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�
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Abstract. This paper deals with the computation of flow between two parallel plates, including the pressure
distribution in the entrance region. There are few implicit solutions available for the pressure distribution in the
normal or � -direction of such flows. The pressure distribution in the � -direction is thus computed for the first time
for flow between parallel plates. The minimum critical Reynolds number for laminar-turbulent transition is known
to be in the range from 1300 to 1400, and we have thus focused our finite difference computations of the pressure
gradient in the � -direction at Reynolds numbers ( ��� ) between 100 and 5000. Our results have enabled us to conclude
that a large difference in pressure between the wall and the centerline exists near the inlet for a low ��� and decreased
as ��� increased. The pressure at the wall is lower than that in the central core for ���	��
��� , indicating that the
pressure distribution is contrary to Bernoulli’s law across parallel plates, although the law does not apply to viscous
flow.
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1. Introduction. In this section we briefly describe the history of the problem consid-
ered in this paper, related literature, and content of our paper.

1.1. Background and objectives. Numerous investigations of laminar incompressible
fluid flow have been carried out both experimentally and theoretically in the entrance region
between parallel plates as well as for pipe flow. The flow between parallel plates is called
“plane Poiseuille flow” or “channel flow.” Shah and London [23] have presented an excellent
overall review of previous research studies on such problems. Generally, thus far, three major
variables have been studied [5]: (i) the velocity distribution at any section, (ii) the entrance
length ( ��� ), and (iii) the pressure difference between any two sections. The results of previ-
ous research studies on the velocity distribution, entrance length, and pressure difference in
dimensionless � coordinates are approximately the same at ����������� , independent of the
Reynolds number, i.e., these quantities are not functions of ��� for ����������� ; see [2].

Regarding the critical Reynolds number ���� "! for the transition between laminar and
turbulent flows between parallel plates, Davies and White [4] observed a minimum critical�� of 1440 when using a channel of rectangular cross section with the aspect ratio of 37
through 165. The measurements of Davies and White were made rather close to the entry
to the channel so that the flow did not have sufficient length to become fully developed and
turbulent. Moreover, Patel and Head [14] carried out experiments in a rectangular parallel-
sided channel 1/4 in. high and 12 in. wide in the fully developed region. The aspect ratio
of 48 was considered large enough for the flow to be assumed two-dimensional. Patel and
Head state that the approximate value of 1300 may be accepted as representing the lower or
minimum critical �� for channel flow. Reynolds [18] found in his pipe flow experiments that
the transition occurs in the entrance region under natural calm conditions. For channel flow,
the transition should occur in the entrance region as Davies and White observed.#
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Accordingly, the objective of our investigation is to find variables that vary or decrease
in the entrance region as ��� increases, particularly in the range of $%���'&(����&)������� . As
a result, we found that the pressure drop in the * -direction near the inlet decreases as ���
increases. We expect that this pressure drop may lead to calculation of the minimum �� 
(Kanda, [8]). Therefore, the primary objective of this investigation is to accurately study the
pressure distribution in the * -direction for ��� values ranging from 100 to 5000. To this end,
we aim to answer the following question: Which is larger, pressure near the wall ( +�, ) or the
pressure at the centerline ( +- )? The secondary objective of our paper is to develop a more
accurate algorithm for the calculation of the pressure distribution without any assumptions
made for pressure distribution, particularly at the wall, since Peyret and Taylor [16] state that
the two most troublesome boundary conditions to prescribe and satisfy are (i) downstream
flow conditions and (ii) pressure conditions at a solid surface. Hence, we present the boundary
conditions and good numerical solutions to Poisson’s equation for pressure distribution. In a
follow up paper, we will perform these calculations via the use of Sinc methods.

1.2. Literature review. In the entrance region, the velocity of fluid particles near the
wall decreases due to the effect of internal friction, and the velocity of fluid particles near the
centerline increases until finally an equilibrium between pressure drop and friction resistance
adjusts itself [17]. That is, the pressure gradient in the entrance region differs from that of
fully developed flow. The initial velocity profile, which is constant across the channel inlet,
develops into a parabolic profile in a fully developed downstream region.

Since an analytical solution near the channel inlet is not possible, various approximate
solutions, mostly involving Prandtl’s boundary-layer approximation, have been developed.
The single most important part of the boundary-layer assumption is that the static pressure
may be taken to be constant across the boundary layer. Thus, in the boundary-layer assump-
tion, although streamwise variables are retained, one critical assumption is made: the static
pressure across each section is uniform, i.e., the normal pressure gradient ./+10�.2*435� . In
most previous investigations, it was assumed that the pressure + is constant across the chan-
nel.

Unfortunately, we found little information on the normal pressure gradient ./+10�.2* . Wang
and Longwell [26] have investigated a numerical solution that does not use the boundary–
layer assumptions for a Reynolds number of 300. They calculated two cases: Case I in which
upstream effects are not considered and Case II in which upstream effects are considered.
They reported that ./+106.7* is significant near the channel inlet. For the pressure gradients at8 = 0.147 in Case II, 9:./+106. 8 was approximately 0.53 at * = 0.8 and 0.15 at * = 0.0, and9:./+106.7* was approximately 0.32 at * = 0.9 and 9:�<; �<$ at * = 0.3. Furthermore, the excess
pressure drops at 8 = 0.147 and * = 0.9, 0.5, and 0.1 were 0.1579, 0.0660, and 0.0449 in
Case I and 0.1134, 0.0715, and 0.0778 in Case II, respectively. Accordingly, note that the
pressure drop near the wall is higher than that near the centerline in both cases. This indicates
that, near the channel inlet, the pressure near the wall is lower than that near the centerline.
Morihara and Cheng [10] have investigated the numerical solution of viscous flow in the
entrance region of parallel plates for Reynolds numbers between 0 and 2000. They reported
that the streamwise pressure gradient is very large near the inlet and the normal pressure
gradient .7+10�.7* is also far from zero near the wall for a small 8 . For example, for �=� = 20
and 8 06��� = 0.01, 9��>.7+10�. 8 !?����06@ values were more than 4 at * = 0.75, approximately 1 at* = 0.5, 0.4 at * = 0.25, and 0.3 at * = 0. Morihara and Cheng also reported the existence of
a delta-shaped adverse pressure gradient zone that extends into the entrance region at a small
Reynolds number, and it is practically nonexistent at ��� = 2000.

Accordingly, the pressure distribution in the * -direction has not been well determined to
date for Reynolds numbers between 100 and 5000.
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1.3. Nomenclature. We end this introduction by presenting the notation we use in the
paper.A

= channel heightB
= one-half of channel heightC
= grid point in 8 -directionD � = maximum number of grid points in 8 -directionE
= grid point in * -directionF � = maximum number of grid points in * -direction�G� = dimensionless entrance length = 8/HI 0J� A ���6!�LK = pressure agreement length = 8/H �>�LK/!M0N� A ���6!+ = dimensionless pressure = K/0J�?$60�OQP�RNS�TU !+- = pressure at centerline+�, = pressure at wallK = pressure�� = critical Reynolds number for transition��� = Reynolds number = S U A 0�VW
= dimensionless time = �XS U 0 A ! W HW H = timeS U = average velocity in 8 -directionY = dimensionless 8 component of velocity = YLH 0�S UY H = 8 component of velocityZ = dimensionless * component of velocity = ZNH 0�S UZ[H = * component of velocity8 = dimensionless coordinate along channel = 8\H 0 A82H = coordinate along channel82HI = entrance length82H �>�LK7! = actual pressure agreement length� = dimensionless 8 -coordinate = 8/H 0N� A ���]!^3 8 0��=�* = dimensionless coordinate across channel = * H 0 A* H = coordinate across channel_
= dimensionless stream function =

_ H 0J�`S U A !_ H = stream functiona = dimensionless vorticity = � A 0�S U ! aGHaGH = vorticity

2. Governing equations. Fig. 2.1 shows the entrance region between parallel plates at*b3dc B in two dimensions. We have assumed that at the inlet 8 = 0, the fluid enters the
channel with a flat axial velocity profile S U across parallel plates, and that there is no velocity
component in the * -direction.

First, consider dimensionless variables. All lengths and velocities in the problem are
normalized by the channel height

A �`3eO B ! and the mean velocity S U , respectively. The
pressure is normalized by (1/2) RNS�TU , not RNS-TU . The Reynolds number is based on the channel
height

A
and the mean velocity S U . Note that 8 is used for calculation and �f�X3 8 06���6! for

presentation in figures and tables.

2.1. Governing equations. The equations that govern the incompressible laminar flow
are the vorticity transport equation,. a. Whg . _.7* . a. 8 9 . _. 8 . a.7* 3 $��� i T a:j(2.1)
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FIG. 2.1. Velocity development in entrance region.

and Poisson’s equation for the stream function,i T _ 3k9 a ;(2.2)

Hence, it is possible to avoid some assumptions for pressure distribution by introducing the
vorticity and stream function as dependent variables.

The relationships between stream function and velocity are defined asY 3 . _.7* j Z 3k9 . _. 8 ;(2.3)

In a two-dimensional flow field, only the l component of vorticity, a^m , is effective; thus, a
denotes anm in this study, a 3 a m 3po irq�s�t m 3 . Z. 8 9 . Y.7* ;(2.4)

The
_ 9 a solution does not give any information regarding the pressure field. The pres-

sure can be calculated using the Navier-Stokes equations in a steady state [13]: the pressure
distribution for the 8 derivative is.7+. 8 3k91O u Y . Y. 8 g Z . Y.2*wv g O��� i T Yxj(2.5)

and that for the * derivative is./+.7* 3k91O u Y . Z. 8 g Z . Z.7*xv g O�=� i T Z ;(2.6)

Since Y and Z are known at every point from (2.3), the derivatives on the right-hand sides of
(2.5) and (2.6) can be obtained. Hence, note that the result of (2.5) must satisfy the result
of (2.6). Furthermore, a smooth pressure distribution which satisfies both (2.5) and (2.6) is
calculated using Poisson’s equation [19],i T +y3z9	{1|~} . Z. 8�� } . Y.2* � 9�} . Y. 8�� } . Z.2* ��� ;(2.7)

In the numerical method, the vorticity transport equation is first solved and then the pressure
distribution equation is solved without any assumptions made for pressure distribution. For
the calculation of pressure distribution, it is important to make no assumptions. In this study,
initial values are obtained using (2.5) and then (2.7) is used to obtain better solutions.
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2.2. Axial pressure drop at centerline. For fully developed flow where ./+10�.2* = 0,
the pressure gradient at the centerline [27] is given by9�� +� 8 3 O�{��� ;

The total pressure drop from the channel inlet is expressed as the sum of the pressure
drop that would occur if the flow were fully developed, plus the excess pressure drop �f����!
to account for the developing region,+�����!x9�+�����!�3�O�{�� g �f����!;(2.8)

2.3. Normal pressure gradient at wall. Here, we consider the normal pressure gradient./+�06.7* . The dimensionless N-S equation in vector form [5] is written as. s. W 9 shq a 3k9Q���6� � u + O g s TOfv 9 $��� irq a ;(2.9)

Since the velocity vector
s 3�� at the wall, that is, the normal component of (2.9) at the wall,

reduces to ./+.7*����� ����� 3k9 O��� i�q a ���� ����� 3 O��� . a m. 8 ���� ����� j(2.10)

the normal pressure gradient is derived from the negative normal component of the curl of
vorticity at the wall. This normal pressure gradient is also presented by./+.7� 3k9 O��� . a.\�(2.11)

where ( � j � ) are the normal and tangents to the wall [15], [19]. Since ��3d9	* and ��3 8
at the wall, (2.10) and (2.11) are the same. (2.10) is, however, clearer than Eq. (2.11) when
we consider a physical force mechanism in vector form. The normal component of the curl
of vorticity at the wall hereafter is called normal wall strength (NWS). Since only the l
component of the vorticity awm is effective in a two-dimensional flow field, NWS is expressed
as �'���¡  O��� o i�q a t � ���� ����� 3k9 O�=� . axm. 8 ���� ����� 3�9 ./+.7* ���� �"��� ;(2.12)

The following characteristics of NWS are considered.

(i) NWS is effective near the channel inlet where the vorticity gradient in the 8 -direction is
large and decreases inversely with ��� . In the fully developed region, NWS does not exist
since the curl of vorticity disappears.

(ii) It is clear from (2.12) that NWS causes a pressure gradient in the * -direction, that is, the
pressure gradient results from the curl of vorticity. NWS and the normal pressure gradient./+106.7* have the same magnitude at the wall, but have opposite directions. When ./+106.7*�¢�� ,
the direction of NWS is from the wall to the centerline, as shown in Fig. 2.2. NWS causes
the fluid particles near the wall to move towards the centerline in the normal direction.

(iii) When using the boundary-layer assumptions, NWS vanishes since ./+106.7* is always
neglected in the assumptions.



ETNA
Kent State University 
etna@mcs.kent.edu

NUMERICAL STUDY OF NORMAL PRESSURE DISTRIBUTION IN ENTRANCE FLOW, I 207

1

2

J0

Flow

J1

J2

  i1 I0

j

y

x

y

Channel  inlet
Channel  outlet

Channel  wall

h

y

Centerline

x

Fluid particle
with vorticity

NWS

(1/2) ∆ y

FIG. 2.2. Directions of curl of vorticity on wall.

3. Numerical methods. The rectangular mesh system used is schematically shown in
Fig. 2.2, where

D � and
F � are the maximum numbers of mesh points in the 8 - and * -

directions, respectively, and
D $£3 D �n9�$ and

D O�3 D �n9�O . In this paper,
D ��3¤$¥���J$ , F ��3¦�N$

and 101, and the dimensionless � grid space is constant: §��k3�§ 8 0�����3¨�<; �����<$ . Ac-
cordingly, since § 8 3��J; �����J$�Pn��� , § 8 and the maximum 8 -distance, 8 3�� D �:9©$¥!ª§ 8 , are
proportional to ��� .

3.1. Vorticity transport equation. This computational scheme involves the forward-
time, centered-space (FTCS) method. For unsteady problems, (2.1) in finite difference form
can be solved efficiently in time using an explicit or implicit Gauss-Seidel iteration method
(this study).

The implicit form for vorticity is written asaG«�¬� 9 aG«® W g . _ «.7* . aG«�¬�. 8 9 . _ «. 8 . aG«�¬x.7* 3 $��� u ./T aG«�¬x. 8 T g ./T aG«�¬�.7* T v ;
Here � is the time step.

The initial condition for the stream function is given by_ � C j E !^3�� E 9¯$]!M§�* j $-& C & D � j $-& E & F �J;
Within the boundaries the initial vorticity is obtained by solving (2.2). The velocities Y and Z
are set using (2.3) whenever the stream function is newly calculated.

The following are the boundary conditions.

(i) At the centerline:
_^°�±  3²� j(a °�±  3�� j $�& C & D $ .

(ii) At the inlet:
_  ± ³ 3´� E 9�$¥!ª§�* j´a  ± ³ 3�� j Oµ& E & F $�;

(iii) At the wall:
_ °�± ¶ U 3´� F �-9b$¥!ª§�* j $�& C & D $�;

The vorticity boundary condition at no-slip walls is derived from (2.4):a 3¤9:. Y 0�.7*7;
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A three-point, one-sided approximation for derivatives is used to maintain second-order ac-
curacy: a °�± ¶ U 3�9�· Y °�± ¶ U 9�{ Y °�± ¶ U"¸ wg Y °�± ¶ U%¸ TO�§�* 3 { Y °�± ¶ U"¸  9 Y °�± ¶ U"¸ TO�§�* ;(3.1)

(iv) At the outlet, the linear extrapolation method is used:_n¹ U ± ³ 3¦O _w¹  ± ³ 9 _n¹ T ± ³ jha ¹ U ± ³ 3�O a ¹  ± ³ 9 a ¹ T ± ³ ;
3.2. Pressure distribution. Before starting iterative calculations, first, we need to set

initial values for pressure distribution using (2.5). Next, we calculate a smooth pressure dis-
tribution using Poisson’s equation (2.7) and the Gauss-Seidel iteration method. The following
are the boundary conditions for pressure.

(i) For the pressure at the centerline, we use the three-point finite difference form; since./+106.7*µ3º� at *�3º� , + °�±  3���{�+ °�± T 9�+ °�± » !M0 · j $�& C & D �	;
(ii) The pressure at the channel inlet is given as zero without the leading edge:+  ± ³ 3�� j $-& E & F $�;
(iii)The pressure at the wall is derived from (2.10). For the leading edge with

C 3¼$ andE 3 F � , using the three-point approximation for a , the pressure gradient is expressed as· +  ± ¶ U 9�{�+  ± ¶ wg +  ± ¶ TO�§�* 3 O��� 9 a »"± ¶ U g { a T ± ¶ U 9 · a  ± ¶ UO�§ 8 ;
For the wall with Oµ& C & D $ , and

E 3 F � ,· + °�± ¶ U 9'{�+ °�± ¶  g + °�± ¶ TO�§�* 3 O�=� a ° ¬� ± ¶ U 9 a ° ¸  ± ¶ UO�§ 8 ;
(iv) For the outflow boundary conditions, the linear extrapolation method is used:+ ¹ U ± ³ 3�O�+ ¹  ± ³ 9�+ ¹ T ± ³ j $-& E & F �	;

The numerical calculations are carried out on an NEC SX-7/232H32 supercomputer that
has a peak performance of 8.83 G-FLOPS/processor. At

D � = 1001,
F � = 101, and �=� =

1000, the CPU time was 5306 sec.

4. Results and discussion. To evaluate the accuracy of the calculations, the calculated
velocity distribution, entrance length, and excess pressure drop were compared with those
obtained by the previous researchers listed in Tables 4.1 and 4.2. The calculated results
for
F ��3½�J$ and 101 are approximately the same. Since the

F ��3e$%�J$ mesh system has
twice refinement of the

F �43¾�J$ mesh system, we use the calculated results at
F � = 101

when mentioning specific values hereafter. The accuracy of the calculations in this study was
verified as described in the following subsections.
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4.1. Velocity distribution. The calculated profiles of the axial velocity component at��� = 1000 are shown in Fig. 4.1. The circles and squares show the velocity profiles given
by Schlichting ([21], [22]) and Wang and Longwell [26]. The values on the curves are listed
in Table 4.1. Schlichting solved the problem with the aid of boundary-layer theory. Wang
obtained a numerical solution in a steady state. It will be noted in Fig. 4.1 and Table 4.1
that the velocity distribution is concave in the central portion for �¼&²�<; ������� at ���-3($%�����
as Wang found. In the case of Wang, the concave distribution can be seen for �¿&��<; ����O at���£3 · ��� (in the present study, �À&��J; ���<$¥� at �=�=3 · ��� ). This difference may be caused by
the mesh refinement and ��� ; §��e3��J; �����J$ for our mesh system and 0.000146 for Wang’s
mesh system. For the velocity distribution, after �z35�J; ����O , Schlichting’s results and our
results are approximately the same. After �¼3��J; �J$ , Schlichting’s, Wang’s, and our results
are approximately the same.

TABLE 4.1
Velocity distributionsÁ

= 0.0002
Á

= 0.0005
Present Work Schlichting Wang Present Work Schlichting Wang� ( Â I �  UªUMU ) ( Â I = 300) ( Â I �  UMUªU ) ( Â I = 300)

0.5 0.0 0.0 0.0 0.0 0.0 0.0
0.4 1.078 1.042 1.044 0.989 1.057 1.044
0.3 Ã 1.076 1.043 1.029 1.107 1.075 1.068
0.2 1.061 1.043 1.021 1.101 1.075 1.051
0.1 1.053 1.043 1.018 1.097 1.075 1.044
0.0 1.050 1.043 1.017 1.096 1.075 1.042Á

= 0.001
Á

= 0.002
0.5 0.0 0.0 0.0 0.0 0.0 0.0
0.4 0.898 1.004 0.924 0.802 0.810 0.847
0.3 Ã 1.124 1.108 1.053 1.136 1.140 1.107
0.2 1.126 1.109 1.071 1.160 1.160 1.142
0.1 1.126 1.109 1.069 1.161 1.160 1.138
0.0 1.126 1.109 1.068 1.161 1.160 1.135Á

= 0.005
Á

= 0.01
0.5 0.0 0.0 0.0 0.0 0.0 0.0
0.4 0.670 0.697 0.723 0.589 0.626 0.655
0.3 Ã 1.099 1.087 1.142 1.033 1.048 1.035
0.2 1.221 1.254 1.235 1.246 1.264 1.233
0.1 1.234 1.261 1.248 1.309 1.333 1.306
0.0 1.235 1.262 1.249 1.319 1.335 1.322Á

= 0.05
Á

= 0.1
0.5 0.0 0.0 – 0.0 0.0 –
0.4 0.544 0.540 – 0.539 0.540 –
0.3 Ã 0.928 0.960 – 0.923 0.960 –
0.2 1.236 1.260 – 1.235 1.260 –
0.1 1.422 1.440 – 1.427 1.440 –
0.0 1.492 1.500 – 1.499 1.500 –

4.2. Entrance length ( �G� ). The entrance length ( ��� ) is defined as the distance from
the entrance to the point where the centerline velocity reaches 98 or 99 Ä of the fully devel-
oped value. Table 4.2 gives the ��� values for 98 Ä , 99 Ä , and 99.9 Ä of the fully developed
value computed by other researchers, most of which are obtained regardless of ��� . Chen [2]
provides (4.1) for an entrance length for channel flow,�G��3 ���� 3 �<; @ ·�����>�J; � · ����� g $]! g �<; ��{�{2;(4.1)

At �=��Å������ , ��� has a constant value of 0.044, as determined using (4.1).
Our calculated ��� values are also shown in Table 4.2 for 98 Ä , 99 Ä , and 99.9 Ä of the

fully developed value. The following are our main conclusions. The calculated results are
approximately the same at ���-Å · ��� , where the ��� values are approximately 0.0333 for 98%,
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FIG. 4.1. Velocity profile of axial velocity component at ��� = 1000.

0.0424 for 99%, and 0.0732 for 99.9%. The �G� value of 0.0424 for 99% is slightly smaller
than that calculated using (4.1) and approximately equal to the value 0.0429 of Morihara and
Cheng [10]. At ����& · ��� , �G� increases as ��� increases. For 99% of the fully developed
value, the �G� values are 0.0407 at ��� = 100 and 0.0421 at �=� = 300. These values are smaller
than those calculated using (4.1) (see Table 4.2). According to Eq. (18), ��� decreases as �=�
increases for ����& · ��� . In contrast, our results show that ��� increases as ��� increases for����& · ��� . Thus, according to our results, it seems that ��� increases as ��� increases for���-& · ��� because of a viscous effect, and that �G� becomes constant at ���-Å · ��� .

TABLE 4.2
Entrance lgth Æ2� & excess prev. obtained press drop ÇÉÈËÊ�Ì

Entrance Length Le
Author Year 98% 99% 99.9% Í=ÎÐÏ-Ñ Re
Schlichting 1934 0.034 0.04 – 0.601 –
Han 1960 0.0297 0.0396 – 0.871 –
Bodoia & Osterle 1961 0.034 0.044 0.076 0.676 –
Collins & Schowalter 1962 0.034 – – 0.676 –
Sparrow & Lin 1964 – – – 0.686 –
Wang & Longwell (Case I) 1964 0.034 – – 0.676 300
Kiya, Fukusako, & Arie 1972 0.0348 0.0445 – 0.666 –
Morihara & Cheng 1973 – 0.0429 – – 2000
Chen 1973 – 0.0454 – 0.830 100

– 0.0442 – 0.703 300
– 0.044 – 0.659 1000
– 0.044 – 0.650 2000

Narang & Krishnamoorthy 1976 – 0.0455 – – 1000
– 0.0422 – – 2000

Nguyen & Maclaine-cross 1988 – 0.0551 – 0.682 1000
Sadri & Floryan 2002 – 0.0399 – 0.686 1000
Present Work (J0 = 51) 2006 0.0315 0.0406 0.0731 0.744 100

0.0328 0.0419 0.0745 0.671 300
0.0330 0.0421 0.0746 0.663 500
0.0331 0.0422 0.0747 0.664 700
0.0331 0.0422 0.0747 0.664 1000
0.0331 0.0421 0.0747 0.664 2000
0.0330 0.0421 0.0746 0.663 3000
0.0330 0.0420 0.0746 0.662 5000

Present Work (J0 = 101) 2006 0.0317 0.0407 0.0716 0.721 100
0.0331 0.0421 0.0729 0.643 300
0.0333 0.0423 0.0731 0.641 500
0.0333 0.0424 0.0732 0.641 700
0.0334 0.0424 0.0732 0.643 1000
0.0333 0.0424 0.0732 0.643 2000
0.0333 0.0423 0.0731 0.643 3000
0.0332 0.0423 0.0731 0.641 5000
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4.3. Excess pressure drop ( �f�XÒf! ). The pressure drop can be conveniently represented
by (2.8). If � is larger than 0.1, �f���'! is assumed to be �f�XÒf! for the fully developed
region. Table 4.2 also gives the �¯�`Ò¯! values computed by other researchers, most of which
are obtained regardless of ��� . Chen [2] provides the following, (4.2) for �¯�`Ò¯! :�¯�`Ò¯!Ó3¼�<; @�{ g $¥Ô��� ;(4.2)

In our study, the excess pressure drop �¯���'! at the centerline is shown in Fig. 4.2 for ���
= 1000, in which the curve of the pressure drop approaches a straight line with a gradient of
24 as � increases. The calculated �f�XÒf! values for $¥���É&b���-&²������� are listed in Table 4.2.
The following are our main conclusions. The calculated results are approximately the same
at ���-Å · ��� , where the �¯�`Ò¯! value is approximately 0.643. At ���-& · ��� , �¯�`Ò¯! decreases
as ��� increases. The �f�XÒf! values are 0.721 at ���µ3)$¥��� and 0.643 for ���µ3 · ��� . These
values are slightly smaller than those calculated using Eq. (19) (see Table 4.2). This difference
is attributed to the fact that Chen invoked the momentum integral method and boundary-layer
assumptions. However, the present behavior that �f�XÒf! decreases to a constant value as��� increases is the same as the result of Chen. For example, �f�XÒf! decreases to 0.659 at���£3�$¥����� in Chen’s case and �f�XÒf! decreases to 0.643 at ���£3 · ��� in the present study.

Generally, the results of this study for �G� and �f�XÒf! are in agreement with the previous
results listed in Table 4.2.
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FIG. 4.2. Development of Õ in channel flow.

4.4. Pressure distribution in the * -direction. Let us consider the question: “Which is
higher, the pressure at the wall ( +�, ), or the pressure at the centerline ( +- ) in the * -direction?”
At the wall, the derivative of Z with respect to 8 is 0, so that, from (2.4) and (3.1) the vorticity
is reduced toa °�± ¶ U 3´9 . Y.7* ���� ������Ö 9 ·

Y °�± ¶ U 9�{ Y °�± ¶ U"¸  g Y °�± ¶ U%¸ TO�§�* 3 { Y °�± ¶ U"¸  9 Y °�± ¶ U"¸ TO�§�* ;(4.3)

Near the wall, the 8 component of velocity, Y , can be linearly approximated as follows:Y °�± ¶ U%¸  Ö �
Y °�± ¶ U g Y °�± ¶ U%¸ T !O 3 $O Y °�± ¶ U%¸ T ;(4.4)

From (4.3) and (4.4), the vorticity at the wall is simply approximated as follows:a °�± ¶ U 3k9 . Y.2*����� ����� Ö
Y °�± ¶ U"¸ §�* �b�<;(4.5)
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Substituting (4.5) into (2.10) gives.7+.7*����� ����� 3 O��� . a m. 8 ���� ����� 3 O��� .. 8 �?9 . Y.2* ! ���� �"���
Ö O��� .. 8 � Y °�± ¶ U%¸ §�* !Ó3 O��� Y ° ¬� ± ¶ U%¸  9 Y ° ¸  ± ¶ U"¸ O�§ 8 §�* &×�J;

Thus, since Y ° ¬� ± ¶ U"¸  ¢ Y ° ¸  ± ¶ U%¸  in the entrance region, the normal pressure gradient at the
wall becomes negative. On the other hand, in the fully developed region, since Y ° ¬� ± ¶ U%¸  3Y ° ¸  ± ¶ U"¸  , the normal pressure gradient at the wall becomes 0, so that the pressure distribu-
tion results in uniform in the * -direction.

As for the value of the vorticity at the wall, the velocity distribution in the fully developed
region is given by Y ��*J!Ó3 ·O �?$:9 *NTB T !;(4.6)

Differentiating (4.6) with respect to * givesa£Ø ����� 3k9 . Y.7*-���� ����� 3z9 ·O �Ù9 O BB T !'3 · $B 3�@
where the dimensionless value of

B
is 0.5. Thus, the value of a decreases monotonously from

a large positive value at the leading edge to 6 in the fully developed region (see Table 4.3).
Hence, the positiveness of the vorticity in (4.5) is also verified. In Table 4.3, there exists a
singular point at the leading edge (

C 3¾$ , E 3 F � ): a �?$ j F ��! is 151.5 and 301.5 for
F � =

51 and 101, respectively. In this calculation method, however, after
C 3¡O , the vorticity is

smoothed regardless the number of normal grid points.

Next, let us verify the above deductions using the calculated results. The axial pressure
drops §�+ and the pressure distribution in the * -direction, + , at �Ú&b�<; ����O are shown in Figs.
4.3 through 4.9. Since the initial and boundary conditions for pressure at the inlet �d3º� are
assumed to always be zero, the pressure drop from the inlet §�+ is§�+����'!n3º��9�+�����!n3´9:+�����! j
where the pressure +����'! is negative and the pressure drop §�+ is positive. The absolute
value of pressure is equal to the value of the pressure drop. In Figs. 4.3 through 4.9 (a), the
squares and circles show the pressure drops at the wall §�+�, and at the centerline §�+- ,
respectively.

We consider the pressure drop. For example, at ����3À$%����� , it is clear in Fig. 4.6 (a)
that (i) there is a large difference between §�+�, and §�+- across the width of the channel
at �Û¢d�J; ���<$ . Note that §�+�, is larger than §�+- . This indicates that (ii) the pressure
at the wall +�, is lower than the pressure at the centerline +- , i.e., +�,¾¢¨+- . This is in
contradiction to the results obtained using the boundary layer theory, in which there is a flat
distribution in the central region, and also to Bernoulli’s law, although the law does not apply
to viscous flow. Moreover, it is seen from Figs. 4.3 through 4.9 (a) that (iii) the difference,+- :9¯+�, , decreases as ��� increases. The values of +- :9f+�, are listed in Table 4.4. It is
clear from Table 4.4 that at ���Ü& · ����� and � = 0.0005, there exists a significant pressure
gradient in the * -direction. The distance where §�+�, approximately equals §�+- is hereafter
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TABLE 4.3
Vorticity distributions at wall (ÝGÞ�ß�� )ÁÂ I 0.0 0.0001 0.0002 0.0005 0.001 0.0015

Present Work 100 151.50 105.67 72.16 29.16 15.13 11.54
(J0 = 51) 300 151.50 62.24 30.96 14.42 11.14 10.34

500 151.50 47.97 23.28 13.18 11.55 11.02
1000 151.50 36.70 18.92 13.56 12.54 11.64
2000 151.50 30.79 17.82 14.66 12.90 11.73
3000 151.50 28.87 18.07 15.04 12.93 11.71
5000 151.50 27.57 18.72 15.25 12.93 11.69

Present Work 100 301.50 143.61 74.25 26.47 14.66 11.30
(J0 = 101) 300 301.50 65.40 28.49 14.00 10.96 10.23

500 301.50 48.67 22.17 13.01 11.48 10.98
1000 301.50 36.79 18.54 13.52 12.53 11.63
2000 301.50 30.77 17.68 14.65 12.90 11.72
3000 301.50 28.81 17.99 15.04 12.92 11.70
5000 301.50 27.50 18.69 15.25 12.92 11.68ÁÂ I 0.002 0.01 0.02 0.05 0.07 0.1

Present Work 100 9.96 7.18 6.58 6.11 6.07 6.06
(J0 = 51) 300 9.95 7.46 6.65 6.12 6.07 6.06

500 10.56 7.50 6.66 6.12 6.07 6.06
1000 10.90 7.51 6.66 6.12 6.07 6.06
2000 10.92 7.51 6.66 6.12 6.07 6.06
3000 10.90 7.50 6.65 6.12 6.07 6.06
5000 10.88 7.49 6.65 6.12 6.07 6.06

Present Work 100 9.80 7.15 6.55 6.08 6.04 6.03
(J0 = 101) 300 9.88 7.44 6.62 6.09 6.04 6.03

500 10.53 7.48 6.63 6.09 6.04 6.03
1000 10.89 7.49 6.64 6.09 6.04 6.03
2000 10.92 7.49 6.64 6.09 6.04 6.03
3000 10.89 7.48 6.63 6.09 6.04 6.03
5000 10.87 7.47 6.63 6.09 6.04 6.03

TABLE 4.4
Pressure difference Õwà/á�Õnâ and pressure agreement length Æ�ãÁ

0.0002 0.0005 0.001 0.0015 0.002Â I ä�å ¸ ä�æ ç�è
Present Work 100 1.286 1.206 0.882 0.704 0.575 0.0213

(J0 = 51) 300 0.436 0.393 0.227 0.122 0.064 0.0051
500 0.290 0.224 0.081 0.027 0.011 0.0028
700 0.227 0.139 0.030 0.008 0.0 0.0020

1000 0.174 0.071 0.008 0.0 0.0 0.0015
2000 0.093 0.009 0.0 0.0 0.0 0.0007
3000 0.058 0.002 0.0 0.0 0.0 0.0006
5000 0.027 0.0 0.0 0.0 0.0 0.0005

Present Work 100 1.288 1.205 0.882 0.703 0.575 0.0212
(J0 = 101) 300 0.437 0.395 0.227 0.123 0.062 0.0051

500 0.293 0.226 0.083 0.026 0.010 0.0027
700 0.226 0.138 0.036 0.008 0.0 0.0020

1000 0.178 0.071 0.007 0.0 0.0 0.0014
2000 0.092 0.008 0.0 0.0 0.0 0.0006
3000 0.057 0.002 0.0 0.0 0.0 0.0005
5000 0.025 0.0 0.0 0.0 0.0 0.0004

called the pressure agreement length ��K . In Table 4.4, it is seen that (iv) �LK decreases as��� increases. At ����Å · ��� , �G� and �¯�`Ò¯! are approximately constant. However, even if���-Å · ��� , the pressure difference +- ^9Ó+�, and ��K decrease as �=� increases, and disappear
at ���-Å²������� .

Next, we consider the pressure distribution in the * -direction as shown in Figs. 4.3
through 4.9 (b). At ����&¾$%����� and �é&5�<; ������� , the difference in pressure between the
wall and the centerline exists and the absolute value of normal pressure gradient ./+106.7* near
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the wall is larger than that in the central core. This normal pressure gradient decreases as �=�
and � increase. At ����Å´������� and �yÅ¤�J; ������� , the pressure difference in the * -direction
disappears as shown in Fig. 4.9.

Consider the relationship between the pressure distribution and �=� . In Fig. 4.10, the
straight and the dotted curves denote the pressure drops at the wall and at the centerline at ���
= 500, 1000, and 3000. Fig. 4.10 shows that the difference +- £9¯+�, depends strongly on��� for ����& · ����� near the inlet. For �=��Å)$%����� , the pressure drops at the wall and at the
centerline becomes the same after ��Å��J; �����J$]� regardless of ��� . Strictly, as � increases,
the pressure drop at ��� = 500 becomes approximately the same as that at ����Å¤$¥����� : At �
= 0.02, §�+ = 1.0242 at ��� = 500 and §�+ = 1.0225 at �=� = 1000. Similarly, as � increases
far downstream, the pressure drop at ����3 · ��� becomes approximately the same as that at����Åh$%����� . However, the pressure drop at ���É3r$¥��� is higher than that at ���É3¨$%����� : At�¼3��J; � · , §�+h3)$�; · Ô�Ô�@ at ���É3r$%��� , §�+)3)$�; · O���� at ���É3 · ��� , and §�+(3r$�; · $�$ · at����3h$%����� . Thus, �¯�`Ò¯! becomes approximately the same at �=�êÅ · ��� as shown in Table
4.2.

In summary, there exists a large difference in pressure in the * -direction near the inlet,
which depends on ��� . The difference disappears downstream and the pressure drop at ���-Å· ��� becomes the same regardless of �=� .
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FIG. 4.3. (a) Axial pressure drop and (b) pressure in � -direction, ��� = 100.
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FIG. 4.4. (a) Axial pressure drop and (b) pressure in � -direction, ��� = 300.

5. Conclusions. An analysis of flow development at Reynolds numbers from 100 to
5000 in the entrance region of parallel plates is presented. The flow field was calculated
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FIG. 4.5. (a) Axial pressure drop and (b) pressure in � -direction, ��� = 500.
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FIG. 4.6. (a) Axial pressure drop and (b) pressure in � -direction, ��� = 1000.

with time using the vorticity transport equation and Poisson’s equation for the stream func-
tion independently of pressure. After the computation reached the steady state, the pressure
was calculated in two steps: (i) initial pressure values were obtained using the Navier-Stokes
equation in a steady state (2.5), and then, (ii) smooth solutions were calculated using Pois-
son’s equation (2.7). The Navier-Stokes equation can be expressed in vector form using
(2.9). At the wall, the viscous term is expressed by the curl of vorticity so that the pressure
gradient in the * -direction is given by the vorticity gradient in the 8 -direction (2.10). Hence,
the calculation procedure for pressure distribution was carried out without any preliminary
assumptions.

As a result, the pressure distribution in the * -direction was obtained for the first time
for the above Reynolds numbers. For the fully developed region, the calculated velocity
distribution, entrance length, and excess pressure drop were in good agreement with those
reported previously by the researchers listed in Table 4.2.

The conclusions obtained can be summarized as follows.
1. There is a large difference between +�, and +- across the width of the channel for

a small � , where +�, is smaller than +- . This is in contradiction to the results
obtained using the boundary layer theory, in which there is a flat distribution in
the central region, and also to Bernoulli’s law, although the law does not apply to
viscous flow. The difference between +�, and +- disappears at ���ÜÅ(������� . This
indicates that the boundary-layer assumptions do not hold for ���f&ë������� . Note
that NWS causes the difference between +�, and +- and forces the fluid particles to
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FIG. 4.7. (a) Axial pressure drop and (b) pressure in � -direction, ��� = 2000.
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FIG. 4.8. (a) Axial pressure drop and (b) pressure in � -direction, ��� = 3000.

move towards the centerline.
2. The calculated ��� and �f�XÒf! values are approximately constant at �=��Å · ��� . Since

the minimum critical Reynolds number is in the neighborhood of 1300, it is impor-
tant to find variable that vary at ���²Å · ��� . Hence, we found that the pressure
difference in the * -direction exists even if ���êÅ · ��� and varies inversely as �=� in-
creases, and disappear at ����Åº������� . The relation between NWS and �� may thus
be a next research item.
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