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A PARTITION OF THE UNIT SPHERE INTO REGIONS OF EQUAL AREA AND
SMALL DIAMETER*
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Dedicated to Ed Saff on the occasion of his 60th birthday

Abstract. The recursive zonal equal area sphere partitioning algorithm is a practical algorithm for partitioning
higher dimensional spheres into regions of equal area and small diameter. This paper describes the partition algorithm
and its implementation in Matlab, provides numerical results and gives a sketch of the proof of the bounds on the
diameter of regions. A companion paper gives details of the proof.
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1. Introduction. For dimension d, the unit sphere S? embedded in R+ is

d+1
(1.1) S:={ ¢ e RH! Zwi =1
k=1

This paper describes a partition of the unit sphere S¢ C R¢*+! which is here called the recur-
sive zonal equal area (EQ) partition. The partition EQ(d, N) is a partition of the unit sphere
S?into N regions of equal area and small diameter. It is defined via the algorithm given in
Section 3.

Figure 1.1 shows an example of the partition EQ(2, 33), the recursive zonal equal area
partition of S2 into 33 regions.

For the purposes of this paper, we define an equal area partition of S? in the following
way.

DEFINITION 1.1. An equal area partition of S¢ is a nonempty finite set P of regions,
which are closed Lebesgue measurable subsets of S such that

1. the regions cover S that is

U r=5s%

ReP

2. the regions have equal area, with the Lebesgue area measure o of each R € P being

_o(8%
o(R) = 5

where | P| denotes the cardinality of P; and
3. the boundary of each region has area measure zero, that is, for each R € P,
o(OR) = 0.

Note that conditions 1 and 2 above imply that the intersection of any two regions of P
has measure zero. This in turn implies that any two regions of P are either disjoint or only
have boundary points in common. Condition 3 excludes pathological cases which are not of
interest in this paper.

This paper considers the Euclidean diameter of each region, defined as follows.
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FIG. 1.1. Partition EQ(2, 33)

DEFINITION 1.2. The diameter of a region R € S C Rt js
diam R := sup{e(z,y) | =,y € R},

where e(x,y) is the R¥*T! Euclidean distance ||z — y||.
The following definitions are specific to the main theorems stated in this paper.
DEFINITION 1.3. A set Z of partitions of S¢ is said to be diameter-bounded with diam-
eter bound K € Ry ifforall P € Z, foreach R € P,

diam R < K |P|~*/?.

DEFINITION 1.4. The set of recursive zonal equal area partitions of S% is defined as
EQ(d) := {BQ(d, N) | N € N, }.

where EQ(d, N) denotes the recursive zonal equal area partition of the unit sphere S% into
N regions, which is defined via the algorithm given in Section 3.

This paper claims that the partition defined via the algorithm given in Section 3 is an
equal area partition which is diameter bounded. This is formally stated in the following
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theorems.

THEOREM 1.5. Ford > 1and N > 1, the partition EQ(d, N) is an equal area partition
of S<.

THEOREM 1.6. For d > 1, EQ(d) is diameter-bounded in the sense of Definition 1.3.

These theorems are proved in detail in the companion paper [13]. The proof of The-
orem 1.5 is straightforward, following immediately from the construction of Section 3. A
sketch of the proof of Theorem 1.6 is given in Section 6 of this paper.

The construction for the recursive zonal equal area partition is based on Zhou’s con-
struction for S2 [27], as modified by Saff [16], and on Sloan’s notes on the partition of S3
[18].

The existence of partitions of S? into regions of equal area and small diameter is well
known and has been used in a number of ways. Alexander [2, Lemma 2.4, p. 447] uses
such a partition of S? to derive a lower bound for the maximum sum of distances between
points. The paper also suggests a construction for S? [2, p. 447], which differs from Zhou’s
construction. For 6m? regions, Alexander begins with a spherical cube which divides S into
six regions, then divides each face into m slices by using a pencil of m — 1 great circles with
positions adjusted so that each slice has the same area. Finally, each slice is divided into m
regions of equal area by another pencil of m — 1 great circles, which may differ for each
slice. Alexander then asserts that the diameters are the right magnitude and omits a proof.
This construction has an obvious generalization for S with 2(d + 1)m¢ regions. Start with
the appropriate spherical hypercube, then divide each face into m equal pieces, and so on. It
is not clear that this partition of S is diameter-bounded in the sense of Definition 1.3.

The existence of a diameter bounded set of equal area partitions of S?is used by Stolarsky
[20], Beck and Chen [3] and Bourgain and Lindenstrauss [4], but no construction is given.

Stolarsky [20, p. 581] asserts the existence of such a set, saying simply,

“Now clearly one can choose the A; so that their Euclidean diameters are

>N Ym-1for1 <i < N
Here Stolarsky is discussing a partition of S™~! into N regions labelled A;. Stolarsky’s
notation >>< is equivalent to order notation, and his assertion can be restated as:

There are constants ¢, C' > 0 such that for any N > 0 one can choose the

regions A; so that their Euclidean diameters are bounded by ¢ N —1/(m—1) ¢

diam A; < CN~Y(m=1) for1 < i < N.
The paper then uses this assertion to prove a theorem which relates the sum of distances
between N points on S™ ! to a discrepancy which is defined in the paper.

Beck and Chen [3, pp. 237-238] essentially cites Stolarsky’s result, asserting that

“One can easily find a partition

N
s?=|J R
=1

such that for 1 < £ < N, o(Ry) = o(S%/N and diam R, < N~/
where diam Ry is the diameter of R,.”
[With notation adjusted to match this paper.]

Bourgain and Lindenstrauss [4, p. 26] cite Beck and Chen [3] and use a diameter-
bounded equal area partition of S"~! to prove their Theorem 1 on the approximation of
zonoids by zonotopes.

Stolarsky’s assertion can be proven using the method used by Feige and Schechtman [7]
to prove the following lemma.
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LEMMA 1.7. (Feige and Schechtman [7, Lemma 21, pp. 430-431]) For each 0 < v <
/2 the sphere SY~1 can be partitioned into N = (O(l)/’y)d regions of equal area, each of
diameter at most vy.

Feige and Schechtman’s proof is not fully constructive. The construction assumes the
existence of an algorithm which creates a packing on the unit sphere having the maximum
number of equal spherical caps of given spherical radius [25, p1091] [26, Lemma 1, p. 2112].

Wagner [23, p. 112] implies that a diameter-bounded sequence of equal area partitions
of S? can be constructed where each region is a rectangular polytope in spherical polar coor-
dinates. For S?, this is the same form of partition as [27] and [16], and for S<, this is the same
form as given in this paper.

Rakhmanov, Saff and Zhou [15], Zhou [27, 28] and Kuijlaars and Saff [17, 11] use the
partition of S2 given by Zhou’s construction to obtain bounds on the extremal energy of point
sets.

Other constructions for equal area partitions of S2 have been used in the geosciences
[10, 19] and astronomy [21, 5, 8], but these constructions do not have a proven bound on the
diameter of regions. In particular, the regions of the “igloo” partitions of [5] have the same
form as [27] and [16]. The paper [5] also discusses nesting schemes for “igloo” partitions.

This paper is organized as follows. Section 2 presents enough of the geometry of the unit
sphere S? to permit the description of the partition algorithm. Section 3 describes the partition
algorithm. Section 4 presents an analysis of the regions of a partition. Section 5 proves a per-
region bound on diameters. Section 6 sketches the proof of Theorem 1.6. Section 7 describes
the Matlab implementation of the partition algorithm. Section 8 presents numerical results.
Appendix A contains detailed proofs of lemmas.

2. The geometry of the unit sphere S% This section describes some well known but
essential aspects of the geometry of S%.

Spherical polar coordinates. Spherical polar coordinates describe a point a on S? by
using one longitude, a; € R, considered modulo 27, and d — 1 colatitudes, ay, for k €
{2,...,d}, with 0 < a, < 7. The coordinates (0, @, ..., aq) and (27, az,. .., aq) there-
fore describe the same point.

In these coordinates, for d > 1 the major colatitude is taken to be the last, ay. Thus the
North pole of S¢ corresponds to g = 0.

The sphere S¢ defined by (1.1) is embedded in the vector space R%*+! with center at the
origin.

A point a € S¢ can therefore be described by its spherical polar coordinates or by its
corresponding Cartesian coordinate vector.

DEFINITION 2.1. We define the spherical polar to Cartesian coordinate map x by

x:Rx [0,7]7" = 8% c R,

x(a1,00,...,aq) = (a1,a2,...,a04+1),
where
d d
aj 1= cosay H sinaj, ap:= H sin a;,
j=2 j=1
d

ag 1= cosak_IHSinOéj, k€{37;d+1}
i=k
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For example, if a point a € S? has spherical polar coordinates (¢, 8), its Cartesian coor-
dinates are x(¢, ) = (sin 8 cos ¢, sin 8 sin ¢, cos9).

Poles, parallels and meridians. The spherical polar coordinates for S? can be described
in terms of parallels of latitude and meridians of longitude. Here we generalize these concepts
to S4.

The point (0,...,1) = x(0,...,0) is called the North pole and the point (0,...,—1) =
x(0,...,0) is called the South pole.

DEFINITION 2.2. Let oS® denote the unit sphere S excluding the North and South poles.

Fora:=x(ay,...,0q_1,04) € oS the parallel through a is

2.1 o(a) .= {x(B1,.--,Ba-1,aq) | (Br,--.,B4-1) € [0,27) x [0,7]¢"2}
and the meridian through a is

(2.2) o(a) := {x(a1,...,04-1,8) | B € (0,m)}.

Euclidean and spherical distances. DEFINITION 2.3. The spherical distance s(a,b)
and the Euclidean distance e(a, b) between two points a,b € S are

s(a,b) :=cos '(a-b), e(a,b):=|a—b].

We now recall a couple of well known elementary results.
LEMMA 2.4. For S¢,
1. Spherical distance is the arc length of an arc of a great circle, up to .
2. For any two points a,b € S% the Euclidean and spherical distances are related by

e(a,b) =7 (s(a, b)),
where

(2.3) T(0):=v2-2 cos€:25ing.

Spherical caps, collars and zones. For d > 1, for any point a € S¢ and any angle
0 € [0, ], the closed spherical cap S(a, ) is

S(a,d) :={beS?| s(a,b) <6},

that is the set of points of S¢ whose spherical distance to a is at most 6.

A closed spherical collar or annulus is the closure of the set difference between two
spherical caps with the same center and different radii.

For d > 1, a zone is a closed subset of S¢ which can be described by

(2.4) Z(e, B) = {x(71,-.,7a) €S? | 74 € [0, 8]},

where) < a< g < 7.
Z(0,a) is a North polar cap, that is a spherical cap with center the North pole, and
Z(a, ) is a South polar cap. If 0 < a < § < 7, Z(a, 3) is a collar.
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Equatorial map. We define the equatorial map TI : oS? — S91, using the following
construction. Take any point a = x(ai,-..,aq) of oS¢ and find the intersection between
the equator and @(a), the meridian through a. This is the point a’ = x(as,...,aq4-1,%).
Now identify the equator of S with the unit sphere S¢~! and so identify a’ € S? with
O(a) := x(ai,...,a4-1) € S¥L. We call TI(a) the equatorial image of a in S4~1,

By a slight abuse of notation, for any S C S¢ we define the equatorial image of S to be
1S := II(S N oS%). Thus the equatorial image of any zone of S¢ is the whole of S~

Regions which are rectilinear in spherical polar coordinates. To describe the recursive
zonal equal area partition, we need to describe the regions which it produces. In general,
these regions are rectilinear in spherical polar coordinates, and are of the form

(2.5) R =x([r,v1] X ... X [14,vd]),
where
(2.6) 7 €[0,27), v € (n,n+27, 0K <vp<m ke{2,...,d}.

More specifically, for the pair of d-tuples (71,...,74), (v1,...,v4) € R x [0,7]¢!
satisfying (2.6) we define the region

R((Tl,...,Td),(Ul,...,Ud)) = {x(ai,...,aq) | ar €[, ], k€ {1,...,d}}

=x ([r,v1] X ... X [T, 04]) -

In this way, each region of S¢ of the form (2.5) can be represented by the pair of d-tuples
(T1y...,74), (V1,...,v4). In particular, for d > 1, a North polar cap of S¢ can be described
as

R((OJ 07 R 0, 0)7 (2 T, Ty ..y T, Ud)) =X ([07 2771—] X [O;W]d_2 X [O,Ud]),
and a South polar cap of S¢ can be described as
R((07 0,...,0, Td)7 (2 TyTyeey T, 77—)) =X ([07 27T] X [07 W]d_2 X [Td77r])'

Each region of S¢ of the form (2.5) has 2¢ pseudo-vertices, each of which is a d-tuple
in spherical polar coordinates R x [0, 7]¢~1. The term “pseudo-vertex” is used because we
may have degenerate cases where the points of S corresponding to two or more of these 2¢
d-tuples coincide, as must happen when 7 = 0 and v; = 27. In these degenerate cases,
the corresponding point of S? may be an interior point of the region, or a point where the
boundary of the region is smooth. Examples are:

1. The pair ((0,0), (27, v2)) yields the four pseudo-vertices

{(an)a (2 TF,O), (O:UQ): (2 7T;U2)}

and the region R((0,0), (2m,v2)) which is a North polar cap of S%. The pseudo-

vertices (0,0) and (2,0) both correspond to x ((0,0)), which is the North pole, an
interior point of R((0,0), (27, v2)).

2. The pair ((0,0, 73), (2, v2,v3)) yields the eight pseudo-vertices

{(07 0, 7—3)7 (27]', 0, 7—3)7 (07 U2, T3)7 (27?, U2, 7—3)7
(0, 0,1)3), (27‘(’, 0,1)3), (O,Uz, ’U3), (271', ’l)2,’U3)}.

and the region R ((0,0,73), (27, va,v3)) of S® which is a descendant of a polar cap
in S2.
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We have the following elementary relationship between regions which are rectilinear in
spherical polar coordinates.

LEMMA 2.5. The equatorial image of a region of S® which is rectilinear in spherical
polar coordinates is a region of S*=! which is also rectilinear in spherical polar coordinates.
Specifically, we have

H'R,((Tl, .e ,Td_l,’l‘d), (Ul, .. -;Ud—l;'Ud)) = R((Tl, .. ;Td—l); (Ul, ‘e ;'Ud—l))-

The area of spheres and spherical caps. For d > 0, the area of S¢ C R¥*! is given by
[14,p. 1]

2.7) o(S% =

For all that follows, we will use the following abbreviations. For d > 1, we define
(2.8) w:=0(S%Y and Q:=0o(SY.

The area of a spherical cap S(a, ) of spherical radius 6 and center a is [12, Lemma 4.1
p. 255]

[’
2.9) V(d,6) = 0 (S(a,0)) = w /0 (sin &)1 de.

It can be readily seen that V(2,6) = 4 sin® § and V(3,6) = 7 (20 — sin(26)).
The area of a spherical cap can also be described using the incomplete Beta function.
LEMMA 2.6.

where B(x;a,b) is the incomplete Beta function [6] and B(a,b) is the Beta function.

The function I of Lemma 2.6 is variously called the incomplete Beta function ratio [9,
Chapter 25, p. 211], the regularized Beta function [24] or the cumulative distribution function
of the Beta distribution.

To determine the spherical radius € of a cap of area v we need to solve the equation
V(d,8) =wv.

We note that V is a smooth non-negative monotonically increasing function of 4, with
V(d,0) = 0. It therefore has an inverse, which we will call ©. We then have

@(d,V(d,@)) =6, for 6€]l0,7],
(2.10) V(d,0(d,v)) =v, for vel0,q].

For brevity, the following notation omits the explicit dependence of V on d, ie. we will
write V() for the area of a spherical cap of spherical radius 6.

3. The recursive zonal equal area partition. This section describes the recursive zonal
equal area partition and recursive zonal equal area partition algorithm in some detail.
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3.1. The recursive zonal equal area partition algorithm: an outline. The recursive
zonal equal area partition algorithm is recursive in dimension d. The pseudocode description
for the algorithm for EQ(d, N) is as follows:

if N =1 then
There is a single region which is the whole sphere;
elseif d =1 then
Divide the circle into IV equal segments;
else
Divide the sphere into zones, each the same area as an integer number of regions:
1. Determine the colatitudes of polar caps,
. Determine an ideal collar angle,
. Determine an ideal number of collars,
. Determine the actual number of collars,
. Create a list of the ideal number of regions in each collar,
. Create a list of the actual number of regions in each collar,
. Create a list of colatitudes of each zone;
Partition each spherical collar into regions of equal area,
using the recursive zonal equal area partition algorithm for dimension d — 1;
endif.

(o) NV I PRSI )

J

EQ(3,99) Steps 1 to 2 EQ(3,99) Steps 3to 5

y1=14.E.../ 0.,

%2 =33.7...

Yy = 33.7...

: 7 YFa

EQ(3,99) Steps 6 to 7

FIG. 3.1. Partition algorithm for EQ(3,99)

Figure 3.1 is an illustration of the algorithm for EQ(3, 99), with step numbers corresponding
to the step numbers in the pseudocode. We now describe key steps of the algorithm in more
detail.
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3.2. Dividing the sphere into zones. This is the key part of the algorithm, and is split
into a number of steps. Each step is described in more detail below. For brevity, we assume
d > 1and N > 1 and we omit mentioning dependence on the variables d and N, where this
can be done without confusion.

1. Determining the colatitudes of polar caps.
Each polar cap is a spherical cap with the same area as that required for a region.
For an N region partition of S, the required area of a region R is

Q
VR = N,
where Q is the area of S, as per (2.8).
The colatitude of the bottom of the North polar cap, 6. is the spherical radius of a
spherical cap of area V. Therefore

(3.1 fc := ©(Vr),

where the function © is defined by (2.10). The colatitude of top of the South polar
cap is then 7 — 6..

2. Determining an ideal collar angle.
As a result of Lemma 2.4, spherical distance approaches Euclidean distance as the
distance goes to zero. We now use the idea that to keep the diameter bounded we
want the shape of each region to approach a d-dimensional Euclidean hypercube as
N goes to infinity. That way, the diameter approaches the diagonal length of the
hypercube. The collar angle, the spherical distance between the top and bottom of a
collar in the partition, therefore should approach V;%/ Las N approaches infinity.
We therefore define the ideal collar angle to be

or :== ;/d.

3. Determining an ideal number of collars.
Ideally, the sphere is to be partitioned into the North and South spherical caps, and
a number of collars, all of which have angle §;. The ideal number of collars is
therefore
T — 20,
ny = .

Or

4. Determining the actual number of collars.
We use a rounding procedure to obtain an integer n close to the ideal number of
collars.
If N = 2, then n := 0. Otherwise

(3.2) n := max (1,round (ny)),
where, as usual, for x > 0,
round(z) := |z + 0.5],

where | | is the floor (greatest integer) function.
The number of collars is then n.
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5. Creating a list of the ideal number of regions in each collar.
We number the zones southward from 1 for the North polar cap to n + 2 for the
South polar cap, and number the collars so that collar ¢ is zone ¢ + 1.
We now assume N > 2. The “firting” collar angle is

(3.3) §p o= Mg, = T2
n n

We use dr to produce an increasing list of “fitting” colatitudes of caps, defined by
3.4 0F,z’ =0, + (Z — 1)51:‘,
forie {1,...,n+1}.

The area of each corresponding “fitting” collar is given by successive colatitudes in
this list. The ideal number of regions, y;, in each collari € {1,...,n} is then

 V(Orir1) —V(Or,)
Yi = v .
R

6. Creating a list of the actual number of regions in each collar.
We use a rounding procedure similar to that of Zhou [27, Lemma 2.11, pp. 16-17].
With n the number of collars as defined by (3.2), we define m;, the required number
of regions in collar i € {1,...,n} as follows.
Define the sequences a and m by starting with ag := 0, and for ¢ € {1,...,n},

i
m; := round(y; + a;—1), a;:= Z(yg‘ - m;).
j=1

7. Creating a list of colatitudes of each zone.
We now define 8y := 0, 0,2 := mand fori € {1,...,n + 1}, we define

i—1
6; =0 (1 +ij)VR

=1

Fori € {0,...,n+ 1}, we use Z as per (2.4) to define zone i + 1 to be Z(0;,6;+1).
Finally, for ¢ € {1, ... ,n}, we define collar ¢ to be zone ¢ + 1.

3.3. Partitioning a collar. We partition collar ¢ of EQ(d, N) into m; regions, each
corresponding to a region of the partition EQ(d — 1,m;). We assume that each region of
EQ(d — 1,m;) is rectilinear in spherical polar coordinates. If region j € {1,...,m;} of
EQ(d — 1,m;) is R((71,---,7a—1),(v1,---,v4-1)), then we define the region R of collar 4
of EQ(d, N) corresponding to region j of EQ(d — 1, m;) to be

(35) R:= R((Tl, e ,Td_1,0i), (’Ul, cee ,Ud_1,0i+1)).

REMARK 3.1. The partition EQ(d, N) is not fully specified by this algorithm. The
algorithm instead specifies an equivalence class of partitions, unique up to rotations of the
sectors of the partitions of S*. This means that the collars of EQ(2,N) are free to rotate
without changing diameters of the regions and without changing the colatitudes of the collars.
The regions remain rectilinear in spherical polar coordinates.
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4. Analysis of the recursive zonal equal area partition. The proofs of Theorems 1.5
and 1.6 proceed by induction on d, matching the recursion of the recursive zonal equal area
partition algorithm. This section presents the preliminary analysis of the recursive zonal
equal area partition, including the lemmas used in the proof of Theorem 1.6 [13]. Appendix
A contains proofs of the lemmas.

By induction on the construction given in Section 3, we see that the regions produced by
the recursive zonal equal area partition algorithm are rectilinear is spherical polar coordinates
and for d > 1 each region R of collar ¢ is of the form (3.5). Each such region therefore has
an equatorial image of the form

(4.1) IIR= X([Tl,’Ul] X [TQ,’UQ] X ... X [Td—l,’Ud—l])
= R((Tl,.. .,Td_l),(vl,.. -;'Ud—l)) € EQ(d— l,m,')

as per Lemma 2.5 and Section 3.3 above.

The following lemma on the diameter of the polar caps has an elementary proof, which
is omitted.

LEMMA 4.1. Ford > 1 and N > 1, the diameter of each of the polar caps of the
recursive zonal equal area partition EQ(d, N) is 2 sin 8., where 0. is defined by (3.1).

The following lemma leads to a bound on the diameter of a region contained in a collar.

LEMMA 4.2. Given a,b, c € S¢ where

a:= X(a17a27 .. 'aad—laA)7
b := X(ﬂhﬁ?a . '7ﬂd—17B)7
4.2) c:=x(a,qn,...,04-1,B),

with sin B > sin A, then the Euclidean R4t distance e(a, b) satisfies

e(a,b) < Ve(a,c)? + e(c,b)2.

The following definitions are of use in examining the diameter of R in terms of e(a, c)
and e(c, b). For region R contained in collar i of EQ(d, N),
o the spherical distance between the top and bottom parallels of region R is

4.3) 0;i == 0ip1 —0;,
e the maximum radius of collar 7 is
sin 01'4_1 if 0i+1 < 7T/2,
4.4) w; = max siné& = < sin6; if 0; >m/2,

£€[0:,0i41] .
1 otherwise.

We can now use Lemmas 2.4 and 4.2 to show that
LEMMA 4.3. For region R contained in collar i of EQ(d, N') we have

diam R < /Y (8)? + w? (diam T1 R)?

< \/63 + w?(diam IT R)2,

where 8; and w; are given by (4.3) and (4.4) respectively.
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5. A per-region bound on diameter. The following bound is not needed for the proof of
Theorem 1.6, but is useful in checking the calculation of the diameters of individual regions.

DEFINITION 5.1. The region diameter bound function db is defined on the regions of a
partition EQ(d, N) as follows.

For the whole sphere s

dbS%:=2.
For a region R contained in EQ(1, N),

27
R=Y"Y(—
db (N)’

where Y is defined by (2.3).
For d > 1, for a spherical cap R with spherical radius 0.,

db R := 2 sinf,.

For d > 1, for a region R contained in collar i € {1,...,n} of a partition EQ(d, N)
with n collars,

db R := /T(6:)? + wi(db T R)?,
where II R is defined by (4.1).
THEOREM 5.2. For any region R € EQ(d, N),

diam R < db R.

Proof. For the whole sphere S we have
diamS% = 2 = dbS<.

The partition algorithm for EQ(1, N), with N > 1, divides S! into N equal segments,
as described in Section 3.1. For a region R contained in EQ(1, N), with N > 1, the region
can be therefore be described by the pair of polar coordinates «, 5. That is, R = R(«, 3).
The spherical distance s( x(c), x(8)) is then given by

_ 2w

s(x(2),x(8)) = == <.
Using Lemma 2.4, the diameter of R is then

diam R = ¢(x(a),x(8)) = T (s(x(a),x(ﬂ))) _— (%”) —dbR.

For d > 1, for a spherical cap R with spherical radius 6., by Lemma 4.1,
diam R = 2 sinf, = db R.

For d > 1, for a region R contained in collar ¢ € {1,...,n} of a recursive zonal equal
area partition of S¢ with n collars, by Lemma 4.3, if diam [T R < dbII R then

diam R < |/ (6:)? + w? (diam 1 R)?

< \/Y(@)? +wi(dbIIR)? = db R,

The result follows by induction on d. |
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6. Sketch of the proof of the Theorem 1.6. The proof of Theorem 1.6 proceeds by
induction on the dimension d. The inductive step of the proof starts with the observation that
if d > 1 and if the set EQ(d — 1) has diameter bound &, then for any region R of collar i of
the partition EQ(d, N) we have

1
diamII R < km; ¢,

and therefore from Lemma 4.3 we have

diam R < /07 + k2p7,

where the scaled S ! diameter bound p; is

1

pi i=wim; "
As a consequence, if d > 1 and if EQ(d — 1) has diameter bound k, then for any region
R of the partition EQ(d, N)

diam R < /(max §)2 + k2(max p)2,
where

maxd := max ¢;, maxp:= max _p;,
ie{l,...,n} i€{l,...,n}

and n is the number of collars in the partition EQ(d, N).

Thus to prove the theorem it suffices to show that max é and max p are both of order
N~1/2_ Since the Euclidean diameter of a region of S is always bounded above by 2, we
need only prove that there is an Ny > 1 such that for N > Ny we have bounds of the right
order. This is because for any N > 1 and any N € [1, Ny] we have

ANY/INTY 5 9,

The key strategy in estimating max § and max p is to replace the integer variable i by a
small number of real valued variables constrained to some feasible domain, replace d and p
with the equivalent functions of these real variables, and then to find and estimate continuous
functions which dominate these equivalent functions.

To replace ¢, we first must model the rounding steps of the partition algorithm. We model
the first rounding step by finding appropriate bounds for p = ny/n = dp/dr, where dp is
defined by (3.3).

The second rounding step takes the sequence y and produces the sequences m and a. To
model this step, we first show that a; € [—1/2,1/2). This allows us to define the analog
functions Y, M, A, W, P corresponding to y, m, §, w, p respectively. These analog functions
are defined on the real rounding variables 7 and 8 and the angle variable 8, such that Y
coincides with y, etc. when 7 = —a;_1, 8 = a; and = OF ;, where 0 ; is defined by (3.4).

We then define the feasible domain ID such that the second rounding step always corre-
sponds to a set of points in ID.

The final and longest part of the proof is to show that both A and P are asymptotically
bounded of order N —1/4 over the whole of ID. In this final part, we need estimates for the area
function V and the inverse function ©. Crude but very simple estimates of these functions
yield bounds for A and P of the correct order.
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7. Implementation. The Recursive Zonal Equal Area (EQ) Sphere Partitioning Tool-
box is a suite of Matlab [22] functions. These functions are intended for use in exploring
different aspects of EQ sphere partitioning.

For d < 2, the area function V(d, 6) uses the closed solution to the integral (2.9), and for
d > 3 the area function uses the Matlab [22] function BETAINC to evaluate the regularized
incomplete Beta function I of Lemma 2.6. For d = 3 the area function uses the closed
solution for 6 € /6, 57 /6] and otherwise uses BETAINC.

The inverse function ©(d, v) uses the closed solution to the inverse for d < 2, and oth-
erwise uses the Matlab [22] function FZERO to find the solution. This loses some accuracy
for area arguments near zero. In future, the inverse function may instead be based on an
implementation of the inverse Beta distribution algorithm of Abernathy and Smith [1].

8. Numerical results.
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FIG. 8.1. Maximum diameters of EQ(2, N) (log-log scale)

Maximum diameters of regions. Figures 8.1, 8.2 and 8.3 are log-log plots corresponding
to the recursive zonal equal area partitions of S¢ for d = 2, d = 3 and d = 4 respectively.
For each partition EQ(d, N), for N from 1 to 100 000, each figure shows the maximum per-
region upper bound on diameter, as per Definition 5.1, depicted as red dots, and the maximum
vertex diameter, depicted as blue + signs.

The vertex diameter of a region is the maximum distance between pseudo-vertices of
a region, except where a region spans 27 in longitude, in which case one of each pair of
coincident pseudo-vertices is replaced by a point with the same colatitudes and a longitude
increased by 7. For low dimensions and for regions which do not straddle the equator, the
vertex diameter provides a good lower bound on the diameter.

Only the upper and lower bounds on the maximum diameter are plotted, rather than the
maximum diameter itself. This is because, for each region of each partition, the diameter is
the solution of a constrained nonlinear optimization problem. It would therefore take quite a
long time to calculate the maximum diameter of every partition for N from 1 to 100 000.
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Feige and Schechtman’s construction yields the following upper bound on the smallest
maximum diameter of an equal area partition of S¢.

LEMMA 8.1. [7, Lemma 21, pp. 430-431] For d > 1, N > 2, there is a partition
FS(d, N) of the unit sphere S into N regions, with each region R € FS(d, N) having area
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o(S? /N and Euclidean diameter bounded above by
8.1) diam R < Y (min(r, 86.)),

with Y defined by (2.3) and 0. defined by (3.1).

A proof of Stolarsky’s assertion using Lemma 8.1 and a proof of Lemma 8.1 itself are
included in [13].

The black curve on each figure is the Feige-Schechtman bound (8.1). On each figure,
this curve joins a straight line for which the maximum diameter of a region is 2.

Figures 8.1, 8.2, and 8.3 show that for N < 100 000, we have maxdiam(2, N)N/2 <
6.5, maxdiam(3, N)N'/3 < 7 and maxdiam(4, N)N'/* < 7.5 respectively.

Figure 8.4 plots the maximum per-region upper bound (Definition 5.1) depicted as red
dots, and the maximum vertex diameter, depicted as blue + signs, for the partitions EQ(d, 2¥),
for d from 2 to 8, for k from 1 to 20. For the cases shown, we have maxdiam(d, 2’“) x 2k/d <
8.

Running time. To benchmark the speed of the partition algorithm, the function
eqg.regions(d, N) was run for d from 1 to 11 and N from 2 to 222 = 4194304, in suc-
cessive powers of 2, on a 2 GHz AMD Opteron processor, using Matlab 7.01 [22]. The
benchmark was repeated a total of three times. For d from 2 to 11 and N from 8 to 222 the
running time ¢ was approximately

t(d, N) = (0.24 = 0.04) d-00+0-07 060001 1y

with the error bounds having 95% confidence level. Thus for this range of d and N, the
running time of the partition algorithm is approximately O(IN-¢), which is faster than linear
inN.
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Appendix A. Proofs of lemmas.
Proof of Lemma 2.6. From (2.7) we know that

V(d,0)  [)sin?t ¢ de

v, m)  [Tsin®tede

Now substitute u = sin®(£/2). Then, since € [0, 7], by a well-known half angle formula
we have sin & = 2u'/?(1 — ©)'/2 and we also have du = u'/2(1 — u)'/d¢, so

0
_BEnstd)
B9

Proof of Lemma 4.2. For any a, b, ¢ € R¥*! we have

e(a,c)? +e(c,b)? —e(a,b)’ =(a—c)-(a—c)+(c—b)-(c—Db)
—(a—b)-(a—Db)
=2a-b—2a-c—2c-b+2c-c=2(a—-c)-(b—c).
We therefore prove Lemma 4.2 by proving that (a —c) - (b —¢) > 0.
First, note that rotations of S¢ are isometries and therefore without loss of generality we
may rotate the triangle acb to make calculation more convenient. Now note that we can apply

a single S?~! rotation to S while keeping the S? colatitude fixed.
Therefore we can assume that

a=x(0,...,0,0,4), b=x(0,...,0,C,B), c¢=x(0,...,0,0,B).

In Cartesian coordinates, for d > 3, we obtain

(0,...,0,0,sin A, cos A),
(0,...,0,sin B sin C, sin B cos C, cos B),
(0,...,0,0,sin B, cos B).

a
b
c

Due to an unfortunate feature of the conventional mapping from spherical to Cartesian coor-
dinates, for S2 C R, we obtain

a=(sinA4,0,cos A), b = (sinB cosC,sinB sinC,cos B), ¢ = (sinB,0,cosB).
and for S C R*, we obtain

a=(0,0,sin 4, cos A),
b = (sin B sin C, 0, sin B cos C, cos B),
¢ = (0,0,sin B, cos B).

In all three cases, we obtain

(a—c)-(b—c)=(sinA —sin B)(sin B cos C — sin B) + (0)(sin B sin C)
+ (cos A — cos B)(0)
= (sinB —sin A) (1 — cos C) sin B > 0. O
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To prove Lemma 4.3 we use the following results.
LEMMA A.l. Let a, ¢ be points of region R in collar i of EQ(d, N), which additionally
satisfy (4.2) with sin B > sin A, that is,

R=R((1,---,7a1,0i), (v1, - -, 04 1,0i11))),
a=x(a,0z,...,a4-1,4), ec=x(ar,0,...,aq-1,B),
ay, € [tg,vr], k€{1,...,d=1}, A,B€[0;,0;11], sinB >sinA.

We then have e(a,c) < Y(6;) < d;, where 0; is given by (4.3).
Proof. Since a and c differ only in colatitude we have

s(a, C) = |B — A| < 9“_1 — 9, = (5,’.

Using Lemma 2.4 we note that the function T increases monotonically with spherical
distance, and for all 6 € (0, 7] we have Y(0) < . Therefore

e(a,c) =T (s(a,c)) < Y(6;) < &;. d

LEMMA A.2. Let b, ¢ be points of region R in collar i of EQ(d, N), which additionally
satisfy (4.2), that is,

R=R((r1,..-,74-1,0i), (v1,...,04-1,0i41))),
b:x(ﬂlaﬂ%"':ﬂd—l;B)a c:X(a17a27"'aad—1’B)a
ak,ﬂk € [Tk,’l)k],k S {1,.. .,d— 1}, B e [9,',0,'.;,_1].

We then have e(c,b) < w; diam IT R, where w; is given by (4.4).
Proof. The points b and ¢ both have colatitude B. Using the spherical polar coordinates
of b and ¢ and the mappings x and IT we see that if ITb = (b}, ..., b)) then

b = (sin B b}, ...,sin B b, cos B),

and similarly for point c. It follows that e(c,b) = sin B e(Il ¢, II b).
Since II (b),II (¢) € II R, the Euclidean distance e(II (c), IT (b)) is bounded by the di-
ameter of IT R, so we have e(c,b) < sin B diam II R. Since B € [0;,6;11],

sinB<w; = max siné&.
= £€[0:,0i41]

We therefore have e(c,b) < w; diamII R. O
We now use these results to prove Lemma 4.3.
Proof of Lemma 4.3. Let a, b be points of region R such that e(a, b) = diam R and let

a= x(al,az, .. .,Oédfl,A), b= X(,Bl,ﬂz, N ,,Bdfl,B),

with sin B > sin A. Now define ¢ := x(a1, as, ..., aq—1, B).
By Lemmas A.1, A.2, 2.4 and 4.2, we then have

diam R = e(a, b)
< Ve(a, o) + e(c, b)?
< \/X(6)? +w?(diam I R)?

< /0 +wi(damIIR)?. O



ETNA

Kent State University
etna@mcs.kent.edu

PARTITION OF THE UNIT SPHERE INTO REGIONS 327

Acknowledgements. Thanks to Ed Saff, who posed this problem, and to Ian Sloan, Rob
Womersley, Ed Saff and Doug Hardin for valuable discussions and feedback. Thanks to the
referees for many constructive comments and corrections. Thanks also to Rob Womersley for
valuable proofreading. The support of the Australian Research Council under its Centre of
Excellence program is gratefully acknowledged.

REFERENCES

[1] R. W. ABERNATHY AND R. P. SMITH, Applying series expansion to the inverse Beta distribution to find
percentiles of the F-distribution, ACM Trans. Math. Software, 19 (1993), pp. 474-480.

[2] R. ALEXANDER, On the sum of distances between N points on a sphere, Acta Math., 23 (1972), pp. 443-448.

[3] J. BECK AND W. CHEN, Irregularities of distribution, Cambridge University Press, 1987.

[4] J. BOURGAIN AND J. LINDENSTRAUSS, Distribution of points on spheres and approximation by zonotopes,
Israel J. Math., 64 (1988), pp. 25-32.

[5] R. G. CRITTENDEN AND N. G. TUROK, Exactly azimuthal pixelizations of the sky, eprint astro-ph/9806374,
1998.

[6] J. DUTKA, The incomplete Beta function—a historical profile, Arch. Hist. Exact Sci., 24 (1981), pp. 11-29.

[71 U. FEIGE AND G. SCHECHTMAN, On the optimality of the random hyperplane rounding technique for MAX
CUT, Random Structures and Algorithms, 20 (2002), pp. 403—440. Special Issue: Probabilistic Methods
in Combinatorial Optimization.

[8] K. M. GORSKI, B. D. WANDELT, E. HIVON, F. K. HANSEN, AND A. J. BANDAY, The HEALPix Primer,
August 2003.

[9] N. L. JOHNSON, S. KOoTZ, AND N. BALAKRISHNAN, Continuous Univariate Distributions, Wiley Series
in Probability and Mathematical Statistics: Applied Probability and Statistics, vol. 2, Wiley, New York,
second ed., 1995.

[10] A.J. KIMERLING, K. SAHR, D. WHITE, AND L. SONG, Comparing geometrical properties of global grids,
Cartography and Geographic Information Science, 26 (1999), p. 271.

[11] A.B.J. KUJLAARS AND E. B. SAFF, Asymptotics for minimal discrete energy on the sphere, Trans. Amer.
Math. Soc., 350 (1998), pp. 523-538.

[12] Q. T. LE GI1A AND 1. H. SLOAN, The uniform norm of hyperinterpolation on the unit sphere in an arbitrary
number of dimensions, Constr. Approx., 17 (2001), pp. 249-265.

[13] P. LEOPARDL, Diameter bounds for equal area partitions of the unit sphere, in preparation, 2006.

[14] C. MULLER, Spherical Harmonics, Lecture Notes in Mathematics, 17, Springer Verlag, Berlin, New York,
1966.

[15] E. A. RAKHMANOV, E. B. SAFF, AND Y. M. ZHOU, Minimal discrete energy on the sphere, Math. Res.
Lett., 1 (1994), pp. 647-662.

[16] E. B. SAFF, Equal-area partitions of sphere, presentation at UNSW, July 2003.

[17] E.B. SAFF AND A. B. J. KUIJLAARS, Distributing many points on a sphere, Math. Intelligencer, 19 (1997),
pp. 5-11.

[18] 1. H. SLOAN, Equal area partition of S3, July 2003. Unpublished notes.

[19] L. SONG, A.J. KIMERLING, AND K. SAHR, Developing an equal area global grid by small circle subdivi-
sion, in Discrete Global Grids, M. Goodchild and A. J. Kimerling, eds., National Center for Geographic
Information & Analysis, Santa Barbara, CA, USA, 2002.

[20] K. B. STOLARSKY, Sums of distances between points on a sphere II, Proc. Amer. Math. Soc., 41 (1973),
pp. 575-582.

[21] M. TEGMARK, An icosahedron-based method for pixelizing the celestial sphere, Apl Letters, 470 (1996),
pp. L81-84, eprint astro-ph/9610094.

[22] THE MATHWORKS, Matlab version 7.01, 2004.

[23] G. WAGNER, On a new method for constructing good point sets on spheres, Discrete Comput. Geom., 9
(1993), pp. 111-129.

[24] E. WEISSTEIN, Regularized Beta function, in MathWorld — A Wolfram web resource, Wolfram.

[25] A. D. WYNER, Capabilities of bounded discrepancy decoding, Bell System Technical Journal, 44 (1965),
pp. 1061-1122.

, Random packings and coverings of the unit n-sphere, Bell System Technical Journal, 46 (1967),
pp- 2111-2118.

[27] Y. M. ZHOU, Arrangements of points on the sphere, PhD thesis, Mathematics, Tampa, FL, 1995.

[28] , Equidistribution and extremal energy of m points on the sphere, in Modelling and Computation for
Applications in Mathematics, Science and Engineering, J. W. Jerome, ed., Oxford, 1998, Clarendon
Press, pp. 39-57.

[26]




