
Electronic Transactions on Numerical Analysis.
Volume 22, pp. 41-70, 2006.
Copyright 2006, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University
etna@mcs.kent.edu

A NETWORK PROGRAMMING APPROACH IN SOLVING DARCY’S
EQUATIONS BY MIXED FINITE-ELEMENT METHODS

�
M. ARIOLI

�
AND G. MANZINI

�
Abstract. We use the null space algorithm approach to solve the augmented systems produced by the mixed

finite-element approximation of Darcy’s laws. Taking into account the properties of the graph representing the trian-
gulation, we adapt the null space technique proposed in [5], where an iterative-direct hybrid method is described. In
particular, we use network programming techniques to identify the renumbering of the triangles and the edges, which
enables us to compute the null space without floating-point operations. Moreover, we extensively take advantage of
the graph properties to build efficient preconditioners for the iterative algorithm. Finally, we present the results of
several numerical tests.

Key words. augmented systems, sparse matrices, mixed finite-element, graph theory

AMS subject classifications. 65F05, 65F10, 64F25, 65F50, 65G05

1. Introduction. The approximation of Darcy’s Laws by Mixed Finite-Element tech-
niques produces a finite-dimensional version of the continuous problem which is described
by an augmented system. In this paper, we present an analysis of a null space method which
uses a mixture of direct and iterative solvers applied to the solution of this special augmented
system. The properties of this method, in the general case, have been studied in [5] where
its backward stability is proved, when using finite-precision arithmetic, and where a review
of the bibliography on the topic is also presented. Here, we will take advantage of network
programming techniques for the design of a fast algorithm for the direct solver part and for
the building of effective preconditioners. The relationship between the graph properties of
the mesh and the augmented system has been pointed out in [2]. Several authors used similar
data structures and network techniques in a rather different context or for different purposes.
In [1, 10, 28] similar techniques have been suggested in the area of computational electro-
magnetics for gauging vector potential formulations. In the field of computational fluid dy-
namics, analogous methods have been applied to the finite-difference method for the solution
of Navier-Stokes equations [3, 24]. Finally, in [6], a similar approach in the approximation
of a 3-D Darcy’s Law by Hybrid Finite-Element techniques is studied.

The null space algorithm is a popular approach for the solution of augmented systems in
the field of numerical optimization but is not widely used in fluid dynamics. For a review of
other existing methods for the solution of saddle point problems we advise to read the compre-
hensive survey [8]. Among the possible alternative methods, we indicate the direct approach
where a sparse ������� decomposition of the symmetric augmented matrix is computed using
preprocessing that will help to minimize the fill-in during the factorization combined with
one by one and two by two numerical pivot strategies [18, 17]. In our numerical experiments
we will compare our approach with one of these direct solvers.

We point out that our null space method is an algebraic approach to the computation
of the finite-element approximation of �
	��������� which characterizes the subspace of the
divergence-free vector fields in ��	�������� , [32, 7, 34, 35]. Nevertheless, we emphasize that�

Received January 12, 2005. Accepted for publication September 5, 2005. Recommended by M. Benzi. The
work of the first author was supported in part by EPSRC grants GR/R46641/01 and GR/S42170. The work of second
author was supported by EPSRC grant GR/R46427/01 and partially by the CNR Short-Term Mobility Programme,
2005.�

Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX, UK (M.Arioli@rl.ac.uk).�
Istituto di Matematica Applicata e Tecnologia Informatica C.N.R., via Ferrata 1, 27100 Pavia, Italy

(marco.manzini@imati.cnr.it).

41

ETNA
Kent State University
etna@mcs.kent.edu

42 M. ARIOLI AND G. MANZINI

our method does not require the explicit storage of the null space and, therefore, of the re-
lated finite-element approximation of ��	��������� . Our approach is applicable when "!$# and% �'&
(finite elements [11] are used. Nevertheless, we do not consider this a limitation in
practical situations: the "! # and

% �)&*(finite elements are widely used in the 3D simulation
of physical phenomena, where higher order approximations have an exceeding computational
complexity and the indetermination in the evaluations of the physical parameters is high. For
the sake of simplicity, we describe our approach only for the "! # finite elements.

In Section 2, we will briefly summarize the approximation process and describe the basic
properties of the linear system and augmented matrix. In Section 3, the null space algorithm
and its algebraic properties are presented. The direct solver is based on the �,+ factorization
of the submatrix of the augmented system which approximates the divergence operator ����� .
We will see in Section 4, how the basic structures of the matrices involved are described in
terms of graph theory and how the �,+ decomposition can be performed by Network Pro-
gramming classical algorithms. In particular, we will use the “Shortest Path Tree” (SPT)
algorithms to achieve a reliable fast decomposition. Furthermore, the same graph properties
allow us to describe the block structure of the projected Hessian matrix on which we will
apply the conjugate gradient algorithm. This will be used in Section 5 to develop the precon-
ditioners. Finally, in Section 6, we show the results of the numerical tests that we conducted
on selected experiments, in Section 7, we describe the possible extension of our techniques
to the three dimensional domain case, and we give our conclusions in Section 8.

2. The analytical problem and its approximation.

2.1. Darcy’s Law. We consider a simply connected bounded polygonal domain - in
IR . which is defined by a closed one-dimensional curve / . The boundary / is the union of the
two distinct parts /10 and /12 , i.e. /�34/$0�56/12 , where either Dirichlet- or Neumann-type
boundary conditions are imposed. In the domain - , we formulate the mathematical model
that relates the pressure field 7 (the hydraulic head) and the velocity field 8 (the visible effect)
in a fully saturated soil with an incompressible soil matrix. This relationship is given by the
steady Darcy’s model equations; the assumption of soil incompressibility implies that the
soil matrix characteristics, e.g. density, texture, specific storage, etc, be independent of time,
space, and pressure. The Darcy’s model equations read as8934:<;>=?�A@?�B7$C in -(2.1) ���D�E893GFHC in -(2.2)

Equation (2.1) relates the vector field 8 to the scalar field 7 throughout the permeability
tensor ; , which accounts for the soil characteristics. Equation (2.2) relates the divergence of8 to the right-hand side source-sink term F . These model equations are supplemented by the
following set of boundary conditions for 8 and 7 :7JI KMLN3PO 0 C on / 0(2.3) 8RQ�S,I KUT�3PO 2 C on / 2(2.4)

where S is the unit vector orthogonal to the boundary / and pointing out of - , O�0 and O?2 are
two regular functions that take into account Dirichlet and Neumann conditions, respectively.
For simplicity of exposition, OU2 is taken equal to zero.

2.2. Mixed finite-element method for Darcy’s law. In this section, we shortly review
some basic ideas underlying the mixed finite-element approach that is used in this work to ap-
proximate the model equations (2.1)-(2.2). The mixed weak formulation is formally obtained

ETNA
Kent State University
etna@mcs.kent.edu

A NETWORK PROGRAMMING APPROACH TO MFE METHODS 43

in a standard way by multiplying equation (2.1) by the test functionsVXW6Y 3[ZH\]I^\ W`_ �a.U	b-<��c . Cd���D�<\ W �a.e	f-<�gCa\hQ�SEI KMT
3PikjlC
and equation (2.2) by m W � . 	b-<� and integrating by parts over the domain of computation.
We refer to [11] for the definition and the properties of the functional space Y . The weak
formulation of (2.1)-(2.2) reads as

find 8 WhY and 7 W � . 	b-<� such that:noop ooq rts ;vu (8RQ VPwUx : rts 7y���D� VPwUx 3 : r KUL O 0 V Q�S wtz for every VXWRY Crts 	b�����<81�{m w?x 3 rts F|m w?x for every m W � . 	f-<�k}
The discrete counterpart of the weak formulation that we consider in this work can be

introduced in the following steps. First, we consider a family of conforming triangulations
covering the computational domain - that are formed by the sets of disjoint triangles ~"��3� !�� . Every family of triangulations is regular in the sense of Ciarlet, [13, page 132], i.e. the
triangles do not degenerate in the approximation process for � tending to zero. Additionally,
we require that no triangle in ~ � can have more than one edge on the boundary / nor that
a triangle can exist with a vertex on / 0 and any other vertex on / 2 . The label � , which
denotes a particular triangulation of this family, is the maximum diameter of the triangles in~ � , i.e. ��3��]@���$�?�k� diam 	�!y� . Then, we consider the functional spaces� �y3�� V 	 x �<�U-`� IR .UC V 	 x ��I � 3�� x)��� C�� W IR C��H! W ~���C V Q�S,I K T
3�i���C
i.e. the space of the lowest-order Raviart-Thomas vector fields defined on - by using ~"� , and� � 3 � m1	 x �E�U-�� IR C�m�	 x ��I � 3 const CM�H! W ~ � �dC
i.e. the space of the piecewise constant functions defined on - by using ~ � . For any given� , the two functional spaces

� � and
� � are finite-dimensional subspaces of Y and � . 	b-<� ,

respectively, and are dense within these latter spaces for �v��i [11]. The discrete weak for-
mulation results from substituting the velocity and pressure field 8 and 7 by their discretized
counterparts 8 � and 7 � and reformulating the weak problem in the spaces

� � and
� � [11].

The dimension of the functional space
� � is equal to the total number of internal and

Dirichlet boundary edges ¢¡ . Any element of
� � can be expressed as a linear combination of

the basis functions
� V ¡¤£�C for ¥v3§¦UC�}�}�}�C� v¡�� , where ¨�© may be an internal edge or a boundary

edge with a Dirichlet condition. The basis function V ¡ª£ , which is associated to the edge ¨�© ,
is uniquely defined by r ¡¤« V ¡ £EQ�S ¡¤« wtz 3�¬ ¦UC for ®3
¥UCi�C otherwise C(2.5)

where S ¡ £ is the unit vector with direction orthogonal to ¨ © and arbitrarly chosen orientation.
Likewise, the dimension of the functional space

� � is equal to the number of triangles � .
In fact, any element of

� � can be expressed as a linear combination of the basis functions� m © C for ¥�3¯¦?C�}�}�}�C� � � . The basis function m © , which is associated to the triangle ! © , is
such that m © 3§¦ on ! © and m © 3�i on -±°)! © .

The solution fields 8 � and 7 � of the discretized weak formulation are taken as approxi-
mation of the solution fields 8 and 7 of the original weak formulation. The solution fields 8 �

ETNA
Kent State University
etna@mcs.kent.edu

44 M. ARIOLI AND G. MANZINI

and 7$� are expressed as linear combinations of the basis functions introduced in the previous
paragraph. These expansions are formally given by7 � 3 2J²³©�´ (7 © m © C and 8 � 3 2Jµ³©�´ (�¶ © V ¡ £e}(2.6)

The coefficient 7 © of the basis function m © in (2.6) can be interpreted as the approximation
of the cell average of the pressure field 7 on !k© . The coefficient ¶ © of the basis function V ¡ª£
in (2.6) can be interpreted as the approximation of the flux, or the iM·�¸ -order momentum, of
the normal component of 8 on the edge ¨�© . We collect these coefficients in the two algebraic
vectors ¶ 3 � ¶ ©�� and 7*3 � 7�©�� . It turns out that these vectors are solving the augmented
system of linear equations ¹ & ººy� i�»

¹ ¶7¼» 3
¹ :�½¾ » C(2.7)

where the elements of the matrices & and º of the augmented matrix of the left-hand side
of (2.7) and the elements of the vectors ½ and

¾
of the right-hand side of (2.7) are given by	b&¼� ¡^«b¡^¿ 3 r�s ;vu (V ¡¤« Q V ¡{¿ w?x C(2.8) 	bºy��¡ « ©y3§: r s ���D� V ¡ « m�© w?x C(2.9) 	�½e� ¡¤« 3 r K O 0 V ¡¤« Q�S wtz C(2.10) 	 ¾ � © 3§: r s F|m © wUx }(2.11)

The augmented system (2.7) has a unique solution because it holds thatÀÂÁ ��	bº � �$Ã ÀÂÁ ��	f&¼�d3 � i��U}
This property is an immediate consequence of the inf-sup condition, which is satisfied by the
functional operators represented by (2.8) and (2.9) on the basis function sets

� V ¨ © � and
� m © � .

These functional operators are used to define the discrete weak formulation in the functional
spaces

� � and
� � (see [11] for more details).

Finally, we describe some major properties of the matrices & and º that are related to
the triangulation ~ � . First, we assume that ¨�Ä be an internal edge, and denote its two adjacent
triangles by !yÅ¡ «yÆ - and !ÇÅ Å¡ «ÇÆ - . As the support of the basis function V ¡ « is given by the
union of !yÅ¡^« and !yÅ Å¡^« , every row &
¡ «fÈ of the matrix & has at most É nonzero entries. These
nonzero entries are on the columns corresponding to the internal or Dirichlet boundary edges
of the triangles !ÇÅ¡¤« and !ÇÅ Å¡¤« (the Neumann boundary edges are not considered). Similarly, the
row ºy¡ «bÈ of the matrix º must have two different nonzero entries on the columns correspond-
ing to the two triangles !yÅ¡^« and !ÇÅ Å¡¤« . Then, we assume that ¨�Ä be a Dirichlet boundary edge,
and denote the unique trianglethat ¨eÄ belongs to, by !yÅ¡¤« . In this second case, the row & ¡¤« È has
surely three nonzero entries on the columns corresponding to the three edges of ! Å¡^« . From
our initial assumption on the triangulations, it follows that the triangle !ÂÅ¡¤« cannot have more
than one edge on the boundary / ; furthermore, we are actually assuming that this boundary
edge is of Dirichlet type. Therefore, the row º ¡^« È has one nonzero entry only on the column
corresponding to !"Å¡ « . Moreover, the rectangular matrix º has maximum rank. By applying

ETNA
Kent State University
etna@mcs.kent.edu

A NETWORK PROGRAMMING APPROACH TO MFE METHODS 45

the Gauss theorem to the integral in (2.9) restricted to !�© (where m�©>3¯¦) and taking into
consideration (2.5), we deduce that the nonzero entries of the matrix º must be either � ¦ or:�¦ . The sign depends on the relative orientation of the triangle edges with respect to the edge
orientation that was arbitrarily chosen in (2.5). Furthermore, for every internal edge ¨eÄ shared
by the triangles ! Å¡¤« and ! Å Å¡¤« , the sum of the two nonzero entries on the matrix row º ¡¤« È is
zero; formally, º ¡¤« �HÊµ « � º ¡¤« ��Ê Êµ « 3Ëi . Let us consider the matrix º"Å$3[Ì ºvI Í�Î that is obtained
by augmenting º with the column vector Í which is built as follows. The column vector Í
only has nonzero entries for the row indices corresponding to the edges ¨?Ä Æ / 0 and these
non-zero entries are such that Í ¡¤« � º ¡¤« � µ « 3Pi . The matrix ºyÅ is the incidence matrix of the
edge-triangle graph underlying the given triangulation, and, then [31, 12] the matrix ºyÅ is a
totally unimodular matrix and has rank � . Therefore, the matrix º has rank � because
every submatrix that is obtained by removing a column of a totally unimodular matrix has full
rank [31, 12]. Furthermore, the pattern of & is equal to the pattern of I ºBI�I ºvI � , because the
nonzero entries of the row &*¡ «�È must match the nonzero entries of the edges of the triangles!ÇÅ¡¤« and !ÇÅ Å¡¤« , and from the unimodularity properties of º . By construction, the matrix & is
symmetric and positive semidefinite.

3. Null space algorithms. In this section, we take into account the classical null space
algorithm for the minimization of linearly constrained quadratic forms, which is described
for example in [21]. In particular, we choose the formulation of this algorithm that is based
on the factorization of the matrix º .

In order to simplify the notations, we use the letter Ï instead of the symbol ¡ to indicate
the total number of internal edges and Dirichlet boundary edges of the mesh, and Ð instead
of � to indicate the total number of triangles of the mesh. It holds that Ï±Ñ�Ð . Finally, we
denote by Ò"(and Ò . the ÏNÓ'Ð and ÏNÓN	�Ïh:NÐR� matricesÒy(�3 ¹�Ô�Õ

iÖ» ��Ð��Ïh:9Ð C and Ò . 3
¹ iÔ�× u Õ » ��Ð��Ïh:NÐ

where,

Ô Õ
and

Ô × u Õ are respectively the identity matrix of order Ð and the identity matrix
of order Ï':NÐ .

As already stated in Section 2.2, º is a full rank submatrix of a totally unimodular matrix
of order Ï�Ó�	�Ð � ¦�� , and its entries are either ØB¦ or i . It turns out the “LU” factorization
of º is obtainable without any floating-point operations, throughout a couple of suitable
permutation matrices Ù and

�
(see [31, 12]). In Section 4, we will see how it is possible to

determine efficiently Ù and
�

by using network programming algorithms. The matrices Ù
and

�
allow us to write the permutation of the matrix º asÙ�º � 3 ¹ � (� . » 3

¹ � (i� . Ô�× u Õ » Ò (C(3.1)

where � (is a nonsingular lower triangular matrix of order Ð . Without loss of generality, we
assume that all the diagonal entries in � (are equal to ¦ and the non-zero entries below the
diagonal are equal to :�¦ . This choice simply corresponds to a symmetric diagonal scaling of
the permuted augmented system. By introducing the lower triangular matrix�
3 ¹ �,(i� . Ô�× u Õ » C(3.2)

and recognizing that ÒÂ(plays the role of the matrix “U”, the “LU” factorization of º is given
by Ù�º � 3��aÒy(�}

ETNA
Kent State University
etna@mcs.kent.edu

46 M. ARIOLI AND G. MANZINI

In the rest of this section, we assume, for the sake of exposition simplicitythat the ma-
trices & and º and the vectors ½ and

¾
have already been consistently permuted and omit to

indicate explicitly the permutation matrices Ù and
�

. Thus, by identifying the matrix º with�aÒ"(after the row and column permutations, the augmented matrix in (2.7) can be factorized
as follows ¹ & ººy� i�» 3

¹ � ii Ô Õ »
¹ � u (&§� u � Òy(Ò��(iÖ»

¹ �a� ii Ô Õ » }(3.3)

We indicate the matrix � u (&§� u � by the symbol Ú& . The inverse matrix and the transposed
inverse matrix of � are formally given by�<u (3 ¹ � u ((i� . � u ((Ô�× u Õ » and �<u � 3 ¹ � u �(:�� u �(���.i Ô�× u Õ » }(3.4)

The block-partitioning of � u (and � u � induces on Ú& the block-partitioned formÚ&Û3 ¹ Ú& (Ü(Ú& (.Ú&§�(. Ú& .Ü. » C(3.5)

where, formally, Ú&lÄ © 3�Ò��Ä Ú&�Ò © , for ACª¥¢3�¦UCÜÝ , and we exploited the symmetry of the ma-
trix & (and, of course of Ú&) to set Ú& . (3ÞÚ&§�(. . Similarly, we introduce the block partition	 ¶ (C ¶ . �^� of the velocity vector ¶ and denote, for consistency of notation, the pressure vector7 by ¶kß . Thus, the algebraic vector 	 ¶ C�7k�{�N34	 ¶ (�C ¶ . C ¶kß �{� denotes the solution of the (suit-
ably permuted) linear problem (2.7) discussed in Section 2.2. We use the decomposition (3.3)
and take into account the block-partitioned definitions (3.4) and (3.5) of the matrices � u (,� u � and Ú& to split the resolution of the linear problem (2.7) in the two following steps.
First, we solve the linear systemàá Ú& (Ü(Ú& (. Ô�Õ

Ú&§�(. Ú& .�. iÔ Õ i i
âãäàá6å (å .å ß

âã 3 ¹ � u (ii Ô�Õ »
¹ :�½¾ » C(3.6)

for the auxiliary unknown vector 	 å (C å . C å ß �^� and, then, we compute the unknown vector	 ¶ (C ¶ . C ¶ ß �^� by solving àá ���(�a�. ii Ô�× u Õ ii i Ô�Õ âã�àá ¶ (¶ .¶ ß
âã 3 àáhå (å .å ß

âã }(3.7)

Note that the left-hand side matrix of (3.6) can be put in a block-triangular form by inter-
changing the first and the third block of equations. The final computational algorithm, which
is solved by the null space strategy, is formulated by introducing the vector æ�3ç:�� u (½ .
The vector æ is consistently partitioned in the two subvectors æè('3éÒ��(æ , and æ . 3êÒ��. æaccording to the block-partitioning (3.5).

NULL SPACE ALGORITHM:	�^� solve the block lower triangular system:àá Ô Õ i iÚ&§�(. Ú& .�. iÚ&
(Ü(Ú&
(. Ô Õ âãäàá6å (å .å ß
âã 3 àá ¾æ .æ (

âã C

ETNA
Kent State University
etna@mcs.kent.edu

A NETWORK PROGRAMMING APPROACH TO MFE METHODS 47	�f^� and, then, let ¹ ¶ (¶ . » 3��<u �
¹ å (å . » 3

¹ � u �(¾ :±���. å . �å . » C
¶Hß 3 å ß }

Note that in step 	�ª^� we have ¶ . 3 å . in view of the second formula in (3.4).
The null space algorithm as formulated above requires the formal inversion of the matrixÚ& .Ü. , which is the projected Hessian matrix of the quadratic form associated to the augmented

matrix of (2.7). In order to solve the linear algebraic problem Ú& .Ü. ¶ . 3§æ . :ÛÚ&§�(. å (for ¶ . ,we may proceed in two different ways. If Ï>:`Ð is small, i.e the number of constraints is
very close to the number of unknowns, or Ú& .Ü. is a sparse matrix, we may explicitly computeÚ& .Ü. and then solve the linear system involving this matrix by using a Cholesky factorization.
Nonetheless, the calculation of the product matrix � u (&§� u � might be difficult because of
the high computational complexity, which is of order ë)	�Ï ß � , or because the final matrix itself
would be fairly dense despite the sparsity of & . In such cases, we prefer to solve the linear
system Ú& .Ü. ¶ . 3�æ . : Ú&§�(. å (by using the pre-conditioned conjugate gradient algorithm [23].
The conjugate gradient algorithm does not require the explicit knowledge of the matrix Ú& .�.
but only the capability of performing the product of this matrix times a vector. The product
of the block sub-matrix Ú& Ä © of Ú& times a suitably sized vector ì is effectively performed by
implementing the formulaÚ&lÄ © ìv3�Ò �Ä �<u (f&ä	��<u � Ò © ì����gC for ACf¥�34¦?CAÝ�}(3.8)

We point out that the formula (3.8) only requires the resolution of the two triangular sys-
tems with matrices � u (and � u � , which can be easily performed by, respectively, forward
and backward substitutions, and the product of the sparse matrix & by an Ï -sized vector.
Furthermore, we observe that the matrix-vector product given by (3.8) is backward stable [5].

If we use the conjugate gradient method to solve Ú& .Ü. ¶ . 3íæ . :ÞÚ&§�(. å (, it is quite
natural to adopt a stopping criterion which takes advantage of the minimization property of
this algorithm. At every step ¥ the conjugate gradient method minimizes the energy norm
of the error î ¶ . 3 ¶ . : ¶èï ©�ð. on a Krylov space between the “exact” solution vector ¶ . and
the computed ¥ -th iterative approximation ¶ ï ©�ð. . The energy norm of the vector ì W IR

× u Õ ,
which is induced by the matrix Ú& .Ü. , is defined byñ ì ñ�òóÇôfô 34	�ì � Ú& .Ü. ì�� ï ({õ . ð }
This norm induces the dual normñ ì Å ñ òó)öM÷ôfô 3�	�ì Ê�ø � Ú& u (.Ü. ì Å � ï ({õ . ð
for the dual space vectors ì Å W IR

× u Õ . We terminate the conjugate gradient iterations by the
following stopping criterion

IF
ñ æ . :ùÚ& �(. å (:ÛÚ& .Ü. ¶ . ñ òó)öM÷ôfôGú
û ñ æ . :ùÚ& �(. å (ñ òó)öM÷ôbô THEN STOP C(3.9)

where û is an a priori defined threshold with value less than ¦ . The choice of û clearly
depends on the properties of the problem that we want to solve; however, in many practical
cases, û can be taken much larger than the machine precision of the floating-point operations.
In our experiments, we choose û 3§� following the results in [4].

ETNA
Kent State University
etna@mcs.kent.edu

48 M. ARIOLI AND G. MANZINI

In order to use (3.9), we need some tool for estimating the value ¨ òóyôfô 3 ñ æ . :üÚ&§�(. å (:Ú& .Ü. ¶ . ñ . òó�öM÷ôfô . This goal can be achieved by using the Gauss quadrature rule proposed in [22]
or the Hesteness and Stiefel rule [25, 4, 37, 38]. This latter produces a lower bound for the
error ¨ òóÇôfô using the quantities already computed during each step of the conjugate gradient
algorithm with a negligible marginal cost. In [37, 38], its numerical stability in finite arith-
metic has been proved. All these lower bound estimates can be made reasonably close to
the value of ¨ òóyôbô at the price of w additional iterations of the conjugate gradient algorithm.
In [4, 22], the choice w 3ý¦�i is indicated as a successful compromise between the compu-
tational costs of the additional iterations and the accuracy requirements; several numerical
experiments support this conclusion ([4, 22, 5, 37, 38]). Finally, following Reference [5], we
estimate ñ æ . :ùÚ& �(. å (ñ . òó öM÷ôbô
by taking into account that ñ æ . :ÛÚ& �(. å (ñ òó)öM÷ôbô 3 ñ ¶ . ñ ó · ôbô }
and replacing ¶ . with its current evaluation ¶ © . at the step ¥ if ¨ òóyôbôÂþ û . ñ æ . :ùÚ&§�(. å (ñ .. .

4. Graph and Network properties. In this section, we first review some basic defini-
tions relative to graph theory (more detailed information can be found in [31, 39]). We also
discuss how these definitions are relied to the graph structure underlying the triangulations of
the mixed finite element formulation of Section 2.2. Then, we show how a strategy that relies
on network programming can be used to determine the permutation matrices Ù and

�
of the

“LU” factorization of the matrix º that was introduced in the previous sections. In particular,
we show how these two matrices can be constructed in a fast and efficient way by exploting
the Shortest-Path algorithm (SPT).

A graph ÿä3 ��� C��¢� is made up of a set of nodes
� 3 ��� Ä¤��Ä ´ (ø������ ø × � and a set of

arcs � 3 � � © � ©�´ (ø������ ø × 	 . An arc � © is identified by a pair of nodes
� Ä and

��

;
��� Ä{C ��
 �

denotes an unordered pair and the corresponding undirected arc, and by Ì � Ä{C ��
 Î an ordered
pair and the corresponding directed arc. Either ÿ is an undirected graph, in which case all
the arcs are undirected, or ÿ is a directed graph, in which case all the arcs are directed. We
can convert every directed graph ÿ to an undirected one called the undirected version of ÿ
by replacing each Ì � Ä C �
 Î by

��� Ä C �
 � and removing the duplicate arcs. Conversely, we can
build the directed version of an undirected graph ÿ by replacing every

��� Ä C �
 � by the pair of
arcs Ì � Ä{C ��
 Î and Ì ��
 C � Ä�Î . In order to avoid repeating definitions, 	 ��
 C � Äª� may denote either an
undirected arc

��� Ä�C ��
 � or a directed arc Ì � Ä�C ��
 Î and the context resolves the ambiguity.
The nodes

� Ä and
��

in an undirected graph ÿP3 �� C�¢� are adjacent if
��� Ä�C ��
 � W � ,

and we define the adjacency of
� Ä byº w ¥�� « 3 ��� © � ��� Ä^C � © � W �¢�M}

Analogously, in a directed graph ÿ±3 ��� C��¢� , we defineº w ¥�� « 3 ��� © � if Ì � Ä{C � © Î W � or Ì � © C � Ä�Î W �¢�M}
We define the adjacency of an arc as follows:º w ¥�� � « ø � £�� 3 �U��� Ä{C ��
 � W �¢��5 �U��� © C ��
 � W �]�

ETNA
Kent State University
etna@mcs.kent.edu

A NETWORK PROGRAMMING APPROACH TO MFE METHODS 49

for an undirected graph, andº w ¥�� � « ø � £�� 3 � Ì � Ä{C ��
 Î W ��C$Ì ��
 C � Ä�Î W �¢��5 � Ì � © C ��
 Î W ��C$Ì ��
 C � © Î W �¢�
for a directed graph.

A path in a graph from node
� © to node

��

is a list of nodes Ì � © 3 � © ÷ C � © ô C�}�}�}�C � ©¤¿ 3 ��
 Î ,

such that 	 � ©¤« C � ©¤«�� ÷ � is an arc in the graph ÿ for J34¦?C�}�}�}�C�v:`¦ . The path does contain the
nodes

� Ä for W ÌD¦?C�}�}�}�C��MÎ and arcs 	 � Ä�C � Ä��1(�� for W ÌD¦?C�}�}�}�C�B:`¦�Î and does not contain any
other nodes and arcs. The nodes

� © and
��

are the ends of the path. The path is simple if all of
its nodes are distinct. The path is a cycle if ���§¦ and

� © 3 ��
 and a simple cycle if all of its
nodes are distinct. A graph without cycles is acyclic. If there is a path from node

���
to node���

then
���

is reachable from
� �

.
An undirected graph is connected if every node of its undirected version is reachable

from every other node and disconnected otherwise. The maximal connected subgraphs of ÿ
are its connected components.

A rooted tree is an undirected graph that is connected and acyclic with a distinguished
node

���
, called root. A rooted tree with � nodes contains ��:
¦ arcs and has a unique simple

path from any node to any other one. When appropriate we shall regard the arcs of a rooted
tree as directed. A spanning rooted tree � 3 �� C�"!�#J� in ÿ is a rooted tree which is a
subgraph of ÿ with Ï%$ nodes. If

� �
and

���
are nodes in � and

� �
is in the path from

� �
to���

with
���'&3 � � then

� �
is an ancestor of

���
and

���
is a descendant of

� �
. Moreover, if

� �
and

���
are adjacent then

� �
is the parent of

���
and

���
is a child of

� �
. Every node, except the

root, has only one parent, which will be denoted by parent 	 � � � , and, moreover, it has zero or
more children. A node with zero children is a leaf. We will call the arcs in �(!�# in-tree and
the arcs in ��°)�"!�# out-of-tree. A forest is a node-disjoint collection of trees.

The depth 	 � Ä � of the node
� Ä in a rooted tree is the (integer) top-down distance from the

root node that is recursively defined by

depth 	 � Ä �d3�¬ i�C if
� Ä13 � � C

depth 	 parent 	 � Äª��� � ¦?C otherwise C
and, similarly, the height 	 � Ä¤� is the (integer) down-top distance of the node

� Ä from the deepest
leafthat is recursively defined by

height 	 � Ä �d3ä¬ i�C if
� Ä is a leaf C�]@�� � height 	 ��� �'� ��� is a child of

� Ä{� � ¦?C otherwise.

The subtree rooted at node
� Ä is the rooted tree consisting of the subgraph induced by the

descendants of
� Ä and having root in

� Ä . The nearest common ancestor of two nodes is the
deepest node that is an ancestor of both. A node

� Ä is a branching node if the number of its
children is greater than or equal to two. For each out-of-tree arc Ì � ©?C �
 Î , the cycle of minimal
length or the fundamental cycle is the cycle composed by Ì � ©?C �
 Î and the paths in � from� © and

�

to their nearest common ancestor.

We can associate the graph ÿË3 ��� C��¢� to the triangulation ~Ç� as follows. First, we
associate a distinct node of the graph to every triangle of the mesh, e.g.

� Ä is the (unique) node
corresponding to the triangle !èÄ , for Â3 ¦?C�}�}�}�C� � . Then, the (directed or undirected) arc	 � Ä�C � © � exists in the arc set � if and only if the triangles !$Ä and ! © share an edge. Furthermore,
we add the root node

� �
, which represents the “exterior world” IR .<°Ç- , to the node set

�
,

and the arcs 	 � � C ��
 � for every node
��

associated to a triangle !
 with a boundary edge
of Dirichlet type to the arc set � . The incidence matrix of the graph ÿ is the Ï
Ó Ð totally
unimodular matrix º"Å that has been introduced at the end of Section 2.2; its rank is Ð±	f3� � � .

ETNA
Kent State University
etna@mcs.kent.edu

50 M. ARIOLI AND G. MANZINI

If we remove the column corresponding to the root from ºÂÅ , we obtain the matrix º of
problem (2.7), which also has rank Ð . Moreover, every spanning tree of ÿ with root in

���
induces a partition of the rows of º in in-tree rows and out-of-tree rows. If we renumber the
in-tree arcs first and the out-of-tree arcs last, we can permute the in-tree arcs and the nodes
such that the permuted matrix º has the formÙ�º � 3 ¹ �,(� . » C
where � (W IR

Õ
*
Õ

is a lower triangular and non-singular matrix, see Reference [31, 12].
As the matrix º is obtained by simply removing the root column from the totally uni-

modular matrix º Å , then, the entries of the matrix � u ((must also be ØB¦ or i . The non-zeroes
of the matrix � . � u ((are also equal to ØB¦ and its rows correspond to the out-of-tree arcs.
The number of nonzeros of a row of this matrix is equal to the number of arcs in the cycle of
minimal length that the corresponding out-of-tree arc forms with the in-tree arcs. We recall
(see Section 3) that without loss of generality, all the diagonal entries in ��(can be chosen
equal to ¦ and, therefore, the entries outside the diagonal are i or :�¦ . This signifies selecting
the directions of the arcs in �+!�# as Ì � Ä�C parent 	 � Äf�¤ÎfC�� � Ä . Given the out-of-tree arc Ì � © C ��
 Î , the
values of the nonzero entries in the corresponding row of � . � u ((will be ¦ if both the nodes
of the in-tree arc corresponding to the nonzero entry are ancestors of

��

, and will be :�¦ if

both the nodes of the in-tree arc corresponding to the nonzero entry are ancestors of
� © .

We now give some basic results the proof of which is straightforward.
LEMMA 4.1. Let

� �
be a branching node with � children. The descendants of

� �
can be

partitioned in � sets
� (�C�}�}�}�C ��
 such that

� ÄkÃ � © 3-, , for &3�¥ . Each 	 � Ä{C � © � W � with� Ä W � Ä and
� © W � © is an out-of-tree arc.

If we define the adjacency of a set of nodes ./$ Æ � and the adjacency of a set of arcs.10 Æ � as follows:º w ¥H	2.3$h�d3 4� « �65 � º w ¥�� « CNº w ¥H	7.10,�d3 4ï � « ø � £^ð �65 	 º
w ¥ ï � « ø �^£ ð C

we have the following Corollary.
COROLLARY 4.1. Let

� �
be a branching node with � children and

� (eC�}�}�}�C �8
 such that� Ä Ã � ©¢39, , for &3§¥ be the partitioning of the descendants of
���

. Let 	 ��: C � ©�� W � and	 �<; C � Ä � W � be out-of-tree arcs, with
�=; C � Ä W �?> ÷ and

��: C � © W �@> ô . The minimal length
circuits A ï ��B ø �¤£ ð Æ � ! #¢5 � 	 ��: C � ©��A� and A ï �DC ø � «�ð Æ � ! #]5 � 	 ��; C � Ä �A� are disjoint:

A ï �DC ø � «�ð Ã?A ï �EB ø �^£ ð 3F,�Cand

A ï ��C ø � «�ð Ãhº w ¥H	7A ï �EB ø �^£ ð �d3G,EC º w ¥H	2A ï �DC ø � «�ð �èÃHA ï ��B ø �¤£ ð 3F,�}
Proof. From Lemma 4.1 the descendants of the children of the branching node

�I�
form

disjoint subtrees. If the two circuits A ï �EB ø �^£ ð and A ï ��C ø � «�ð had an arc in common, this arc
should simultaneously be an in-tree arc of the two subtrees of nodes

� > ÷ and
� > ô . Thus,

this arc would close a a circuit on the ancestor
� �

, but this fact is in contradiction with the
definition of a tree (which cannot contain closed circuits).

Similarly, if A ï � C ø � « ð and º w ¥H	2A ï � B ø � £{ð � had a common arc, this arc should be an in-tree
arc because it would lie on A ï � C ø � « ð ÃJ�"!�# . This fact is in contradiction with the results of
Lemma 4.1 because this arc would connect two disjoint sets.

ETNA
Kent State University
etna@mcs.kent.edu

A NETWORK PROGRAMMING APPROACH TO MFE METHODS 51

Finally, if the root
���

of the spanning tree is a branching node with � children
� 0Ä Cdd3¦?C�}�}�}�C� , the subtrees having

� 0Ä as roots form a forest. Therefore, the matrix � (can be
permuted in block diagonal form with triangular diagonal blocks.

We refer to [31, 39] for surveys of different algorithms for computing spanning trees.
An optimal choice for the rooted spanning tree is the one minimizing the number of nonzero
entries in the matrix K�3P� u �$Ò . the columns of which span the null space of º"� . In [16], it
is proved that the equivalent problem of finding the tree for which the sum of all the lengths
of the fundamental circuits is minimal, is an

�ML
-complete problem. In [9, 14, 15, 16, 20,

27, 33] several algorithms have been proposed which select a rooted spanning tree reducing
or minimizing the number of nonzero entries in K .

In this paper, we propose two different approaches based on the introduction of a func-
tion cost 	^Q � defined on each arc of the graph and describing some physical properties of the
original problem.

From Corollary 4.1 it follows that a rooted spanning tree, having the largest possible
number of branching nodes, normally has many disjoint circuits. The columns of K corre-
sponding to these disjoint circuits are structurally orthogonal, i.e. the scalar product of each
pair is zero, independent of the values of the entries.

Moreover, we choose the function N=O z�P ���4� IR � in the following way:

�k� W ��C ¬ cost 	b����3�i if Qt such that �934	 ��� C � Ä �
cost 	b����3�&SRTR otherwise(4.1)

Using the cost 	{Q � function, we can compute the spanning tree rooted in
� �

that is actually
solving the SPT problem [19] on the graph. In particular, we have chosen to implement the
heap version of the shortest path tree algorithm (see the SHEAP algorithm that is described
in Reference [19]).

The resulting spanning tree has the interesting interpretation that the path “circumnavi-
gates” low permeability regions in the sense specified below. In the presence of “islands” of
very low permeability in - , i.e. regions with very large values for ; u (, the paths from the
root to a node corresponding to a triangle that lies outside the islands of low permeability will
be made of nodes corresponding to triangles that are also outside the islands. In this sense,
we can state that the shorthest path tree “circumnavigates the islands”. Therefore, the set of
these paths reasonably identifies the lines where the flux is expected to be greater.

Owing to the fact that we assume a null cost for the arcs connected to the root node
���

,
both strategies provides a forest if the number of zero cost arcs is greater than one. We observe
that we do not need to build the matrix º explicitly: the tree (or forest) can be computed by
using the graph only. Moreover, the solution of the lower and upper triangular systems can
be performed by taking advantage of the parent function alone. This strategy results in a very
fast and potentially highly parallel algorithm. For a problem with only Dirichlet conditions
and an isotropic mesh (i.e. the number of triangles along each direction is independent from
the direction), we may have a forest with a number of trees proportional to the number of
triangles with a boundary edge. This number is ë)	¤� u (� , and, therefore, the matrix �<(hasë�	^� u (� diagonal blocks of average size ë�	^� u (� . Finally, we point out that most non-leaf
nodes in the SPT have two children.

5. Preconditioning and quotient tree. In the presence of islands of very low perme-
ability in - , the values of ; can differ by many orders of magnitude in the different regions
of the domain. In this case, the projected Hessian matrix Ú& .Ü. has a condition number which
is still very high. It is then necessary to speed up the convergence of the conjugate gradient
by use of a preconditioner. Obviously, it is not usually practical to explicitly form Ú& .Ü. to

ETNA
Kent State University
etna@mcs.kent.edu

52 M. ARIOLI AND G. MANZINI

compute or identify any preconditioner. In this section, we will show how we can compute
the block structure of Ú& .Ü. using only the tree and the graph information. We will then use
the block structure to compute a preconditioner.

Denoting by � the matrix � . � u ((, the projected Hessian matrix Ú& .Ü. can be written as
follows: Ú& .Ü. 3UK � &VKP3�& .Ü. � �>&
(Ü(g� � :�	b& . (g� � � �9&
(. �g}(5.1)

The row and column indices of the matrix Ú& .Ü. correspond to the out-of-tree arcs. More-
over, we recall that the matrix � has entries :�¦?C�i�C�¦ , its row indices correspond to the out-
of-tree arcs, and the number of nonzeros in one of its rows will be the number of arcs in the
cycle of minimal length which the corresponding out-of-tree arc forms with the in-tree arcs.

LEMMA 5.1. Let � and W be two out-of-tree arcs, and A R Æ �"!�#<5Â� and AYX Æ �"!�#�5ZW
be their corresponding circuits of minimal length, then& R X &3�i"[]\ç�aC�W W º w ¥ R Ãhº w ¥�X(5.2)

A%R�Ã?A X &3G,^[]\Û¬ A%R�Ãhº w ¥H	2A X � &3F,A X Ãhº w ¥H	2A%R�� &3F, _
(5.3)

Proof. Because the orientation of the arcs in the graph is arbitrary and will be determined
by the sign of the solution, we will use the undirected version of the graph. Let �93�	 ��� C � � � ,W`3ê	 ��` C ��a � , where the graph nodes

���
,
� �

,
��`

and
��a

respectively correspond to the mesh
cells ! (, ! . , ! ß and !/b . The out-of-tree arc � uniquely corresponds to the common edge¨e(. between the triangles !1(and ! . , and the out-of-tree arc W uniquely corresponds to the
common edge ¨ ß b between the triangles ! ß and ! b . From (2.8), we have that & R X &3 i if
and only if z ¶ 7U71	 V ¡ ÷ ô ��Ã z ¶ 7?71	 V ¡�ced � &3G, . Since z ¶ 7?71	 V ¡ ÷ ô �a3P!è(è5v! . and z ¶ 7?7�	 V ¡�cfd �d3! ß 5�! b , then & R X &3Pi if and only if the two supports share a mesh cell. Assuming, without
loss of generalitythat !1(<3�! ß is the shared cell, (5.2) follows from the definition of º w ¥ .

In (5.3) the \ is trivial. We give a proof ab absurdo for the [. First of all, we note that
the cardinal number of º w ¥I�¤£ is less or equal than g�C�� � © W � (a triangle has three edges).
If we assume that A R Ã±º w ¥H	2AYX�� &3h, , AYX'ÃNº w ¥H	2A R � &3h, and A R ÃiAYX�3j, , there must
exist a node

� © such that
� © belongs to both the paths in the tree linking

���
to
� �

and
��`

to��a
respectively. Because each node in the path has only one parent and one child , the º w ¥ � £

contains the parent and the child of the first path and those of the second path. Because we
assumed that A3R�Ã"A X 3G, the cardinal number of º w ¥ � £ would be k which is in contradiction
with the upper bound on the cardinal number.

Thus, from (5.1) and the previous Lemma 5.1, we have the following Corollary.
COROLLARY 5.1. Let � and W be two out-of-tree arcs, and A R Æ �"!�#)5>� and AYX Æ�"!�#]5@W be their corresponding circuits of minimal length, thenÚ&lR X 3�&lR X � ³

m �6n�o6pYqsr © ï n=t ð
³

u �6n=t�pYqsr © ï n�o ð � m R�� u X & m�u: ³
m �6n�o6pYqsr © t � m R�& m X : ³

m �6n=t6pYqsr © o � m X & X m
and

AvR�Ã?A X 3F,'\ Ú&SR X 3�i(5.4)

ETNA
Kent State University
etna@mcs.kent.edu

A NETWORK PROGRAMMING APPROACH TO MFE METHODS 53

Proof. The first part of the Corollary follows directly from the expansion of (5.1). The
implication (5.4) follows from Lemma 5.1 taking into account that A3RBÃ º w ¥H	2A X �-wxA%RvÃº w ¥�X , AYX�Ã)º w ¥H	7A R �SwyAYX�Ãhº w ¥ R , and º w ¥ R Ãhº w ¥�X &3G,U\zA R Ã?AYX &3F, .

Corollary 5.1 gives the complete description of the pattern of Ú& .Ü. in terms of the rooted
spanning tree. However, we observe that the results (5.3) and (5.4) rely on the 2-D structure
of the mesh and they cannot be generalized to a mesh in 3-D.

In the second part of this section, we build the block structure of Ú& .�. using the Quotient
Tree concept, without explicitly forming the matrix Ú& .Ü. . In the following, we process the
root node separately from the other nodes. The root node will always be numbered by i , and
if it is a branching node with � children the tree will contain � subtrees directly linked to
the root. Given a rooted spanning tree � 3 ��� C�� ! #�� , let {-| � ° � i�� be the set of the
branching nodes in � , and let }~| � ° � i�� be the set of the leaves in � . We define the set

� 3~{>5�}*3 ��� (C�}�}�}�C �
 �a}
If
� 3 � ° � i�� , then � is a binary tree. Otherwise, we can compute the following paths:� � Ä W �� � « 3 ��� Ä C parent 	 � Ä ��C parent 	 parent 	 � Ä �{��C�}�}�}�C parent

 	 � Ä �g� and � � « Ã � 3 ��� Ä �U}
The path � � « connects

� Ä to all its ancestors which are not branching nodes, and it can contain� Ä alone.
The set �[3 � � � ÷ C�}�}�}�C � ��� ��5 � i�� is a partition of

�
:

� � £JÃ � � « 3�,�C >
4Ä ´ (� � « 3 � }

Therefore, we can build the quotient tree

]���[3 � �6C�� ! �MC�	 � � « C � � £g� W � ! [(\ º w ¥hI ! 	 � � « �èÃ � � £ &3F,�C
and the quotient graphÿ��I�ä3 � �6C��1�|�UC[� � « C � �¤£�� W �1�?[(\ º w ¥H	 � � « �èÃ � �¤£ &3F,�C
where º w ¥hI ! is the restriction of the º w ¥ operator to the graph .

For the sake of clarity in the following, we will call the quotient tree nodes Q-nodes. The
root of the quotient tree is still the node i , and each subtree rooted at its children has a binary
quotient tree.

5.1. Data structures and separators. In this subsection, we shortly review the basic
data structures that we used to implement the null space method presented in the previous
section. We also discuss some major details concerning the renumbering strategy that allows
us to perform a nested dissection-like decomposition of the matrix º . This kind of permu-
tation and the resulting sub-block decomposition makes it possible to build the block-Jacobi
preconditioner mentioned in the next sub-section and considered in the numerical experi-
ments of Section 6. More details on the data structure and algorithm implementation are
reported in the final appendix.

The data structure that is used for the graph ÿ is based on a double representation of the
sparse matrix º . This double representation implements the collection of compressed row
and column sparse data which is described in [17] and allows us to access simultaneously

ETNA
Kent State University
etna@mcs.kent.edu

54 M. ARIOLI AND G. MANZINI

to matrix rows and columns. We assume that rows and columns are consistently permutated
when we renumber the graph node. This special design facilitates and speeds up the algo-
rithms that are reported in the appendix.

Trees, which are used to perform row/column permutations, are represented by storing
the following data for any node:� the parent node,� the node children list,� the chain index,� the depth.
In Figure 5.1, we give a simple example of a tree and, in Table 5.1, we list the labels of each
node. It is relevant to observe that the reordering obtained by the depth first search of
renumbers the nodes such that the nodes forming a chain are consecutive. Therefore, we can
directly access the list using vector arrays.

ROOT

1

2

3

4

5

4

12

31

32

33
24

23

22

21

2825

30

2926

27
13

11

10

8

9

7

6

5

1

2

3

20

19

18

1714

15

16

1

2

3

6

7 8

9

4

5

6

7

8

9

10

11

12
13

14

FIG. 5.1. Example of a spanning tree.

After the identification of the chains, we build the quotient tree, and, descending the
quotient tree]�I� with a “depth first search” algorithm, we renumber the nodes and build
its data structure. In the new data structure, we associate with each Q-node the following
objects:� Q-parent in +�I� ,� first and last node in of the chain corresponding to the Q-node,� depth in +�I� ,� Q-last, the last Q-node of the subtree rooted in the current Q-node,� Q-star, the list of the out-of-tree arcs in ÿ which have one extreme belonging to the

Q-node,� Q-children, the list of the Q-nodes children of the Q-node.

ETNA
Kent State University
etna@mcs.kent.edu

A NETWORK PROGRAMMING APPROACH TO MFE METHODS 55

TABLE 5.1
Labels of nodes in the tree of Figure 5.1.

Node index Parent Children list Chain Index depth
0 0 1,21,31 0 0
1 0 2 1 1
2 1 3 1 2
3 2 4 1 3
4 3 5,10 1 4
5 4 6 2 5
6 5 7 2 6
7 6 8 2 7
8 7 9 2 8
9 8 2 9
10 4 11 3 5
11 10 12 3 6
12 11 13 3 7
13 12 14,17 3 8
14 13 15 4 9
15 14 16 4 10
16 15 4 11
17 13 18 5 9
18 17 19 5 10
19 18 20 5 11
20 19 5 12
21 0 22 6 1
22 21 23 6 2
23 22 24 6 3
24 23 25,28 6 4
25 24 26 7 5
26 25 27 7 6
27 26 7 7
28 24 29 8 5
29 28 30 8 6
30 29 8 7
31 0 32 9 1
32 31 33 9 2
33 32 9 3

In Figure 5.2, we show the quotient tree relative to the example of Figure 5.1, and in Table 5.2,
we list the labels of each Q-node.

Taking advantage of the data structures described above, we can order the out-of-tree
arcs in the following way. Firstly, we identify the Q-nodes which are children of the external
root (node i), and the subtrees rooted in each of these Q-nodes. Then, we separate each of
the subtrees from the others marking the out-of-tree edges that connect it to the others. The
out-of-tree arcs lying within one of these subtrees cannot have fundamental cycles with the
out-of-tree arcs lying within one of the others, because of Corollary 4.1. This corresponds
to a one-way dissection applied to Ú& .�. . Then, within each of the subtrees, we seek the
out-of-tree arcs that separate the two subtrees rooted in the Q-nodes children of the Q-node

ETNA
Kent State University
etna@mcs.kent.edu

56 M. ARIOLI AND G. MANZINI

ROOT

3

4

8

13

1

2 3 7 8

96

54

1

2
9

10

14

12

11

7

6

5

FIG. 5.2. Quotient tree relative to the tree of Figure 5.1

TABLE 5.2
Labels of the Q-nodes in Figure 5.2.

Q-node Q-parent First, last Depth Q-last Q-star Q-children
node of chain

1 0 1,4 1 5 4,8 2,3
2 1 5,9 2 2 1,2,5,6,7
3 1 10,13 2 5 5,6,8 4,5
4 3 14,16 3 4 7,9,10
5 3 17,20 3 5 3,9,10
6 0 21,24 1 8 4,11 7,8
7 6 25,27 2 7 13,14
8 6 28,30 2 8 12,13,14
9 0 31,33 1 9 11,12

root of the subtree containing both of them. This is equivalent to a nested dissection strategy
applied to one of the diagonal blocks resulting from the previous one-way dissection phase.
In Figure 5.3 	e��� , we show the result of the one-way dissection on the matrix º when the root
node has only three descendant subtrees. Note that each subtree is now disconnected from
the others, is a binary tree and it can be identified by the Q-node on which it is rooted. If the
nested dissection process is recursively re-applied on these matrix sub-blocks, we obtain the
matrix structure shown in Figure 5.3 	 ¾ :�N�� .

5.2. Preconditioners. The a priori knowledge of the structure of Ú& .�. , allows us to de-
cide what kind of preconditioner we can afford. If we are subjected to a strong limitation of
the size of the memory in our computer, we can choose among several alternative precondi-

ETNA
Kent State University
etna@mcs.kent.edu

A NETWORK PROGRAMMING APPROACH TO MFE METHODS 57

(c)

(a) (b)

FIG. 5.3. Example of a one-way dissection (a, b), and of a nested dissection (c) on the matrix �
tioners. We have a choice ranging from the diagonal matrix obtained by using the diagonal
part of & .�. and the block Jacobi preconditioner using the diagonal blocks corresponding to
the separators. The possibility of using the simplest choice of the diagonal of & .Ü. is sensible
because the SPT algorithm places on this diagonal the biggest entries of the diagonal of & .
In Section 6, we will give numerical evidence that this choice is very efficient for several
test problems. Nevertheless, in the presence of strong discontinuities and anisotropies in the
permeability function ; , we are obliged to use either the diagonal Jacobi preconditioner or a
block diagonal Jacobi.

ETNA
Kent State University
etna@mcs.kent.edu

58 M. ARIOLI AND G. MANZINI

6. Numerical experiments.

6.1. Test problems. We generated the test problems using four different domains. The
first two are square unit boxes and in the second one we have four rectangular regions where
the tensor ; assumes different values. In Figure 6.1, we plot the geometry of Domain 1 and
the boundary conditions. In Figure 6.2, we plot the geometry of Domain 2 and the boundary
conditions. The values of the tensor ; are chosen as follow

;]	 x ��3
noooop ooooq ¦

x±W -N° � -�(®5'- . 5h- ß 56- b �UCi�} É x±W -�(�C¦�i u b x±W - . C¦�i u�� x±W - ß C¦�i u�� x±W - b }
The two remaining domains have an L-shape geometry. In Figure 6.3, we plot the geometry
and the boundary conditions of the Domain 3. In Figure 6.4, we plot the geometry of the
fourth and last Domain 4 and the relative boundary conditions: within the domain, we have
four rectangular regions where the tensor ; takes the same values defined for the second
domain in (6.1).

In (2.2), we take the right-hand side FJ	 x �,3Ëi in all our test problems. For the domains
one and three, the tensor ; in (2.1) is isotropic. For a given triangulation, its values are
constant within each triangle and this value is computed following the law:; � « 3¼¦�i�u (.� c« C®�34¦?C�}�}�}�CÜ �
where Í�Ä W Ì i�C�¦�Î are numbers computed using a random uniform distribution. For each
domain, we generated 4 meshes using TRIANGLE [36]. In Tables 6.1 and 6.2, we report,
for our domains, the number � of triangles, the number]� of edges, the number H� of
vertices of each mesh, the number &Ë} Ï|Ï å of nonzero entries in the matrix & , the numberº�} Ï|Ï å of nonzero entries in matrix º , and the corresponding value of � .

TABLE 6.1
Data relative to the meshes for domains 1 and 2.

Mesh 1 Mesh 2 Mesh 3 Mesh 4 � 153 1567 15304 155746 "� 246 2406 23130 234128]� 94 840 7827 78383&Ë} Ï|Ï å 1164 11808 114954 1168604º�} Ï|Ï å 429 4599 45601 466319� 0.2090 0.0649 0.0225 0.0069

TABLE 6.2
Data relative to the meshes for domains 3 and 4.

Mesh 1 Mesh 2 Mesh 3 Mesh 4 � 156 1494 15206 150033 "� 251 2305 23102 225599]� 96 812 7843 75567&Ë} Ï|Ï å 1187 12269 114662 1125797º�} Ï|Ï å 442 4386 45462 449281� 0.1625 0.0590 0.0186 0.0063

ETNA
Kent State University
etna@mcs.kent.edu

A NETWORK PROGRAMMING APPROACH TO MFE METHODS 59

g
N

= 0

g
N

= 0

g
N

= 0

g
N

= 0g
D

= 1

g
D

= 0

(0,0)

(1,1)

Ω

(1,0)

(0,1)

FIG. 6.1. Geometry of the first domain � .

g
N

= 0

g
N

= 0

g
N

= 0

g
N

= 0g
D

= 1

g
D

= 0

Ω
1

Ω
2

Ω
3

Ω
4

Ω

(0,0)

(1,1)(0,1)

(1,0)

FIG. 6.2. Geometry of the second domain � .

6.2. Practicalities. We analysed the reliability of the stopping criterion when we change
the parameter w . In Figures 6.5 and 6.6, we display the behaviour of the estimates of the true
relative energy norm of the error for Mesh 3, Domain 3 and Domain 4: for the other cases the
behaviour is similar. In all our test we choose û 3§� . The results show that the choice w 34¦�i
is the best compromise between reliability and cost. When convergence is slow and there are
regions where the slope changes rapidly, the choice w 3§É can be inaccurate. We reserve for
future work the study of a self-adaptive technique which will change the value of w with the
slope of the convergence curve. In Section 3, we discussed the opportunity of starting the
estimate of the relative error only when ¨ òó ôfô þ û . ñ æ . : Ú&§�(. å (ñ .. . This makes it possible
a reduction of the number of additional matrix-vector products. Both figures show an initial
phase where the estimates have not been computed because of the introduction of this check
on the absolute value of the error.

ETNA
Kent State University
etna@mcs.kent.edu

60 M. ARIOLI AND G. MANZINI

g
D

= 1

g
D

= 0

g
N

= 0

g
N

= 0

g
N

= 0

Ω

(1,0)(0,0)

(1,1)

(0,0.5)

(0.5,1)

FIG. 6.3. Geometry of the third domain � .

g
D

= 1

g
D

= 0

g
N

= 0

g
N

= 0

g
N

= 0

Ω
1

Ω
2

Ω
3

Ω
4

Ω
(0,0) (1,0)

(1,1)(0.5,1)

(0,0.5)

FIG. 6.4. Geometry of the fourth domain � .

Moreover, to avoid an excessive number of additional matrix-vector products in the stop-
ping criterion, we choose to update the value of the denominator ¶®ï
 ð �. Ú& .Ü. ¶èï
 ð. every 10
steps of the conjugate gradient method. The energy norm of ¶ ï
 ð. converges quite quickly to
the energy norm of the solution and this justifies our choice. In Figures 6.7 and 6.8, we see

that after 25% of the iterations, the ratio ��� �Y���<�� ôfô��� �6� ¿E� ��� �� ôfô is greater than 0.9.

6.3. Numerical results. We generated and ran all our test problems on a SPARC pro-
cessor of a SUN ENTERPRISE 4500 (4CPU 400 MHertz, 2GByte RAM). In our test runs, we
compare the performance of our approach with the performance of MA47 of the HSL2000
library [26]. The package MA47 implements a version of the �a�)�,� decomposition for sym-
metric indefinite matrices that takes advantage of the structure of the augmented system [18].
The package is divided into three parts corresponding to the symbolic analysis where the re-
ordering of the matrix is computed, the factorization phase, and the final solution using the

ETNA
Kent State University
etna@mcs.kent.edu

A NETWORK PROGRAMMING APPROACH TO MFE METHODS 61

0 10 20 30 40 50 60
10−3

10−2

10−1

100

ITERATIONS

E
R

R
O

R
S

|| δ u ||
M

 / ||u||
M

Estimate d = 10
Estimate d = 5
Estimate d = 20

FIG. 6.5. Error energy norm and its estimates for ���8� , ���J�E , and ���8¡< for Mesh 3 and domain 3.

0 20 40 60 80 100 120
10−3

10−2

10−1

100

ITERATIONS

E
R

R
O

R
S

|| δ u ||
M

 / ||u||
M

Estimate d = 10
Estimate d = 5
Estimate d = 20

FIG. 6.6. Error energy norm and its estimates for ���8� , ���J�E , and ���8¡< for Mesh 3 and domain 4.

triangular matrices.
Similarly, the null space algorithm which we implemented, can be subdivided into three

phases: a first symbolic phase where the shortest path tree and the quotient tree are computed,
a second phase where the projected Hessian system is solved by the conjugate gradient algo-
rithm, and a final third phase where we compute the pressure. This enables us to compare the
direct solver MA47 with the null space approach in each single phase.

Generally, in the test runs that we will present, we fix the parameter w in the stopping
criterion to the value of ¦�i . Nevertheless, we will show the influence of different choices on
the parameter w on the stopping criterion using Mesh 3.

In Table 6.3, we give the CPU times (in seconds) and the storage (in MByte) required by
MA47 and the CPU times (in seconds) of the null space algorithm where we use the diagonal
of & .�. to precondition the projected Hessian matrix within the conjugate gradient algorithm.

ETNA
Kent State University
etna@mcs.kent.edu

62 M. ARIOLI AND G. MANZINI

0 10 20 30 40 50 60 70 80 90 100 110 120
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Iterations

R
at

io
 e

ne
rg

y
no

rm
 u

 o
ve

r e
ne

rg
y

no
rm

 u
(k

)

Domain 1
Domain 2

FIG. 6.7. Convergence of ¢ ¢ £�¢ ¢ �� ôfô¢ ¢ £ � ¿�� ¢ ¢ �� ôfô for Mesh 3 and domains 1 and 2.

0 10 20 30 40 50 60 70 80 90 100 110 120
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Iterations

R
at

io
 e

ne
rg

y
no

rm
 u

 o
ve

r e
ne

rg
y

no
rm

 u
(k

)

Domain 4
Domain 3

FIG. 6.8. Convergence of ¢ ¢ £�¢ ¢ �� ôfô¢ ¢ £ � ¿�� ¢ ¢ �� ôfô for Mesh 3 and domains 3 and 4.

From Table 6.3, we see that the null space algorithm performs better in the case of ran-
dom permeability which can be a realistic simulation of an underground situation. Neverthe-
less, the global CPU time of the null space algorithm can be 10 times more than the CPU time
of the direct solver. We point out that the MA47 storage requirement for the � and � factors
grows with the size of the problem whereas the null space algorithm needs only the storage
of the matrices & and º . We forecast that this will become even more favourable to the
null space algorithm when we want to solve 3D simulations: for these problems the MA47
storage could become so large that we could be obliged to use an out-of-core implementation.

In Table 6.4, we display the behaviour of three different preconditioners on the conjugate
gradient iteration number. We fixed the mesh (Mesh 3) and we use as a preconditioner one of
the following matrices: w ��UO|	b& .Ü. � , w ��UO|	 Ú& .Ü. � (the classical Jacobi), and

¾<¤ O�N�� w ��?O|	 Ú& .�. �

ETNA
Kent State University
etna@mcs.kent.edu

A NETWORK PROGRAMMING APPROACH TO MFE METHODS 63

TABLE 6.3
MA47 vs null space algorithm: CPU times (in seconds) and storage (in MBytes).

M
es

h
D

om
ai

n
M

A
47

nu
ll

sp
ac

e
al

go
ri

th
m

Sy
m

bo
lic

Fa
ct

or
iz

at
io

n
So

lv
er

St
or

ag
e

Sy
m

bo
lic

C
G

(#
It

er
at

io
ns

)
So

lv
e

1
1

0.
00

8
0.

01
3

0.
00

1
0.

04
8

0.
00

2
0.

01
3

(1
2)

0.
00

2
1

2
0.

00
8

0.
00

8
0.

00
1

0.
03

5
0.

00
2

0.
01

3
(1

4)
0.

00
2

1
3

0.
00

8
0.

01
0

0.
00

1
0.

03
2

0.
00

1
0.

01
3

(1
3)

0.
00

1
1

4
0.

00
7

0.
00

7
0.

00
1

0.
04

0
0.

00
2

0.
01

6
(1

7)
0.

00
1

2
1

0.
08

8
0.

17
3

0.
00

6
0.

63
4

0.
01

7
0.

14
5

(1
9)

0.
01

8
2

2
0.

08
8

0.
10

1
0.

00
5

0.
45

8
0.

00
7

0.
27

5
(3

5)
0.

01
9

2
3

0.
07

9
0.

15
2

0.
00

6
0.

55
6

0.
01

1
0.

14
5

(2
0)

0.
01

8
2

4
0.

08
4

0.
09

5
0.

00
5

0.
41

8
0.

00
9

0.
26

5
(3

7)
0.

01
7

3
1

1.
05

8
3.

02
8

0.
11

4
9.

15
0.

91
1

4.
68

1
(4

1)
0.

29
0

3
2

1.
07

0
1.

57
7

0.
08

4
6.

06
0.

08
7

11
.6

3
(1

01
)

0.
26

5
3

3
1.

03
5

2.
39

3
0.

11
1

8.
14

0.
29

0
4.

94
5

(4
4)

0.
28

0
3

4
1.

04
1

1.
31

0
0.

08
1

5.
72

0.
08

8
12

.0
6

(1
06

)
0.

26
8

4
1

14
.6

3
26

4.
6

1.
54

3
13

2.
32

7.
8

21
0.

6
(1

76
)

2.
94

1
4

2
14

.5
5

49
.0

3
1.

09
1

81
.8

9
1.

17
9

46
3.

0
(3

90
)

2.
85

5
4

3
13

.5
8

84
.3

3
1.

48
1

11
8.

9
3.

88
7

29
8.

7
(2

72
)

2.
74

8
4

4
13

.5
4

34
.4

9
1.

06
7

77
.6

2
1.

05
6

44
5.

6
(3

95
)

2.
73

3

(block Jacobi) which has been computed using the quotient tree of the shortest path tree (see
Section 5). For each preconditioner and each domain, we display the number of conjugate
gradient iterations, the CPU time (in seconds) for the building of the matrix, and the CPU
time (in seconds) spent by the conjugate gradient algorithm to solve the projected Hessian
linear system. From the results of Table 6.4, we conclude that the simplest preconditionerw ��UO|	b& .Ü. � is faster even if the conjugate gradient algorithm does more iterations than the
conjugate gradient algorithm using the other preconditioners. The Jacobi and the block Ja-
cobi preconditioner building cost is very high and overwhelms the good performance of the
conjugate gradient algorithm.

ETNA
Kent State University
etna@mcs.kent.edu

64 M. ARIOLI AND G. MANZINI

TABLE 6.4
Comparison between the preconditioners: CPU times and # Iterations of conjugate gradient algorithm.

Domain Preconditioner CG #Iterations CPU Time (in seconds)
Building CG solve

1 w D�UO|	b& .Ü. � 41 0.026 4.681
1 w D�UO|	�Ú& .Ü. � 28 13.60 3.212
1

¾<¤ O�N�� w ��UOk	�Ú& .Ü. � 19 15.06 2.854
2 w D�UO|	b& .Ü. � 101 0.025 11.63
2 w D�UO|	 Ú& .Ü. � 79 13.16 8.859
2

¾<¤ O�N�� w ��UOk	�Ú& .Ü. � 69 12.13 10.18
3 w D�UO|	b& .Ü. � 44 0.025 5.049
3 w D�UO|	 Ú& .Ü. � 26 13.94 2.954
3

¾<¤ O�N�� w ��UOk	�Ú& .Ü. � 19 15.63 3.122
4 w D�UO|	b& .Ü. � 106 0.025 12.06
4 w D�UO|	�Ú& .Ü. � 92 13.10 10.04
4

¾<¤ O�N�� w ��UOk	�Ú& .Ü. � 79 13.23 12.37

In Table 6.5, we report the CPU time (in seconds) spent by our implementation of the
Algorithms A.1, A.2, and A.3. These algorithms build the nested dissection structure of Ú& .Ü.
and the null space matrix K . In particular, the nested dissection structure can be useful in
building a parallel version of the matrix-vector products involving the implicit form of the
matrix Ú& .�. . Moreover, it is possible to use the structure for the evaluation of the complexity
of the explicit computation of the null space matrix K . We observe that comparing Table 6.5
and Table 6.3, the computational cost of Algorithms A.1, A.2, and A.3 is comparable with
the cost of the MA47 symbolic phase. Algorithms A.1, A.2, and A.3 are the basis on which
it is possible to build a parallel version of the matrix-vector computation (3.8). In particular,
it is possible to use Algorithm A.3 to generate a suitable data structure for the solution of the
triangular systems involving the matrices � and �E� .

7. Generalization to the 3-D case. Almost all the results of the paper can be general-
ized to the case - Æ IR ß . The only exceptions are Lemma 5.2 and Corollary 5.1. In practice,
we cannot predict a priori the pattern of the projected Hessian Ú& .Ü. when the graph � is not
planar, as is the case of the 3D meshes. In particular, we can build the shortest path tree
in the 3D case as described in Section 4. In the resulting tree (or forest) each parent has at
most 3 children. Moreover, for a problem with only Dirichlet boundary conditions and an
isotropic mesh the resulting forest has a number of trees proportional to the number of tri-
angles meshing the boundary surfaces. This number is proportional to � u . . Therefore, the
potential parallelism in solving the lower and upper triangular matrices in the null space algo-
rithm increases of one order of magnitude from the two dimensional to the three dimensional
case. The extension to the three dimensional domain of the preconditioners presented in Sec-
tion 6.3 is straightforward. Furthermore, the increased parallelism suggest the possibility of
reducing considerably the cost of building the block versions based on the quotient tree such
as w ��UO|	�Ú& .Ü. � or

¾<¤ O�N�� w ��UOk	ÇÚ& .Ü. � .
In particular, we want to highlight that the absence of fill-in is promising when we need

to solve Darcy’s equations in 3D domains. It is reasonable to expect that the fill-in and
complexity of a direct solver, applied to the augmented systems related to the approximation
of Darcy’s equations in 3D domains, would grow as ë�	�Ð b õ ß � and ë�	�Ð . � respectively [30,
29]. Instead, our algorithm does not have any fill-in and its complexity only depends on the

ETNA
Kent State University
etna@mcs.kent.edu

A NETWORK PROGRAMMING APPROACH TO MFE METHODS 65

TABLE 6.5
CPU Time (in seconds) for the computation of nested dissection structure for null space matrix ¥ .

Mesh Domain CPU Time (in Seconds)
Algorithms A.1,A.2,A.3

1 1 0.001
1 2 0.001
1 3 0.002
1 4 0.001
2 1 0.025
2 2 0.009
2 3 0.022
2 4 0.006
3 1 1.225
3 2 0.159
3 3 0.982
3 4 0.178
4 1 29.89
4 2 4.775
4 3 28.53
4 4 5.118

condition number of the scaled projected Hessian matrix K"�1&VK . We can reasonably assume
that this condition number does not change with the dimension of the domain - , analogous
to the behaviour of the classical finite-element method. Therefore, the stopping criterion will
stop the conjugate gradient algorithm after a number of steps which is not dependent on the
dimension of the domain - . The performance analysis of our algorithm when applied to three
dimensional domains will be considered in future work.

8. Conclusions. We have analysed a variant of the null space algorithm that takes full
advantage of the relation between the structure of the augmented system and the network
programming structure of the mixed finite-element approximation of the Darcy’s equations.
We remark that this method can be applied to any diffusion equation. We compared the
performance of our prototype version of the algorithm with a well established direct solver
and we concluded that even if our implementation can be 10 times slower than the direct
solver, the absence of fill-in makes our code competitive for large problems.

We did not implement a parallel version of our algorithm. Nevertheless, we are confident
that a parallel version will speed up the performance. In particular, the matrix-vector product
involving K � &VK can largely benefit from the parallelization, where the block structure of� (can be exploited.

Finally, once the null basis has been computed, it can be used to solve a sequence
of problems (2.1-2.2) with different permeability tensors, i.e., different soil characteristics,
since in this case only the block & changes and º stays the same. In contrast, direct
solvers, like MA47, computing a Gaussian factorization of the augmented system or the
Schur-complement based approaches cannot take advantage of this. The same applies to the
case of time-dependent or nonlinear problems.

This advantage is fairly important in the three dimensional cases.

Appendix. In this appendix, we describe the major details regarding the data structures
and algorithm implementations of Section 5.1.

ETNA
Kent State University
etna@mcs.kent.edu

66 M. ARIOLI AND G. MANZINI

The matrix º is the incidence matrix of the graph representing the unstructured bidi-
mensional mesh used in the computations. The the row/column compressed data structure
mentioned in Section 5.1 [17] can thus be easily implemented as follows by using vector ar-
rays. Each column of º has at most three nonzero entries; then, we store for each node (i.e.
triangle) the three arcs (i.e. edges) indices consecutively in position ACJ � ¦?C® � Ý . If the
node corresponds to a triangle having an edge on the Neumann boundary, we explicitly store
a i which means that the triangle has the root as a neighbour. Analogously, as each row ¥ ofº has only two nonzero entries, we store the two nodes (i.e. triangles) describing the arc ¥
in position ¥ and ¥ � ¦ of a vector. Again, we need to explicitly store some i values for the
Dirichlet edges. The overhead of the explicit storage of these zeroes is less than the one we
would have if we stored the pointers within the classical row and column compressed forms
because the number of the boundary edges is of the order of the square root of the number of
triangles in the mesh.

Before starting the one-way dissection phase, we visit the tree and identify the out-of-tree
arcs in each Q-node that are within the Q-node and the arcs directly linking the external root
(node i) to a Q-node. These arcs are stored in sep.list which is a queue data structure. The
phase relative to the one-way dissection is implemented by the following algorithm:

ALGORITHM A.1.

procedure root.sep.count(sep.size)
for each W children 	biU� do

Q Äk3 chain(i); sep.size 	 � Äf�a3Pi ;
for Q

= Q Ä :Q-last(Q Ä), do

for each ¦<3�	 71C�½e� W Q-star(Q

) with chain(p)= Q

do

if ½"� last(Q-last(Q Ä)) or ½ þ first(Q Ä) then
sep.size 	 � Ä � = sep.size 	 � Ä � + 1;

end if;
end for each;

end for;
end for each;

end procedure.

procedure sep.tree (sep.list,sep.size,Q ��§�§ · ,mask)
for Q

= Q ��§�§ · :Q-last(Q ��§§ ·), do

for each ¦<3�	 71C�½e� W Q-star(Q

) with chain(p)= Q

do

if mask 	2¦��®3�i and
� ½"� last(Q-last(Q Ä)) or ½ þ first(Q Ä) � then

insert ¦ in sep.list ;
mask 	2¦��®34¦ ;
sep.size = sep.size + 1;

end if;
end for each;

end for;
end procedure.

procedure one.way.dissection(sep.list,sep.size,mask)
root.sep.count(sep.size)
sort Q-children(Q ��§�§ ·) in decreasing order of sep.size ;
for each child W Q-children(Q ��§�§ ·) do

sep.tree (sep.list, sep.size(child), child, mask);

ETNA
Kent State University
etna@mcs.kent.edu

A NETWORK PROGRAMMING APPROACH TO MFE METHODS 67

end for each;
end procedure.

Because each out-of-tree arc can be counted only twice, the complexity of Algorithm A.1
is ë)	bÝ�¨?� , where ¨ is the number of nonzero entries in the submatrix � . and is equal to twice
the number of the out-of-tree arcs.

From Corollary 4.1, Corollary 5.1, and Lemma 5.1 it follows that each block , of sizez ¨�71} z å ¨M	�^� , contains out-of-tree arcs that have fundamental cycles intersecting each other.
Therefore, each of these blocks corresponds to a full diagonal block in Ú& .Ü. . The order of
the diagonal block is equal to the corresponding value of z ¨�71} z å ¨ . The out-of-tree arcs inz ¨�71} ¤ z�P form the external separator. The external separator identifies a curve on the mesh.
Thus, because the graph is planar, the size © of the external separator will be ë�	Eª ÐR� (Ð is
the number of triangles in the mesh) [30, 29].

Finally, we renumber the out-of-tree arcs, such that the arcs in the external separator are
the last ones and the arcs lying within a descendant subtree of root are consecutive. This is
equivalent to permute the rows of the matrix � . so that we have a block diagonal submatrix
followed by a block of rows connecting the previous diagonal blocks.

In the following Algorithm A.2, we denote by Q ��§�§ · the root of one of the Q-subtrees
obtained from the one-way dissection phase. The algorithm proceeds as follows. Basically,
we visit each subtree and we reorder the Q-children list of each Q-node such that the first
child is the root of the subtree with the least number of nodes, and the other children are
sorted in increasing order with respect to the number of nodes in their respective subtrees.
Moreover, we label each out-of-tree arc ¦ with the quotient tree ancestor QT-ancestor(¦), the
Q-node closing the fundamental cycle of ¦ in the spanning tree.

By means of QT-ancestor and by the data structure of the spanning tree, we can implic-
itly describe the structure of the null space matrix K .

ALGORITHM A.2.
procedure nested.sep(sep.list, sep.size, Q ��§�§ · , mask, QT-ancestor)

if Q-children(Q ��§�§ ·) &3G, then
Q (head of Q-children(Q ��§�§ ·) list;
Q . tail of Q-children(Q ��§�§ ·) list;
sep.tree(sep.list, sep.size(Q (), Q (, mask);
sep.size(Q .) = 0;
for each ¦ W Q-star(Q �§§ ·) do

if mask(¦) = 0 then
insert ¦ in sep.list ;
mask(¦) = 1 ;
sep.size(Q .) = sep.size(Q .) +1;
QT-ancestor(¦) = Q �§§ · ;

end if
end for each;
nested.sep(sep.list, sep.size, Q (, mask);
nested.sep(sep.list, sep.size, Q . , mask);

end if;
end procedure

Algorithm A.2 takes advantage of the binary structure of the quotient subtree and of the
reordering of the Q-children list whose first entry has the least number of descendants. These

ETNA
Kent State University
etna@mcs.kent.edu

68 M. ARIOLI AND G. MANZINI

two properties allow the possibility of separating the two subtrees rooted in the children of the
current Q ��§§ · visiting only one of them and the Q-star of Q ��§�§ · . Moreover, at each recursion
we visit and separate a subtree which, in the worst case, has half of the nodes of the tree
in it. Let +« be the number of nodes in one of the subtrees obtained after the one-way
dissection phase. The Nested Dissection phase applied to this subtree will visit all the levels
of the tree. For each level, algorithm A.2 will separate the subtrees with the least number of
descendants. In the worst case, when the number of nodes in each subtree is half of the nodes
of the previous subtree which contains it, the number of levels is ë)	���¬?=, («a� . Thus, the worst
complexity of algorithm A.2 is ë)	� +«¢��¬U=a "«,� .

If the tree is unbalanced, i.e. only one of the two children of a Q-node is a branching
Q-node, the complexity of algorithm A.2 is ë)	� "«�� . Using the sep.size and sep.list, we can
build the data structure ND, which is composed of ND.list and ND.pointer. ND.list contains
the entries of sep.list in reverse order. ND.pointer(Q Ä) contains the pointer to the first entry
in ND.list of the separator of the tree rooted in Q Ä . In the following algorithm, we denote
by § � · the number of out-of-tree arcs. We point out that the number of entries in sep.list is
equal to § � · .

ALGORITHM A.3.
procedure nested.dissection(sep.list, sep.size, ND, QT-ancestor)

for ¦ = 1:N § � · do
ND.list(N § � · - ¦ +1) = sep.list(¦);
temp = QT-ancestor(N § � · - ¦ +1);
QT-ancestor(N § � · - ¦ +1) = QT-ancestor(¦);
QT-ancestor(¦) = temp;

end for;
size = 0;
for Q Ä = Q �§§ · : Q-last(Q ��§�§ ·) do

size = size +sep.size(Q Ä);
ND.pointer(Q Ä) = N § � · - size + 1;

end for;
end procedure

The ND.list gives the permutation that will reorder rows and columns of Ú& .�. in a nested
dissection order. Finally, we can build the pattern of the upper triangular part of Ú& .Ü. by using
the following algorithm A.4, which takes advantage of the consecutive order of the Q-nodes
forming a tree, obtained by applying a depth first search on +�I� , and of the nested ordering
of the out-of-tree arcs in ND. We point out that for each Q Ä , the rows and the columns with
indices between ND.pointer(Q Ä) and ND.pointer(Q Ä +1) form a full diagonal block in Ú& .�. .
This pattern of the Ú& .Ü. is described by the usual compressed row collection data structure
(irow,jcol) where for the row of Ú& .Ü. is stored in jcol(irow(i):irow(i+1)-1).

ALGORITHM A.4.
procedure insert.columns(ND, QT, irow, jcol, jcount, count)

for Q

= QT+1:Q-last(QT) do;
for each ¦<3�	 71C�½e� W Q-star(Q

) with chain(p)= Q

do

if ½"� last(Q-last(Q Ä)) or ½ þ first(Q Ä) then
jcount = jcount + 1;
jcol(jcount) = ¦ ;
count = count + 1;

ETNA
Kent State University
etna@mcs.kent.edu

A NETWORK PROGRAMMING APPROACH TO MFE METHODS 69

end if;
end for each;

end for;
end procedure;
procedure Ú& .Ü. -pattern(ND, QT-ancestor, irow, jcol)

irow(1) = 1; jcount = 0;
for i = 1:N § � · do

count = 0;
Q (head of Q-children(QT-ancestor(i)) list;
Q . tail of Q-children(QT-ancestor(i)) list;
for k = i:ND.pointer(Q (+1) - 1 do

jcount = jcount + 1;
jcol(jcount) = ND.list(k);
count = count + 1;

end for;
let 	 7 Ä CÜ½ Ä � the ends of arc i;� 7 Ä 3~N�æ%�MªÏd	 7 Ä � ; � ½ Ä 3�N�æ%�MªÏd	�½ Ä � ;
if QT-ancestor(i)

&3 � 7 Ä and QT-ancestor(i)
&3 � ½ Ä then

insert.columns(ND, QT-ancestor(i), irow, jcol, jcount, count)
irow(i+1) = irow(i) + count;

else
if ½�Ä� last(Q-last(Q ()) or ½�Ä þ first(Q () then

insert.columns(ND, Q (, irow, jcol, jcount, count);
irow(i+1) = irow(i) + count;

else
insert.columns(ND, Q . , irow, jcol, jcount, count);
irow(i+1) = irow(i) + count;

end if;
end if;

end for;
end procedure

Finally, we observe that the final value of jcount gives the total number of nonzero entries
of the upper triangular part of Ú& .�. . Therefore, without the explicit computation of the real
values of the nonzero entries in Ú& .�. we can predict the total amount of memory we need for
storing the matrix.

REFERENCES

[1] R. ALBANESE AND G. RUBINACCI, Integral formulation for 3D eddy-current computation using edge ele-
ments, IEEE Proc. A, 135 (1988), pp. 457–462.

[2] P. ALOTTO AND I. PERUGIA, Mixed finite element methods and tree-cotree implicit condensation, CAL-
COLO, 36 (1999), pp. 233–248.

[3] R. AMIT, C. A. HALL, AND T. A. PORSCHING, An application of network theory to the solution of implicit
Navier-Stokes difference equations, J. Comp. Phys., 40 (1981), pp. 183–201.

[4] M. ARIOLI, A stopping criterion for the conjugate gradient algorithm in a finite element method framework,
Numer. Math., 97 (2004), pp. 1–24.

[5] M. ARIOLI AND L. BALDINI, A backward error analysis of a null space algorithm in sparse quadratic
programming, SIAM J. Matrix Anal. and Applics., 23 (2001), pp. 425–442.

[6] M. ARIOLI, J. MARYŠKA, M. ROZLOŽNÍK, AND M. TŮMA, Dual variable methods for mixed-
hybrid finite element approximation of the potential fluid flow problem in porous media, to ap-
pear in Electron. Trans. Numer. Anal., 2005. Special Volume on Saddle Point Problems:

ETNA
Kent State University
etna@mcs.kent.edu

70 M. ARIOLI AND G. MANZINI

Numerical Solution and Applications. Electron. Trans. Numer. Anal., 22 (2006), pp. 17–40,
http://etna.mcs.kent.edu/vol.22.2006/pp17-40.dir/pp17-40.html.

[7] D. N. ARNOLD, R. S. FALK, AND R. WINTHER, Preconditioning in ®^¯��<°²±�³ and applications, Math. Comp.,
66 (1997), pp. 957–984.

[8] M. BENZI, G. H. GOLUB, AND J. LIESEN, Numerical solution of saddle point problems, Acta Numerica, 14
(2005), pp. 1–137.

[9] M. W. BERRY, M. T. HEATH, I. KANEKO, M. LAWO, R. J. PLEMMONS, AND R. C. WARD, An algorithm
to compute a sparse basis of the null space, Numer. Math., 47 (1985), pp. 483–504.

[10] O. BIRÓ, K. PREIS, G. VRISK, K. R. RICHTER, AND I. TICAR, Computation of 3D magnetostatic fields
using a reduced scalar potential, IEEE Trans. Magnetics, 29 (1993), pp. 1329–1332.

[11] F. BREZZI AND M. FORTIN, Mixed and Hybrid Finite Element Methods, vol. 15, Springer-Verlag, Berlin,
1991.

[12] R. BRUALDI AND H. RYSER, Combinatorial Matrix Theory, Cambridge University Press, 1991.
[13] P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
[14] T. F. COLEMAN AND A. POTHEN, The null space problem I. Complexity, Algebraic Discrete Math., 7 (1986),

pp. 527–537.
[15] , The null space problem II. Algorithms., Algebraic Discrete Math., 8 (1987), pp. 544–563.
[16] N. DEO, G. M. PRABHU, AND M. S. KRISHNAMOORTHY, Algorithms for generating fundamental cycles in

a graph, ACM, Trans. Math. Softw.,, 8 (1982), pp. 27–42.
[17] I. S. DUFF, A. M. ERISMAN, AND J. REID, Direct Methods for Sparse Matrices, Oxford University Press,

Oxford, UK, 1989.
[18] I. S. DUFF, N. I. M. GOULD, J. K. REID, J. A. SCOTT, AND K. TURNER, The factorization of sparse

symmetric indefinite equations, J. Numer. Anal., 11 (1991), pp. 181–204.
[19] G. GALLO AND S. PALLOTTINO, Shortest path methods: a unifying approach, Mathematical Programming

Study, 26 (1986), pp. 38–64.
[20] J. R. GILBERT AND M. T. HEATH, Computing a sparse basis for the null space, Algebraic Discrete Math., 8

(1987), pp. 446–459.
[21] P. H. GILL, W. MURRAY, AND M. H. WRIGHT, Practical Optimization, Academic Press, London, UK,

1981.
[22] G. H. GOLUB AND G. MEURANT, Matrices, moments and quadrature II; how to compute the norm of the

error in iterative methods, BIT, 37 (1997), pp. 687–705.
[23] A. GREENBAUM, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, PA, 1997.
[24] C. A. HALL, Numerical solution of Navier-Stokes problems by the dual variable method, SIAM, J. Alg. Disc.

Meth., 6 (1985), pp. 220–236.
[25] M. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur.

Standards, 49 (1952), pp. 409–436.
[26] HSL, Harwell Software Library. A collection of Fortran codes for large scale scientific computation.

http://www.cse.clrc.ac.uk/Activity/HSL, 2000.
[27] A. ITAI AND M. RODEH, Finding a minimum circuit in a graph, SIAM, J. Comput., 7 (1978), pp. 413–423i.
[28] L. KETTUNEN, K. FORSMAN, AND A. BOSSAVIT, Gauging in Whitney spaces, IEEE Trans. Magnetics, 35

(1999), pp. 1466–1469.
[29] G. L. MILLER, S.-H. TENG, W. THURSTON, AND S. A. VAVASIS, Geometric separators for finite-element

meshes, SIAM J. Sci. Comput., 19 (1998), pp. 364–386.
[30] G. L. MILLER AND W. THURSTON, Separators in two and three dimensions, in STOC ’90: Proceedings of

the twenty-second annual ACM symposium on Theory of computing, New York, NY, USA, 1990, ACM
Press, pp. 300–309.

[31] K. G. MURTHY, Network Programming, Prentice Hall, Englewood Cliffs, NJ, 1992.
[32] J. C. NEDELEC, Mixed finite elements in IR ´ , Numer. Math., 35 (1980), pp. 315–341.
[33] A. POTHEN, Sparse null basis computations in structural optimization, Numer. Math., 55 (1989), pp. 501–

519.
[34] R. SCHEICHL, A decoupled iterative method for mixed problems using divergence-free finite element, Tech.

Report maths0011, University of Bath, 2000.
[35] , Iterative Solution od Saddle Point Problems Using Divergence -free Finite Elements with Applications

to Groundwater Flow, PhD thesis, University of Bath, 2000.
[36] J. R. SHEWCHUCK, A two-dimensional quality mesh generator and Delaunay triangulator.

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/quake/public/www/triangle.html, 1996.
[37] Z. STRAKOŠ AND P. TICHÝ, On error estimation by conjugate gradient method and why it

works in finite precision computations, Electron. Trans. Numer. Anal., 13 (2002), pp. 56–80,
http://etna.mcs.kent.edu/vol.13.2002/pp56-80.dir/pp56-80.html.

[38] , Error estimation in preconditioned conjugate gradients, BIT, (to appear).
[39] R. E. TARJAN, Data Structures and Network Algorithms, SIAM, Philadelphia, PA, 1983.

http://etna.mcs.kent.edu/vol.22.2006/pp17-40.dir/pp17-40.html
http://etna.mcs.kent.edu/vol.13.2002/pp56-80.dir/pp56-80.html

