

|σi|

(∫

σi

div v (x, t)dx +

∫

σi

Q(x, t)dx

)

, t ∈ R
∗

+.

Using the Gaussian divergence theorem yields the evolutionary equation

dui

dt
(t) =

1

|σi|

(
∫

∂σi

< v(x, t), ni(x) > dS(x) +

∫

σi

Q(x, t)dx

)

, t ∈ R
∗

+.(4.4)

Hereni : ∂rσi → R
3 denotes the outer unit-normal-vector-field upon the regular boundary

of the cellσi. A finite volume method is a discretization of all evolutionary equations given
by (4.4).

Given two control volumesσi ⊂ D andσj ⊂ D, their common boundary in the interior
of D is denoted byfij . Given a control-volumeσi ⊂ D situated at the boundary ofD, a
triangle of the surface triangulation being part of the boundary ∂σi is denoted byf ij . For
a control volumeσi, N(i) is defined as the number of boundary parts in the interior ofD.
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Accordingly, N(i) is defined as the number of boundary parts on the surface of thebody,
which therefore are triangles. The functions

LIFL
i (t) :=

N(i)
∑

j=1

∫

fij

< v(x, t), ni(x) > dS(x), t ∈ R
∗

+, i ∈ {1, . . . , N},

LRFL
i (t) :=

N(i)
∑

j=1

∫

fij

< v(x, t), ni(x) > dS(x), t ∈ R
∗

+, i ∈ {1, . . . , N},

LQ
i (t) :=

∫

σi

Q(x, t)dx, t ∈ R
∗

+, i ∈ {1, . . . , N},

describe the heat fluxes over the interior boundary parts andthe surface triangles, and the
energy production by the source terms, respectively, whereN is the total number of control
volumes. Now the evolutionary equation of the cell averagestakes the form

dui

dt
(t) =

1

|σi|

(

LIFL
i (t) + LRFL

i (t) + LQ
i (t)

)

, t ∈ R
∗

+, i ∈ {1, . . . , N}.(4.5)

The modelled processes molecular heat transfer, boundary conditions (transepidermal water
loss, radiation, convection, conduction) and source terms(metabolic heat production, heat
transfer due to blood flow, heat loss due to respiratorical water loss) are reflected very clearly
by this equation. They determine the evolution in time of thecell average. Equation (4.5)
constitutes an ODE system whose dimension is the total number of control volumes.

Next, the functionsLIFL
i ,LRFL

i andLQ
i have to be approximated by quadrature for-

mulas. Since this is far beyond the scope of this text, it is omitted here and the reader is
referred to [16] again. We dertermine approximating functionsLIFL

i , LRFL
i andL

Q
i , and the

discretized evolutionary equation reads

dui

dt
(t) ≈

1

|σi|

(

LIFL
i (t) + LRFL

i (t) + L
Q
i (t)

)

, t ∈ R
∗

+, i ∈ {1, . . . , N}.(4.6)

4.2. Time discretization. The approximating functions in (4.6) can be separated in
affine-linear and non-linear parts (see [16]). Let

u(t) :=







u1(t)
...

uN (t)






∈ R

N , t ∈ R
∗

+,

be a vector containing all cell averages. With a vectorDi ∈ R
N , a real numberdi and a

functionLi describing the non-linear parts, one can write

dui

dt
(t) ≈

1

|σi|

(

DiT u(t) + di + Li(t)
)

, t ∈ R
∗

+, i ∈ {1, . . . , N}.(4.7)

Since the termDiT u(t) + di originates from diffusion processes, the system (4.7) is likely
to be stiff. Since the time integration of such systems is very difficult, stable schemes have
to be applied; see [5, 12]. The implicit BDF schemes are the best choice, because theyallow
for relatively large time steps. Consequently, moderate computation times can be expected.
However, in each time step a system of equations has to be solved. In this work the implicit
BDF(3) scheme is used as a basic scheme for time-integration. Yet a fully implicit treatment
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of the functionLi would result in memory requirements which cannot be satisfied in general;
cf. [16]. Therefore, an extrapolation procedure is applied toLi, which leads to the SBDF(3)
scheme (semi-implicit BDF scheme; see [2]). With the discretized time base

0 = t0 < t1 < t2 < . . . , tn := n∆t, n ∈ N, ∆t ∈ R
∗

+,

the approximating cell average vectors

u0 =







u0
1
...

u0
N






:=







u0(x
1)

...
u0(x

N )






, un =







un
1
...

un
N






≈







u1(tn)
...

uN (tn)






= u(tn), n ∈ N

∗,

and the update vector

∆un =







∆un
1

...
∆un

N






:=







un+1
1 − un

1
...

un+1
N − un

N






= un+1 − un, n ∈ N,

the SBDF(3) scheme applied to (4.7) reads forn ≥ 0 andi ∈ {1, . . . , N},

11

6
un+3

i − 3un+2
i +

3

2
un+1

i −
1

3
un

i

= ∆t

[

1

|σi|

(

DiT un+3 + di

)

+
3

|σi|
Ln+2

i −
3

|σi|
Ln+1

i +
1

|σi|
Ln

i

]

.

Setting

rn
i :=

∆t

|σi|

[

di + 3Ln+2
i − 3Ln+1

i + Ln
i

]

∈ R, n ≥ 0, i ∈ {1, . . . , N},

a straightforward calculation withn ≥ 0, i ∈ {1, . . . , N} shows that

(

11

6
ei −

∆t

|σi|
Di

)T

∆un+2

(4.8)

=

(

7

6
ei +

∆t

|σi|
Di

)T

un+2 −
3

2
eiT un+1 +

1

3
eiT un + rn

i .

Equation (4.8) yields a sparse linear system of dimensionN × N . It is solved for the update
∆un+2, n ≥ 0, in the(n+ 3)rd time step. Starting values are computed with a semi-implicit
one-step method.

We remark that in order to achieve an appropriate resolutionof the computational do-
mainD, the total number of cells is chosen very large (N = 101930, cf. section2). Therefore
the linear systems (4.8) obtained are too large to be solved by a direct method. Amongthe
most well-known iterative solvers being applicable to a non-symmetric system are the Krylov
subspace methods. Here, we applied successfully the BiCGStab method developed by van
der Vorst [19]. For preconditioning an incomplete LU factorization (ILU) is applied. It is
worthwhile noting that the matrix of the system (4.8) is constant. Thus its entries have to be
calculated only once at the beginning of the whole computation. The same holds for the ILU
preconditioning.
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TABLE 5.1
Material properties in[ W

mK
], [ J

kgK
], [ kg

m3
].

λ c ρ

skin 0.35 3770.0 1030.0
fat 0.21 2500.0 1030.0

bone 0.40 2170.0 1030.0
kernel 0.51 3770.0 1030.0

TABLE 5.2
Boundary condition sets.

Tair rH Tsur TMRT SMRT FL kmat Tmat

RBD1 309.25 K 77.0 293.15 K 297.6 K 0.0 W

m2
5.0 cm

s
0.05 W

m2K
309.25 K

RBD2 293.15 K 50.0 293.15 K 293.15 K 140.0 W

m2
30.0 cm

s
14.0 W

m2K
312.15 K

5. Numerical results. This section presents the results of numerical tests. They were
carried out by the developed finite volume method for an infant whose weight, gestational age,
and post-natal age was 1,240 kg, 32 weeks, and 3 days, respectively. The layer thicknesses
of the involved tissues were estimated by statistical means; cf. [4]. Their values are 0.001
m for skin and fat and 0.005 m for bone. The heat conductivities, specific heats and specific
weights of the involved tissues are listed in Table5.1; see [6, 18]. Note that skin, fat, bone,
and kernel are from a clinical point of view the relevant parts to be considered.

The boundary condition sets listed in Table5.2 were used for the numerical test runs.
The set values determine the heat fluxes over the infant’s skin (cf. section3). The set RBD1
describes the standard case, i.e., the incubator stands in aroom with a given temperature
Tsurround and the air velocityFL inside the incubator is pre-set. The infant lies on an
insulating mattress with known heat-transfer-coefficientkmat. The air temperatureTair and
the relative humidityrH of the incubator have been calculated with the optimizationtool [13].
The temperature of the mattress is chosen equal to the air temperature,Tmat = Tair. The
radiation temperatureTMRT of the incubator is given by its interior wall temperature.SMRT

denotes the power supply of a radiant heater and is set to zero, cause no radiant heater is taken
into account in the incubator case.

The boundary condition set RBD2 describes the case of the open radiant warmer. It
stands in a room with a given temperatureTsurround = Tair and the air velocityFL inside
this room is known. The room is air conditioned with a relative humidity of 50%. The
radiation temperatureTMRT is given by the wall temperature which is identical with the
air temperature, i.e.TMRT = Tair = Tsurround. The radiative power supplySMRT was
estimated with the simulation tool [14]. The infant lies upon a heated mattress with known
heat transfer coefficientkmat and temperatureTmat.

Three representative of altogether six numerical test runsare presented here. Their main
features are listed in Table5.3. The test cases TEST1a and TEST1b refer to the incubator case,
whereas TEST2 describes the infant in the open radiant warmer. The only difference between
TEST1a and TEST1b is the activity of the source terms. In order to better demonstrate their
effects, TEST1a is treated with heat production and withoutblood flow, whereas TEST1b is
treated with both of them.

Remarks concerning the test runs:
1. TEST1a starts with a constant initial temperature distribution ofT0(x) = 310.15K

= 37◦C (cf. (3.2)). TEST1b starts with the temperature distribution of TEST1a after 60
minutes. TEST2 starts with the temperature distribution ofa test case not presented here.
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TABLE 5.3
Test cases.

B. c. Heat- Blood- Resp.
set t0 tE ∆t nmax prod. flow water losses

TEST1a RBD1 0.0 s 3600 s 0.1 s 36000 on off off
TEST1b RBD1 0.0 s 3600 s 0.1 s 36000 on on off
TEST2 RBD2 0.0 s 2700 s 0.1 s 27000 on on on

t = 0 min. t = 12 min.

t = 24 min. t = 36 min.

t = 48 min. t = 60 min.

FIG. 5.1.TEST1a.

2. For each test run the maximum time step size for a stable integration was deter-
mined by numerical experiments. Thereafter, we tried even finer steps. The obtained heat
distributions were visually indistinguishable from the displayed ones. For the retransformed
temperature vectors

Tn :=

(

un
1

κ(x1)
, . . . ,

un
N

κ(xN )

)T

∈ R
N , n ≥ 0,

the update vectors

∆Tn := Tn+1 − Tn =

(

∆un
1

κ(x1)
, . . . ,

∆un
N

κ(xN )

)T

∈ R
N , n ≥ 0,

were computed. A typical convergence plot is depicted in Figure 5.5. The convergence
criterion ‖∆Tn‖∞ < 5 · 10−5K was chosen andtE denotes the corresponding stopping
time. The total number of time steps is given bynmax = tE−t0

∆t
= tE

∆t
.
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FIG. 5.2. Scale of temperature in[K].

FIG. 5.3.TEST1a att = 60 min.

3. The stopping criterion for the residual of the incorporated linear solver BiCGStab
with ILU preconditioning was set toε = 10−10.

4. All test runs were carried through on an AMD Athlon XP2700+with 1 GB RAM.
Table 5.4 contains computing times and the number of required time steps to satisfy the
convergence criterion.

TABLE 5.4
Computing times and time steps.

Computing time Time steps
TEST1a 2 h 28 min 3.5 × 104

TEST1b 2 h 31 min 3.6 × 104

TEST2 1h 54 min 2.7 × 104

Remarks concerning the temperature distributions:Figures5.1, 5.3, 5.4, 5.6, and5.7
visualize the obtained temperature distributions. The time evolution in a sagittal intersection
as well as the temperature distributions on the surface are shown

1. TEST1a (Figures5.1and5.3) is a test case for the heat production. Corresponding
to the distribution of heat production inside the body, the global temperature maximum is
settled in the brain region whereas a local temperature maximum is built up in the kernel of
the trunk. These two concentrations of heat energy are superimposed by the cooling effect of
the air and by the insulating effect of the mattress. These effects also can be observed in the
surface temperature distributions in Figure5.3: The lowest temperatures occur on the top side
of the infant. This is due to the cooling effect of the air as well as to the low heat production
in the periphery. The highest temperatures occur at the backside of the infant. Again the
global temperature maximum in the brain is prominent.
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t = 0 min. t = 3 min.

t = 6 min. t = 9 min.

t = 12 min. t = 60 min.

FIG. 5.4. TEST1b.

FIG. 5.5.Convergence history: Number of time steps vs.‖∆T n‖∞ for TEST1a.

2. TEST1b (Figure5.4) is a test case for the blood flow source term. The sagittal views
in Figure5.4show off the distributing effect of the blood flow. Each temperature maximum
is successively decreased and the heat energy is uniformly distributed over the whole body.
The boundary layers with contact to the air are warmed for thetime being (t ≤ 12 min.).
However, the heat production and the distributing blood flowcannot maintain this state. The
heat losses to the surrounding air are too large and cool downthe boundary layers again. As a
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t = 0 min. t = 5 min.

t = 10 min. t = 15 min.

t = 30 min. t = 45 min.

FIG. 5.6.TEST2.

result, steep temperature gradients can be observed in the steady state solution (t = 60 min.;
see also Figure5.5).

3. In TEST2 (Figures5.6and5.7) a heated mattress is used. As expected the boundary
layers with contact to the air as well as those with contact tothe mattress are warmed during
the first ten minutes. Subsequently the whole body is uniformly warmed and a temperature
maximum is built up in the brain, which extends through the back of the head to the heated
mattress. The plots in Figure5.7show the surface temperature distributions of the steady state
solution aftert = 45 min.. The simultaneous effects of the radiant warmer and theheated
mattress are evident. The corresponding sagittal- and coronal intersections in Figure5.7
show off the maximum in the head as well as the warming of the whole body including the
periphery.

These results show that the model and the developed method nicely yield the expected
temperature distributions. Especially the effects of the source terms and the boundary con-
ditions are modeled correctly. Thus, the method is suitablefor the solution of the bio-heat-
transfer-equation and can be used to analyze the thermoregulatory phenomena of premature
infants. The required computing time is moderate.

6. Conclusions.The development of a finite volume method for the simulation of tem-
perature distributions in premature infants has been presented. The method is an improvement
of previous ones since it can be applied to complex realisticgeometries. The use of a semi-
implicit BDF-method guarantees a stable and accurate time-integration. The arising large,
sparse linear systems have been solved efficiently with the BiCGStab algorithm with ILU
preconditioning. The numerical test runs show that realistic results which can be achieved
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FIG. 5.7.TEST2 att = 45 min.

with moderate computation times. Thus, the developed method is a proper tool to analyze
systematically the thermoregulation of premature infants.
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[15] W. LORENSEN ANDE. HARVEY, Marching cubes: A high resolution 3D surface construction algorithm, in

Computer Graphics (SIGGRAPH 87 Proceedings), M. C. Stone, ed., ACM, New York, 1987, pp. 163-
170.

[16] M. LUDWIG, Ein Finite-Volumen-Verfahren zur numerischen Simulationder Temperaturverteilungen in
Frühgeborenen, Dissertation, Universität zu L̈ubeck, Institut f̈ur Mathematik, 2006.

[17] H. H. PENNES, Analysis of tissue and arterial blood temperatures in the resting human forearm, J. Appl.
Physiol., 1 (1998), pp. 5–34.

[18] G. SIMBRUNER, Thermodynamic Models for Diagnostic Purposes in the Newborn and Fetus, Facultas Verlag,
Wien, 1983.

[19] H. A. VAN DER VORST, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 631–644.

[20] M. WRONNA, Ein Finite-Volumen-Verfahren zur dreidimensionalen und zeitgenauen Integration der
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