Electronic Transactions on Numerical Analysis. ETNA
Volume 23, pp. 5-14, 2006. Kent State University
Copyright © 2006, Kent State University. etna@mcs.kent.edu
ISSN 1068-9613.

CONDITION NUMBERS OF THE KRYLOV BASES AND SPACES ASSOCIATED
WITH THE TRUNCATED QZ ITERATION*

ALEXANDER MALYSHEV' AND MILOUD SADKANE?

Abstract. We propose exact and computable formulas for computing condition numbers of the Krylov bases
and spaces associated with the Hessenberg-Triangular reduction of a regular linear matrix pencil.
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1. Introduction. The QQZ algorithm [5] is the most popular algorithm for solving the
dense generalized eigenvalue problem

(1.1) (AB — A)z =0,

where A, B € R"*™. Itis a generalization of the Q R algorithm [2, Sec. 7.7], which solves the
standard eigenproblem Az = Az. The first step of the ) Z algorithm reduces, via orthogonal
matrices V and U, the pair (4, B) to (H, R), where the matrices H = UTAV and R =
UTBV are respectively upper Hessenberg and upper triangular:

h1,1 h1,2 .. hl,n a1 Ti,2 .. Tin
h2,1 h2’2 e hz,n r22 ... T2n

(12) H= . o |, R=
hn,nfl hn,n Tn,n

The Hessenberg-Triangular reduction can be recast as

(13) { AV =UH,

BV =UR.

It is possible to construct the reduction (1.3) iteratively, starting from a vector v with
|[v]]2 = 1. The symbol || ||2 stands for the Euclidean vector norm. The following algorithm,
taken from [7], can be used to accomplish the iterative reduction. It is written in MATLAB
style.

ALGORITHM 1 (Generalized Arnoldi Reduction [7]).

Choose v € R™ with [|v||a =1
Set Vi = [v]; u = Bv; p = ||ull2; R = [p]; U1 = [u/p];
Set z = Av; Hy = [Ul2); fi =z — Ui Hy;
forj=1,2...do

v = £fill2s w = fi/7

Uipr = [Uj , u]; Hj = [Hj ; ve];
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Solve BV = u;
z=V0; 0=10—-Vz; p=1/[|0]l2;
v=p0; 7= —Rjzp;
Vi=1[Vj,v]l; Ripn=I[R;, 50, pl;
z=Av; h= Uﬁ_lz;
fit1 =2=Ujnah; Hjpa = [Hj , h;
end for
After k < n steps of Algorithm 1 we obtain a truncation of (1.3) in the form

AVj, = UpHy + frel,
(1.4) BVy, = Ui Ry,
VIV = I, Ul'Up = I, Uf fr = 0,

where the matrices Vi, = V(1:n,1: k) and Uy = U(1:n, 1: k) represent the first & columns
of V and U respectively. The matrices H, = H(1:k,1: k) and R, = R(1:k, 1: k) are the
leading k£ x k submatrices of H and R. The vector ey, represents the k-th canonical vector
and I}, is the identity matrix of order k.

The form (1.4) is a generalization of the classical Arnoldi reduction [6, Chap. VI] and
can, for example, be used to compute eigenpairs of the problem (1.1), when the sizes of
A and B are large (see [7]). In exact arithmetic, the sets By = {v1,...,vx} and C}, =
{u1,...,ur}, k=1,2,...,n, form bases of the Krylov spaces

(15) Kk = Kk(B_lA,/Ul) = Span.{vl’B_lAvl’ ey (B—lA)k—lvl}
and
(16)  Ly=Lu(AB™,ug) = Spanfus, AB Yy, ..., (AB~1)1ug}

respectively, with v; = Vi = v and u; = B /|| By ||2-

Unfortunately, the generalized Arnoldi reduction of the matrix pair (A, B) in a finite pre-
cision arithmetic will not generally satisfy the relations (1.4) because the computed matrices
V., U, H and R are subject to rounding errors. The effects of rounding errors are proportional
to condition numbers, which are usually determined in terms of infinitesimal perturbations.
The chief advantage of infinitesimal perturbations is that they allow one to neglect second
order terms. B
_ Let Ay and A, be infinitesimal perturbations of A and B respectively, and denote by
H=UT(A+ Ay)V and R = UT(B + A,)V the corresponding Hessenberg and triangular
forms, where U = [W1, Wz, ..., Uy,] and V= [01, D2, ...,Uy] are the computed orthogonal
matrices with 77 = v;.

In the present paper we want to analyze the difference between the exact quantities V', U,
Kk, Ly and their computed counterparts V', U, K, £}, under variations of the perturbations
A1 and A,. More precisely, we are interested in the condition numbers of the Krylov spaces
K and L, and corresponding bases By, and Cy.

We use the arguments similar to those from [1, 3] for the Hessenberg reduction by
Arnoldi’s method and those from [4] for the bidiagonal reduction by the Lanczos method.
We assume that the reader is familiar with the arguments and reasoning used in these refer-
ences.

2. Condition numbers. Following the strategy used in [1, 3, 4], perturbations of V and
U are sought in the multiplicative form, thatis V = (I + X)V and U = (I + Y)U. The
orthogonality of V, V, U and U implies the orthogonality of I + X and I + Y. Since the



ETNA

Kent State University
etna@mcs.kent.edu

CONDITION NUMBERS OF THE KRYLOV BASES ASSOCIATED WITH THE TRUNCATED QZ ITERATION 7

perturbations X and Y are infinitesimal, the matrices X and Y are Jindistinguishable from
skew-symmetric matrices. Discarding quadratic terms in the identity H = UT(I+YT) (A +
As)(I + X )V, we obtain the equation

.1 H—H+UTAV + (UTYTU)H + HVTXV) = 0.
If we set
Ay =UTAV, X =VTXV, andY =UTYT,

then X and Y are indistinguishable from skew-symmetric matrices and satisfy, up to the first
order, the equation

(2.2) YH-HX =A,+H—H.

In a similar way, another equation follows from R = UT(I+YT)(B+A;)(I+X)V, which
yields

(2.3) YR-RX=A+R-R

with A; = UTA, V.

The Krylov spaces K, and Ly, are the vector spaces spanned by the columns of Vi and Uy
respectively. Their perturbations K and Ly, are spanned by the columns of Vi = I+ X VWi
and U =T+ Y)U 1. The Frobenius norm of the difference

=X (1:n, 1: k)|

2.4) [V %] = [vxvTWAll,.

can be used to measure the conditioning kj = k(B A,v;) of the basis By, which is defined
as (see [1, 3])

Ky = inf sup Ve = Vil
T e < JigE 4 st
lAz]lFr <€

In other words, k4 is the smallest constant such that

NAUZ | 1A%

2.5) X(1:n, 1:8)||» < Uy
X e 1BIE AR

Similarly, the quantity ||Y (1:n, 1: k)|| > can be used to measure the conditioning of the basis
Cr- Because of similarities between the bases By, and Ci, we will only analyze the conditioning
of By. To this end, we will give a computable estimate of the condition number 3.

Let us take the components below the main diagonal in (2.3) and those below the subdi-
agonal in (2.2). The operation of taking the components below the main diagonal is denoted
by £ and that of below the subdiagonal by £(*). Thus, from equations (2.3), (2.2) we
derive the system of linear equations

(2.6) LY (YR - RX) =M (Ay),
Q2.7 L (YH-HX)=L£?(Ay).
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Note that the diagonal elements of X and Y are equal to zero because the matrices X

and Y are real skew-symmetric. Moreover, since v; = v; and V= <I + X ) V', we have

the identity X v1 = 0 and, therefore, the first column and row of X are also equal to zero.
The structure of X and Y can be described with the help of vectors z, € R*P~1 p =

1,...,n—=2,andy, € R"79, ¢ =1,...n — 1, such that

0 0 ... 0 0 0 —yr
0 0 —x] 0 —yf
X = 72 , Y= s
0 Ir1 T2 0 Y1 Y2 Y3 0
0 0 0
Similarly, with the help of vectors f, € R*?,p=1,...,n—1,and g, € R*797!, ¢ =
1,...,n — 2, the matrices Ay and A, are written as
X X X X X X
x . X X
Al = . 5 AQ = .
X X .X
i f2 3 x X ..x
X g 92 93 X X
By the aid of the vectors z1,...,Zn—2 and y1,...,y,—1 We determine the lower triangular
partsof X and Y:
0 0 0 0 0 O 0
0 0 0 0 0 0
X-= Ll Y= .
0 z1 zo 0 0 yi Y2 ys 0
0 0 0

ThenX =X — XTandY =V - V7.
It is important now to observe that

o (?TR) =0, £W (R)?T) =0, £® (?TH) =0, £® (H)?T) =0.

As a result,
2.8) £m (?R - R}?) - M (A,
2.9) £ (?H - HX) =L (A).

Equation (2.8) is equivalent to the system

{ fi= T1,1Y1,
(2.10)

N et TV R —
fi=22 iy iy — Riwioa, =2,
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where R; = R(i 4+ 1:n,i+1:n) € R=9X(n=9) and for < j, If = (0ix(js) » Ii) € R
is the matrix whose first j —¢ columns are equal to zero and the last ¢ columns form the identity
matrix of order . Similarly, equation (2.9) is equivalent to

{ g1 = hlle:lL:Qlyl + h2,1y2a

(2.11) . o . _
gi = E;ill hj,iZn_{_lyj — Hi.'L'z',l, 1= 2, ceey N — 2,

where H; = H(i + 2:n,i + 1:n) € R(n—i—D)x(n—i)
Let us summarize the above derivations. For k = 1,2,...,n — 1, we have a series of
systems of linear equations

f 7'1,1-[11725 y
f; r12I0 ", ro2ln_o y;
% o e k
! ripI ", Pt kI kT, Y
0
Ry O I
Z2
- ’
9 Tr—1
Ry
n—1
9 h1,1In_2 h2,lIn—2 Y1
go YA hooIl=3  haaln_s3 Y2
k-1 Pie—1 Il =y hok—1 Il ; .. hik—1Tn—r Yk
0 T1
H2 0 T2
_ ' _ ,
Hyy 0 Tr-1

which we can write in the compact form

= M1y — Misz,
(2.12) f=Muy = M
g = Moy — Maaz.

Since Algorithm 1 proceeds if and only if r; , # 0 and hgr—1 # 0, the matrix My is
nonsingular. It follows that the system (2.12) has the solution

(2.13) x:Mw(;c) andy:My(i;),

where

(2.14) M, = (M — Moy My Myp) ™" (Mo My7', — Iy,)
M, = M{;' M2 M, + (M[;", 0).
Here Iy, (Ipr,) is the identity matrix of order Ny, (My) with N = n(k — 1) — @ +1

and M = nk — %
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1
Using the identity [|z(|> = ([|lz1|3 + ... + llzx]13) 2 = | X (1:n, 1: k) || we arrive at the

formula
IX(L:n, 12 K) || = || M, ( f)
9 /12
:A@(MMW; 0 )(fmmp)
0 —[IH||rIn, —g/IlHllr /],
|1 RllrIna 0 ) ( f/IRllr )
2.15 < || M, k
(2.15) = ( 0 —Hl|rIne ] ||, =g/l HllF ]|,
1Bl 7 Ins 0 ) A7 1A%
2.16 < || M, k .
210 <o (Y5 e, )|, T+
If we choose f and g such that
f) H (th 0 > (fMWF>
M, = (| M, K
H (9 ) 0 =1 HllrIng S, I\ —9/IHlF /1,
and
H( fIRllF ) _ A 1Al
—g/IlHllF /|, IBllE — Al%

then inequalities (2.15) and (2.16) become equalities (see [4] for a similar reasoning).
We thus obtain a series of condition numbers of the orthonormal bases (not spaces!) for
k=12,...,n—1

) RllxIn 0 )

Bido) = (1 .

N |

(2.17) - H (M — J\/.I'21]\/[1_1”\/—"12)_1 (1Rl r Mo My, | H | F Ly, ) ‘2

In order to derive condition numbers of the corresponding Krylov spaces K, we use the
same arguments as in [4]. The main idea is to compare V, = (I + X )V}, with V};Q}, instead
of V, for all orthogonal matrices @y, of order k. The minimum

)
QTQ =1,

is attained at Q, = W, WTT , Where WIT <VkTI7k) W, = ¥ is the singular value decomposi-
tion of VkTV'k (see, e.g., [2, p.582]). Since
(2.18) ViVi=L +VIXVi =L + X(1: k,1: k)

is indistinguishable from an orthogonal matrix, we can take Q = W; = I + X (1: k,1: k)
and W, = ¥ = Ij. This leads to the following interpretation. In fact, the leading k x &
submatrix of X is cut off. The rest of X represents the distance between the Krylov spaces,
i.e., only last n — k components of each vector z; contribute to the difference between the
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Krylov spaces. Let us introduce the matrix II;, whose columns are the coordinate vectors
e; corresponding to the contributing components. Then the condition numbers of the Krylov
spaces are determined fork = 1,2,...,n — 1 as

(2.19) Kk (B~ A,v1) = | (Maa — Moy My3" My) ™" (| Rlle Moy M3 | H| R In) |, -

The condition numbers of the Krylov bases Cj and corresponding Krylov spaces L,
k=1,2,...,n — 1, can be derived analogously by the aid of the expression for y in (2.13):

B R||rIn, 0
2.20 aB~ )= o, ] ' )
(2.20) Kb ( ut) H y( 0 —IHleIn, )l
. Rl T 0
221 AB ) = |, (| k '
2.21) K ( ,U1) H k y( 0 = HlrIn, /|,

3. Numerical examples. In this section we illustrate behavior of the condition numbers
of Krylov bases and subspaces given in (2.17) and (2.19) on some examples.
EXAMPLE 3.1. A is the identity matrix, and B is the upper-Hessenberg Toeplitz matrix

1 1 1
a 1 1

B, = .
a 1

The matrix B, is singular if and only if & = 1. Our aim here is to show the effect of condi-
tioning of B, on the computed basis and subspace condition numbers, when the parameter «
varies. The Hessenberg and triangular forms obtained by Algorithm 1 are of order k¥ = 15.
The starting vector v has all its components equal to 1 before normalization. Table 3.1 sum-
marizes the information obtained on the computed matrices Vi, Uy, Ry and Hy, for different
parameters . The standard condition number x(Bg) = || By ||2||(Ba) 7|2 is also given.

TABLE 3.1
Numerical results from Algorithm 1 (Example 3.1)

@ 8 4 2 1.3 0
17 — VIVilla 45510716 4831010 54210716 4.5910°' 4.5210°1'°
I, — UL U2 2.58 1071 8281015 3.22107'5 3.04107'% 1.521071°
|Hr — U AVi|l2 2.56 1071 81410~ 27710715 29810715 1.4710°1°
|1Rx — Ul By V|2 51910~ 13010~ 1.0010~' 1.5310~¢ 1.2110~™
|BaVi — UrRy|l2 343107 11210~ 1.0010~' 1.5410~¢ 1.8910°'°
|AVy — UpHy, — frel||» | 2.12107%¢  6.01107¢ 5.00 1076 4.66 10716 2.41 10716
x(Ba) 2.58 102 4.28 10° 1.00107  2.8310'%  2.60 10!
x(Rx) 2.40 102 2.63 10° 9.4410°  1.3210'"  2.5910!
X(Wa) 9.78 10! 4.9110° 4.0110"7  8.21 10" o0

The results show that the orthogonality of Vj, and Uy, is well maintained along with the

first equality of (1.4), i.e., AVy = UpHy + fkekT. However, the relations B,V = U, Ry and
U, g B,V = Ry deteriorate, when B, gets ill-conditioned. Figure 3.1 shows the behavior
of the condition numbers of the Krylov bases kp (E Kb,k (B_IA, Ul)) and Krylov spaces
K (E Kk (B 14,0 ) ) . We observe that the condition numbers of the bases increase with the
dimension of the bases and that the condition numbers of the corresponding spaces increase
and decrease but are always smaller than those of the bases.
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The ill-conditioning of B, clearly influences the computed condition numbers (see the
case @ = 1.31in Table 3.1). It can be more practical to monitor the condition number x (Ry) =
| Rel2|| R, |2 instead of x(Bq). This quantity is always available. Since x(M11) > x(Rx),
large x(R}.) means essentially that the matrix M7; in (2.12) is ill-conditioned. The computed
condition numbers might therefore be large or even inaccurate.

One may wonder whether the “non-normality” influences, in a way, the computed con-
dition numbers. Let W, denote a matrix of eigenvectors of B, and define

1 . . . .
(W) = { ”Zaﬂf}llnglfsl |2 if B, is diagonalizable,
The factor x(W,) can be used to quantify the departure from normality of B,. The smaller
X(Wy), the closer B, to a normal matrix. Table 3.1 and Figure 3.1 show that the computed
factors x(W4,), ks and k do not seem to be related.

Example 1,6 =8 Example 1, 0= 4

condition number

8 10 8 10
dimension of the Krylov basis dimension of the Krylov basis

Example 1, a =2 Example 1, =13

6 s 10
dimension of the Krylov basis

Example 1, =0

[ 10 12 14 16
dimension of the Krylov basis

F1G. 3.1. Condition numbers of the Krylov bases ky, and spaces k (Example 3.1).
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TABLE 3.2
Numerical results from Algorithm 1 (Example 3.2)

matrix pair (A, B) (Ao, B) (A, By)
11 — VI Vil 3.0110 1 3.0210 ™ 3.0010 ™
I, — ULU|2 2.0810~"" 3.33107'% 1.3210°'2
|Hy —UFAVi|l» | 2.17107° 6.02107'2 1.331071°
Rk — UI'BVi|l2 | 442107'2 4.53107'2 3.98 10~'2
1BV —Ur R ll2 2.0110712 2.07107!2 6.5510"16

BT

IAVe Ui fuci ]2 | 9.9910-13  5.74107'6 257 1014
2

X(Be) 6.1010°  6.7110° 195

EXAMPLE 3.2. The matrix A is M H D416 A and the matrix B is M H D416 B from the
MHD set'. These matrices are of order n = 416 and arise in the modal analysis of dissipative
magnetohydrodynamics. The matrix A is unsymmetric, ||A]|2 = 2.52 - 103, x(A4) = 9.75 -
10%3. The matrix B is symmetric, ||B|l2 = 2.19, x(B) = 3.99 - 10°. The Hessenberg
and triangular forms obtained from Algorithm 1 are of order ¥ = 50. As in the previous
example, the starting vector v has all its components equal to 1 before normalization. Table
3.2 summarizes the information obtained on the computed matrices Vy, Uy, Ry and Hy.
The condition number x(Ry) is also given. For more comparisons, the table also shows the
results obtained with the well-conditioned matrices Ag = A+ ||A||2] and By = B + || B||21.
[l oll2 = 4.11- 10%, x(Ao) = 2.61, || Bo|l2 = 439, x(Bo) = 2.

Example 2, matrix pair = (A , B) Examplo 2, matix pair = (A, , B)

0 5 10 15 20 25 30 35 0 5
dimension of the Krylov basis

10*

o 5 10 15 20 25 30 35 40 a5 50
dimension of the Krylov basis

F1G. 3.2. Condition numbers of the Krylov bases ky, and spaces k (Example 3.2)

From Table 3.2 and Figure 3.2, it is clear that the ill-conditioning of B, also shown in
x(Ry), is responsible for the large condition numbers. We also see that

Isee http://math.nist.gov/MatrixMarket/
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- the use of A leads to less accuracy in the approximations U g Up ~ Iy, Hp =
UL AV,

- the use of B leads to less accuracy in the approximation BV} ~ Uy Ry,

- the less accuracy is more pronounced when both A and B are used.

In conclusion, the numerical experiments indicate that when the truncated reduction is

good, i.e., when the relations (1.4) are accurately satisfied, the ill-conditioning of B is re-
sponsible for large basis and space condition numbers.
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