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POLYNOMIAL BEST CONSTRAINED DEGREE REDUCTION IN STRAIN
ENERGY*

GERMAIN E. RANDRIAMBELOSOAT

Abstract. We exhibit the best degree reduction of a given degree n polynomial by minimizing the strain energy
of the error with the constraint that continuity of a prescribed order is preserved at the two endpoints. It is shown
that a multidegree reduction is equivalent to a step-by-step reduction of one degree at a time by using the Fourier
coefficients with respect to Jacobi orthogonal polynomials. Then we give explicitly the optimal constrained one
degree reduction in Bézier form, by perturbing the Bézier coefficients.
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1. Introduction. Degree reduction of polynomials consists in approximating a given
polynomial f(t) by a lower degree polynomial g(¢) by minimizing the error f(t) — g(t)
with respect to a certain measure. The most often used measure in degree reduction is the
Ly-norm of the error for p = 1,2, 00; see [1, 2, 3,4, 6,7, 8,9, 10, 12]. In this paper we
are concerned with the following problem: Given a degree n polynomial f(t), find a degree
m(< n) polynomial g(t), ¢ € [0, 1], such that

e g(t) and f(¢) have the same first k + 1 derivatives at t = 0 and the same first / + 1
derivatives att = 1, i.e.,

g@(0) = fD(0), i=0,---,k+1;
(1.1) l+k<m-—4
gV (1) =), G=0, 0141

1
e ¢(t) minimizes the error strain energy E = / (f"(t) = g"(t))” dt for all such

possible polynomials of degree < m that satisfy (%he endpoint constraints (1.1).

This process is useful for many tasks in geometric modeling, such as data compression,
data comparison, rendering. Degree reduction is also needed to simplify some geometric or
graphical algorithms for intersection calculation of two polynomial curves or surfaces.

There have been many methods developed for degree reduction. As this is essentially a
problem of approximation, methods from classical approximation theory can be employed.
Watkins and Worsey [12] used the Chebyshev economization to produce the best L ,-approx-
imation of degree n — 1 without constraint to a given degree n polynomial. Later, Bogacki et
al. [1] achieve the best uniform approximation with endpoint interpolation by modifying the
economization procedure. The endpoints constraints that guarantee a prescribed order of con-
tinuity are often required in many applications and especially when degree reduction is com-
bined with subdivision to generate continuous piecewise approximation. Lachance [7] and
Eck [3] made deeper the Chebyshev economization procedure for the best L ,-approximation
with prescribed order of continuity at the endpoints, but it seems that there was no explicit
formula for the degree reduced polynomial as pointed out in [4]. These difficulties can be
avoided by using the Lo-norm. The degree reduction with endpoint interpolation that mini-
mizes the Ly-norm has been studied by Eck [4]. His method used the inverse of a polynomial
degree elevation process in Bézier form [5] and obtained two sets of control points, then
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considered a simple convex combination of these two sets of control points to generate the
control points for the degree reduced polynomial. Recently, Lutterkort et al. [8] discovered
a surprising result: finding the best Ly- approximation in Bézier form without constraint is
equivalent to finding the best Euclidean approximation of Bézier coefficients. This result
can be extended to the multivariate case [9]. The best degree reduction of Bézier curves in
L;-norm with endpoint interpolation has been solved by Kim and Moon [6]. The optimal
degree reduction with respect to various norms was studied by Brunnett et al. [2] who have
also shown the separability of degree reduction into the different components of a parametric
curve.

2. Degree reduction method. The degree reduction is accomplished through two stages.
In the first stage, we construct a degree p = k+1+ 1 polynomial ¢(t) interpolating the second
derivative f"'(t) att = 0 up to the (k 4+ 1)th order continuity and at ¢ = 1 up to the (I + 1)th
order of continuity as follows

_ O ()
_;f( dtz Zf] dt2 ’

where H Zk *(t) and M Jk (1) are the so called Hermite polynomials of degree p = k + [ + 3
defined by

e . k,l
dJHi (t)| = ]-a J=1 thz (t)l =0
dti =0 0, otherwise ’ dgh =T
,7=0,---,k+1, h=0,---,14+1,
and
okl .. k,l
d]Mi (t) | — 17 ) =1 thi (t) | =0
dti t=1 0, otherwise ’ dth =0 ’

i,j =0, 0+1, h=0,--- ,k+L

Both H zk (t) and M Jk ! (t) are uniquely defined since they have k + [ + 4 degrees of freedom,
and k 4 [ + 4 constraints as well.

The second stage is to determine g”(t) — ¢(t) by minimizing the error strain energy
1

E= / (F"(t) = g"(t))” dt, and then deduce the degree reduced polynomial g(t).

0
Note that the error strain energy can be expressed in terms of the Ly-norm as
n "2
E=f"=g"lk;

1
in the Hilbert space C([0, 1]) with the inner product < f,g >= / F@®)g(t)du(t), for a

convenient Borel positive measure p(t). For such a problem, choosing0 proper basis functions
often simplifies the computation. In our case, in order to allow a direct determination of
the polynomial g(¢) without solving a linear system, the appropriate basis functions should
be orthogonal with respect the above inner product. Let us consider the Jacobi polynomials
Ji(t) of degree i that are orthogonal with respect to the inner product

o= LR L= 0 (g0, kD> 0.
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They are defined by Rodrigues’ formula [11]

@1 gy = Eymmg _pa d

. dtz [t2k+z(1 _ t)2l+i] , Z Z 1’
2.

with Jo(t) = 1 and satisfy the orthogonality relation

1 e
21 2L T4 T _ ) aim ifi=j

22) /0 25 (1 — 82 7,(0)], (H)dt = { om s

with a;r; = % 2k1+ ST (l + 2k) (Z + 2k + 21) From the identity (2.1), the first

few polynomials J;(t) are Jo(t) = 1, J1 = 2k +1+ 1t - 2k + 1),

Jo(t) = (k+1+2)(2k + 20 + 3)t2 —2(k + 1)(2k + 20 + 3)t + (k +1)(2k + 1).
LEMMA 2.1. The functions f"(t) — ¢(t) and g" (t) — ¢(t) can be expressed as

(2.3) ') —o(t) =t*(1 =) (aoo(t) + - -+ an—p—i—2Jn—r-1—2(t)),
(2.4) g"(t) — ¢(t) = t*(1 =)' (boJo(t) + - - + bm—b—1—2Jm—k—1-2(t)),

where a; and b; are the Fourier coefficients defined by
1
2.5) @ = (aan) " [ Q=00 - 60) 0,
0
1
2.6) b= (o) [ (1= 06" (0) - 60Tt
0

Proof. By construction the polynomial ¢(t) interpolates the second derivative f"(t) at
t = O up to the (k+1)th order continuity and at ¢ = 1 up to the ({+1)th order continuity. Then
the polynomials f"(t) — ¢(t) and ¢g" (t) — ¢(t) have k-fold zeros at t = 0 and [-fold zeros at
t = 1. A common factor t* (1—t)! can be factored out from f"(t)—¢(t) and g"' (t)—(t), thus
we can set f"(t)—p(t) = t*(1—t)! F__1_5(t) and g"(£) — 4(t) = t(1—£)Gim_g_1.» ).
Now we express the polynomials F,_g_;—2(t) and Gu——;—2(t) in terms of the Jacobi
polynomials J;(t), then using the orthogonality relation (2.2), we obtain the expressions (2.5)
and (2.6) for the Fourier coefficients a; and b;. O

THEOREM 2.2. The best degree reduced polynomial g(t) is such that

g"(t) = ¢(t) +t*(1 — 1) (a0 Jo(t) + - + am—k—1—2Jm—k—1—2(1))
9(0) = f(0), ¢(1) = f(1),
and ag, 1, 5 Qm—k—1—2 are given by (2.5).

Proof. Consider the error strain energy

2.7)

E= /0 [(F"() = (1) — (9" (&) — $(1))]" dt

m—k—1—-2 n—k—1—-2

= /1 tzk(l - t)zl ( (a; — b;)J;(t) + Z aiJi(t)) dt.
0

i=0 i=m—k—1—1
Differentiating it with respect to the coefficient b; gives

—k—1-2 n—k—1—-2

g_bEj =-2 /)1 t2k(1 — t)21 (m (a; — bi)Ji(t)Jj () + Z aiJz'(t)Jj (t)) dt.

=0 i=m—k—I—-1
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Taking into account the orthogonality relation (2.2), we obtain

OF ]
b ==2(a; = bj)aju, j=0,-+,m—k-1-2.
j
To minimize E, we equate this derivative to zero and obtain b; = a; fori =0,--- ,m —k —

[ — 2. From (2.4), we deduce the expression of ¢"(¢) in (2.7). O

Equation (2.7) shows that if the decomposition (2.3) is available for the second derivative
F"(t) of the given polynomial, then the second derivative g" () of the constrained approxi-
mation in strain energy can be immediately obtained by just removing the last n — m terms
in the square bracket of (2.3). This means that a multidegree reduction is equivalent to a step-
by-step reduction of one degree at a time. In the next section we give explicitly the optimal
constrained one degree reduction in Bézier form [5], by perturbing the Bézier coefficients.

3. Coefficients perturbation in Bézier form. To obtain the coefficients of the reduced
degree polynomial without computing the Fourier coefficients we give a direct method based
on perturbing the coefficients of the initial polynomial.

Let BR(t) = (7)t'(1 — )" % i = 0,--- ,n, be the degree n Bernstein polynomials

n—1
basis. A degree n — 1 Bézier polynomial g(t) = Z @B~ (t), can be expressed in terms
=0
of Bernstein polynomials of higher degree m (> n — 1). In particular we can write g(t) =
n
ZpiBi"(t), with the new Bézier coefficients po = go; p; = (i/n)gi—1 + ((n —4)/n)q;, i =
i=0

1,---,n —1;p, = qp—1. However, the converse is generally not true unless the coefficient
of the nth degree term of g(¢) vanishes, which implies

3.1) i(—l)" (T;)p - 0.

It has been proved (see [3]) that under the condition (3.1), we have

(3.2) g = E;_ll))zz(’?)pj, i= 01,

=0 M

Now, the coefficients perturbation method consists in finding a perturbation vector
(€0, €1, ,€n), such that given a degree n polynomial f(t) = Y7, piBl*(t), the perturbed
polynomial

n

fet) =D (pi + &) BR(2),

=0

satisfies the condition (3.1), i.e., > 1o (—1)*(7) (pi + €;) = 0, and minimizes the error strain

energy

1 1 /n—2 2
E:/O (F() - (1) dtz/o (;A e;BT (t)) dt,

with A26i = €42 — 2€i41 + €;.
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The continuity constraints (1.1) at the endpoints f(0) = pg and f(1) = p, have a very
simple formulation,

LEMMA 3.1. If f.(t) is required to match f(t) up to the (k + 1)—th derivative art = 0,
then eg = --+ = €41 = 0. Similarly, €,_j_1 = --- = €, = 0 guarantees olans continuity
between f(t) and f(t) att = 1.

Proof. The derivatives of order r of a degree n polynomial h(t) = Y i, h; B!*(t) at the
endpoints hg and h,, are given by [5]

dr n! -

%h(o) = mA ho,
dr n! .
@h(l) = WA hn—r,

where A" is the iterated forward difference operator defined by
Ah; =hi, AThi=A""thiy — A" thy, r=1,2,---,

we list a few examples Alho = hy1—ho, A2h0 = hy—2h1+hog, Agho = h3—3hs+3h; —hg.
Thus the r-th derivative of a Bézier curve at an endpoint depends only on the r + 1 Bézier
coefficients near (and including) that endpoint. 0

Note that, if Y7 ((—=1)(7)p; = 0, then the given polynomial f(t) is of degree less
than n — 1. Otherwise, we proceed with the degree reduction, by introducing a Lagrange’s
multiplier A and then, including the constraints, our problem is equivalent to

(33) min L(€k+27 Tt €n—1-2, A)a
(€kt2, " s€n—1—2,A)
with
3.4)
1 /n—1-2 2 n n
Llensas - s ni—zs A) = / ( 3 AzeiBg—2(t)> dt —\Y (-1) (Z> (pi + €)-
0 N\i=k+2 i=0
The right hand side of L(€gya,-- - ,€n—i—2, A) takes into account the values of the €;’s given
by Lemma 3.1.

THEOREM 3.2. The minimization problem (3.3) has a unique solution given by the
system of linear equations

Yrs el — A1) =0, j=k+2-,n-1-2
Y (D (Me + Yo (D) (Nps =0

)

where of = 525("7) [("7)/C8) = 20 /() + GGy g =
k+2,- ,n—1-20a} =0fori <k+1lori>n—1-1land A%} = al,, —2ai41 +a.

Proof. By Theorem 2.2, the constrained degree reduction problem has a unique solution
that implies the same property for (3.3). Taking the partial derivative of
L = L(egg2, - ,€n—i—2,A) defined by (3.4), with respect to €xy2,-- - ,€n—j—2, A, and set-
ting the derivatives equal to zero leads to

oL 1 /n—1-2
7 =2, (Z

i=k+2 J

A2e;BI2(1)(BP2(t) — 2B 2(t) + BI 2 (t))> dt—X(—1)’ (n> =

0,
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t t

FI1G.3.1. (left, k = 1 = 0), (solid) degree 4 Bézier curve, (cross) reduced degree 3 curve, (rightk = 0,1 = 0),
(solid) degree 4 Bézier curve, (cross) reduced degree 2 curve.

forj=k+2,--- ,n—101-2,

OL _ n§2(—1)i (n)e + i(—l)i+1 (n)p =0
0N S ¢ i=0 ¢
Then by the identity B} (t) B} (t) = (7) (7;) / (13_"])312_:}] (t), and the formula [5], fol B (t)dt =
1
P we get
oL n-l-2 n
(3.5) — = Z agAzei—)\(—l)j(,) =0, j=k+2,---,n—1-2,
O Lia J
with of = 525("7) [('7)/Ci) =205/ G) + G2/ (h) ] ind =

E+2,--- ,n—101-2.
Rearranging the terms of the sum in (3.5), we can write

n—Il—2
Y el —,\(—1)1'(’?> =0, j=k+2,---,n—1—2.
i=k+2 J

oL _
6ej_

where af = 0fori <k+1lori>n—1—1and A’ = af+2 — 2041 + 0.
Finally, the following linear system of n — (k + I + 2) equations gives the unknowns
€k+2," " yEn—1—2, )\7

Yt ] — A1) (7) =0, j=k+2-,n—1-2

v { (- (M + Xy (-1 (Mp; =0. O

REMARK 3.3. When the polynomial f(t) is of degree < n, (i.e. 31— (—1)(})pi = 0),

system (3.6) has the unique solution €x42 =,---,= €,_;_2 = A = 0, which implies
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t t

FI1G. 3.2. (left, k = 0,1 = 1), (solid) degree 5 Bézier curve, (cross) reduced degree 4 curve, (rightk = 1,1 =
0), (solid) degree 5 Bézier curve, (cross) reduced degree 3 curve.

fe(t) = f(t). Thereby, the method of coefficient perturbation reproduces the initial poly-
nomial whenever the exact degree reduction exists. On the other hand, the solution of the
system (3.6) produces, in general, a polynomial of reduced degree < n — 1.

REMARK 3.4. If we would like f¢(t) to be of degree m (< n — 1), the conditions (3.1)
must be replaced by n — m constraints

j i min(n—1—2,j)
i=0

i=k+2 J
Introducing n — m Lagrange’s multipliers Ay, - - - , Ap,—m, We construct the fonctional
1 /n—1-2
Ll€ts2,  * »€ni=23 A1, 5 Anem) = / ( > eBI(t ) dt — Z NjmmT.
0 i=k+2 j=m+1

then solving the minimization problem

min L(€k+27"'  En—1—2; A1, " :)\n—m)
(€r+25 s€n—1—2,A1, s An—m)

gives the perturbation coefficients €; with obviously more complicated expressions.
REMARK 3.5. It is worth mentioning that the techniques developed in this paper can be
applied to compute the degree reduction of parametric Bézier curves.

3.1. Particular case. For the one degree reduction, if ¥k + 2 = n — [ — 2, then all the
€;’s are equal to zero, except €42 that is given by the last equation in (3.6)

n
€hio = Z z+k+3 ( )pz’-

k+2 i=0

The reduced degree polynomial g(t) = >, qu" 1(t), according to (3.2), is such that

—1)i < /n )
qiz(n,1) <>(p]+€])7 7'207"'7,”_1'
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Forn = 4, (k = 1 = 0), the constraints (3.1) correspond to the endpoints and endtangent

vectors interpolation and we have ¢g = €¢; = 0,63 = 23:0(—1)“‘3 (%)pi,e3 =¢e = 0.
Fig. 3.1 shows two numerical examples where the reduced degree polynomials g(t) are of
degree 3 and 2. For n = 5, we have k41 = 1, which implies (k,1) = (0,1) or (k,1) = (1,0).
Fig. 3.2 shows two examples where for (k,1) = (0,1) the reduced degree curve is of degree
4, and for (k,l) = (1,0) the reduced degree curve is of degree 3. Note that the relative

position of the reduced degree curve with respect to the initial curve depends on the sign of
€r+2; indeed we have (f(t) — fc(t)) = exr2 By, (t).

4. Error estimation. Using the convex hull property of Bernstein polynomials, the rate
of approximation for the one degree reduction, is given by

4.1 sup [[f(t) —f@) < sup |l
te[o,1] k+2<i<n—1—2

When the approximation error between f(t) and f(t) is larger than the prescribed tolerance,
we can subdivide the interval [0, 1] and perform constrained degree reduction on each subin-
terval. For in the particular case k + 2 = n — [ — 2, if we subdivide the given curve f(t)
at parameter values 0 = ty < t; < --- < tp = 1, then the error estimation (4.1) is de-
creased by a factor 1/6™ where § = max;(t;11 — t;). We get finally a continuous, piecewise
approximation of f(t) of lower degree.
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