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NON-MATCHING MORTAR DISCRETIZATION ANALYSIS FOR THE
COUPLING STOKES-DARCY EQUATIONS*

JUAN GALVIST AND MARCUS SARKIS't

Abstract. We consider the coupling across an interface of fluid and porous media flows with Beavers-Joseph-
Saffman transmission conditions. Under an adequate choice of Lagrange multipliers on the interface we analyze
inf-sup conditions and optimal a priori error estimates associated with the continuous and discrete formulations of
this Stokes-Darcy system. We allow the meshes of the two regions to be non-matching across the interface. Using
mortar finite element analysis and appropriate scaled norms we show that the constants that appear on the a priori
error bounds do not depend on the viscosity, permeability and ratio of mesh parameters. Numerical experiments are
presented.
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1. Introduction. We analyze the coupling across an interface of fluid and porous media
flows. This problem appears in several applications like well-reservoir coupling in petroleum
engineering, transport of substances across groundwater and surface water, and (bio)fluid-
organ interactions. More precisely, we consider the following situation: an incompressible
fluid in a region 2y can flow both ways across an interface I into a saturated porous medium
domain €2,. The model studied here consists of Stokes equations in the fluid region Q¢ and
Darcy law for the filtration velocity in the porous medium region 2,,. The transmission con-
ditions we consider on the interface I' are the Beavers-Joseph-Saffman conditions [3, 19, 27]
which are widely accepted by the scientific community. In this paper we study inf-sup condi-
tions and a priori error estimates associated with the continuous and discrete formulations of
this Stokes-Darcy system. There are previous works addressing such issues [8, 13, 20, 26] as
well as related problems such as Stokes-Laplacian systems [10, 11, 25], Stokes-Navier Stokes
[16, 24], and preconditioned iterative methods [10, 12, 13, 14], among others [2, 21].

This paper is organized as follows: in Section 2 we discuss norms and seminorms of
dual spaces on subsets. The differential systems are introduced in Section 3, where veloc-
ity and normal flux are considered as the boundary data for the Stokes part I'y = 0Q¢\I'
and the Darcy part I') = 0Q,\T', respectively; for other formulations and boundary data see
[11, 12]. The transmission conditions on the interface I', known as Beavers-Joseph-Saffman
conditions, are then introduced. In Section 4 we analyze weak formulations of the continuous
model and we discuss the choice H'/2(T") as the space for Lagrange multipliers in order to
couple these two systems of partial differential equations. In [20], Layton, Schieweck, and
Yotov developed existence and uniqueness of the weak solution for this problem. They were
able to show the inf-sup condition on the smaller space Hééz(l“). Recall that Hé({ (1) is
the subspace of functions in H'/2(8€,,) that vanish on 89, \ T. In this paper, we use tools
developed in Section 2 and in [20] to present a complete analysis for the inf-sup condition
with Lagrange multipliers on the space H'/2 (T"). We note that from the physical point of
view the space H'/2 (T) is the correct choice since the Lagrange multipliers are related to the
Darcy pressure on the interface I' and the value of the Darcy pressure at I' N 9(Qf U Q) is
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not prescribed when flux boundary condition is imposed on the porous side exterior boundary
I',. We note however that in the case where the pressure is imposed as the boundary con-

dition on the Darcy exterior boundary I',, the space Hé({ 2 (T") would be the correct choice;
see [11]. In Section 5 we derive the discrete inf-sup conditions and in Section 6 the a pri-
ori error estimates. We consider the triangular P2\ P1 Taylor Hood elements space for the
free flow region Q; and the lowest order Raviart-Thomas for the Darcy region €2,. In [20],
Layton, Schieweck and Yotov developed a priori error estimates for the matching case, while
in [26] Riviere and Yotov, and also in [8] Burman and Hansbo, considered the non-matching
case using discontinuous Galerkin finite element discretizations. In this paper we consider
the coupling via Lagrange multipliers and we develop an analysis based on mortar finite el-
ements techniques [4, 29] and scaled norms in order to obtain constants independent of the
permeability, viscosity and ratio of mesh parameters. We pay special attention to the con-
stants appearing in the a priori error estimates. In Appendix B we provide the construction of
the Fortin interpolation for P2\ P1 Taylor Hood elements. In Section 7 we test numerically
the algorithms and in Section 8 we make some conclusions.

2. Preliminaries and notations. Let () be a bounded Lipschitz continuous domain and
letT" C 9 and I'® := 90\ T be of non-vanishing (n — 1)-dimensional measure with respect
to 992. Here n = 2 or 3. To avoid the proliferation of constants, we will use the notation
A < B to represent the inequality A < (constant) - B.

LEMMA 2.1. Given u € HY/?(T"), define Ellﬂ,u, = Yoy where 7 is the trace on 0S) and
@ is the weak solution of

—Ap=0 inQ
p=p onT
Ony =0 onT".

Then By” € HY2(99) and | B pll /250y = tll gz ey

For p € HY?(T) let Eoléz’ i denote the extension by zero on I'. Remember that
Eolf’r,u € H'/2(89) if and only if u € H&gQ (T). We have the following result.

LEMMA 2.2. Forall p € H'/?(0Q) there exist ur € HY/*(T') and pr- € Héé2 ()
such that p = EI}/ZNF + E'Ol(/frcupc. This decomposition is unique.

Proof. Let p € HY/?(99). Take ur = plr and pre = @|re where ¢ = pu — E'll/2,up.
Observe that ur € H'/?(T") and

12
||EF/ p,pHHuz(aQ) = ||MF||H1/2(F) < ||N||H1/2(8§2)’

therefore, ¢ € H'/ 2(0Q). Observe also that Eg{f repTe = ¢ because p and EFI/2 pr coincide
on I'. For the uniqueness, if 0 = E'lyz pr + E&Oﬂ’ reftire then EI}/Z pr is the trace of the weak
solution of the problem: —Ap = 0in 2, o =0o0nT,dpe =0onT*. Then ur =0. 0O

We have two dual spaces associated with T', the space H, 0_01/ *(T) (the dual of Hé({ ()
and H~1/2(T") (the dual space of H'/?(T")). The first space is larger than the second one.
DEFINITION 2.3. If f € H=/2(8Q), then f|r- = 0 means by definition that

(f, Bglrem)on =0 forall p € Hyy’(I°).

A useful result related with this definition is the following:
LEMMA 2.4. If f € H-Y/2(09), there are fr € H=Y2(T) and fre € Hog"/*(T) such
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that, for all p € HY?(09Q), let p = E'FI/Q,ur + E(}(/)%FCNFC as defined in Lemma 2.2, we have
2. (f,moa = (fr,pr)r + (fre, pre)re.
Proof. For ur € HY?(T) and pp- € H&éz(I‘c) define
{(fr,pr)r = (f, E%pur)ag (fre, pre)re = (f, E&é%pcurc)ag-
We obtain
(oo e < 1l g-172000) 1B 1r sz a0y = 1 =172 ooy 1l g oy,

and so fr € H~'/2(T"). Analogously, fr. € H&)I/Z (T"°). Moreover,

(fr, mr)r + (fre, uredre = (f, B pr + Bopyepire)oq = (f,mhoa- O

REMARK 2.5. In particular, if f € H*1/2(6Q) and f|re = 0 (see Definition 2.3 above),
we have from (2.1) that

(f,myae = (fr, ur)r-

Hence, functionals in H~'/2(8Q) which are zero when restricted to 8Q \ T" can be identified
with functionals in H—'/2(T).
REMARK 2.6. Given fr € H'/2(T) we can define f € H/2(8Q) by (f, p)sq :=

(fr, pr)r, where p = Ell/z pr+ Eolé% repire as defined in Lemma 2.2. We have a similar result

for fr € Hyy/*(T°).
Define the space H (div, ) by

H(div,Q) := {v € L*(Q) : Vv e L*(Q)},
with the norm
(2.2) ||”||§1(div,g) = ”””12(9) + ||V'"||2LZ(Q)-
Recall that if v € H (div, Q) then v- € H~'/2(8Q). For the next result, see [30].

LEMMA 2.7. For eachw € H (div, Q) with [, u-n = (u-n,1)aq = 0 we have

un:d’ o0 UTI:¢ [219]
sup Swadion = lwnllg-1/209) < sup {um,dlon
b HP 60 |9l £ 90y S HP 50 £ o0y
= constant ¢+ constant

with a constant which depends only on Q.
Using an argument similar to the one given in [30], we have
LEMMA 2.8. For each f € H™Y*(T) with [ f = (f,1)r = 0, we have

fa d) r f7 ¢ r

swp LI < sy DO
S H () @] 1721y SeH2(T) | @] 71721y

7 constant é+# constant

with a constant which depends only onT'.
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Proof. Observe that if  is a constant then {f, a)r = a(f, 1)r = 0 and for ¢ € H'/*(I)
non-constant we have

<f7 ¢>F < <f7 ¢>F

||¢||H1/2(1") - |¢|H1/2([‘),
then
Ifll /2y = sup % < sup %7@ |
peHY2(T) HY?(I) e H2(T) H1/2(T)
p#constant p£constant

which gives the right inequality. Using a Poincaré inequality, there exists a positive constant
which depends only on I, such that

1012y < 1o Pgarn oy

holds for all ¢y € H'/2(T") with [+ = 0. For ¢ € H'/?(T') non-constant, we have

vi=o= [o70
and
<f7,¢})11 — <fa ¢)F . <f7 ¢) — (fa ¢) O
191l 22 ry Wl grrzae) —  Wlmem 6|12y

This gives an equivalent norm in the subspace of H~'/2(T') of zero average functionals.
DEFINITION 2.9. For f € H=Y(T), f with zero average ((f,1)r = 0), define

|f|H—1/2(F) — sup <f: (b)l_‘ — sup <f7 ¢)F .
pcHY/2(I) |¢|H1/2(F) SpeHY2(T) |¢|H1/2(F)
¢+ constant Jr $=0,670,

We have the following result.
LEMMA 2.10. For u € H'/*(T") with Jr =0 we have

|N|H1/2(r) = sup M
fEH_1/2(F) |f|H—1/2(F)
(f,1)=0

Proof. Consider (H'/?(T') N LZ(T))*, the dual space of H'/2(T") N L2(T'), and observe
that a functional fo € (H'/?(T") N L3(T"))* can be extended to one in H'/?(T")*, say f, by
the following formula: {f, ¢) := (fo, ¢o) where ¢ € H/(T') and ¢ := ¢ — [ ¢. O

3. P.D.E model. In general, Qf, Q, C R*, T = Q; N Q,, Q = int(Qy U Qy), Qs
and ), are Lipschitz, so it is possible to define outward unit normal vectors, denoted by 0 s
j = f,p. The tangent vectors on I" are denoted by 7y (n = 2),or 7,1 = 1,2 (n = 3). In
order to avoid a setting that is too general, when n = 2 we consider Qy = (1,2) x (0,1)
and Q, = (0,1) x (0, 1) or a regular Lipschitz perturbation of this configuration. Analogous
conditions are consider for the case n = 3.
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Define I'; := 0Q; \ I, j = f,p. Velocities are denoted by u; : Q; — R™, j = f,p.
Pressuresare p; : Q; = R, j = f,p.

As was mentioned previously, Stokes equations are the model for the fluid region. The
model basically consists of conservation of mass and conservation of momentum, and we
have

—V'T(’U,f,pf) = ff in Qf
(3.1) V-uf =gf in Qf
uy =hy only.

Here T'(v,p) := —plI + 2vDv where v is the fluid viscosity and Dv := (Vv + VTv) is
the linearized strain tensor.
For the porous domain 2, Darcy’s law is used, i.e., (up, pp) satisfies on 2,

u, =—-5Vp,+f, in€, (Darcy’slaw)
(3.2) V"U/p =0p in Qp
up.rr,p = hp on Fp.

In general & is a symmetric and a uniformly positive definite tensor that represents the rock
permeability. For simplicity of the analysis, we assume that x is a real positive constant.
Recall that v is the fluid viscosity.

We also impose the compatibility condition

(33) [ o+ [ o= [ hpns= [ mp=o
Qf Qp Ty Ty

The systems presented above must be coupled across the interface I'. The following condi-
tions are imposed (see [11, 12, 13, 20] and references therein):
Conservation of mass across I': It is expressed by:

(3.4 upny+uyn, =0onl.

This means that the fluid that is leaving a region enters in the other one.
Balance of normal forces across I': From Cauchy formula we see that

S(ug,py) =T (uys,pr)ny

is the force on € acting on the fluid volume inside Qy, i.e., X is the Cauchy stress (or
traction) vector. The force on I' from €2 side is then ¥(u s, py). The only force acting on the
interface from (2, side is the one given by pj, in the direction of 1, and must be equal to the
component of ¥ in this direction. We get

(3.5) pF — ZVn?D(uf)nf =pp, onT.

The other components of 3, i.e., X - 7,1 = 1,n — 1, are more delicate and treated below.
Beavers-Joseph-Saffman condition: This condition is a kind of empirical law that gives
an expression for the tangential component of X. It is expressed by:

(3.6) wup-T] = —%277?D(uf)n on[,l=1,n—1.
f

In the general case, & is a symmetric and uniformly positive definite tensor, and & in (3.6)
isreplaced by 7; - & - 77.
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A related condition is

NG

(uy —up)-7 = Ty

2;D(us)t;, onl,l=1n-1,

which is known as the Beavers-Joseph condition. But it turns out in practice that the compo-
nent of u,, in 7; direction is small compared with that of u ;. When more general cases are
considered, suitable interface conditions have to be imposed. An analytical way to find the
right interface conditions is via homogenization; see [18].

4. Weak formulations and inf-sup analysis. In this section we derive and analyze
several weak formulations associated with the Stokes-Darcy system presented in Section 3.

4.1. Weak formulations. According to Appendix A, it is enough to consider the case
gr=0and hy =0in (3.1) and g, = 0 and h, = 0in (3.2).
For €2 define

X ;= Hy(Qs,T§)™ and My := L*(y),

where Hj (Q,T'¢)™ means by definition the subspace of functions v ; such that each compo-
nent of v s belongs to H'(Q) and vanishes on T';.
For €2, we introduce the following spaces:

X, := Ho(div,Q,,T,) and M, := L(,,),

where H(div, Qp,T'p) is defined as the subspace of H(div, 2,,) of functions with vanishing
normal component on I'y, in the sense of Definition 2.3. Recall that if u,, € H(div, Q) then
uyn, € H-1/2(09,); see (2.2).

Define X := X ; x X, with the usual norm, i.e., givenv = (vs,v,) € X,

ol = |“f|%{1(9f)n + ||'Up||il(div,ﬂp)'

We also set M := My x M, with the norm ||g||3, := ||qf||iz(9f) + ||Qf||izmp).

In order to derive a weak formulation we first proceed formally and then we introduce
the adequate rigorous framework.
We start with the Stokes equation (3.1). For all vy € Xy we have

4.1) (—ZVV-D’U,f,Uf)Qf + (fo,’vf)gf = (ff,’vf)gf.
From the Green formula we have

—(Aug,vyp)a, = (Vuy, Vog)a, — (Vugn,vp)r

n—1
= (Vuys, Vog)a, — (mfVung,vpngr — > (7] Vun,,ver)r,
=1
and
—(V‘VU?,Uf)Qf = (Vu?,V'uf)Qf - (Vu}’nf,'uf)p
n—1

= (Vuf,Vos)a, — (i Vuin,vendr — Y (r] Vuin;, v,
=1
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then

—(ZV-DUf,’Uf)Qf = Q(DUf,D’Uf)Qf — 2(’)’]?DUf’l’)f,’Uf-’r]f>r
n—1

-2 Z(T;TDufnf’ ’Uf-‘l'l)r.
=1

For the second term on (4.1) we have
(4.2) (Vps,vp)a, = (pr,vpemgr — (pr, Vvg)a,-

Foruy,v; € X and g5 € My define

n—1
voy
4. :=2v(D D — . .
(4.3) af(uys,vf) == 2v(Duy, vf)9f+lzzl \/E(uf T,V T,
(4.4) bf(vf,qf) = —(qf,V-vf)Qf.

By replacing (4.2) in (4.1), and using the condition (3.6), we obtain for all vy € X and
g5 € Mf

45) { ap(up,vf) +bs(vyp,pr) + (pr —2vm; D(ugp)ng,vpngr = (Fr,v5)e;
bf(Uf,Qf) =0.

Analogously, defining

(4.6) ap(up,vy) = (%up,'up)gp for all up,, v, € Xy,

bp(Vp, @p) = —(qp, V-vp)q, forallv, € X, and g, € M,,

we have for allv, € X, and g, € M,

(4.7 ap(up, vp) + bp(vp, pp) + <ppv"’p'77p)1‘ = (fpa'"p)ﬂp
. bp(up, ap) =0.

To couple the two subproblems (4.5) and (4.7) we use balance of normal forces (3.5)
and a Lagrange multiplier which also approximate the Darcy pressure on the interface I'.
Introduce the Lagrange multiplier,

(4.8) A =p, =ps — 2vn; D(us)n; = ps — 2vm; Vun;.
Then we get
af(up,vy) +br(wyp,pp) +(vpny, Nr = (fp,v5)e, forallvy € Xy

ap(Up, vp) + by (Vy, pp) + (W, e = (F,vp)e, foralv, € X,
4.9 bf(uf,qf) 0 forall g5 € Mf
0
0

Il

Il

bp(tp, gp) forall g5 € M,
(upm; +upn,, pr forall u € A,

Il

where the space A is defined below.



ETNA

Kent State University
etna@mcs.kent.edu

COUPLING STOKES-DARCY EQUATIONS 357

Definea: X x X - Randb: X x M — Rby:

(4.10) a(ua U) = af(ufa ’Uf) + ap(upavp)a

4.11) b(v,q) := bf('”f:‘]f) + bp('”pa‘]p)'

Using (3.4), we obtain

a(w,v) +b(v,p) + (vrny +vpm, e = (F,v5)e, +(Fpv0)a,
(4.12) b(u,q) =0

(upnyg + upny,, Kr =0.

Note that if p is a solution of (4.12), then p plus any constant is also a solution of (4.12);

this follows directly from applying the divergence theorem on the first equation of (4.12)
and using (4.8). In addition, using the the divergence theorem on the second equation of
(4.12) and the compatibility condition (3.3) we have that the equation (4.12) is automatically
satisfied for constant test functions ¢ € M. Therefore, we can replace the space M in (4.9)
by the following subspace of M

(4.13) M° = {q=(qf,qp)€M : qf+/ qp=0}.
Q Q

We have to choose a suitable function space A for A. Observe that on the porous exterior
boundary I';, we consider zero flux as boundary condition, i.e., v,-n,, = 0 on I';,. Recalling
Definition 2.3, this means that

(v, Bgpr, o, =0 forall ¢ € Ho)*(Tp),

where E0162 r, denotes the extension by zero on I'y = I'. Then, according to Lemma 2.4 and

Remark 2.5 we can think of v,-n,, as a distribution in H —1/2(T"), more precisely, we can
define vy m,|r € H~'/2(T) as

(4.14) (wpm,|r, d)r = (vym,, B @)oq,, ¢ € HYA(T),

where E11/2 is the extension operator defined in Lemma 2.1. This is the main mathematical
motivation for choosing A as H'/2(T) rather than Hé({ *(T"). On the fluid exterior boundary
'y we are using Dirichlet boundary condition, i.e., vy =0 onT';. Then vyn|r € H&f(l")
relatively to 0. Then vy -n;|r € HS({ 2 (T) relatively to 0€,. Here we use the fact that
Héf(I‘), which is the trace of Hg(2f,Ty), is equivalent to the trace of H}(Q,,T,) if
the shape and measure of {; are of the similar size of those of ,; see [17, 23]. Since
HY*(T) ¢ H=Y/2(T") we conclude that vynglr € H7Y/2(T). In what follows we denote
vp-np|p simply by v,rm,, and vf-nf|p by vyn;.

From the previous discussion we conclude that v g-m; + v,1, € H-1/? (T") and so we
choose for A the space

@15 A= H20) with (|3 = 1 e = 1 e + 1 B
and define br : X x A — R by

(4.16) br(valuf) = <”f'77faN)F + <”p'77paﬂ)1“; v = (vf:vp) €X, peEA,
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with the second duality pairing as in (4.14).

From Lemma 2.4, we obtain

LEMMA 4.1. by : X x A — R defined in (4.16) and (4.14) is continuous.

Another reason for choosing H'/2(T") instead of H, éé %(T) is because the Lagrange mul-
tiplier represents the porous pressure on I', see (4.8), and hence there is no physical reason for

the pressure pj, to vanish on I'M 9§ when flux boundary conditions are imposed on the porous
side exterior boundary I',,. The space we choose for A is richer than H, é({ 2(1‘), therefore the

equation
br(u,p) =0 forallpe A=HY?(I)

applied to u is a stronger condition than considering p on the space H&é > (T"). As a result,
better mass conservation near 'N OS2 is achieved. On the other hand, choosing H, éé 2 (T") as the
spaces of Lagrange multipliers associated to the porous pressure would be more appropriate
if zero pressure was imposed on 9%2; see [11].

4.1.1. First weak formulation. We finally arrive to the weak formulation of the prob-
lem: Find (u!,p!,A!) € X x M° x A such that

a(ut,v) + b(v,p') + br(v,\!) =/L(v) forallve X
4.17) b(ul, q) =0  forallge M°

br(ul, p) =0 forall p € A,
where

L) := (fs,v5)a, + (fp,vp)a, forallv € X.

and the bilinear forms a, b and br are defined in (4.10), (4.11) and, (4.16) and (4.14), respec-
tively.

Next we introduce two other weak formulations and we refer to them as the second
and the third weak formulations; see (4.20) and (4.23). The second weak formulation is an
intermediate step for deriving the third weak formulation. The third formulation is the most
fundamental one among the three formulations and it is where most of the analysis is carried
on. Once the inf-sup condition is established for the third weak formulation, the inf-sup for
the other two formulations follow straightforwardly; see Remark 4.8. The analysis of the third
weak formulation is based on seminorms and on the theoretical tools developed in Section
2. The three weak formulations are all equivalent in the following sense (see Remarks 4.2
and 4.3):

1. If we know a solution (w, p, 5\) for one weak formulation, then we can construct a
solution for the other two weak formulations. This construction is done by removing
or by recovering the mean value of the fluid and porous pressure solutions and the
mean value of the Lagrange multiplier solution.

2. All three weak formulations have the same velocity solutions.

The Proposition 5.7 establishes the inf-sup condition for the third weak formulation,
therefore, the existence and uniqueness of the solution follow; see Subsection 4.1.3. Hence,
existence of a solution for the first and second weak formulations follows from Remarks 4.2
and 4.3. Finally, the Remark 4.8 establishes the inf-sup conditions for the first and second
weak formulations and therefore, the uniqueness of their solution.

4.1.2. Second weak formulation. We now introduce an equivalent weak formulation
for (4.17) by eliminating the velocities with non-zero mean normal jump across I' and also
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the Lagrange multipliers that are constants; see Remark 4.2 below. Define

(4.18) X° = {'v = (vf,vp) € X : br(v,1) :/va-nf +vpm, = 0}
and
(4.19) A® = HY2(T)NLT) withnorm |- [ae = |+ |g1/2(r).-
The second weak formulation is : Find (u?,p?, \2) € X° x M° x A° such that

a(u?,v) +b(v,p?) + br(v,)\?) =/L(v) forallv e X°
(4.20) b(u?,q) =0 forall g € M°
br(u?, p) =0 forall u € A°.

REMARK 4.2. It is easy to see that if (ul,p',\!) € X x M° x A solves the weak
formulation (4.17) then u! € X° and (u!,p', A\2) solves (4.20) with A2 = \! — IF\ Jr AL

To see the converse, let (u?,p?,A\2) € X° x M° x A° be a solution of (4.20). Construct
w = (0,w,) € X such that

1
wp'np = m on F, wp"r’p = 0 on F[h
define

A i= b(w) — a(u?,w) — b(w, p?),

and set Al := A2 4+ . Then (u?,p?, \!) solves (4.17). Indeed, observe that br(w, A1) = X
and that for v = (vy,v,) € X we can find a such that v? := v + aw € X°. Hence, we
obtain

a(u?, ) +b(v,p?) +br(v,A") = {a(u?®,v) + b(v*,p?) + br(v*,X*)}
—afa(u?, w) + b(w,p*) + br(w, \")}
= ((v*) - e{a(u®,w) + b(w,p*) + A}
= ((v*) — al(w) = {(v).
The second and third equations of (4.17) are also easily verified.

4.1.3. Third weak formulation. We can continue with the elimination of piecewise
constant pressures on each subdomain together with velocities with non-zero mean normal
component on I'. Define

4.21) X°° = {'u:('uf,'up) e X° : /'uf-nf =0 and /’Up-’l’]p:()}
r r

and

(4.22) M°°:= {qz(qf,qp)erpr: /Q quOand/Q qp=0},
f P

and consider the following formulation: Find (u?,p3, A3) € X°° x M°° x A° such that

(u ,v) +b(v,p?) +br(v,A\3) ={(v) forallv € X°°
(4.23) b(u?, q) -0  forallge M®®
br(u?, ) =0 forall u € A°.
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REMARK 4.3. Let (u2,p%,A2) € X° x M° x A° be a solution of (4.20). We next show
that u2 € X °°. Consider the following piecewise constant pressure p¢ = (1, —%) € M°.
From the second equation in (4.20) we have

9] [ 2
0= /Vu /un U1,
Qf ur - IQpI AN

and since u? € X°, i.e.,
/ufe-nf +/u12,-77p =0,
r r

we obtain [ u}n; = [ upn, = 0, therefore, u* € X°°. Now set

1/ 1/ .
3 2 2 2 2 00
p’i=pr— — DDy — ps | € M°°.
(f 1 o, PP T IR0 o, )

Then b(v,p?) = b(v,p?) for all v € X°° and we conclude that (u?, p?, A2) solves (4.23).
Now for the converse, suppose (u?,p®, %) € X°° x M°° x A° solves (4.23). Let z =

(z5,2p) € X° be any function such that [ zyn; = — [ z2pn, = IQf‘IQTPI‘Qp\ Then

b(z,p°) = /Vz /z | /] Zyn, = 1.
(z,p°) Qf |Qp| P Ny — |Q| pTp

Define
Y= K(Z) - a(u37 Z) - b(Z,p3) - bF(Za /\3)

and p? := p> + yp° where, as before, p°¢ = (1, ‘IQ |‘) Next we show that (u®, p?, A?) solves

(4.20). Indeed, if (v, q, u) € X° x M° x A°, we can find € such that v® := v + ez € X°°.
Then we have

a(u®,v) + b(v,p) + br(v,X*) = {a(u®,v*) + b(v*,p°) + br (v®, X*)} + yb(v*, p°)
—e{a(u®, z) +b(z,p°) + br(z, A?) +vb(2,p°)}
=L(v®) — el(z) = L(v).

Here we have used the fact that b(v3,p°) = 0 for all v € X°°. The second and third
equation of (4.20) are also easily verified.

4.2. Inf-sup analysis. In the subsequent sections, we consider only the formulation
(4.23), and we abandon the super-index 3 to avoid proliferation of indexes. In particular we
establish the inf-sup associated to this formulation, see Proposition 4.7. See also Remark 4.8
for the inf-sup of the first and second weak formulations.

Define

V=(VV,y) ={veX: br(v,u) =0forall up € A°}

with X °° and A° defined in (4.21) and (4.19), respectively. The space V is closed because the
linear map Br : X — A’ defined by Br(v)u := br(v, u) is continuous and V' = Ker Br. It
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is easy to see that forv € V we have vy,-m, = vy-m, € Hééz (T"). Then we can formulate
the problem (4.23) as

(4.24) { a(u,v) +b(v,p) =4£(v) forallv eV

b(u,q) =0 forall ¢ € M°°,

with M°° defined in (4.22). Since up -1, = uys -1y € Hé({z (T"), some regularity results on
u,, and p, can be derived which depends on smoothness and convexity properties of 0€2,,.
We note however that no regularity is used to establish the continuous and discrete inf-sup
conditions. Regularity is assumed only in the Section 6 where a priori error estimates are
established.

Now, define

(4.25) Z=(Z;,Zp):={veX: bv,q)=0 forall g€ M°°}.

Then we can also formulate problem (4.23) as:

(4.26) { a(u,v) +br(v,\) =((v) forallve Z

br(u, u) =0 forall p € A°.

REMARK 4.4. The Korn inequality implies that the bilinear form a; defined in (4.3)
is X g-elliptic; see [5, 23]. The bilinear for a, defined in (4.6) is H (divo, Q,)-elliptic, here
H(div®, Q,) consists of functions in H (div, ,,) with vanishing divergence, i.., the kernel of
bilinear form bj,. Then the bilinear form “a” defined in (4.10) is X y x H (div®, Q,)-elliptic.

Define

4.27) W, :=X,NH (Q,)? and W = (X;,W,)
with
4289 [olw, = loplm,> and [0l = llosl%, + oy,
The use of a subspace W N X °° with a stronger norm || - ||x < || - ||w is a common

strategy in showing continuous and discrete inf-sup conditions without assuming any regu-
larity on the solution of the associated problem [7, 15]; see also Lemmas 4.5 and 5.5 and
Proposition 5.3.
From the usual inf-sup condition for the Stokes problem on the whole domain 2 and since
M°° C M?°, we easily derive the inf-sup condition associated to the formulation (4.24).
LEMMA 4.5. There is a constant p > 0 such that

b(v,q) b(v,q)

inf sup —————— > inf sup —————— > p>0.
e ooy Wlxllalle = genree |y Iollwllglln
970 v#£0 q#0 w0

with W and || - ||w defined in (4.27) and (4.28), respectively.

Lemma 4.5, Remark 4.4, and the fact that (Ker b V') C (X y x H(div®,Q,)) guarantee
stability of the weak formulation (4.24); see [7, 15].

Recall that Z C H (div®, Q) x H(div°, Q,); see (4.25). To see that the weak formula-
tion (4.26) is stable, the next lemma shows that the inf-sup condition between spaces Z and
A° holds; see [7, 15]. The proof presented here follows the same ideas as [20], Lemma 3.4.
The main difference is that we are working with the spaces A° and Z.
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LEMMA 4.6. There is a constant y > 0, such that

b
inf  sup M >v>0.
pers ey I0lxlplae
BFO y£0

Proof. Fix p € A°, then p € H'/?(T') and [, p = 0, in particular if z # 0 then p is nota
constant. From Lemma 2.10 we have that there exists fr € H~'/?(T") such that (fr, 1)r = 0
and

(fFJILL)F

> Nl = Llul
el = 2720 = gl

(4.29)

From Remark 2.6, we introduce f € H~1/2(8Q,,) given by

(4.30) (f, o, = (fr,¢|r)r forall ¢ € H'/2(89,)
with
(431 |fla-12(80,) < Cilfrla-12(r)

and zero mean on 99y, i.e., (f,1)sq, = (fr,1)r = 0. By using the normal trace theorem,
and a continuous Stokes problem (f has zero mean on 952,) we can find v, € H(div,Q,)
with V-v, = 0in Q,, such that

(4.32) lvpll B (aiv, 2,) < Clfla-1/2(80,)
(4.33) vp-n, = fon 0.

Observe that v, € X ;. Indeed, if ¢ € H&f (T'p), then

(vp-m,, Doa, = (f, P, = (fr,dlr)r = (fr,0)r =0

and (v,-m,,, 1)aq, = (fr,)r = 0.
Choosing vy = 0, we have v := (vf,v,) € Z and:

br(v,p) _ 0+ (0 1y, B i)
llvllx Vol ar (div, 2,)
1 {f E%/zu)aﬂ,,

C fla-12000,)
1

— <fFa/"’)F
CCy  |frla—rem

11
ZC—Cl§|N|H1/2(r) by (4.29). O

L by (4.14)

> by (4.32) and (4.33)

by (4.30) and (4.31)
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For (g,p) € M°° x A° define |(p, )37 p0 := IIPI3% + |1|3o. From Lemmas 4.5
and 4.6 we can show
PROPOSITION 4.7. There is a constant 8 > 0 such that:

b(’U, (I) + br‘(’U, N)

(4.34) inf sup >p5>0.
(q,)EM®° xXA° vEXC° ||v||X|(Q7 M)|M><A°
(a,1)#(0,0) v#£0

Proof. Given (q,u) € M°° x A°, if ¢ # 0, from Lemma 4.5 there exists & € V such
that

b(®,49)
o]l x

where p independent of g. If px # 0, from Lemma 4.6 there exists z € Z such that

> pllgllm > 0,

bF(zau)
llzllx

Z ’Y|IU"A° > 0;

where 7 independent of p.
Observe that, if ¢ # 0

b(”: q) + bF(”: N) b(ﬁ7 q) + br(’ﬁ,ﬂ) b(ﬁ7 q) +0

sup > i == > pllgllar-
vexoe llvllx ol x o1l x
VA0

Analogously, if p # 0,
b('U, q) + bF(va IU/) > 0+ br(za /J’)

up ol 2 Thllx 2 el
veXcO X X
VH#0
then
b(v,q) + br(v, min{p,
sup ( q) F( N) Z {p ’7} (||q||M+|N|A°)
vex©° llvllx 2
V#£0
min{p,y
> P s, D

- 2
Proposition 4.7 permits us to formulate problem (4.23) as

a(u,v) + c(v,(p,\)) =4L(v) forallv e X°°
*3%) { c(u, (g, 1)) ! =0 forall (g, ) € M°° x A°,

where ¢(v, (¢, i) := b(v,q) + br(v, ). Then (4.34) in Proposition 4.7 can be written as:

there exists 8 = m{p 1} > 0 such that

c(v, (g, )

inf sup >p5>0.
(R)EMP° XA  pexeoo llvllx (g, )| mrxAe

(g,0)#0 VA0
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This inf-sup condition, together with the fact that a is Xy x H (divo, Q,)-elliptic and a and
c are bounded, (according to the abstract saddle point theory) guarantees the well-posedness
of the problem (4.35) or (4.23); see [7, 15].

REMARK 4.8. We now obtain the in f-sup condition for the weak formulation (4.20).
Consider z introduced in Remark 4.3. Note that in Remark 4.3 we only have required z € X°

and
/zf.n :_/z.lrl :L
r ! R Y FT TO

Now we also require the divergence of z to be constant on each subdomain and also that
zf My = —Zp - 1M, For instance, we can solve a Stokes problem with constant divergence
on the fluid side and a Darcy problem with the corresponding boundary data and constant di-
vergence on the porous side, with divergences values satisfying the subdomain compatibility
conditions. Then we have

(4.36) b(z,¢%) =0 forall¢> € M°°, and br(z,u?) =0 forall u* € A°.

We now show show that the inf-sup condition for the weak formulation (4.20) holds. The
spaces involved are X ° for velocities, and M ° and A° for pressures and Lagrange multipliers,
respectively; see (4.18), (4.13) and (4.19). Take ¢> € M° and p?> € A° and let p° =

(1, —%) € MP?° as in Remark 4.3. We can write ¢> = ¢® + gp° where ¢°> € M°°. Note that
P

llg®llar < llg®llas + lalllp°[lac-

From Proposition 4.7 and a Poincaré inequality, there exists v € X °° such that
b(v®, ) +br (0%, 1*) > Bllv®|lx {lla[lar + ll6®llae }

where £ is a positive constant independent of v*. If g # 0, let

g
|q]
Observe that ||v2||x < (1 + B||z||x||p°||am)||v?]| x - We have
b(v?,¢*) = {b(v®,¢*) + gb(v®,p°)} + r{b(2,¢") + ab(z,p)}
= {b(¥*,¢*) + 0} +r{0+ g} (see (4.36))
=b(v*,¢%) + Blalllv®| x |Ip°[l m

a

|q|

v? = 0° + Bl0*||x Pl m 2 = v° + 7z, withr = Bllo® || x|p°l m

and
br‘(’U2,,LL2) = br(’l}37u2) + Tbr(Z,,U,2) = b(vgﬂJ'Q) +0.
Then
b(v*,¢%) + br (v, 4*) = b(v®,¢°) + br(v®, 4*) + Blalllv* || x 1Pl m
> Bllv°(lx {llg® s + lu?lla- } + Blalllv® | x 12l
= Bllv’llx {llalla + lalllp®llae + lle?(la}
> Bllv’|lx {llg®(lm + [l lla= }

> B
1+ Bllzllx [lp°[la

lv*llx {llg®[lar + ll1?[la= } -
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This gives the inf-sup condition for weak formulation (4.20).

We now obtain the inf-sup condition for the weak formulation (4.17). The spaces are X
for velocities, M ° for pressures, and A defined in (4.15) for Lagrange multipliers. Consider
w introduced in Remark 4.2. Note that in Remark 4.2 we required w = (0, w,) with

1
Wy N, = m onI'and wyn, =0onT}.
Now we also require that the divergence of w be a constant on §2,. Given u! € A and
q' € M°, we write p' = p? + i where [ > = 0, i.e., p*> € A°. From the inf-sup for weak
formulation (4.20) deduced above, we can find v2 € X° such that

b(v?,q") +br (v*, %) > Bllv’llx {lla" lar + 11*]la- }

If o # 0, define v! = v + ,3A||v2||X|F|%%w. Note that

A 1 _ 1
vt llx < (1+ Bllwllx[T|Z)[[v*llx and [lu!]la = [ln*[lae + |AIT]=.
And we proceed as before to obtain the inf-sup condition for the weak formulation (4.17).

5. Finite element approximation. In Section 3 the problem for the coupling fluid flow
with porous media flow in its continuous form was presented, while in Section 4 it was pre-
sented its variational formulation and well-posedness. Now a two dimensional non-matching
grid finite element approximation is discussed. We choose the P2\ P1 triangular Taylor Hood
finite elements for approximating the free fluid side velocity and pressure, while we use the
lowest order triangular Raviart-Thomas finite element to approximate the filtration velocity
and the porous pressure; see Section 5.1 below. In Section 5.2 a discrete non-conforming La-
grange multiplier space to couple the Taylor-Hood and Raviart-Thomas spaces is introduced.
It is important for the analysis to choose the Stokes side as the mortar side, i.e., to place the
discrete Lagrange multiplier on the Darcy side. In this case the discrete map from mortar to
non-mortar side is continuous in L?(T") norm. Extensions of the results to other than Stokes
and Darcy finite element spaces are straightforward; just take the Lagrange multiplier spaces
that are used to hybridize mixed finite elements of the Darcy equation; see [7]. We establish
the discrete inf-sup conditions related to the weak formulation (4.24), (4.26) and (4.23). The
extension of the results to the three dimensional case is also straightforward.

5.1. Discretization. From now on we assume that {2 has polygonal boundary. Let T,
be a triangulation of €, j = f,p. We do not assume that they match at the polyhedral
interface I'. We choose P2\ P1 triangular Taylor-Hood finite elements; see [6, 7, 15]. Define
(5.1 Xy, = {vf €X;: vigk=9sxoFg onK and ¥ € P2(f()2} NCo(Qy),
and
(5.2) Xzf = {’Uhf Eth :/’Uhf-’l’lfz()},

r

where vy = vf|K. We also define

M, = {qs € My : g = g o ' on K and Gyxc € Pi(K) } nCO(@y),

(5.3) M,‘L’f = {gy € My, :/ g5 = 0}.
Qp
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We have the following result.
LEMMA 5.1 (Approximation of Taylor-Hood elements). Suppose that Ty, is non-degenerate
and has no triangle with two edges on 0Qy. Then, there exists a bounded linear operator

I,T:: Xy — Xy, such that
TH )
bf(vf —Ihfvf,phf) =0 forallphf € th
and ||I;;;Ivf||xf =2 |lvyllx,, with constant independent of hy. In addition we have:

TH
5.4 ||’Uf - Ihf’Uf”Lz(Qf)z = h;|’Uf|Hs(Qf)z s=1,2.

5.5) |’Uf—I,Tl;I’Uf|H1(Qf)2 jhf|’Uf|H2(Qf)2

/FI,Tlfvf-nf = /va-nf (which implies I,T::X; - X3,)

(5.6) |I,Tlf’vf|H1/2(F)2 = |'Uf|H1/2(I‘)2-

A constructive and apparently new proof using Fortin interpolation is given in Appendix B,
or see [0, 7, 15].

A direct consequence of Fortin’s criterion and the previous lemma is that, if 75, is non-
degenerate and has no triangle with two edges on 9, then (X}, Iy M ,‘l’f) satisfies the inf-sup
condition; see (5.2) and (5.3).

For the porous region we are going to use the lowest order Raviart-Thomas finite ele-
ments based on triangles. In general the Raviart-Thomas elements in a cell are defined by
(see [5,7, 15))

RT(K) := (Px(K))" + Pr(K)z,

andif v € RT},(K) then Vv € P (K) and v-n

e: € Pi(e;), for all edge e;. Then we choose

(5.7 X, = {'up € X, : vplk € RTo(K) and /'up-np = 0} ,
r

and

(5.8) Mg = {pp € M, : py|k € Po(K) with / Py = 0}.
QP

Velocities of lowest order Raviart-Thomas finite elements, RTo(K), K € 77pr are then

of the form
vp(T1,22) = ( Z ) —}—c( 2; )

We obtain the following result; see also [5, 7]. Recall the definition of W, in (4.27).
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LEMMA 5.2 (Approximation of Raviart-Thomas elements). For K € Ty, , define
I, g : H(div, K) N H'(K)? = RTo(K) by
RT 1
(5.9 Ihp,K”p"r’p|e = H e'UP"r’p

and define Is: : W, = RTj locally by: I::vp|K = I::,Kvp. Then

RT °
(5.10) /Q V-(vp — Iy, vp)qn, =0 forall gn, € My,

P

and ||I::vp||H(d,~v’ Q,) = llvpllw, with || - [lw, defined in (4.28). The property (5.9) implies
that IZPT : X, "W, — X . Inaddition, with the property (5.10) we have I,I:PT 1 ZpN
W, = Zj . Moreover, if v, € H'(Q,)? then

RT
(5.11) llv, — Ihpvp||L2(Qp)2 = hplvp|Hi(a,)2;

and

IV-(vp = I vp)ll 220,y = ol V-0pl 1 (0y)-

By using Fortin’s idea we can establish the inf-sup condition for the spaces (X gp, M ,‘zp)
defined in (5.7) and (5.8), respectively.

5.2. Discrete inf-sup condition. Let "N 7}, be the trace on T" of the porous side trian-
gulation. We consider piecewise constant Lagrange multiplier space

A‘,’Lp = {th e L*(): Kh, |e,is constant on each edge e, € T'N 7;,’”’ and / W= 0} .
r

We note that this choice leads to non-conforming finite elements associated to A° since piece-
wise constant functions do not belong to H'/2(T); see (4.19).

We also introduce for later use

Ap, = {,uh,, € L*(T) :  ph,|e, is constant on each edge e, € T'N 7},’”’} i

Define h = (hy, hyp),
(5.12) X;° ::X;’lf xX‘,’chX"", Mpe© ::M,‘L’f ><M,‘L’PCM00
and
(513) Vi = (Vi , Vip,) = {'Uh € X3°: ([vnlmy, pn,)r = 0forall py, € Azp} ;
where [vy] := vp, —vp, on T forall v, € X, Also define

(5.14) Zy = (th,th) = {’Uh S X;)Lo : b(vh,qh) = (Qforall g, € M;;o}.
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For z;,, € X zp-np|p = Azp, i.e., zp, is piecewise constant on I" relatively to 7, and
with zero mean on T, define By, 2, € X ZP as the discrete velocity solution of the problem

ap(En,2h,,Vh,) + bp(Vh,,Pr,) =0 for all v, € sz

(5.15) such that vp,'m, =0onT,
bp(Ehpzhp, th) =0 for all an, € M;;p
Ey,zh,m, =2, onT.

We note that a discrete divergence free Raviart-Thomas vector field is also a divergence free
vector field. Therefore, using [22] we have

(5.16) ||Ehpzhp||22(m = ||Ehpzhp||Xp = |th|H—1/2(F).

We have the following result.
PROPOSITION 5.3. Suppose that Ty, is non-degenerate and has no triangle with two
edges on 0S¢ and consider W defined in (4.27). There exists a linear continuous operator

O, : (VAW) >V,

such that

(5.17) b(IIpv — v,qn) = 0 forall g, € My°
and

(5.18) ITho|[x =2 vpllw, < lvllw.

with || - ||w defined in (4.28).
Proof. Write I, (v) = (ITj,v, I}, v), where IT v := Ivaf and

I, = 150, + Br, (Qu, (Tyiom,) — Ito,m,)

where @, denotes the L2-projection on A"», i.e., on the space of piecewise constant func-
tions on I
Let pn, € A}, . We have

(Ip,v-n,, pn,)r — (Mg, v-m,, fip, )T

TH TH
(@n, (Ithf‘np);/lhp)r - (Ih,Uf‘npallhp)r
0 by definition of Qp,,,

([MIpv]n, pn,)r

and then obtain II,v € V.
Now we show (5.18). Observe that

IMrvllx < [[Txvllx, + [Tk, v]|x,
TH RT
< |ITh)vsllx, + 125 vllx,
TH RT
+1Bn, (@n, (L1 vrmy) = Iy, ) llx,

The bound (5.18) follows from the boundedness of T Zf (Lemma5.1), I ,I:PT (Lemma 5.2), By,
(Equation (5.16)), and from the following two bounds:
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1. From the boundedness of T Zf and h,» and from a trace theorem, we have

|th(12f”f"'7p)|H—1/2(r) < ||th(IZf”f'77p)||L2(r)
< 1,0 1l 2y
= |’Uf‘77p|H1/2(F)
= |'Up'77p|H1/2(r)
2 vpllw,
< lvflw-

2. From the normal trace theorem and the boundedness of T :,,T’ we have

RT RT
Th, 0yl a-1/2(r) = h, vl x, = [[vpllw, <|lvllw. O

REMARK 5.4. We note that when the mesh 7, (Qy) restricted to T' is a refinement of
the mesh 7, (€2,) restricted to I, then by using (B.8) in Appendix B we have Q, (I ,Tlfy I
"7p) = th'uf-np. Also from (5.9) we have Iz:vp-np = th"’p'np- Hence using that
VpTlp, =VpMy € Hééz(F) we obtain

RT
Ey, (th (vymy,) — Ih,,’”p'TIp) =0.

In the following result we establish the discrete inf-sup condition using Fortin’s Lemma.

LEMMA 5.5. Suppose that Ty, is non-degenerate and has no triangle with two edges
on O0y. Consider V' and Mg° defined in (5.13) and (5.12), respectively. Then (V 'y, Mg°)
satisfies the discrete inf-sup condition, i.e., there is a constant p > Q independent of h, such
that

b(v
inf qp @) 5> 0.
mEME® eV, lvnllxlgnllae
70 vp 70

Proof. Take g, € Mp°. From Lemma 4.5 we can find v # 0 € V' N W such that

b(v7qh)
llvllw

> pllgn||ar-

Then from Proposition 5.3 we have

b(v,qn) _ b(IThv,qn) < b(ITpv, gn)
l|lv][w lvllw ~— &IMyo|x’

pllgnllar <

where C is the constant in (5.18). O
For pp, € Azp, define wp, = wp,(un,) € X Zp as velocity solution of the discrete
problem,

(5.19) ap(Un,sVn,) + bp(Vn, s Ph,) = —(Vh, My, pn,)r  forallvg, € X3
' bp(n,,qn,) =0 for all g, € M;;p
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and introduce
(5.20) |1, |?x;;p := ap(Un, (Bh,): Un, (Bh,))-

In order to see that |- |j’\hp isanormon A}, observe thatif yup,, is such that |, [4,, =0,
then @y, (1un,) vanishes. If we take vy, in (5.19) such that

Vhp My = Hhy
bp(vhp,th) =0 ah, € M;;P,

we see that ||, [[ 2y = 0, thatis pp, = 0. Then | - |4, is positive.
The norm AZP is the natural discrete version of the norm H'/?(T") scaled by the factor
\/§ for the space A;’lp. Indeed, by using (5.15) and (5.19), we have

Zhy s Ep,Zh, Nps
(521) sup (Zhysbn,) sup (Eh, 2h, p, Bh,)

e X = |pn, [ag -
ZhPEX?lp.np‘F:A;JLP \/%lth|H_l/2(F) thEAgP \/%”Ehpzhp“LQ(Q) tote

We obtain the following result.
LEMMA 5.6. The spaces (Z},, A;’lp) satisfy the discrete inf-sup condition, i.e., there is a
constant y > 0 such that

([[vh]]'nfaﬂhp)F -

inf sup — 1 —F— >4>0.
bnn €AY wnen llonllx |in, |ag
Ahp;ﬁo v;,;éO

Proof. Take pp, € A} and let @p, (pn,) be the velocity solution of (5.19). Since
Wp,(th,) € Zp, then V-up, = 0. Take v, = (0,%p,(n,)) € Zp, X Zp,, then from
(5.19) we obtain

(lvrl g pwn,)r — ap(@n, (pn,), s, (pn,)) :\/g>0_ 0

llonllx |in, |ag B lleen, (n,) 22 (0, | n, |43,

For (qn, un,) € Mg° x Ay define |(gn, :“hp)ﬁvfo;; = |lqnll?, + |'uh1’|?\2 . Then using
P P
the same argument of Proposition 4.7 we have

_ PROPOSITION 5.7. Under assumptions of Lemmas 5.5 and 5.6 we have that there exists
B > 0 such that

b(vr,qn) + ([vrlmy, pa,)r

(5.22) inf sup >f3>0.
(@uosing JEMEP XA, prexse llollx[1(gns pn, Mling x g,
(an,1n, )#(0,0) Vn#0

REMARK 5.8. With the inf-sup condition (5.22) of Proposition 5.7 we can establish
the inf-sup conditions corresponding to the discrete versions of the first and the second weak
formulations in (4.17) and (4.20), respectively. Here we consider [|un, 13, = |lpa, ”%2(1“) +

|ieh, |?\2p . This is done using similar arguments to those given in Section 4.2; see Remark 4.8.
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6. Error analysis. We remark that the constants involved in the notation < are all in-
dependent, not only of the mesh size but also independent of the parameters v and k. In
addition, using scaling arguments, it is easy to see that \/i;pf, Vvug, \/gpp and \/%up are
all O(1), therefore, we keep those factors on the a priori error estimates.

We introduce the following energy norms,

(6.1) losl2, = ay(vy,v5),
(6.2) llvplls, = ap(vy,vp),
and

(6.3) Ivll2 := a(v,v).

We next establish a priori error estimates for the Stokes and Darcy velocities.
PROPOSITION 6.1. Suppose that Ty, is non-degenerate and has no triangle with two
edges on 0Sdy. Let h := max{hy, hyp}. Then we have the following estimate

v
lu —up|la < R (\/;|Uf|H2(Qf)2 + \/;|UP|H1(QP)2>

1
+ hPT;lpf|H1(Qf)'

Moreover, if the refinement condition of Remark 5.4 is satisfied then
v
||u — uh||a < hf\/lj|’u,f|H2(Qf)2 + hp\/glup|H1(Qp)2.

Proof. From Proposition 5.7 we have that Z, N V', is not empty, where Z, and V', are
defined in (5.14) and (5.13), respectively. Then, the discrete problem associated with (4.24)
can also be described as: find uy € Z, NV, such that

a(un,vp) =L(vy) vp € Zp NV,
where a is elliptic in Z N V. Furthermore, wy, is also the only velocity solution of

a(up,vp) +b(vn,pr) + ([ve]nyg, An,) =4L(vy) forallv, € X5°
(6.4) b(wun, qn) =0 for all g, € M°
([[Uh]]'nf,lth,,) =0 for all pp, € A;’lp.

For any wy, € Z;, NV, we have that vy, := up, —wp € Zp NV, and
(6.5) a(vh,vh) = a(un, vn) — a(wh, vn) = L(vr) — a(wn, va).
Let (u,p, \) be the solution of the continuous problem (4.9). Then

l(vp) = a(u,vp) + b(Vh,p) + br(vh, A)
and using (6.5) it follows that

a(vh,vn) = a(u — wp,vh) + bV, p) + br(ve, ),



ETNA

Kent State University
etna@mcs.kent.edu

372 J. GALVIS AND M. SARKIS

and

lun — whlla = ||vnlle < |l —whlla

b(z br(zp, A
+ sup ( hap) + sup F( h> )
Zh€EZnNV ||Zh||a zZh€ZnNVy ||Zh||a

Hence, using
lluw — uplla < lu—whlla + llun — whlla,
we obtain
6.6 — <2 inf —
(©6) lu—willa <2 nf o lu—wall,

b(z br(zp, A
+ sup ( h)p) + p F( hs )
ZRh€ZRNVy ||zh”a zZRh€ZRNVy ||Zh||a

To bound the first term on the right-hand size of (6.6) we let wy = IIju, where II},
is defined in Proposition 5.3. Proposition 5.3 guarantees that wy € V. In addition, since
b(u,gn) = 0 forall g, € Mp°, (5.17) guarantees that w, = ITyu € Z}, and we have

lu — Mpulla < [lup — My ulle, + (lup — i, ulla,
TH RT

Sllug = Iy uglla, + llup — Iy, uplla,

TH RT

1B, (Qn, (L1 jurn,) = Ty, llo,:
From (5.5) in Lemma 5.1 we obtain
TH
s = Ih ugllay < hpvvluglmeg,):

and from (5.11) in Lemma 5.2 we obtain

RT v
L T ey I

since V-u, = 0.
From the boundedness of E, in (5.16), we have

TH RT v TH RT
1B, (QhP(Ihfuf'np) - Ihpup'"p) lla, < \/E|th(1hf’u’f"rlp) =1y, upny|g-1/2(r)-
Therefore, we need to estimate the following three terms:
TH RT TH TH
|th (Ihfuf'np) - Ihpup'np|H—1/2(F) < |th (Ihf'vf'np) - Ihfuf'np|H—1/2(r)
TH RT
+|Ihfuf'np - uf'np|H—1/2(l") + ||Uf'77p - Ih,,up'np“H—l/Z(r)
1. Approximation property (6.7), boundedness of I Zf in (5.6) and the trace theorem
give
TH TH TH
|Qn, (T, upmy) — I wpmplag-12@y 2 by, wpny|me
= hp|uf‘77p|H1/2(r)
= hplupn, |2 (r)
< hplup| g2y

j hp|up|H1(Qp)2.
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2. The trace theorem and approximation properties of 1 ,Tlf (Lemma 5.1) give

TH

Hp,wpmy — wp | g-172my 2 hillupngll gz,
= hf||“p'77p||H1/2(p)
< hf|up|H1(Qp)2.

3. The normal trace theorem and the approximation property (5.11) of I :: imply
RT

|“p‘77p - Ihpup'rlp|H—1/2(r) = hp|up‘77p|H1/2(r)

< hp|’ll,p|H1 (©Q,)2

We note that we have used
(6.7) |Qn, it — ptl =120y =X hplpl vz (rys

since by using local arguments we have ||Qn, 1 — pll L2(ry 2 h,l,/2|u|H1/2(F) and then

(@Qnptt — 1, P)r
|Qn,pt = pplgr-1/2(ry = sup  ———
semi/2ry  |Plaem

< 1Qn, 1t = pll 20y 1Qn, @ = ¢l L2 (1)

T peH2(T) bl 172 (1)

= hp|M|H1/2(r)-

We now bound the second term on the right-hand size of (6.6). Note that since we are
using lowest order Raviart-Thomas elements, the porous side components of Zj defined
in (5.14) are divergence free, i.e., Z By C Z,, where Z, is defined in (4.25). Therefore,
by(zn,q) = 0 for all ¢ = (gf,qp) € M°°. In addition, we have b(zn,p — qn) = 0 for
zp € Zp N V. In summary, we have

1
b(zh,p)| = |bg (2, pp)| = |bf(2n;,pr — Qppyp)| X hfﬁ|Pf|H1(Qf)||zh||a,
where we have used the first order approximation of the Ly-projection operator ) on the
fluid pressure space M gf.

To bound the third term on the right-hand size of (6.6) we have

bF(zha’\) = <>‘thf ”7f>F + <)‘7th "'7;;)1“
=\ zn; e +(Qn, A Zh, Mp)T  Zh, -7, is constant in e
= {A=Qn,A\ zn; np)r Zn, € Zp,

hence,
1
(6.8) |br (24, A)| =X hp_y|)‘|H1/2(1")\/’7|zhf'nf|H1/2(1")'

By using (4.8) on I' (on the €2 side) and trace theorems, we obtain

1
(6.9) or (24, A)| X by (W|Pf|H1(Qf) + \/5|uf|H2(Qf)2> 1zklas
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and the proposition follows. O
REMARK 6.2. We note that we could have used the porous media side in (4.8) to bound
|\l 7172y in (6.8). In this case, we would have obtained

h
(6.10) br (24, A)| X \/—%|Pp|H1(Qp)||Zh||a-

Even thought we obtain the term h;, multiplying p, in (6.10), the bound (6.9) is qualitatively
better than the bound (6.10). Note that by using scaling arguments we have \/§ pp = O(1).

Therefore, the factor % |pp| e (2,) 1s very pessimistic due to the fact that in practice the value

of k is very small.
We next establish a priori error estimates for the Stokes and Darcy pressures.
PROPOSITION 6.3. Suppose that Ty, is non-degenerate and has no triangle with two
edges on 0SQy. Let h := max{hy, hp}. Then we have the following estimate,

1 K

olloy =il + ) Slon =0,
-<h<\/;|uf|H2(Q 2+\/z|u | e 2+L| | )
- 1) | PIH(2p) ﬁpf H'(Qy)

K
+ h —\Pp|HY .
p\/;| plH1(Q,)

Moreover; if the refinement condition of Remark 5.4 is satisfied then

1 K
W”pf —pnsllzzep) + ;||pp — Ph,ll2(9,)
1

< hy (\/’7|uf|H2(Qf)2 + \/;|pf|H1(Qf)>

K 14
+ "y ;lpp|H1(9p)+ luplara,)2 ) -

Proof. To obtain an expression for the pressure error, observe that for all v, € Vi, N
(Hg (25) x Ho(div,Qp)) (i.e., v, = 00n 9y and vp,-n, = 0 0n &) and all g, € My°

(6.11) b(Vh,pr — qr) = a(u — wp,vp) + (VR P — qn)-

This holds true in particular for vy, = (vs,,0) and gr = (qn,,0). If we take gn, = Qypy,
i.e., the Ly-projection on the discrete fluid pressure space, we obtain

bf(’vhprhf - prf) = af(uf _uhf7vhf) +bf(’Uhf,pf - prf)

Then, using the standard discrete inf-sup condition for the fluid problem, we have

1 ar(us —up,,vp,) +bs(v —
—=lIpr; — QpsllLz(a,) X sup sty = ung, Vny) + by (Ons,pr = Qpy)
\/; ’UthVhfﬁHé(Qf) ”Uhf”af

1
S lug —upglla, + W”pf - Qpsllzzca;)

1
2up —unglla, + hf$|pf|H1(Qf)’
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and from a triangle inequality we obtain

1 2
WHW —pnsllzzey) 2 lluy —unglla, + hf\/—17|pf|H1(Qf)-

Analogously we obtain

K K
ﬁnpp = Phy (0 = iy = wn, oy + 2hgy [l

The proposition follows from the bound on velocity error given on Proposition 6.1. O
Now we analyze a priori error estimate for ) in the discrete norm || defined in (5.20);

see also [1]. Note that the norm AfLP was defined for piecewise constant functions on the ',
triangulation. For functions y € L?(T), we define

(6.12) lulag, = |Qnymlag

where Qp,, is the L2-projection onto Azp. We have the following result.
PROPOSITION 6.4. Suppose that Ty, is non-degenerate and has no triangle with two
edges on 0. Let h := max{hy, hp}. Then we have the following estimates:

14
(6.13) A= Anylag 2 h (\/17|Uf|H2(Qf)2 + \/;lulel(QpV)

1
+ hpy—=Ipsla1 ;)
pﬁf ()

and

K K
(6.14) \/;P\ - )‘hp|H—1/2(I‘) < hp\/;lpp|H1(Qp) =+ |)\ — )‘hplAZp .

Moreover, if the refinement condition of Remark 5.4 is satisfied then
v
|)\ — )‘hplAZp < hf\/;luf|H2(Qf)2 + hp\/;|UP|H1(QP)2.

Proof. Let wp, (Qn,A) and pp, (Qr,A) be the solution of (5.19). Note that the solution
of (6.4) satisfies up, = wn,(An,) and pp, = Pp,(An,). Then, using the definition of the
discrete norm A}, we have

A= An, |A;1P = |[un, (Qr,A) — un,|la,,
which can be bounded by
(6'15) ||ﬁhp (thA) - uhp”ap S ||’ﬂ'hp (thA) - Iu'p”ap + ”up - uhp”ap'

We use Proposition 6.1 to estimate the second term on the right-hand side of (6.15). We next
estimate the first term of the right-hand side of (6.15). Note that

(6.16) ap(n, (Qr,A) — p,Vn,) + by (Vh,, Dh, (Qr,A) — Pp) = 0.

Inserting vs, = Un,(Qr,A) — Un, € Zp, into (6.16) and recalling that Z, C Z,, where
Zy, and Z, are defined in (4.25) and (5.14), respectively, we have

ap(ﬁhp (th )‘) — Up, ahp (th )‘) B uhP) =0.
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Hence,
ap(Un, (Qn,A) — Up, Un, (Qh,A) — up) + ap(tn, (Qn,A) — Up, up — up,) =0,
and by using a Cauchy-Schwarz inequality we obtain
||ahp(th)\) - up”ap < ||'u'hp - up”ap

and (6.13) follows. To obtain the estimate (6.14), we note that from (5.21) we have

K ZP’Q P/\_/\p
al@mA = A llzary = sup G, @1 ")ﬁM—Ah,JA;P,
Zh

seh, VFlan e

therefore,
(6.17) (A= An,lE-1720) 2 A = QuAlE-1/2(1) + 1@, A = An, [lL2(1)
and (6.14) follows from (6.17) and (6.7). O
REMARK 6.5. Note that we are discretizing the third weak formulation (4.23). We
have to recover the piecewise constant pressure in each subdomain. Recall the function z of

Remark 4.3. Note that we can compute zp, := II(2) = (IT;, 2, T, 2); see Proposition 5.3.
Then

v = €(zn) — awn, zn) = b(zn, pr) — ([2a}n s, A, ),

and v, p° = Y (pfc, p}) is the approximation for piecewise constant pressure in each subdo-
main £, j = f,p. Observe that

[y = vnl 2 la(w — un, z0)| + [b(zn, P — Pp)| + [([zal0g, v = 0, )1

These last terms can be estimated using the results of this section. Analogously we can
recover the mean value A of the Lagrange multiplier. Indeed, we can find

wy = (O,whp) € Xf X Xp
such that

1
Wh, N, = m onI' and wh, M, =0on ry,

and so we can define (see Remark 4.2)
A = L(w) — a(up, w) — b(w, py).
In this case
A= An| < la(u —up, w)| + [b(w,p — pr)|.

The last two terms can be estimated using the results of this section.
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7. Numerical results. In this section we present numerical experiments in order to ver-
ify the estimates established in the paper. We consider Qy = (1,2) x (0,1) and Q, =
(0,1) x (0,1). We consider ay = 0. The velocity solution for Stokes is given by u¢(z,y) =
(y(1 —y), —z + 2+ 2(x — 1)y) with pressure ps(z,y) = —2z — Ly + 5/2 + . Note that
uy is not divergence free. The velocity solution for Darcy is u,(z,y) = (1 — 2z + 2® +y —
y?, —1+z+2y—2axy) with pressure p,(z,y) = £((1—z)y(1—y) —z+2> — % +3—y)+1.
Note that the normal component of u,, has a parabolic profile on the interface I' = 1 x (0,1)
0
0
onI'. The exact solution is compatible with (3.5) with (3.6) when iy = 0. A similar example
is presented in [8], where the term V - Dwuy is replaced by Auy in the Stokes equations.

In Figure 7.1 we show the computed solution of the coupled problem. On the porous
side we have plotted the velocity in the center of each triangle. In Figure 7.2 we zoom part
of the interface and plot the y component of the velocities. In Figure 7.3 we show the be-

while its tangential component is zero. Note also that Duy = S ) onI',and p; = p,

,,,,,,,,,,,

04r| /70 A A LK NENURRRN
AR IS

———

F1G. 7.1. Computed velocities (left figure) and pressures (right figure). On the porous side (left subdomain)
we have plotted the value of the velocity at the centroid of each triangle.

havior of the error (in the scaled norms defined in (6.1), (6.2) and (6.3)) with respect to the
discretization parameters. Here we also show [|[A — Ap, || sy, i.e., the Lagrange multiplier
approximation error in the discrete norm defined in (6.12). We observe according to Fig-
ure 7.3, the error in the norm || - ||2 defined in (6.3), which is the sum of the fluid velocity and
porous velocity errors in the scaled norms, is of linear order. This agree with Proposition 6.1.
Analogously, the pressure error is of linear order. This also agree with the result about the
pressure error, see Proposition 6.3. We finally observe that the Lagrange multiplier error in
the discrete norm defined in (6.12) is also of linear order.

8. Conclusion. We studied the coupling across an interface of fluid and porous media
flows, consisting of Stokes equations in the fluid region Q¢ and Darcy law for the filtration
velocity in the porous medium region €2,. After discussing the adequate choice of H 1/2 o,

rather than HS({ 2(I‘), as the Lagrange multiplier space, we presented a complete analysis
for the inf-sup and approximation results associated with the continuous and discrete for-
mulations of this Stokes-Darcy system. We chose the triangular P2\ P1 Taylor Hood finite
elements and the lower order Raviart-Thomas elements as discrete spaces for the free and
porous medium subdomains, respectively. Optimal a priori discrete error estimates do not
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FI1G. 7.2. The x-component of the discrete velocity (left figure), where on the porous side (left subdomain) we
plot the two values of the x-component of the velocities at the midpoint of each edge; recall that Raviart-Thomas
elements allow discontinuous tangential velocities on interior edges. The discrete (in blue) and the exact (in red)
Lagrange multipliers on the interface (right figure).

10 10
"4
- -
- 10
w1 /‘ 2
e 10
) 0%
10 AIRE
1
’/, QUIH 10'4,
UH
45 di
10° ! 107 I
10° 10" 10° 10"

FI1G. 7.3. Velocities errors (left) and pressures errors (right).

depend on the coefficients v and  and ratio of mesh parameters. Sharper local estimates can
also be obtained for the case where the fluid mesh on the interface T is a refinement of the
porous mesh on I'. The numerical experiments show good agreements with our theoretical
results.
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Appendix A. Non-homogeneous boundary conditions. The non-homogeneous bound-
condition can be reduced to the homogeneous case when h; € H'/?(T';)? and
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h, € H='/2(T,). First construct w; € H'(Q)? such that

—V-T(Wf,ﬁf) =0 in Qf
V-wf =gf in Qf

wy = hf on Ff
T(wys,pr)my =0 onT.

(A1)

From the divergence theorem

(A.2) / ’wf-’l’]fZ/ gf—/ hf"l’]f.
Ty Qy Ty

Now put uy = wy + ; where uy satisfies the non-homogeneous system (3.1). So we are
looking for (¢ that satisfy

-V-T(¢s,p5) =f;+V-2vD(wy) inQy
¢y =0 onTly.

Analogously, on the porous region, the non-homogeneous case can be reduced to the
homogeneous one. In this case h, € H~'/2(T',). Construct w, € H(div,(,) such that

rw,+Vp, =0 in Q,
Vw, =g, in €,

(A.3) wymn, = hy onT,,
wyn, =wsgn, onl,

with wy defined in (A.1). This construction is possible since the compatibility condition (3.3)
and (A.2) imply that the system (A.3) is compatible. Put u;, = w;, + ¢,. Then we look for
¢, such that

¢, +Vpp, =—fw, infY
V¢, =0 in Q,
¢ymp, =0 rp.

In terms of weak formulation, with w := (wf,w,), we have:
find (¢,p,\) € X x M° x A satisfying

a(€,v) +b(v,p) + br(v,\) =£(v) —a(w,v) forallve X
b(¢,q) =0 forall g € M°
br (¢, 1) =0 forall u € A,

which is the same problem (4.17) with a different right hand side.

Appendix B. Approximation properties of Taylor-Hood finite elements. In this ap-
pendix, the domain of reference is €2;. Recall the definitions of X y and My on (5.1) and
(5.3), respectively. In order to simplify the notation in some cases we omit the subscript that
refers to the domain. In particular, all the operators defined in this section act on velocities
defined on Q.

Let @ : Xy — X}, be Clement interpolation; see [5, 9, 28]. It is know that Q is
bounded, i.e.,

(B.1) |Qus|ai(a,)2 2 V|1 (9,2,
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and we have
(BZ) ||’Uf - QIUfHLZ(Qf)Q j hsl’Uf|Hs(Qf)2, s = 1,2.
(B3) |’Uf—Q’Uf|H1(Qf)2 jh"Uf|H2(Qf)2,
(B.4) |Q’Uf|H1/2(F)2 =< |’Uf|H1/2(F)2,
1
(B.5) lvy — Quyllpry2 2 b2 |vsl sz rye-

This interpolation is basically a Clement interpolation on T, i.e., values zero at the interface
relative boundary points and a Clement interpolation at the interior nodes.

Given K € Tj, and e edge of K, let (> = (nk,n?) denote the normal to e exterior to
K, 7 = (1}, 72) the tangential vector to e (with K anticlockwise oriented), and z. the

midpoint of the edge e. Each interior edge belongs to two triangles K1 and K. Let 17, denote

one of the directions 7"’ or n¢“>’. For boundary edges 1, denotes n(<’. Analogously, for

interior edges let T, denote one of the directions 75 or 7, and for boundary edges

T =7,
eto, ’,1=1,2,3, be the edge bubble laylor-Hood basis functions based on the mid-
Let ¢, i = 1,2, 3, be the edge bubble Taylor-Hood basis functions based on the mid
points of the edges of K. Let i := ¢"'m,,, i = 1,2,3,and 9" := ¢\ 7,, i = 1,2,3.
Observe that

fK’l/J»(iK)'ne,- 7507 1/’§-K)'Te,- =01i= 17273'
ﬁgK)(wei)'Tei 75 0, ﬂEK)"’?e,- =01:=1,23.
Now consider the following subspaces of X, :
ng := {vn, € Xp, : vk € Span{p{, 95, i} } N Xy,
and
Wi :={vn, € Xn, :v[k € Span{9{, 95,9571} N X, .

Note that if vy, € ng then vy, -mslr € HS({Q(F) and vy, Tf|aq, = 0. Also note that if
vy, € W;';f then vy, - T¢|r € Héf(f‘) and Uhf-nf|39f =0.
LetTl, : X; — WZ]f be (locally) defined by

K K K 1 .
v, € Span{yp{®) ) )y st / M,v;n= o] | v i=1,23,
e; g €;
for all K € Tp. In other words, IL,v¢ = a9, + as®py + a3tp,, where

= fe,- Vyr-MNe, _ fei VT,
i fei ¢i"’76i fei ¢§K)

From a trace theorem and a scaling argument we have that

1
|ai|2 = h_2||”f||i2(1()2 + |”f|%il(K)2'
f

Then

1
TLvs|m1(e,) 2 ax lai|* < h—§||’vf||i2(gf)2 + |’Uf|%fl(nf)2
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and

B6)  IMosl7a g,y % by max |ail” < llvslliaq, ) + 3losln )2
Observe that

/V-Hn'uf:/ Hn('vf)-n:/ vf-nz/ V-vg.
K 8K 8K K

We also have

(B.7) ITyv sl 2z =2 llvsllp2ry2-
Define Y : Xy = X, by

(B.8) Y,vs = Qus+IL,(v; — Quy),

then we have the following result.
LEMMA B.1. The operator X, defined in (B.8) is bounded

(B.9) IChvslmia,)2 2 |vlae,)s,
moreover,

(B.10) vy = Xovsll2@,y2 2R Nvsllae @,z s =1,2-
and

(B.11) lv; = Covrlmy)> = hlvslaze,):-

We also have

(B.12) IXnvslaemye 2 el gz e,

and

(B.13) /Tnvf-ne = /vf-ne for all edge e.
[ e

Proof. From (B.6) we have, for s =1, 2,

Y My = Qup)lliagey < D (””f = QT2 gy + hilvy — Q'”fﬁﬁ(KP)
KeTn KeTy,

s 2(s—1)42
= hf« |”f|§15(9,)2 + hf(s ) lvg

(B.14) < WY |y

%{s(gfy by (B.2), (B.3) and (B.1).

2
He ()"
Then, using an inverse estimate (see [5]) and (B.14) we get
1
L, (vy — Quy)la (k)2 = h_f”Hn(Uf = Qug)llr2(ky2 = [vslmi(a,e,
and hence

|T17vf|H1(Qf)2 < |Qvf|H1(Qf)2 + |HT,(’Uf - Q'Uf)lHl(Qf)Z by definition of Y,

2 |vsla @2 + lvsla @2 2 vsla e,
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To show (B.10) we have that
lvy = Xnvsllpz,)2 = llvy — Quy — Iy(vy — Quy)llp2(q,)2 by definition of X',
<|lvy = Q'Uf||L2(Qf)2 + [Ty (vy — Qvf)||L2(Qf)2
= h?|”f|Hs(Qf)2 + hs|’”f|Hs(Qf)2 by (B.2) and (B.14)
jh‘;"UHHs(Qf)z, 821,2.

Analogously we get (B.11). To prove (B.12), observe that
IXnvslmsemye < Ul + Hy(vy — Quy)laisa(r)
< 1Qll 17 py2 + By # My (v — Qo)
< Joglgrramye + by * oy — Quyllay> by (B4) and (B.7)
2 |vgla/z@y: by (B.S).

The last assertion, (B.13), is straighz\forward. O
Given gn, € My, define (locally) TI, gn, € W by

T gn, i € Span{9{, 95, 95}
with
(B.15) . qn, (z) -1 = 0and Mgy, (zc) - 7 = Van, () - T

at midpoints z. of all interior edges e. For edges on I'y we define fITq|e = 0. Note that
I, gp, is zero at the vertices of all elements of 75, and observe that IL.q, € H (Y] f)2 be-

cause the above equation are consistent in neighbor triangles which gives I1, gy, continuous;
see [5], Chapter II, Theorem 5.2.
LEMMA B.2. Suppose that T, is non-degenerate and has no triangle with two edges on

0S¢ and consider the operator ﬁT defined in (B.15). Then

1Xrqn g ll 2,2 2 lans |,y forallan, € Mg,

and there exists a positive constant such that:

/Q L qn, Van, = lan, oo,y = lan 72,y forallan, € Mg, .
f

From Lemma B.2 and the boundedness of fIT, the spaces W;’;f (with the L2 (Qy)-norm)

and M ,‘;f (with the H'(€2¢)-norm) satisfy the inf-sup condition independent of h s with re-
spect to the bilinear form defined in (4.4) by

bf(vf,qf) = —(C_If,V‘Uf)Qf for all Uy € Xf and g5 € M}).

Also observe thatif vy € W;’;f then vy -7 = 0on 0y and then by (vy,qr) = fo vy -Vgy
by the Green formula. Then, according to the Brezzi’s splitting theorem (see [5, 15]), we can
always obtain a stable solution w € W;:f of

(B.16) { (w,vf)a, +bs(vy,pr) = (2,vf5)q; forallvy € W;’;f

bs(w,qy) =bs(2,q7)a, forallgy € M;;fa
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where z € L*(Qy)2.
Given z, denote by Y, z the solution of (B.16). Then

(B.17) 172l 2(q,)2 2 l2llL2 0,2
and by (Y, z,qn,) = by(z,qn,) forqn, € M,jf.
In order to prove Lemma 5.1 define
TH
Ihf'Uf = TT,’Uf + T.,-(’Uf - Tn’Uf).
Observe that

TH
|Ihf’Uf|H1(Qf)2 < |Tn'vf|H1(Qf)2 + |TT(vf — ‘rn’vf)|H1(Qf)2
by (B.9) and inverse
estimate.

1
= vsla )2 + E”Tr(”f - Tn”f)||L2(Qf)2
1
<ol + 50 = Tuvsllra, 2 by B17)
jlvf|H1(Qf)2+|'Uf|H1(Qf)2 by(B.lO).

Then the operator 1 Zf is bounded (with constant independent of h ). In addition for py, ; €
M ,‘:f we get

br(Iy,v5,pn,) = bp(Xqgvs,pn,) +bs(Xr(vs — Yyvy),pr,)
=bs(Yyvs,pn,) +bs(vy — Lyvys,pr,) by definition of Y.
= bf(’ufiphf)‘

To obtain (5.4) observe that from definition of T ,Tlf we have

TH
llvy — Ithf||L2(Qf)2 <|lvy - Tn”f”Lz(Qf)? + 107 (vy — TnUf)||L2(Qf)2
2y - Tn'”f||L2(Qf)2 + vy = Tﬂvf||L2(Qf)2 by (B.17)
2 hilvslgs,2 s=1,2. by (B.10)

The proof of (5.5) is similar. Inequality (5.6) is obtained from (B.12).



