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A NONNEGATIVELY CONSTRAINED TRUST REGION ALGORITHM FOR THE
RESTORATION OF IMAGES WITH AN UNKNOWN BLUR *

JOHNATHAN M. BARDSLEY'

Abstract. We consider a large-scale optimization problem with nonnegativity constraints that arises in an ap-
plication of phase diversity to astronomical imaging. We develop a cost function that incorporates information about
the statistics of atmospheric turbulence, and we use Tikhonov regularization to induce stability. We introduce an
efficient and easily implementable algorithm that intersperses gradient projection iterations with iterations from a
well-known, unconstrained Newton/trust region method. Due to the large size of our problem and to the fact that our
cost function is not convex, we approximately solve the trust region subproblem via the Steihaug-Toint truncated CG
iteration. Iterations from the trust region algorithm are restricted to the inactive variables. We also present a highly
effective preconditioner that dramatically speeds up the convergence of our algorithm. A numerical comparison
using real data between our method and another standard large-scale, bound constrained optimization algorithm is
presented.

Key words. constrained optimization, phase diversity, astronomical imaging

AMS subject classifications. 65K 10, 65F22

1. Introduction. As light propagates through the atmosphere, light rays are bent due to
random variations in the index of refraction caused by atmospheric turbulence. This causes
the blurring of images of an astronomical object captured with a ground-based telescope [17].
The problem of interest is to reconstruct the object from these blurred images. The blurred,
noisy data for such problems takes the form

(1.1) d = Sfirue + 1,

where S is a large, non-sparse, ill-conditioned matrix that characterizes the blur, £y, is the
true image, or object, and is unknown, and 7) represents noise.

In the application of interest, the matrix S in (1.1) is also unknown, but can be accu-
rately modelled in terms of the discrete phase, or wavefront aberration, ¢», which quantifies
the deviation from planarity of the wavefront. The problem of interest is to estimate fy,.,,. and
the unknown phase ¢ from the data d. This problem is underdetermined since if S[¢] is an
N x N matrix, then both the object £, and the phase ¢ are N x 1 vectors, and hence, we
have N equations with 2V unknowns. Phase diversity [8, 16, 18] provides additional observ-
able information in the form of auxiliary images produced by introducing known additional
wavefront aberrations {@}. The problem of interest then becomes the estimation of both
firue and ¢ from data {d;}. Allowing, in addition, for data to be collected at various times
t, we obtain the following system of equations for data formation:

(1.2) dii = S[dy + Oklfirue + My, k=1,...,K, t=1,...,T,

where S[¢; + 6] is an N x N matrix for each k and ¢, and ¢, O, 0, ;, and f3,.,.c are N x 1
vectors. Here N = n, - ny, where n; and n, are the dimensions in numbers of pixels in the
z and y directions respectively of the telescope’s CCD detector array.

We will assume that the object is incoherent [9]. Then it represents an energy density,
or photon density, and hence, is nonnegative. Reconstructing the object and unknown wave-
front aberrations given equations (1.2) will then involve solving a nonnegatively constrained
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minimization problem of the form

(1.3) min J(¢,f),  subjectto >0,
(@.5)

where ¢ = (¢y,---,0p), and f > 0 means that f; > 0 for all .

Problem (1.3) falls into the category of bound constrained optimization problems. Var-
ious algorithms have been developed for general, bound constrained optimization, the most
basic of which is the projected gradient method [2, 5, 10]. The projected gradient method
can be viewed as an extension of the method of steepest descent to constrained optimization
problems. The gradient projection method has many of the same properties as the steepest
descent method, including a slow convergence rate.

The projected Newton method [2, 10] is an extension of Newton’s method to bound con-
strained optimization problems. This algorithm is straightforward to implement, and rapid
local convergence is obtained when the exact projected Newton step is computed at each it-
eration. For large-scale problems such computations are typically not possible, and hence,
approximations to the Newton step are necessary, in which case a deterioration in the conver-
gence properties of the algorithm are typically noticed.

An extension of the quasi-Newton method LBFGS [13] to bound constrained optimiza-
tion known as LBFGS-B is given in [4, 21]. The asymptotic convergence rate of LBFGS-B
is the same as that of LBFGS. Unfortunately, the FORTRAN implementation of LBFGS dis-
cussed in [21] does not allow for preconditioning, i.e. a non-identity initial guess for the
inverse Hessian. This severely limits the effectiveness of LBFGS-B for poorly conditioned
optimization problems. For the application in this paper, an implementation of LBFGS-B via
a MATLAB mex interface with the FORTRAN source code was not effective.

An algorithm that is well-suited for use on the application presented in this paper is the
TRON algorithm of [11]. Public FORTRAN source code for this algorithm is available for
use. Unfortunately, the function, gradient and Hessian evaluations and the preconditioner
implementation for our problem are written in MATLAB and are complex. Consequently,
we wanted to avoid having to rewrite these codes in FORTRAN. A MATLAB mex interface
with the TRON source code is possible, but difficult. In particular, several mex interfaces
are required. In addition, TRON does not allow for a free choice of the preconditioning
matrix, and hence, a modification of the source code would be necessary. Finally, TRON is
a complex algorithm that is difficult to implement independently (the author attempted this).
The algorithm presented in this paper is, therefore, the result of the subsequent attempt to find
an algorithm robust enough to solve (1.3) (all of the other algorithms that we had access to
did not converge) that is also straightforward to implement.

The algorithm that we introduce in this paper is designed for solving poorly conditioned,
large-scale, nonnegatively constrained optimization problems. It intersperses gradient pro-
jection iterations for active set identification, with iterations from an existing unconstrained
optimization algorithm. Thus, provided that one has an implementation of the unconstrained
algorithm, the implementation of this algorithm is very straightforward. We follow the gen-
eral framework presented in [5]. Several highly effective algorithms have been developed
which follow this frame work. For large-scale, bound constrained, quadratic optimization
problems, Moré and Toreldo use conjugate gradient (CG) iterations in the unconstrained op-
timization stage. This algorithm, which we denote GPCG, can be viewed as an enhancement
of the active set/CG methods of O’Leary [14, 15]; it improves efficiency by allowing the
active set to change dramatically at each iteration. In [1], GPCG is extended for use on prob-
lems in which the cost function is convex. CG iterations are again used in the unconstrained
optimization stage. This algorithm, which we will denote GPRNCG, can in turn be extended
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to non-convex problems. Unfortunately, the resulting algorithm does not converge for the
application in this paper, and hence, a more robust algorithm is needed for use in the uncon-
strained optimization stage. We use, in place of CG, the Newton-CG-trust region algorithm
[6, 13] NCGTR). NCGTR is an unconstrained optimization algorithm that uses the Steihaug-
Toint truncated CG iteration to approximately solve the trust region subproblem at each outer
NCGTR iteration.

This paper is organized as follows: In Section 2, the mathematical modelling of phase-
diverse image formation, and the development of the optimization problem (1.3) are pre-
sented. Section 3 contains background material related to constrained optimization. Also in
this section we present our computational algorithm and our preconditioner. In Section 4 we
present results obtained from observed (not simulated) astronomical image data. Conclusions
are presented in Section 5.

2. The Mathematical Model. We model short time exposure phase diversity atmo-
spheric image data by

2.1) dk,t:S[¢t+0k]*ftrue +"7k,ta k:]-;"'aKa t:]-aaT

Here firue denotes the true object, or light source; s[-] represents the point spread function
(PSF); n+ represents noise; and the operator * denotes two dimensional convolution,

o0 oo
22) Gepan = [ [ sw-ay-y) S y)de'dy.
— o0 —0o0
For details see [17, 8, 16, 18, 20]. The PSF takes the form
(2.3) s[¢] = C |FH{pe}P?,

where F denotes the 2-D Fourier transform, ¢ represents the phase, or wavefront aberration,
and p is the pupil, or aperture, function. We assume

_ 17 (.CL’, y) € A’
p(z,y) = { 0, otherwise,

where the region A represents the aperture and is an annulus in the case of imaging with large
astronomical telescopes. The 6 ’s in (2.1) represent known phase distortions used with phase
diversity. In the typical implementation, defocused diversity images are formed, and the 8}’s
are quadratic,

(2.4) Op=cr x (@*+y*), k=1,...,K.

Phase diversity introduces independent information which eliminates some of the ambiguity,
or nonuniqueness, in the determination of f from data d = s x f when s is also unknown.
The number of diversity channels is usually K = 2.

The index ¢ in (2.1) represents discrete time, and the ¢;’s represent time-varying phase
aberrations due to temporal variations in the index of refraction of the atmosphere, caused
by turbulence. Since fi,.¢ is assumed to be fixed for each ¢, taking 7' > 2 time frames may
further reduce ambiguity and helps to reduce the effects of noise.

To estimate the phases ¢4, t = 1,...,T, and the object f;,.,. from data (2.1), we consider
the least squares fit-to-data functional

1 T K
2.5 Taatal$, ] = ZZ||3[¢t+9k * f = digl*.

t:l k=1
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Here ¢ = (¢1,...,¢r) and || - || denotes the standard L? norm.

In practice, the data are pixelated images and are therefore discrete. In addition, we dis-
cretize the integral in (2.1)-(2.2), e.g., using midpoint quadrature, to obtain a discrete version
of (2.1). With lexicographical ordering of unknowns, these discrete equations can in turn be
rewritten as equation (1.2). The discrete version of (2.5) is then given by

T K
(2.6) Jaatal® £] Z > 1IS[¢, + Oklf — di e ?
t:l k=1

Since deconvolution and phase retrieval are both ill-posed problems, any minimizer of
Jdate 1S unstable with respect to noise in the data. Hence we add regularization terms to
obtain

(27) J[Q_’;; f] = Jdata,[$7 f] + 'VJobject[f] + aJphase [5]

Here the regularization parameters y and « are positive real numbers, and the regularization
functionals Jopject and Jppqse provide stability and incorporate prior information.

Because of atmospheric turbulence, variations in the refractive index, and hence the
phase itself, can be modelled as a random process [17]. We apply the von Karman turbu-
lence model, which assumes this process is second order, wide sense stationary, and isotropic
with zero mean. It can be characterized by its power spectral density,

Gy

where w = (wy,wy) represents spatial frequency. Corresponding to this stochastic model for
phase, we take the phase regularization functional

2.9) phase [¢ T Z ¢$C¢t

where C'is an N x N matrix with Fourier representation
(2.10) C=F%'F

Here F' and F'* are discrete Fourier and inverse Fourier transform matrices respectively.
For regularization of the object, we take the “minimal information prior”

1
@2.11) Tovject[F] = 5 |IF][*.

The optimization problem we wish to solve is then given by

(2.12) min J (x),

where x = (J;, f), J is defined by (2.7), and

(2.13) Q={(¢.f)|,f>0}

is known as the feasible set.
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3. The Optimization Algorithm. In this section, we introduce an iterative scheme for
solving (2.12). Each outer iteration of this scheme is comprised of two stages. The first stage
consists of gradient projection iterations to identify the active set, while the second stage
uses an efficient unconstrained minimization algorithm to compute a search direction in the
inactive variables. A projected line search is then done in order to ensure sufficient decrease
in function value, and to enforce the nonnegativity constraints. The effectiveness of this
approach for large-scale bound-constrained minimization problems has been demonstrated
for both quadratic and convex cost functions in [12] and [1] respectively.

3.1. Preliminaries. The projection of a vector x € R(T+DN onto the feasible set Q is
given by

Pa(x) = Pa((,) € argmin||v — (,0)|| = (&, max{f, 0}),

where max{f, 0} is the vector whose ith component is max{ f;, 0}. The active set for a vector
x € () is given by

3.1) A(x) = {i | z; = f; for some j, and f; = 0}.

The complementary set of indices is called the inactive set and is denoted by Z(x). The
inactive, or free, variables consist of the components z; for which the index ¢ is in the inactive
set. Note that, because there are no constraints on the values of phase vector components
[¢;];, the corresponding indices of x will always be contained in Z(x).

We assume that the cost functional J is a twice continuously differentiable function from
R(T+DN to R. The projected gradient of J at x € Q is the (T4 1) N-vector with components

2009 i€ I(x) or (i € A(x) and 28 < 0)
2 d D o
(3.2) [gradp J(x)] { 0, otherwise.

The reduced Hessian is given by

2I(x) g .
[Hessg J(x)]i; = { 9@id2;° ifi € Z(x) or j € Z(x)
0ijs otherwise.

Let D7z denote the diagonal matrix with components

(3 D260l ={ o7 G )
Then
(3.4) Hessg J(x) = Dz(x) Hess J(x) Dz(x) + D 4(x),

where D 4(x) = I — Dz(x).

3.2. The Gradient Projection Iteration. In principle, gradient projection generates a
sequence of approximate minimizers {x} C  via the following iteration:

(3.5) pr. = —grad J(xy,)
(3.6) Ay = arg fgg J(Pa(xk + Apk))

(3.7) Xp+1 = Po(xk + A\ePr)
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In practice, subproblem (3.6) is solved inexactly using a projected backtracking line search.
We take the initial step length parameter to be the so-called Cauchy point,

(38) )\0 — ||pk||2 .
¥ (Hess J(xk) Pk, Pr)

This is the minimizer of the quadratic §(A) = q(xr + Apx), where
1
3.9) g(x +s) = J(x) + (grad J(x),s) + §(Hess J(x)s,s).

As in [2], step length reduction can be accomplished by taking A\}* = BTN, m =0,1,...
for some 5 € (0,1). A quadratic interpolation scheme as found in [12] can also be used. We
stop at the first m for which the sufficient decrease condition

(3.10) TG ) < J () = 3zl = 3 ()]
k

holds, where 4 € (0,1) and
(3.1 xk(A) = Pa(xx + Apk)-

Some important convergence properties of the gradient projection iteration are given in
the following theorem.

THEOREM 3.1. Let {xy} be a sequence generated by the gradient projection iteration
as discussed above. If X is a limit point of {Xy, }, then gradp J(X) = 0. If {x;, } converges to
X, and X is nondegenerate, i.e., [grad J(X)]; > 0 for all i € A(X), then A(X) is identified in
finitely many iterations. More precisely, there exists an integer mg such that for all k > my,
Axp) = AX).

The first half of the theorem is proved in [2]. The second half is proved in [5].

The asymptotic convergence rate for the gradient projection iteration is linear, and hence,
the algorithm is typically very slow to converge.

3.3. The Reduced Newton-CG-Trust Region Method. A standard choice for improv-
ing the convergence rate of the gradient projection iteration is to implement, instead, the
projected Newton iteration [3, 10]. This involves replacing py in (3.5) with the solution to

(3.12) Hessg J(xi) p = —grad J(xg).

With a properly implemented line search, this yields a quadratically convergent

scheme [3, 10]. However, it lacks robustness if the reduced Hessian is ill-conditioned and
system (3.12) is solved inexactly. For this reason, we advocate interspersing gradient projec-
tion iterations with iterations from a robust unconstrained minimization algorithm, in which
we (approximately) solve

3.13 i J +
(3.13) oo | (xx +p)

at each outer iteration. Here
f(Xk) = {X c R(T-‘rl)N | T; = 0 whenever :L'k,l' — 0}

Problem (3.13) is an unconstrained minimization problem in the free variables. In [12], the
case where .J is quadratic is discussed, and CG is used at each outer iteration to approximately
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solve (3.13). In [1], J is a convex function, and CG again proves to be an effective algorithm
for approximately solving (3.13). The approach in [1] can be extended to nonconvex bound
constrained minimization, but the resulting algorithm is not effective for (2.12),(2.7) and
hence a more robust choice of unconstrained algorithms for solving (3.13) is required.

One such algorithm is Newton-CG-trust region (NCGTR). NCGTR is a trust region
method that uses the Steihaug-Toint truncated CG algorithm to solve the trust region sub-
problem

(3.14) minm,(s) subjectto ||s||, <A,
s

at each inner iteration v. In the setting of (3.13), the quadratic function m, must be restricted
to F(xr). Therefore, we take

(3.15) my(s) = J(xp +py) +5s' g, + %STH,,S,
where
(3.16) g, = Dz(xx) grad J(xy + pu),
(3.17) H, = Dz(xy) Hess J (xx, + pv) Dz(xk) + Da(xk).
The matrix norm || - ||, in (3.14) depends on the Newton iteration v, and A, is a positive

parameter called the trust region radius.

Problem (3.15)-(3.14) has no closed-form solution, and obtaining a highly accurate ap-
proximation can be very expensive. For large-scale problems, a very effective approximate
solution technique for subproblem (3.14) is the Steihaug-Toint algorithm. The key idea is to
apply CG iterations to minimize m,, (s), or equivalently, to solve the linear system

(3.18) H,s = —g,.

(Notice the similarity between (3.18) and (3.12).) If the initial guess s, o is zero and H,
is SPD, the CG iterates s, ; monotonically increase in norm and monotonically decrease
m, (s) [19]. Eventually, either the boundary of the trust region is crossed, or the minimizer
is attained. If H, is indefinite, a check for negative curvature is added. If d?,: jH,,d,,, i <
0, where d,, ; denotes the jth CG search direction, then one moves in this direction from
the current CG iterate until the trust region boundary is crossed, and the CG iteration is
terminated.

Preconditioning can be incorporated to accelerate CG convergence. In this case, the trust
region is determined by the vector norm induced by the SPD preconditioning matrix M,

(3.19) lIs|la, & /sTM,s.

Given gradient g = g,, Hessian H = H,,, preconditioning matrix M = M, and trust
region radius A = A,, the Steihaug-Toint algorithm for approximately solving the trust
region subproblem (3.15)-(3.14) is given by

The Steihaug-Toint Truncated CG Algorithm:
S = 0;

ro:=g; % Initial CG residual

yo := M lrg; % Apply preconditioner

do := —yo; % Initial CG search direction
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J=0
for j=0,1,2,...
Kj = d;FHd],
Ifk; <0, % Check for indefinite H
T; := positive root of ||s; + 7d;||ar = A;

Sjt+1 :=s; + 7;d;; 9% Move to boundary
Stop.
End if
aj =17y /K;;
If ||s; + ajd||m > A, % Boundary crossed
7; := positive root of |[s; + 7d;||mr = A;
Sj+1 :=s; + 15d;; % Backtrack to boundary
Stop.
End if
Sjt+1 1= s; + a;d;; % Update solution
Tjy1 =15 +o;Hdy; % Update CG residual
Vi1 = M7 lrjpq; % Apply preconditioner
Bit1 =15, Yi41/T] ¥
djt1 = —rjp1 + Bj41dy; % Update CG search direction
J=Jj+L

end (for) CG iterations

Once the Steihaug-Toint algorithm outputs an approximate solution s,, of (3.14)-(3.17),
two tests are performed. The first test determines the new iterate p, 1, while the second
determines the new trust region radius A, ;1. Both tests require the following parameter:

J(xk + pu) - J(Xk +p,+ S,,)
m, (0) —m,(s,) )

The reduced Newton-CG-Trust Region (RNCGTR) algorithm is then given by

(3.20) pv =

The RNCGTR Algorithm:
Given Apmaz > 0, Ag € (0, Apaz). m €[0,1).m <m2 < Liand oy < 1 < ao:
fork=0,1,2,...
Obtain s, by (approximately) solving (3.14)-(3.17)
via the Steihaug-Toint Algorithm;
Evaluate p,, from (3.20);

if p, >m

Pv+1 =Py +5,,
else

Pv+1 = Pv-
if p, > no

A1/-1—1 = min(al . ||Su||;Amaz)7
elseif p, > m
Au—i—l = Alu
else
Auir = as-[lsu ]l
end (for)
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3.3.1. Choice of the Preconditioner. Consider the linear system Hs = —g, where H
is SPD. If M is also SPD, then one can solve the transformed system (M ~Y/2HM~1/?)5 =
— M ~1/2g and then backtransform s = M ~1/25 to solve the original linear system. In princi-
ple one can apply CG iteration to the transformed system to obtain a sequence of approximate
solutions to the original system. In practice, this transformed CG iteration can be reformu-
lated to require M ~' rather than M —1/2. (See the Steihaug-Toint algorithm above.) M is
called the preconditioner and the resulting iteration is called the preconditioned conjugate
gradient (PCG) algorithm [13]. For this method to be effective, the spectrum of the precon-
ditioned operator M —/2 H M /2 (or equivalently, the spectrum of M ~—* H) should be more
clustered than the spectrum of H itself. In addition, M should be easy to invert.

Now let H f,y; denote the Hessian of the function J in (2.7). This Hessian takes the form

(321) Hfull[$7 f] = Hdata[‘;a f] +Hr697

where, with the regularization functionals (2.11) and (2.9), the Hessian of the regularization
terms is a (T" + 1) x (T + 1) block diagonal matrix,

f2c 0 - 0 0]
0 2C 0 . 0
(322) Hreg = )
0 . 0 2C 0
0 0 - 0 I

where C'is given by (2.10). During the Steihaug-Toint truncated CG iterations, we will use
the preconditioner M, = H,.,. Because I is the preconditioner for the component of the
Hessian related to the object, difficulties that arise because of the nonnegativity constraints
are avoided.

3.4. The Numerical Algorithm. In the first stage of our algorithm we need stopping
criteria for the gradient projection iterations {Xy, ; }. Borrowing from Moré and Toraldo [12],
we stop as soon as either

(3.23) J(Xp,j—1) — J(Xk,;) <y -max{J(Xp,i—1) — J(Xp,) |4 =1,...,k — 1},
where 0 < v < 1, 0or
(3.24) A(xp,5) = A(Xk,j-1)-

In the second stage, for the RNCGTR iterations, we use the stopping criteria
(3.25) Je(Pr—1) = Je(Pv) < 72 - max{Jx(pi—1) — Je(Ps) [i =1,...,j — 1},

where 0 < v5 < 1, and Ji (p) = J(xx, + p).

Once an approximate solution py of (3.13) is obtained using RNCGTR with stopping
criteria (3.25), we apply a projected backtracking line search (see Section 3.2) in order to
enforce the nonnegativity constraints, and to ensure sufficient decrease in function value. The
stopping criteria that we use for the line search is much less stringent than (3.10), and is given
by

(3.26) J(xk(AF)) < J(x)-

We will denote the gradient projection-reduced Newton-CG-trust region algorithm by
GPRNCGTR.
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FIG. 4.1. In-focus (Channel 1) phase diversity image data.

The GPRNCGTR Algorithm:
Select initial guess xg, initialize RNCGTR parameters, and set k& = 0.
Stage 1: Given xy,.
(1) Take gradient projection steps until either (3.23) or (3.24) is satisfied, and
return updated x.
Stage 2: Given xj, and Ay.
(1) Do RNCGTR iterations on (3.13) until (3.25) is satisfied, and
return pg and Ay
(2) Find A} which satisfies (3.26), and return X1 = X (A}") (see (3.11)).
(3) Update k := k + 1 and return to Step 1.

Remark: The results of Theorem 3.1 will hold for the iterates {xy, } generated by GPRNCGTR,
since at each outer iteration at least one gradient projection iteration is taken, and (3.26) holds
in Step 2.

4. Numerical Results. In this section we present results obtained when the GPRNCGTR
algorithm was applied to actual data. The data were obtained from a 2-channel phase diversity
system incorporated into a 1.6 meter telescope at the US Air Force’s Maui Space Surveillance
Complex on Mount Haleakala on the island of Maui, Hawaii. These data consists of 4 10-
millisecond exposure images of a binary star. Thus K = 2 in equation (2.1) and 7" = 4. The
in-focus data for diversity channel 1 (corresponding to ¢; = 0 in (2.4)) is shown in Figure
4.1. Figure 4.2 shows the out-of-focus data from phase diversity channel 2. Centroids of the
image data were computed and the images were shifted to move these centroids to the centers
of the frames. The reconstructed object is shown in Figure 4.3. The binary star can clearly
be seen in the reconstruction. The corresponding wavefront aberrations are shown in Figure
4.4. The annular shape of the telescope’s aperture accounts for the presentation of the phase
reconstructions in an annular region.

In Figure 4.5 we present a comparison between three algorithms: GPRNCGTR with
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FI1G. 4.2. Out-of-focus (Channel 2) phase diversity image data.
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FIG. 4.3. Reconstruction of the object, a binary star.

preconditioning, GPRNCGTR without preconditioning, and the projected Newton method of
Bertsekas [3] with preconditioning. Each method is used to solve (2.12). The source code
for these algorithms was written in MATLAB. In this comparison, it is our objective to show
both the effectiveness of the preconditioner and the robustness of the GPRNCGTR algorithm.

In each case, the regularization parameters in (2.7) were taken to be @ = 5 x 10~! and
v = 5 x 1073, It should be noted that numerical performance, as well as the actual object
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FIG. 4.4. Reconstructed phases, or wavefront aberrations.

and phase reconstructions, varies with the choice of regularization parameters.

Unfortunately, due to the nonlinearity of the phase-to-observation map, the cost func-
tions need not be convex and may have spurious local minima. Hence, the initial guess may
also influence the reconstructions. The initial guess may also influence the numerical perfor-
mance. For each method, the phase vectors are initialized to zero (¢, = 0 for¢t = 1,2, 3,4),
and the initial object is generated by deconvolving the data using the corresponding PSF’s.

To obtain a rough comparison of convergence behavior as a function of computational
cost for the various methods, we plot the norm of the projected gradient (3.2) versus the cu-
mulative number of two-dimensional fast Fourier transforms (FFTs). The computational cost
of function and gradient evaluations, and Hessian matrix-vector multiplications is dominated
by FFTs. Hence FFTs constitute a significant cost in our implementations.

The parameters required for RNCGTR iterations are taken to be 71 = 0.05, 2 = 0.9,
a1 = 2.5, a9 = 0.25, A ez = 1 x 107, and

. grad J(x0) I
%™ Tgrad J(xo)THess J(xo) grad J (xo)|

The stopping parameter for gradient projection iterations (see (3.23)) is given by y; = 0.25,
while the stopping parameter for the RNCGTR iterations (see (3.25)) is given by o = 1.

The two implementations of the GPRNCGTR algorithm (preconditioned and unprecon-
ditioned) used in this comparison contain stopping criteria not discussed in the previous sec-
tion. Both restrict the number of Steihaug-Toint truncated CG iterations allowed, as this is
the most expensive part of the GPRNCGTR algorithm, and large numbers of CG iterations
are not beneficial until the algorithm is near to convergence.

First, we stop CG iterations once

(4.1) [Iej1] < min(B, v/|[rol]) - [roll;

where {r;} are defined in the Steihaug-Toint algorithm above. For the comparisons in Figure
4.5 we take 8 = 0.01.
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Secondly, we set a maximum CG,y,4, on the number of CG iterations allowed during
each application of the Steihaug-Toint algorithm. In the implementations of GPRNCGTR
used for this comparison, CG,,4; = 30. This accounts for the linear convergence rate exhib-
ited in Figure 4.5 by preconditioned GPRNCGTR in the later iterations. In other numerical
experiments, we solved the minimization problem with various values of CG,,4, and found
that as CGy,4, increases, the convergence profile tends toward what appears to be a super-
linear convergence rate. Unfortunately, the number of FFTs also increases dramatically, as
large numbers of CG iterations are taken in early iterations with little, if any, benefit. The
choice of CG,q; = 30 seems to balance rapid convergence with the computational cost of
implementation.

Our implementation of the projected Newton algorithm uses a truncated CG iteration to
approximately solve (3.12). We stop CG iterations as soon as (i) stopping criteria (4.1) is
satisfied, (ii) the number of CG iteration reaches CG,,,, = 30, or (iii) negative curvature
is detected in the CG iteration, in which case the previous CG iterate is taken as the ap-
proximate solution to (3.12). (Note that each of these stopping criteria is also used within
GPRNCGTR.) The choice of CG,,,4,; = 30 seems, once again, to balance rapid convergence
with the computational cost of implementation. We also use (3.22) as a preconditioner.

We make two important observations based on the results of Figure 4.5. First, we note
that the preconditioned GPRNCGTR algorithm has converged, and hence, we have achieved
our goal of finding an algorithm robust enough to solve (2.12) that is also straightforward to
implement. Notice also that, since the projected Newton algorithm with preconditioning did
not converge, the algorithmic approach taken in GPRNCGTR is clearly more robust than that
of the projected Newton algorithm. Secondly, the effectiveness of preconditioner (3.22) is
evident when the convergence of the preconditioned GPRNCGTR is compared with that of
GPRNCGTR without preconditioning. It is noted, however, that this preconditioner ignores
the H g4t term in (3.21). This suggests that a more effective preconditioner for this problem
is possible. This is an area of current investigation.

5. Conclusions. We present an algorithm for solving large-scale nonnegatively con-
strained minimization problems. This algorithm, which we denote GPRNCGTR, is com-
prised of two stages. The first stage consists of gradient projection iterations. The second
stage consists of iterations from an unconstrained trust region algorithm applied to the prob-
lem of minimizing the cost function restricted to the free variables. The trust region method
used approximately solves the (reduced) trust region subproblem using the Steihaug-Toint
truncated CG algorithm.

We compare the performance of the preconditioned GPRNCGTR, the unpreconditioned
GPRNCGTR, and a preconditioned version of the projected Newton algorithm of Bertsekas
[3]. For this test problem, preconditioned GPRNCGTR is the most efficient in terms of FFTs
and, in fact, is the only algorithm that converges. The superior performance of precondi-
tioned GPRNCGTR over the preconditioned projected Newton algorithm suggests that the
algorithmic approach taken in GPRNCGTR is more robust than that of the projected Newton
algorithm. In addition, the ease of implementing GPRNCGTR as compared to the TRON
algorithm of [11] suggests that in certain situations, GPRNCGTR may be a viable alternative
to TRON, though a direct comparison between GPRNCGTR and TRON is needed.

A preconditioner is presented in the hopes that improved convergence properties of the
inner CG iterations can be obtained. A dramatic improvement in the convergence properties
of the GPRNCGTR algorithm is noted when preconditioning is used. When preconditioning
is not used, robustness is lost and computational cost increases dramatically.
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