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SYSTEMS OF ORTHOGONAL POLYNOMIALS DEFINED BY
HYPERGEOMETRIC TYPE EQUATIONS*

NICOLAE COTFAS'

Abstract. A hypergeometric type equation satisfying certain conditions defines either a finite or an infinite sys-
tem of orthogonal polynomials. We present in a unified and explicit way all these systems of orthogonal polynomials,
the associated special functions and the corresponding raising/lowering operators. This general formalism allows us
to extend some known results to a larger class of functions.
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1. Introduction. Many problems in quantum mechanics and mathematical physics lead
to equations of the type

(1.1) o(s)y"(s) + 7(s)y'(s) + Ay(s) =0

where o(s) and 7(s) are polynomials of at most second and first degree, respectively, and A
is a constant. These equations are usually called equations of hypergeometric type [14], and
each can be reduced to the self-adjoint form

[o(s)e(s)y' (s)]' + Ae(s)y(s) =0

by choosing a function g such that [o(s)o(s)]' = 7(s)o(s).
The equation (1.1) is usually considered on an interval (a, b), chosen such that

o(s) >0  forall sé€(a,b)
o(s) >0 forall se€ (a,b)
lims_,, 0(s)o(s) = lim,_p o(s)o(s) = 0.

Since the form of the equation (1.1) is invariant under a change of variable s — ¢s + d, it is
sufficient to analyse the cases presented in table 1.1. Some restrictions must be imposed on
a, B in order for the interval (a, b) to exist.

The equation (1.1) defines either a finite or an infinite system of orthogonal polynomials
depending on the set {y € R |lim;_,, 0(s)0(s)s” = lims_; o(s)o(s)s” = 0}. A unified
view on all the systems of orthogonal polynomials defined by (1.1) was presented in [8].
We think that certain results known in particular cases can be extended to a larger class of
functions by using this general formalism, and our aim is to present some attempts in this
direction.

The literature discussing special function theory and its application to mathematical and
theoretical physics is vast, and there are a multitude of different conventions concerning the
definition of functions. Since the expression of the raising/lowering operators depends di-
rectly on the normalizing condition we use, a unified approach is not possible without a
unified definition for the associated special functions. Our results are based on a definition
presented in section 2. The table 1.1 allows one to pass in each case from our parameters «, 3
to the parameters used in different approach. For classical polynomials we use the definitions
from [14].
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TABLE 1.1
The main particular cases

a(s) | 7(s) o(s) o, f (a,b)
1 as+fB | eos’/2+Bs a<0 (—00,0)
s as+p | sPles a<0,8>0 (0, 00)
1-52 | as+fB | (14s) (@ B/2-1(1_g)(@tB)/2-1 | s <p < —a | (-1,1)
s2—1 | as+pB | (s+1)(@B/2-1(s_1)(atB)/2-1 —-f<a<0| (1,00)
52 as+f | s*2eP/s a<0,$>0 (0, 00)
241 | as+pB | (14 s2)*/2-1efarctans a<0 (=00, 00)

2. Orthogonal polynomials and associated special functions. In this section we re-
view certain results concerning the systems of orthogonal polynomials defined by equation
(1.1) and the corresponding associated special functions. It is well-known [14] that for
A = \;, where

"
N =2 2(8)1(1 —1)—7'(s)l leN
the equation (1.1) admits a polynomial solution ¥; = \I!l(a’ﬂ ) of at most / degree
2.1 a(8)¥) + 7(s)¥; + N ¥, = 0.

If the degree of the polynomial ¥; is [ then it satisfies the Rodrigues formula

B, d

Wy (s) = o(s) a5t [0 (5)o(5)]

where B; is a constant. We do not impose any normalizing condition. Each polynomial ¥; is
defined only up to a multiplicative constant. One can remark that

lim o(s)o(s)s” = lin}) a(s)o(s)s"=0  for v €[0,00)
s—

s—a
in the case o(s) € {1, s, 1 — s?}, and

lim o(s)p(s)s” = lin}) o(s)o(s)s” =0 for ~€[0,—a)
s—

s—a
in the case o (s) € {s*> — 1, s?, s +1}. Let
A 00 for o(s) € {1, s, 1 — s?}
] lze for o(s) € {s2—1, 2, s2 +1}.
PROPOSITION 2.1. [14, 8] a) {¥; | I < A} is a system of polynomials orthogonal with

weight function o(s) in (a, b).
b) W, is a polynomial of degree | for any | < A.
¢) The function ;(s)\/o(s) is square integrable on (a,b) for anyl < A.
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d) A three term recurrence relation
sUi(s) = ar¥yy1(s) + Bi¥i(s) + n¥i—1(s)

is satisfied for 1 <1+ 1 < A.

e) The zeros of Uy are simple and lie in the interval (a,b), for anyl < A.

The polynomials lIJl(a’ﬂ ) can be expressed in terms of the classical orthogonal polynomi-
als but in certain cases the relation is not very simple.
PROPOSITION 2.2. [8, 9] Up to a multiplicative constant

’Hl(\/gs_\/f_m) if g

(s)
Lf_l(—as) if o(s)=s

(s)

(s)

P2l (k20 )

(P (s) =«
1 Pl((afﬁ)/Q*L (@+B)/2=1) (g if

(@st() e

| {#p(@HA 21 @D 6 (s = 8241

where Hy, LP and PT(LP D are the Hermite, Laguerre and Jacobi polynomials, respectively.
Letl € N, I < A,and letm € {0,1,...,1}. By differentiating the equation (2.1) m times
we obtain the equation satisfied by the polynomials t; ,, = (fsﬁlIll, namely

(22) o ()Y + [1(8) +ma' (8)]Y] 1 + (Mt = A )o1,m = 0.

This is an equation of hypergeometric type, and we can write it in the self-adjoint form

[a(s)gm(s)d)ll,m]l + ()‘l - /\m)Qm(s)wl,m =0

by using the function g, (s) = 0™ (s)o(s).
DEFINITION 2.3. The functions

(2.3) U m(s) = /-em(s);s—mm\lll(s) where K(s) =+/o(s)

leNIl<Aandm € {0,1,...,1}, are called the associated special functions.
The equation (2.2) multiplied by K™ (s) can be written as

HmlI;l,m = )\llI;l,m
where H,,, is the differential operator

Py, mim =) ()
ds? ds 4 a(s)

H,, = —0o(s)

+

— —m(m — 2)d"(s) — m7'(s).

PROPOSITION 2.4. [8] a) For each m < A, the functions ¥ ,, withm <1 < A are
orthogonal with weight function o(s) in (a, b).
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b) ¥y m(s)\/o(s) is square integrable on (a,b) for 0 <m <[ < A.

c) The three term recurrence relation

(24) Uy mt1(s) + (% +2(m — 1)/{'(3)) Uy () + (N — A1) ¥ m—1(s) =0

is satisfied for any l < A and any m € {1,2, ..., — 1}. In addition, we have

2.5 (% + 2(l — 1)&’(8)) lIll,l(s) + ()\l - )\l_l)lI’lJ_l(S) =0.

Foranyl! € N, ! < A and any m € {0,1,...,] — 1}, by differentiating (2.3), we obtain

D gy (s) = mem () () Ty ()L ()
ds ™7 dsm ! dsm+1 !
that is, the relation
d K'(s) 1

E‘I’l,m(s) = mmq’l,m(s) + @‘I’l,mﬂ(s)

which can be written as

d
(2.6) (H(S)E - mn'(s)) U m(s) = O mt(s).
If m € {1,2,...,] — 1} then by substituting (2.6) into (2.4) we get
d
(K,(S)£ + % +(m — 2)&'(3)) Tym(8) + (N — A1) ¥m—1(8) =0

that is,

d 71(s
2.7 (—n(s)a - % —(m — l)m'(s)) U mt1(8) = (N = Am) T m(s).
for all m € {0,1,...,] — 2}. From (2.5) it follows that this relation is also satisfied for
m=1[-1.

The relations (2.6) and (2.7) suggest we should consider the first order differential oper-
ators [11, 7, 9]

form+1 < A.
PROPOSITION 2.5. [10, 6, 11, 8] We have

2.8) AmlIfl,m = lI’l,m—f—l Ajn‘:[ll,m+1 = ()\l_)\m)q’l,m fOT 0<m<I<A.
At AE

+1 A?_ 1
29 Oy, = ks S
@9 L VIS Vi VS VS VR

¥y for 0<m<I<A.

(2.10) 1CLmttll = VA=A |[Trml|]  for 0<m <I<A.
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m_)‘m:AzAm Hm+1—/\m=AmA; for m+1<A
HmA; = A;Hm-i-l ApHp =Hy 1A for m+1<A.

~ From (2.8), (2.9) and (2.10) it follows that the normalized associated special functions
U m = U m/||U1m|| satisfy the relations

An ¥ = VN = AP it AL i1 = VAN = A Ym

@ G, = fh b

m = 52— =S
m Al—Am \/Al m+1 ”.\/)\I_Al—l v

3. A group theoretical approach based on projection method. The system of func-
tions ¥; ., is the projection of the system of functions [1, 2, 13]

(3.1) [l,m) : (a,b) x [-m,7] — C  |l,m) =™ ®;,,

orthogonal with respect to the scalar product

(F,G) F F(s, ) G(s, ) o(s)dsde.

V —mJa
More exactly, we can identify each function li'l,m with the restriction of |/, m) to the subset

(a,b) x {0}. By using the relation %H,m) = im|l,m) obtained directly from definition
(3.1),and (2.11) we get

eiw< £ 4+ ik’ 8)|l m) =+ —An|l,m+1)
e_i‘/’< 88+1/<a———+21€)|l,m+1)=\//\l—/\m|l,m).
These relations suggest we should consider the first order differential operators

L, =¢¥ ( + ik 8‘1)

(3.2) L =e7i¥ (—I‘.‘,E + ik’ % -+ 2&’)
3
LO —l%

satisfying the relations
L+|lam) =VA = A |lam +1)
L |l,m)=+v/X—Am_1|l,m—1)
Lo|l,m) = m|l,m).
One can remark that L |/,1) = 0 and

1 1 1
VA=A VA = A VA= A

Il,m) = (L)'=, 1)
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for all m € {0,1,2,...,1 — 1}, but, generally, L_|I,0) # 0. For example, in the case of
Legendre polynomials k(s) = V1 — s2, 7(s) = —2s and

—el% (k2 +ik' 2
Ly =e (n88+1n8w)

L =ei¥ (—KZ% + in'%) = —el¢ (I‘G% + i/ﬁ’%) =—-L4
whence
(L)™|1,0) = (=1)™e™ ™ @, ., = (=1)™|l,m)  forall m € {1,2,...,1}

and (L_)"*1]1,0) = 0. The (21+1)-dimensional vector space spannied by the set { (L_)?|l,1) | q €
{0,1,2,...,21} } is invariant under the action of L4, L_ and L.
The operators defined by (3.2) satisfy the relations [Lg,Ly] = £Ly and

[L+7L7] = (_7—/ + 2/‘6&” + 2HIZ)H+ i(2/€l€” + 2,€I2)%

—all  for o(s) € {1, s}
= 2 (Lo — 2£21) for o(s) =1—s°
—2(Lo+%2I) for o(s)e{s*—1, s, s +1}
where I is the identity operator. The Lie algebra £ generated by L, and L_ is finite dimen-
sional.
THEOREM 3.1.
Heisenberg algebra h(2) if o(s) € {1, s}
L is isomorphic to{ su(2) if o(s)=1-352
su(1,1) if o(s) € {s?—1,s% s2+1}
Proof. If o(s) € {1, s} then the operators Ky = \/—1/aL; and K_ = —/—1/aL_
satisfy the relations [Ky,K_]= —I and [[,K4] =0.
In the case o(s) = 1 — s? the operators K = Ly, K_ = L_ and Ko = Lo — %2 satisfy
the relations [K;, K_] =2Ky and [Ko,Ky] =+K.
If o(s) € {s>—1, s, s?+1} the operators K, = L, K_ = L_ and Ko = Lo + 2521

satisfy the relations [Ky, K | = —2Kj and [Ko, Ky] = + K. d
In the case o(s) = 1 — s, the functions |I,m) satisfy the relations

Koll,m)=(® +m — 1) [i,m) for mef0,1,..1}
Kill,m)=y/(I-m)l+m—a-1)|l,m+1) for me{0,1,...,1 -1}
K_[l,m)=y/I-m+1)(l+m—-a-2)|l,m—-1) for me{l,2,..,1}
Cll,m)=%(® +1)|l,m) for me{0,1,...,1}

where C = K_K + Ko(Ko + I) is the Casimir operator of su(2) and ® =1 — § — 1.
In the case o(s) € {s? — 1, 5%, s> + 1}, the functions |I,m) satisfy the relations

Ko|ll,m)=(®+m —1)|l,m) for me{0,1,...,1}
Kill,m)=+y/(m -D(m+1+a-1)|l,m+1) for me{0,1,...,1 -1}
K_[l,m)=y/(m—-Il-1)(m+l+a-2)|l,m—-1) for me{l,2,..1}
Cll,m)=—®(® +1)|l,m) for me{0,1,...,1}
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where C' = K_K — Ko(Ko + 1) is the Casimir operator of su(1,1) and ® =1+ § — 1.
The Casimir operator of h(2) is the identity operator I belonging to the algebra [5].

Our approach is different from the one presented in [12] based on gl(2,¢) and Miller
algebra h4. Generally, our algebra £ does not contain L.

4. Some systems of coherent states. In this section we restrict us to the case o(s) €
{1, s,1—s}. Foreachm € N, the sequence ¥, 1, sni1.m, Crmt2,m, - is an orthonormal
basis in the Hilbert space

b b
%={¢:<a,b)—>c ‘ / |¢(s)|2g<s)ds<oo} (W1 lipr) = / 01(5) ¥a(s) ols)ds.

The linear operator defined by (see figure 4.1)
Un:H —H, Un¥m=T101,mi1

is a unitary operator, the operators a,, =U,} A,,, a;}, = A} U, are mutually adjoint, and

amli’l,m =V = li/lfl’m for I >m+1
“4.1) aﬁz‘i'l,m = VA1 — A ‘i’z+1,m for I>m
~ +yI—m -
Uy = (@) ¥ f .
bm VO Am)Am1=2Am) - ma1=Am) 0" or I>m
Since
ama;‘i}l,m = (/\l+1 - /\m)lill,m agam\i’l,m = ()\l - )\m)lill,m
we get the factorization H,,, — A, = a*n;am and the relation
(42) [am,a;]ﬁll,m = ()\l+1 — Al)i!l,m-
By using the operator
~ —o''l — o -
Ry Hpm — Hm leIIl,m = T\I’l,m
the relation (4.2) can be written as [a}, am] = —2R,,. Since
" "
[Rm:a;] = _%a; [Rm;am] = %am

it follows that the Lie algebra £, generated by {a;},, a, } is finite dimensional.
THEOREM 4.1.

Heisenberg algebra h(2) for o(s) € {1, s}

L, is tsomorphic to
su(1,1) for o(s)=1-s2

Proof. In the case o(s) € {1, s} the operator R, is a constant operator, namely, R,,, =
—a. Since a < 0, the operators Py = y/—1/aa},, P~ = \/—1/aa,, and I form a basis of
L, such that

[Py, P ]=-T [LP=0
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agL ao /IL/
A
P

FIG. 4.1. The operators Am, Ak, am, ay and Uy, relating the functions ‘i’l,m-

that is, £,, is isomorphic to the Heisenberg-Weyl algebra h(2).
Ifo(s) =1—s?then K, =a},, K = a,, and Kq = R, form a basis of £,, such that

Ky, K_|=-2K, [Ko,Ki]=+Ks. O

In the case o(s) = 1 — s?, the functions liJm,ma Yit1,ms Ym+2,m, --- satisty the rela-
tions

KO‘iJl,m = (l - %) \ill,m
K_f_‘i’l’m = \/(l —m+ 1)(l +m — a) ‘i’l—i—l,m
K9 ,=/I-m{I+m—-1-a)¥ .,
Clt == (8 —m) (§ —m+1) 1,
where C = K_K | — Ko(Ko + I) is the Casimir operator of su(1,1). If we denote

I} ~
Ey=m - b} =-% |<I>,TL) =Urtnm

then the above relations can be written as
Ko|®,n) = (Eg + n) |®,n)
Ki|®,n)=+(®+Ey+n+1)(Ey—®+n)|®,n+1)
K |2n)=+/(®+E;+n)(Ey—®+n—1)|®,n—1)
Cl@,n) = ~B(® +1)|@,n).

and show that [3, 15], in case o(s) = 1 — s, the representation of su(1,1) defined by (4.1)
in H is the irreducible discrete representation D+ (£ — m).
Let m € N be a fixed natural number. The functions |0), [1), |2}, - - -, where

|n) = li’m+n,m
satisfy the relations
am|n) = /en |n —1)
at|n) = /€nt1|n + 1)
(Hm - /\m)|n) = en|n)
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where
—an it o(s) € {1,s}

en =Amtn — Am =
* { if o(s)=1-s%

nn+2m—a—1

)
Some useful systems of coherent states can be defined [3] by using these relations, the con-
fluent hypergeometric function

Flos)=1+124_ L 2, - i
cz)= -= = =
0rm cll T cle+1) 2 cle+1)(c+2) 3!

and the modified Bessel function

K,(z2)= g% where I(z) = i %
THEOREM 4.2. a) If o(s) € {1, s} then { |2) | z € C}, where
T Z
is a system of coherent states in H such that
(z]z) =1 am|z) = z|z) and 71'_(1 d(Rez)d(Im z)|z)(z| =I.
b)Ifo(s) =1 — s%then { |2) | z € C}, where
|2) = n)

T(2m —
" az\/n'I‘n+2m Q)

is a system of coherent states in H such that
(2]2) = oFi(2m — ;o) aml2) = 2|) and / du(2) |2)(2] = T
C

where

27,2m—a

= — a+1 = 19‘
(4.3) du(z) = T@m—a) K%_m(%) dr dé and z=re

Proof. [3] By denoting t = — % and using the integration by parts we get

/ d(Re 2) d(Im 2)[2) (2| ( altii '("—"’Wde) In)(n|

n! n/[ n+n’

:%2 ) (/0 e%% (%)nrdr) |n)<n|=z</ooz—t;—jdt) |n><n|=§n:|n><n -

n

Denoting du = pu(r) dr df we get

o0

(=) (e = 3 2T =) ([T om0y dr )
C ZnlT(n+2m—a) \Jo
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and hence, we must have the relation (Mellin transformation)
oo
(4.4) 27T(2m — @) / 2 u(r)dr =T(n+ 1) T(n + 2m — a).
0
The formula [4]

/00 22K, _¢(2v/z) 2" tdz = T(2n + n) T(2£ + n)
0

forx =12, n= %, & =m — § becomes
(o]
4.5) 4/ TQTLKQTH_m(27') r?m=dr = T'(n + 1)T(n + 2m — a).
0

The relations (4.4) and (4.5) lead to (4.3). 0
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