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FRACTAL TRIGONOMETRIC APPROXIMATION *

M. A. NAVASCUEST

Abstract. A general procedure to define nonsmooth fractal versions of classical trigonometric approximants
is proposed. The systems of trigonometric polynomials in the space of continuous and periodic functions C(2)
are extended to bases of fractal analogues. As a consequence of the process, the density of trigonometric fractal
functions in C(27r) is deduced. We generalize also some classical results (Dini-Lipschitz’s Theorem, for instance)
concerning the convergence of the Fourier series of a function of C(2). Furthermore, a method for real data fitting
is proposed, by means of the construction of a fractal function proceeding from a classical approximant.
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1. Introduction. A classical approach to handle real experimental recordings consists
in their decomposition in signal content and noise. The first component is considered as
deterministic and the noise is studied from a statistical point of view. We give here a global
deterministic method to model both, signal and noise, by means of fractal interpolation. This
method was introduced by M. Barnsley and others ([ 1], [2], [3], [4], [10]) in the eighties and
provides good techniques for the construction of not necessarily smooth interpolants to real
data. The procedure is based on the theory of Iterated Function Systems and their associated
attractors ([2], [8]).

In former papers, we have proved that Barnsley’s method is a general theory which con-
tains other interpolation techniques as particular cases (see for instance [12], [13]). Another
important fact is that the graph of these interpolants possesses a fractal dimension, and this
number can be used to measure the complexity of a signal, allowing an automatic comparison
of recordings, electroencephalographic for instance ([14]).

A general procedure to define nonsmooth fractal versions of classical trigonometric ap-
proximants is proposed. The fractal trigonometric polynomials defined here do not share in
general the properties of differentiability of classical trigonometric functions and they pre-
serve some others like closeness to continuous periodic functions. The systems of trigono-
metric polynomials, in the space of continuous and periodic functions C(27) ,are extended
to bases of fractal analogues. As a consequence of the process, the density of trigonometric
fractal functions in C(27) is deduced. This result illustrates the fact that, fractal interpola-
tion functions are everywhere in the space of continuous functions, in a metric sense. In the
reference [14], for instance, we have proved the density of affine fractal functions in C([a, b]).

We generalize also some classical theorems (Dini-Lipschitz’s Theorem, for instance)
concerning the convergence of the Fourier series of a function of C(27). Furthermore, a
method for real data fitting is proposed, by means of the construction of a fractal function
proceeding from a classical approximant.

From an applied point of view, the trigonometric approximants display the spectral con-
tent of a signal, providing a representation in the frequency domain which allows its pro-
cessing and filtering. On the other hand, Besicovitch and Ursell, in the reference [5], proved
that the graph of a smooth function has a fractal dimension of one. As a consequence, the
nonsmoothnes is a required condition in order to obtain an approximation of the geometrical
complexity of arbitrary signals. A conventional interpolant excludes the possibility of using
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this parameter for numerical characterizations of experimental signals ([ 16]).

2. a-Fractal Functions. Let ¢y < t; < ... < tx be real numbers, and I = [tg,tn] be
the closed interval that contains them. Let a set of data points {(t,,2,) € I X R : n =
0,1,2,...,N} be given. Set I,, = [tp_1,tn) and let L, : I — I,, n € {1,2,...,N} be
contractive homeomorphisms such that:

2.1 L, (to) = tn—1, Ln(tn) = tn

(2.2) |Ln(01) — Ln(02)| < l |(31 — Cz| Vcl,cz el

forsome 0 <1 < 1.
Let—-1<a,<1l;n=1,2,..,N,F =1x]e,d] forsome —o00 < ¢ < d < 400 and N
continuous mappings, F, : F' — R be given satisfying:

(2.3) Fn(thxO) = Tn-1, Fn(tN,.’L'N) =Tn, N = 132a"'aN

2.4) |En(t,z) — Fr(t,y)| < anlz—y|l, tel, z,y€ R

Now define functions, wy, (¢,x) = (L, (t), Fp(t,z)), Vn=1,2,...,N.

THEOREM 2.1. (Barnsley [1]) The Iterated Function System (IFS) {F, wy,
n = 1,2,..., N} defined above admits a unique attractor G. G is the graph of a continu-
ous function f : I — R which obeys f(t,) = Tn, forn =0,1,2,...,N.

The previous function is called a Fractal Interpolation Function (FIF) corresponding to
{(Ln(t)a Fn(ta .73)) g:l-

Let G be the set of continuous functions f : [to,tn] — [c,d] such that f(tg) = zo;
f(tn) = zn. G is a complete metric space respect to the uniform norm. Define a mapping
T:G— Gby:

2.5 (THE) = Fu(Ly, (), fo L (1) Vi€ [ta1ytal, n=1,2,..,N

n

T is a contraction mapping on the metric space (G, || - || oo ):

(2.6) ITf = Tylloo < laloollf = glloo

where |a|c = max {|a,|; n = 1,2,...,N}. Since |a|oo < 1, T possesses a unique fixed
point on G, that is to say, there is f € G such that (Tf)(¢t) = f(¢t) V¢ € [to,tn]. This
function is the FIF corresponding to w,, and it is the unique f € G satisfying the functional
equation ([1]):

@7 f{t)=Fu(L,'(t),fo L' (t)), n=1,2,..,N, t €I, = [ty 1,t,]
The most widely studied fractal interpolation functions so far, are defined by the IFS

Ln(t) = ant + by
(2.8) { E,(t,z) = anz + qn(t)

o, 1s called a vertical scaling factor of the transformation w,, and & = (ay,as,...,ay) is
the scale vector of the IFS. Following the equalities (2.1)

tn —tp— tNtn—1 — tot
(29) an = n n—1 bn= Nin—1 0ln

tnv —to tn —to
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Let f € C(I) be a continuous function. We consider here ,the case
(210) QTL(t) = f o Ln(t) - anb(t)

where b is continuous, such that b(tg) = g, b(tny) = xn and b # f.

This case is proposed by Barnsley, in the reference ([ 1]), as generalization of any contin-
uous function. It is easy to check that the condition (2.3) is fulfilled. By this method one can
define fractal analogues of any continuous function (see Fig. 2.1).
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FIG. 2.1. The left figure represents the graph of the function f(t) = 5e *cos(15t). The right
graph represents the corresponding a-fractal, with A : 0 < 1/8 < 2/8 < ... < 1, b a line in the
interval [0,1] and ar, = 0.2 Vn=1,...,8.

DEFINITION 2.2. Let f¢ be the continuous function defined by the IFS (2.8), (2.9) and
(2.10). f% is the a-fractal function associated to f with respect to b and the partition A.
Following (2.7) and (2.10), f verifies the fixed point equation:

(2.11) @) = f() +an(f* =b) o L' () Viel,
f¢ interpolates to f at ¢,, as, using (2.1), (2.11) and Barnsley’s Theorem:

2.12)  f(tn) = f(tn) + an(f* = D)o (tn) = f(tn)  Yn=0,1,...,N

From (2.11) it is easy to deduce that:

15% = Flloo < lefoollf* = blloo < laloo([[f* = flloo + IIf — blloo)

and

|| oo

@13) 157 = Flo < T

If = blleo
Ifa =0, then (2.11) f* = f.
Let B* be the operator of G; B* = B&b:

B ,: G = G
fro=f

B3 , depends on b and A but sometimes we will omit the subindices in order to simplify the
notation.
PROPOSITION 2.3. For fixed A and b, B* satisfies the Lipschitz condition:

(2.14) 1B%(f) = B*(9)lleo < 75— IIF = gllos
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Proof. Let B*(f) = f*, B*(g) = g“. By the equation (2.11), Vt € I,

Fo@) = f(t) + an(F* = b) o L (2)
9*(t) = g(t) + an(g™ = b) o L (¢)
and
FEW) = g%(8) = F(8) — 9(t) + an(f* — g%) 0 Ly, (1)
then
supeer, |f* () — g% ()] < (I = glloc + laloollf* = 9% loo
and
7% = 9%llco < IIf = 9lloo + |aloollf* = 9%[|oo
from which the result is deduced. O
THEOREM 2.4. B* = BY , is a continuous operator of G.
Proof. It is an inmediate consequence of the former proposition. d

PROPOSITION 2.5. Let ayy, € RN be such that o |00 < 1 and a,, — 0 as m tends to
infinity. Then B (f) — [ uniformly as m tends to infinity.
Proof. By the inequality (2.13):

Qm . o oo _
1527 () = Fl < 7= 17 =

from which the result is deduced. 0

To construct non-smooth interpolating functions one can proceed in the following way.
Let f be a classical (smooth) interpolant of the data. Choose a nowhere differentiable function
b (for instance, a Weierstrass function ([9])) and a,, non-null Vn. As f is smooth, f¢ can not
be differentiable in every point because if it were, for any t € I, L, (t) € I, and the equation
(2.11) can be written as

b(t) = £(0) + -—(f = *) o Ln(t)

As a consequence, b would be differentiable at ¢ (see Fig. 2.2).

3. Fractal Linear Operator. If we choose b = f o ¢ where ¢ is continuous, increasing
and such that c(tg) = to and c(tn') = tu (for instance, c(t) = (e* — 1)/(e* — 1) for A > 0
in the interval [0, 1]), then the operator of C(I) which assigns f* (a-fractal of f respect to
f ocand A) to the function f

Fo = PR
is linear as, by (2.11) Vt € I,,:
FE) =) +an(f* = foc)o L () ¢%(t) = g(t) + an(g® —goc)o L' (t)

Multiplying the first equation by A and the second by p, the uniqueness of the solution of the
fixed point equation defining the FIF gives:

Af +pg)* =Af*+pg*  VYAp€eR
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FIG. 2.2. The left figure represents the graph of the function f(t) = 5e~*cos(15t). The right
graph represents the corresponding a-fractal, with A : 0 < 1/8 < 2/8 < ... < 1, b the Weierstrass

Sunction b(t) = k1 + k2 21?;1 ziksin(th) (with suitable k1, k2 in order to verify the hypotheses) and
an=01 Vn=1,...,8
Besides, applying the equation (2.13) for b = f o ¢, one has

2|a|oo

G.1) 1F2() = Flloo < 1l
1 Jale
from which it is clear that,
2|a 1+ |

P2 (e < 12 e+ e < 1 52

and as a COHSCquenCG,
1
(32) o < 11l
~lalos

and so F¢ is a linear and bounded operator. From here on we consider this particular case
(b= foo).

4. Fractal Trigonometric Polynomials. We consider here the space of 27-periodic
continuous functions

C(2r) ={f : [-m,7] = R; feontinuous, f(—n) = f(n)}

Let 7,,, be the set of trigonometric polynomials of degree (or order) at most m, linearly
spanned by the set {1, sin(x), cos(z), sin(2z), cos(2x), - - -, sin(mzx), cos(mz) }.

4.1)  1m =< {1,sin(x), cos(x), sin(2z), cos(2x), - - - , sin(mzx), cos(mz)} >

This family constitutes a basis for 7,,,. This system is orthogonal with respect to the inner
product (5.1). In fact it is a complete system in £2(27) ([7]).

Let A : —m =tg < t1 < --- < ty = 7 be a partition of the interval [—, ].

DEFINITION 4.1. 78 = F*(1p,) is the set of a-fractal trigonometric polynomials of
degree at most m.

PROPOSITION 4.2. 72 is spanned by {1, cos®(t), sin®(t),-- -, sin*(mt), cos*(mt)}
where cos®(jt) = F*cos(jt) and sin®(jt) = F*sin(jt).

Proof. The constant functions are fixed points of F* ,as the equation (2.11), for f(t) =
k, Vitel

fet)=k+an(f*—foc)o L, (t)
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is satisfied by f*(t) = k V¢ € I and by the uniqueness of the solution F*(f) = f.

If t& € 75, then t& = F(t,,) where t,,, € Ty,. By the linearity of F¢, %, is a linear
combination of {1, cos®(t), sin®(t), - - -, sin*(mt), cos*(mt)}. O

CONSEQUENCE 4.3. dim(7%) < +oo.

This fact allows the existence of a finite uniform distance from f € C(2r) to 7%:

(42) dny = d(f73) = inf{llf = thlloc tm € T}

In §6, we approach the problem of finding a basis for 7. The case @ = 0 gives the
classical case of smooth sin and cos functions.

The Theorem of Uniform Approximation (Weierstrass) for 27-periodic functions asserts
that, any f € C(2m) can be uniformly approximated by trigonometric polynomials (see for
instance [11]).

THEOREM 4.4. Let f € C(27) be given. For all € > 0, any partition A of the interval
I = [—m, w] with N+1 points (N > 1) and any function c verifying the conditions prescribed,
there exists an a-fractal trigonometric polynomial s*(t) with o # 0 in RN such that

IF() —s*(®)] <€

Proof. For any € > 0, let us consider €/2 > 0. Applying the theorem of uniform
approximation of C(2x), 3s(t) € 7y, ,such that,

(4.3) |f(t) —s(t)] <€/2 tel
For a partition A we choose @ € RN, a # 0 small enough to verify

2|

(4.4) |s(t) —s*(t)| < T—lalw

l[slloo < €/2

Then, by (4.3) and (4.4) we obtain the result. d
THEOREM 4.5. For fixed A and c, the set of fractal trigonometric polynomials

J{t%tm € Tmsa € (BY)*; |l < 1;m € N}

is dense in C(2).

Proof. It is an inmediate consequence of the former theorem. d

We exclude o = 0 because in this case t;, = t,, and the fact is known. This result
confirms that it is possible to choose @ # 0 and m € N such that there exists a fractal
trigonometric polynomial s&, arbitrarily close to any f € C(27). That is to say, the set

U {1, cos*(z), sin“(x), - - -, sin®(mx), cos* (mzx) - - -}

where J = {a € RY;|alw < 1;a # 0}, is fundamental respect to the uniform norm. ([6]).

5. Fractal Fourier Series. We consider here C(2m) with the inner product
¢.1) <fg>= [ [f(t)g(t)dt
The system

(5.2) {—271-’ —Wsin(t), \/—%cos(t), %sin(%), %008(21’), -}
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is orthonormal and complete ([7], [15]). The Fourier series of f is

+oo
(5.3) ft) ~ % + ;(akcos(kt) + bgsin(kt))
where
ay = % i f(t)cos(kt)dt
1 /7 .
by, = - f(t)sin(kt)dt

In general, the Fourier series of an element is merely the sum of its projections on a system
of orthonormal elements. Fourier expansions converge in the mean of order 2 (£2-norm) to
the elements that give rise to them. That is to say, if

a0 | — .
5.4 Sm(t) = > + ;(akcos(kt) + bysin(kt))
then,
17 =Sl = [ (£~ Sw?dt >0
as m — oo.

Pointwise and uniform convergence of the Fourier series of f is not verified in general. A
collection of theorems concerning this topic can be consulted in ([7], [6], [15]). For instance,
we remark the following result.

THEOREM 5.1. (Dini-Lipschitz) If f(t) € C(2w), and if w(6)log(d) — 0as § — 0, then
the Fourier series of f converges uniformly to f. (w is the modulus of continuity of f).

Let us consider the operator Sy, : C(27) — T, ,such that S, (f) is defined by

Sm(f)(t) =Sm(t) Vi€ [-m,m],
where S, is the Fourier sum of order m of f (5.4). In the reference ([6]), it is proved that S,,
is a bounded operator and the following inequality holds:

4
(5.5) —5log(m) < [|Smll < 3 + log(m)

S is a projection on 7, as Sy, © Sy = Spn
The error committed by the finite Fourier sum can be bounded in several ways. For
instance, if

dpn(f) = d(f,7m) = nf{Ilf = slloc, s € T}
it can be proved that (see [17])
(5.6) ISmf = flloo < (4 + log(m))dy, (f)

The theorems of Jackson give upper bounds for the quantity dZ, (f). For instance:
THEOREM 5.2. (Jackson’s Theorem [6]) For all f € C(2)

d (f) < w( )

™
m+1
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where w is the modulus of continuity of f. The coefficient 1 of w(
one independent of f and m.
As a consequence, if f € C(27)

7)) i the best possible

T
m+1

(5.7 ISm f = flloo < (4 + log(m))w( )

It can be observed that, from this inequality, the Dini-Lipschitz theorem is deduced.
Let S = F© o Sp, be the operator such that

Sp(f) = F(Sm(f))
(a-fractal Fourier finite sum of f). Sg, is a linear and bounded operator and by (3.2) and (5.5)

1 S
1520 < 11812 (5 4 1og(m)

|atfoo

IS f = flloo < IS f = Flloo + 1% = flloo <

1+ 0o 2 %)
< T s f o e+ 0
and applying (5.7)
58 IS f — fllo < ﬁ(((l + |aoo) (4 + log(m))w(mj_ 1) +2lafol| flleo)

In this way, the theorem of Dini-Lipschitz can be generalized to the fractal series.

THEOREM 5.3. Let f € C(27) such that w(d)log(d) — 0 as & — 0 and let oy, be a
sequence of scale vectors, such that o, = 0 as m — 00 ,then the .y, -fractal Fourier series
of f converges uniformly to f as m — oo.

Proof. As f is continuous on [—, 7], w(h) — 0 as h — 0 ([6]). The hypotheses and
(5.8) give the result. a

6. Trigonometric Fractal Interpolation. We approach here the problem of trigono-

metric interpolation by means of fractal techniques. Let A : —m =g < t1 < --- <ty <
tam+1 =  be given correponding to the data {(tx,zx)} ;74" where 7o = @am41. Let us

consider the fundamental functions of interpolation ([17], [7])

1270 sy sin(3(t — t3))
6.1 i(t) = =
©b 0= e in (i — 1)

Forj,k=0,1,---,2m, ;(ty) = dx;. Each function ¢; ,is a linear combination of
1, cos(t), - -, cos(mt), sin(t), - - -, sin(mt)

and hence is an element of 7,,, ([7]).
The function,

(6.2) o(t) =D zrpn(t)
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,is also an element of 7,,, and is the unique solution in this space for the interpolation problem
(P(tk)Z.Z’k k:0717"')2m'

If T, represents the trigonometric interpolation operator, which assigns to a function f its
trigonometric interpolant with respect to {(¢, f (tx)) }3™,, then by (6.2)

(6.3) 1T flloo < [[flloolllmlloo

where

= lek(?)
k=0

We define the a-fractal trigonometric interpolant as

P(t) = F(p)(t) = D e (1)
k=0

oy is the a-fractal function of ¢, with respect to A.
The function ¢* passes through the points (¢, zx) as ¢ (tx) = @;(tk) = Ox; (see §2
(2.12)). Besides

9" = F® o Tu(f)

The functions {¢; }f’:no are orthogonal with respect to the form:

9) = f(tr)g(ts)
k=0

and hence a basis of 7,,,. This property is inherited by {cpj‘} as o} interpolates to ; at the
nodes and so

(5 ¢5) Z% Y] Z(skz(sk]

where dy; is the delta of Kronecker. If s* € 72, by the linearity of the operator F¢,

2m
=3 ek
k=0

the orthogonality of ¢¢ implies the linear independence and hence {¢¢}2™, constitutes a
basis of 7% of a-fractal trigonometric polynomials with respect to the partition A. For a = 0,
we retrieve the standard basis ¢y,

7. Fitting Method by Fractal Approximants. Let {(;,Z;),j = 0,1,...,p} be a col-
lection of data. Let us define a function of approximation to the data (for instance, a minimax
approximation or a least squares fitting curve) f(¢). Consider an interval I containing the ab-
scissas and let A be a partitionof I, A : a = tg < t1 < ... < ty = bsuch thatt; # fj Vi, j,
to < topand tny > f,,. We look for an a-fractal function f©(t). To choose a,, we consider all
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the abscissas tj,,- -+, t;, in I t,—1 <t <t,fori =1,2,---,r. Then, by the equation
(fixed point) (2.11):

Eji = f(zjz) + an(fa - f o C) o L;l(f.h)
Approximating f* by f
Tj, = f(tj.) +an(f — foc)o L'r_ll(fji)

We choose a, by a least squares procedure:

T

man(an) = Z(f(fjl) - fji + an(f - f o C) o L;l(zji))2

i=1
Differentiating the former expression we obtain:
o = 2t (F) = %) (f = foe) o Ly (3:)
n — — P
i ((f = foc)o Lu' ()2

By the Schwartz’s inequality

where

u=(f(t;) =%, -, () —Tj,)

V= ((f—fOC)OLEI(EJ'I),---,(f—fOC) OLﬁl(fjr))

We must choose the order of the approximant f in such a way that the differences between
f(t;;) and T, are small enough to obtain |a,| < 1.
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