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CONVERGENCE OF INFINITE PRODUCTS OF MATRICES AND
INNER–OUTER ITERATION SCHEMES∗
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Dedicated to Wilhelm Niethammer on the occasion of his sixtieth birthday.
Abstract. We develop conditions under which a product

∏∞
i=0

Ti of matrices chosen from a

possibly infinite set of matrices S = {Tj |j ∈ J} converges. We obtain the following conditions which
are sufficient for the convergence of the product: There exists a vector norm such that all matrices in
S are nonexpansive with respect to this norm and there exists a subsequence {ik}∞k=0 of the sequence

of the nonnegative integers such that the corresponding sequence of operators
{
Tik

}∞
k=0

converges

to an operator which is paracontracting with respect to this norm. We deduce the continuity of
the limit of the product of matrices as a function of the sequences {ik}∞k=0. But more importantly,
we apply our results to the question of the convergence of inner–outer iteration schemes for solving
singular consistent linear systems of equations, where the outer splitting is regular and the inner
splitting is weak regular.
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1. Introduction. Given a system of linear equations

Ax = b,(1.1)

where A ∈ IRn,n and x and b are n-vectors, the standard iterative method for solving
the system is induced by the splitting of A into

A = P −Q,(1.2)

where P is a nonsingular matrix. Then, beginning with an arbitrary vector x0, the
recurrence relation

Pxk+1 = Qxk + b(1.3)

is used to compute a sequence of iterations whose limit is hoped to be a solution to
(1.1).

If A is a nonsingular matrix, often the reason for preferring an iterative method
generated by the recurrence relation (1.3) over a direct method of solution is due
to the convenience of solving (1.3) for the approximation xk over direct solution of
(1.1). In several instances authors have shown that, when A is nonsingular, to obtain
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a good approximation to the solution of (1.1), one need not even solve the system
(1.3) exactly for each xk+1. Rather, they suggest that for each k ≥ 1, we solve the
system (1.3) itself by iterations. For this purpose they split the matrix P into

P = F −G,(1.4)

where the matrix F is invertible. Then, beginning with y0 := zk, pk inner iterations

yj = F−1Gyj−1 + F−1d, d = Qzk + b, j = 1, . . . , pk,(1.5)

are computed after which one resets zk+1 = ypk . The entire inner–outer iteration
process can then be expressed as follows1:

zk+1 = (F−1G)pkzk +
pk−1∑
i=0

(F−1G)iF−1b

= {(F−1G)pk +
pk−1∑
i=0

(F−1G)iF−1Q}zk +
pk−1∑
i=0

(F−1G)iF−1b

= Tpkzk +
pk−1∑
i=0

(F−1G)iF−1b,(1.6)

where

Tpk := (F−1G)pk +
pk−1∑
i=0

(F−1G)iF−1Q, k = 1, 2, . . .(1.7)

For nonsingular systems three papers which have considered the convergence of
the inner–outer iteration scheme which we would like to mention here are Nichols
[12], Lanzkron, Rose, and Szyld [9], and Frommer and Szyld [8, Theorem 4.4]. Nichols
seems to be the first to have shown that if the spectral radius of both P−1Q and F−1G
are smaller than 1 so that the powers of both iteration matrices converge to zero, then
for sufficiently large positive integer p we have that if pk ≥ p, for all k ≥ 1, the sequence
{zk} produced by the inner–outer iterations converges to the solution to (1.1) from
all initial vectors z0. Lanzkron, Rose, and Syzld [9] show, however, that if A and P
are monotone matrices (that is, both have a nonnegative inverse) and both iteration
matrices P−1Q and F−1G are nonnegative matrices, with the former induced by a
regular splitting of A and the latter induced by a weak regular splitting of P ,
then the sequence {zk} converges to the solution of (1.1) whenever pk = p for all
k ≥ 1 with no restrictions on p. This means that very crude approximations zk for
xk at each stage of the solution of (1.3) will suffice for the convergence of the inner–
outer iteration process. Frommer and Syzld [8] show that under the aforementioned
conditions on the splittings, varying the number of inner iterations will still result in
the convergence of the inner–outer process.

In this paper we wish to extend some of the results of Lanzkron, Rose, and Szyld
[9] and of Frommer and Szyld [8] on inner–outer iterations for solving nonsingular
systems to the solution of singular systems. In the case of the latter, although as of

1 we shall normally reserve the subscripted letter z to denote approximations generated by the
inner–outer iteration scheme and use different subscripted letters in conjunction with other iteration
schemes
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the former, the process of inner–outer iterations can be represented by means of an
iteration matrix at every stage, the spectral radius of such a matrix can no longer be
less than 1. Furthermore, even if the spectral radius of the iteration matrix at each
stage is 1, this does not ensure the convergence of the inner–outer iteration process
even if a fixed number of iterations are used between every two outer iterations. The
problem is further compounded if the number of inner iterations is allowed to vary
between every two outer iterations. Such a situation resembles the so called “chaotic
iterations” studied by the authors in previous papers, see for example [4] and [7].
Here we shall also both sharpen and extend some of our previous results on the
general problem of convergence of chaotic iterations. We shall further examine some
connections between our work here and problems of convergence of infinite products
of matrices such as considered recently by Daubechies and Lagarias in [5].

As a motivation for the fundamental assumptions that we shall make in our main
conclusions (see Corollary 3.2) we say this: If one is going to employ the inner–outer
iteration scheme, then it is very reasonable that often between any two outer iterations
only a relatively small number of inner iterations will be computed and only in rare
cases many more inner iterations will be allowed. This effectively means that there is a
number m ≥ 1, such that infinitely often at most m inner iterations will be carried out
between any two outer ones. This implies that there exists an index 1 ≤ m0 ≤ m such
that for an infinite subsequence ik of the positive integers, pik = m0, viz., infinitely
often, Tpik = Tm0 . What we shall prove is that under certain convergence properties
of Tm0 , such as Tm0 is paracontracting with respect to a vector norm in respect of
which all the Ti’s are nonexpansive, the inner–outer iteration (1.6) for any initial
vector z0. This implies that the inner–outer iteration scheme is convergent when the
system (1.1) is consistent.

Actually we shall prove a more general result (Theorem 3.1) than that in Corollary
3.2. It is as follows: Suppose we have a (possibly infinite) set of matrices S =
{Tj|j ∈ J}, and there exists a vector norm ‖ · ‖ on Cn such that each matrix in S
is nonexpansive with respect to ‖ · ‖. From S select an infinite sequence of matrices
{Ti}∞i=0. Then if {Ti}∞i=0 contains a subsequence {Tik}∞k=0 which converges to a matrix
H which is paracontracting with respect to ‖ ·‖ and such that the nullspace N(I−H)
is contained in the intersection of the nullspaces N(I − Tj), j ∈ J , then

∃ lim
i→∞

TiTi−1 · · ·T0.

A by–product of this result will be a conclusion concerning the convergence of an
infinite product of nonnegative stochastic matrices.

Finally, let D be the set of all sequences (d) = {di}∞i=0 of integers such that each
sequence (d) contains an integer k = k(d) such that di = k for infinitely many i’s.
Then, according to Theorem 3.1, if corresponding to the sequence (d), the matrix Tk
is paracontracting, then

∃ lim
i→∞

Tdi · · ·Ti0 =: T (d).

We shall show that the function:

f : (d) → T (d)

is continuous.
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2. Preliminaries. Let B ∈ Cn,n. By N(B) and R(B) we shall denote, re-
spectively, the nullspace of B and the range of B. Recall that the Jordan blocks of B
corresponding to 0 are 1×1 if and only if N(B)∩R(B) = {0} and N(B)+R(B) = Cn,
a situation which we shall write as N(B) ⊕ R(B) = Cn. Recall further that accord-
ing to Oldenburger [16] the powers of a matrix B ∈ Cn,n converge if and only if
N(I −B)⊕R(I −B) = Cn and

γ(B) := max{|λ| | λ ∈ σ(B), λ 6= 1} < 1,

where σ(·) denotes the spectrum of a matrix.
For a vector x ∈ IRn we shall write that x � 0 (x > 0) (x ≥ 0) if all the entries

of x are positive numbers (nonnegative numbers, but x 6= 0) (nonnegative numbers).
We shall use similar notations for real matrices.

Let || · || denote a vector norm in Cn. An n×n matrix B is nonexpansive with
respect to || · || if for all x ∈ Cn,

||Bx|| ≤ ||x||.
B is called paracontracting with respect to || · || if for all x ∈ Cn,

Bx 6= x⇔ ||Bx|| < ||x||.
We denote by N (|| · ||) the set of all matrices in Cn,n which are paracontracting
with respect to || · ||. Two examples of paracontracting matrices are as follows. For
the Euclidean norm it is known that any Hermitian matrix whose eigenvalues lie in
(−1, 1] is paracontracting. Suppose now that B is an n × n positive matrix whose
spectral radius is 1 and with a Perron vector x� 0. We claim that such a matrix is
paracontracting with respect to ‖ · ‖x, the monotonic vector norm induced by x. For
let y ∈ IRn be any vector satisfying y 6= By or, equivalently, not being a multiple of
x. We know that

‖y‖x = min{ δ > 0 | − δx ≤ y ≤ δx}.
By the positivity of B and because Bx = x, it follows that for any δ such that
−δx ≤ y ≤ δx, −δx� By � δx, so that ‖By‖x < ‖y‖x.

The concept of paracontraction was introduced by Nelson and Neumann [11] who
showed that the product of any number of matrices in N (|| · ||) is again an element of
N (|| · ||). Moreover, they used a result of Mott and Schneider [10] to show that the
powers of any matrix B ∈ N (|| · ||) converge. Thus, in particular such matrix has the
property that N(I −B)⊕R(I −B) = Cn,n.

Finally, recall that a splitting of A into A = P − Q is called regular if P is
nonsingular, P−1 ≥ 0, and Q ≥ 0. Regular splittings where introduced by Varga, [20],
who showed that for a regular splitting, ρ(P−1Q) < 1 if and only if A is nonsingular
and A−1 ≥ 0. A splitting A = P − Q is called weak regular if P is nonsingular,
P−1 ≥ 0, and P−1Q ≥ 0. This concept was introduced by Ortega and Rheinboldt
[15] who showed that, even allowing for this weakening of the assumption on regular
splitting, ρ(P−1Q) < 1 if and only if A is nonsingular and A−1 ≥ 0. Some of Varga’s
results for regular splittings of nonsingular matrices A were generalized to regular
splittings of singular matrices. Neumann and Plemmons [13] showed that if A = P−Q
is a regular splitting of A, then ρ(P−1Q) ≤ 1 and R(I−P−1Q)⊕N(I−P−1Q) = IRn

if and only if A is range monotone, that is, [Ax ≥ 0 and x ∈ R(A)] ⇒ x ≥ 0.
Moreover they showed that if there exists a vector x� 0 such that P−1Qx ≤ x, then
ρ(P−1Q) ≤ 1 and R(I − P−1Q) ⊕ N(I − P−1Q) = IRn, and such a positive vector
always exists if A is a singular and irreducible M–matrix.
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3. Main Results. Most of the results in this paper are consequences of the
following theorem:

Theorem 3.1. Let S = {Tj|j ∈ J} be a set of matrices in Cn,n, let {Ti}∞i=0 be a
sequence of matrices chosen from S, and consider the iteration scheme

xi+1 = Tixi, i = 0, 1, 2, . . .(3.1)

Suppose that all Tj ∈ S are nonexpansive with respect to the same vector norm ‖ · ‖
and there exists a subsequence {Tik}

∞
k=0 of the sequence {Ti}∞i=0 such that

lim
k→∞

Tik = H,(3.2)

where H is a matrix with the following properties:

(i) H is paracontracting with respect to ‖ · ‖,

and

(ii) N(I −H) ⊆
⋂
j∈JN(I − Tj).

Then for any x0 ∈ Cn the sequence (3.1) is convergent and

lim
i→∞

xi ∈ N (I −H) ⊆
⋂

j∈J
N (I − Tj).

Proof. Let x0 ∈ Cn be an arbitrary, but fixed vector, and consider the subsequence
of vectors {xik}

∞
k=0 of the sequence {xi}∞i=0 generated by the iteration scheme (3.1)

from x0. As it is bounded, it contains a convergent subsequence which, without loss
of generality can be taken to be {xik}

∞
k=0 itself. Assume therefore that

lim
k→∞

xik = ξ.

Because of the nonexpansiveness of the Tj ’s, the sequence {‖xi‖}∞i=0 is monotonically
nonincreasing. Hence we have that

lim
i→∞

‖xi‖ = lim
k→∞

‖xik‖ = ‖ξ‖.

We now claim that ξ is a fixed point of H. From the equality

lim
k→∞

{Hξ − Tikxik} = lim
k→∞

{(H − Tik) ξ + Tik(ξ − xik)} = 0

we have that

‖Hξ‖ = lim
k→∞

‖Tikxik‖ = ‖ξ‖

and so, as H is paracontracting, Hξ = ξ. By (ii) it follows that ξ is also a fixed point
of each Ti. To complete the proof we shall now show that xi → ξ. For any ε > 0
choose a positive integer k(ε) such that

‖xik(ε) − ξ‖ < ε.

Then for any i > ik(ε), we obtain using the nonexpansiveness of the Tj’s that

‖xi − ξ‖ = ‖Ti−1(xi−1 − ξ)‖ ≤ ‖xi−1 − ξ‖ ≤ . . . ≤ ‖xik(ε) − ξ‖ < ε.
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Our proof is now complete.
Often the T ′is come from some finite or infinite pool of matrices. If one of these

operators appears infinitely often, then condition (3.2) is satisfied. This leads to the
following corollary:

Corollary 3.2. Consider the iteration scheme

xi+1 = Tixi, i = 0, 1, 2, . . .

If the T ′is are nonexpansive with respect to the same vector norm ‖ · ‖ and if there is
a matrix T such that Ti = T for infinitely many i’s, where T is paracontracting with
respect to ‖ · ‖, and if

N(I − T ) ⊆
∞⋂
i=0

N(I − Ti),

then limi→∞ xi exists and is in
⋂∞
i=0 N(I − Ti) for any x0 ∈ Cn.

If an n× n matrix T is stochastic, then it easily deduced that it is nonexpansive
with respect to the vector norm ‖x‖∞ = maxi=1,...,n |xi|. It follows from remarks
made in Section 2 that, in particular, a stochastic matrix T is paracontracting with
respect to ‖ · ‖∞ if T � O. Thus another corollary to Theorem 3.1 is the following:

Corollary 3.3. Let S = {Tj|j ∈ J} be a set of stochastic matrices. If one of
the matrices in S, say T , is positive, then any infinite product of the Tj’s containing
T infinitely often is convergent.

A third corollary resulting from the above theorem is a slight strengthening, in
the sense that it allows an infinite pool of both inner and outer splittings, of a result
due to Frommer and Szyld [8], mentioned in the introduction:

Corollary 3.4. Suppose that the n×n coeffcient matrix A in the system (1.1) is
monotone. For each i ≥ 1, let A = Pi−Qi be a regular splitting of A and Pi = Fi−Gi
be a weak regular splitting. Consider the inner–outer iteration process:

zi+1 = Ti,pizi +
pi−1∑
i=0

(F−1
i Gi)iF−1

i Qib,

where as, in the introduction, pi ≥ 1 and

Ti,pi =
(
F−1
i Gi

)pi +
pi−1∑
j=0

(
F−1
i Gi

)j
F−1
i Qi.(3.3)

If there are splittings A = P − Q and P = F − G such that for infinitely many i’s
Pi = P and Fi = F simultaneously, then for any z0 ∈ IRn,

lim
i→∞

zi = A−1b.

Proof. Using the usual approach of error analysis, it suffices to show that for each
vector w ∈ IRn,

lim
i→∞

Ti,pi · · ·T1,p1w = 0.
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As A is monotone, for the n–vector e of all 1’s, we have that x := A−1e � 0. Now
for each i ≥ 1,

I − Ti,pi = (I −Rpii )P−1
i A =

pi−1∑
j=0

(Ri)
j
F−1
i A,(3.4)

where Ri = F−1
i Gi ≥ 0 and F−1

i ≥ 0. As F−1
i must have a positive element in each

row and we see that

x � Ti,1x ≥ Ti,2x ≥ . . . ≥ Ti,pix,(3.5)

and because of the nonnegativity of Ti,pi , which follows from (3.5), we have that for
all i > 0

‖Ti,pi‖x < 1,(3.6)

implying that these operators are paracontracting with respect to ‖ · ‖x. For each
i ≥ 0 define

qi =
{

1, if Pi = P and Fi = F ,
pi otherwise.

Then, as N(I − Ti,qi) = {0} for each i ≥ 0 and as for infinitely many i’s, Ti,pi equals
a fixed operator, it follows by Theorem 3.1 that

lim
i→∞

Ti,qi · · ·T1,q1x = 0,

and therefore by (3.5) and the nonnegativity of the Ti,j ’s we obtain that

lim
i→∞

Ti,pi · · ·T1,p1x = 0.

This completes the proof.
Another consequence of Theorem 3.1 is this:
Theorem 3.5. Suppose that S = {Tj|j ∈ J} is a set of matrices in Cn,n and let

D be the set of all sequences (d) = {di}∞i=1 of integers such that each (d) contains an
integer k(d) such that di = k(d) for infinitely many i’s. Consider the function

f : (d) → T (d) := lim
i→∞

Tdi · · ·Td1 .(3.7)

Suppose that N(I−Tj) = M for all j ∈ J and that there exists a vector norm ‖·‖ such
that all Tj’s in S are nonexpansive with respect to ‖·‖ and such that for each sequence
(d) ∈ D, Tk(d) ∈ N (‖ · ‖). Then for any (d1) = {d(1)

i }∞i=1 and (d2) = {d(2)
i }∞i=1 in D

and for any ε > 0, there exists a δ(ε) such that∥∥∥T (d1) − T (d2)
∥∥∥ < ε

if

dist((d1), (d2)) = 2−r < δ(ε),

where r is the smallest integer such that d(1)
r 6= d

(2)
r .
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Proof. By Theorem 3.1 clearly each of the limits T (d1) and T (d2) exists. It also
follows from that theorem that each column of T (d1) is a fixed point of each of the
operators Ti, i = 1, 2, . . . . Suppose now that dist(d1, d2) ≤ 2−(r+1) so that d(1)

i = d
(2)
i ,

i = 1, . . . , r. Then for all s > 0,

T
d

(2)
r+s
· · ·T

d
(2)
1
− T

d
(1)
r
· · ·T

d
(1)
1

=
(
T
d

(2)
r+s
· · ·T

d
(2)
r+1
− I
)(

T
d

(1)
r
· · ·T

d
(1)
1
− T (d1)

)
and so ∥∥∥Td(2)

r+s
· · ·T

d
(2)
1
− T

d
(1)
r
· · ·T

d
(1)
1

∥∥∥ ≤ 2
∥∥∥Td(1)

r
· · ·T

d
(1)
1
− T (d1)

∥∥∥ .
On letting s→∞, we obtain that∥∥∥T (d2) − T

d
(1)
r
· · ·T

d
(1)
1

∥∥∥ ≤ 2
∥∥∥Td(1)

r
· · ·T

d
(1)
1
− T (d1)

∥∥∥ .
This inequality immediately gives that∥∥∥T (d2) − T (d1)

∥∥∥ ≤ 3
∥∥∥Td(1)

r
· · ·T

d
(1)
1
− T (d1)

∥∥∥ .(3.8)

We claim that this inequality is all we need in order to establish the continuity of f .
Because as T

d
(1)
i

· · ·T
d

(1)
1

tends to T (d1) as i tends to infinity, for each ε there exist an
r0 such that ∥∥∥Td(1)

r0
· · ·T

d
(1)
1
− T (d1)

∥∥∥ <
ε

3
.

Thus for any two sequences (d1), (d2) ∈ D such that dist((d1), (d2)) ≤ 2−(r0+1), we
obtain readily, via (3.8), that ∥∥∥T (d2) − T (d1)

∥∥∥ ≤ ε.

4. Applications to Singular Systems. In Section 2 we mentioned that if
A = P − Q is a regular splitting for A ∈ IRn,n and A is range monotone, then
ρ(P−1Q) ≤ 1 and N(I−P−1Q)⊕R(I−P−1Q) = IRn. Suppose now that P = F −G
is a weak regular splitting for P and consider the inner–outer iteration process

zk+1 = (F−1G)pkzk +
pk−1∑
j=0

(F−1G)jF−1b

= {(F−1G)pk +
pk−1∑
j=0

(F−1G)F−1Q}zk +
pk−1∑
j=0

(F−1G)jF−1b

= Tpkzk +
pk−1∑
i=0

(F−1G)iF−1b,(4.1)

where

Ti = (F−1G)i +
i−1∑
j=0

(F−1G)jF−1Q, i = 1, 2, . . .(4.2)
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We observe at once that since A = P −Q is a regular splitting for A and P = F −G is
a weak regular splitting for P , any of the inner–outer iteration operators Ti, i ≥ 1, is
a nonnegative matrix. Already Nichols in [12] essentially showed that the following
relation holds:

I − Ti = (I −Ri)(I − P−1Q),(4.3)

a relation of which we have made use in Corollary 3.4 where A was assumed to be
nonsingular. We now claim the following:

Lemma 4.1. Suppose A ∈ IRn,n is range monotone and that A = P − Q and
P = F − G are regular and weak regular splittings for A and P , respectively. Then
ρ(Ti) ≤ 1 and N(I − Ti)⊕R(I − Ti) = IRn for all i ≥ 1.

Proof. It follows from the results of Varga [20] and Neumann and Plemmons [13]
summarized in Section 2 that I−Ri and I−P−1Q are, respectively, a nonsingular M–
matrix and an M–matrix of at most index 1, that is, ρ(P−1Q) ≤ 1 and N(I−P−1Q)⊕
R(I−P−1Q) = IRn. It now follows by (4.3) and Exercise 5.2 on p.159 of Berman and
Plemmons [3] that I − Ti is an M–matrix for all i ≥ 1. Hence ρ(Ti) ≤ 1, for all i ≥ 1.
To complete the proof we need to show that N(I − Ti)⊕R(I − Ti) = IRn. By [14] it
suffices to show that the matrix I − Ti possesses a {1}–inverse Y (see Ben–Israel and
Greville [1] for background material on generalized inverses) which is nonnegative
on the range of I − Ti, viz.,

x ∈ R(I − Ti) and x ≥ 0 ⇒ Y x ≥ 0.

For that purpose choose Y = (I − P−1Q)#(I − Ri)−1, where (I − P−1Q)# is the
group generalized inverse of I−P−1Q which exists by virtue of R(I−P−1Q) and
N(I − P−1Q) being complementary subspaces in IRn. Now let x ≥ 0 be a vector in
R(I − Ti), and observe that by (4.3) and the nonnegativity of the matrix (I −Ri)−1,
the vector (I − Ri)−1x is a nonnegative vector in R(I − P−1Q). But as I − P−1Q
is an M–matrix of index at most 1, it follows that (I − P−1Q)# is monotone on
R(I − P−1Q) showing that Y x ≥ 0 and our proof is done.

Suppose, as in the above lemma, that A = P − Q and P = F −G are a regular
and weak regular splittings for A and P , respectively. Note that in the lemma, the
range monotonicity of A was used only to deduce that I − P−1Q is an M–matrix of
index at most 1. Another condition which ensures that I − P−1Q is an M–matrix of
index at most 1 is, according to [13], that there exists a positive vector x such that
Ax ≥ 0. For then P−1Qx ≤ x. Furthermore, such a vector exists when A is a singular
and irreducible M–matrix. When A is such an M– matrix, then, in fact, there exists
a positive vector x such that Ax = 0. But then also 0 = P−1Ax = x − P−1Qx so
that x = P−1Qx, and hence

Tix = P−1Qx+Ri(I − P−1Q)x = P−1Qx = x.

We can thus conclude that when A is an irreducible M–matrix, not only the conclu-
sions of the above lemma hold, but Tix = x so that ‖Ti‖x = 1. Hence for each i ≥ 1,
Ti is nonexpansive with respect to the norm ‖ · ‖x. We also see that

0 = F−1Ax = x− F−1Gx− F−1Qx ≤ x− F−1Gx = x−Rx.

Now we know that Q ≥ 0. Thus if either F−1Qx� 0 or F−1Gx� 0, then it follows
that x � Rx so that inductively, 1 > ‖R‖x ≥ ‖R‖2x ≥ . . .. Let H := P−1Q. Then
from the relation

Ti −H = Ri(I −H)
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we see that, not only

lim
i→∞

Ti = H,(4.4)

a fact that already follows from ρ(R) < 1, but that the rate of convergence behaves
as ‖R‖x.

From the analysis above and from Theorem 3.1 we can now state the following
result concerning the convergence of the inner–outer iteration process:

Theorem 4.2. Let A ∈ IRn,n and suppose that A = P −Q and P = F −G are a
regular splitting and a weak regular splitting for A and P , respectively, and consider the
inner–outer iteration process (4.1) for solving the consistent linear system Ax = b.
Suppose there exists a vector x � 0 such that Ax ≥ 0 and one of the following
conditions is satisfied:

(i) For some integer j, Tj is paracontracting and for infinitely many integers k,
pk = j.

or:

(ii) P−1Q is paracontracting with respect to ‖ · ‖x, the sequence {pk}∞k=0 is un-
bounded, and either F−1Qx� 0 or F−1Gx� 0.

Then the sequence of iterations {zk}∞k=1 generated by the scheme given by (4.1)
converges to a solution to the system Ax = b.

Proof. Similar to (3.4), we have the identity that

I − Ti =
i−1∑
j=0

(Ri)
j
F−1A

from which it follows that x is a positive vector for which

x ≥ T1x ≥ T2x ≥ . . . ,

showing that for each i ≥ 1, Ti is nonnexpansive with respect to the monotonic vector
norm induced by x.

The validity of part (i) is an immediate consequence of Theorem 3.1. The proof
of part (ii) also follows readily from Theorem 3.1 because the unboundedness of the
sequence {pk}∞k=0 together with the existence of the limit in (4.4) now means that
the sequence of matrices {Tpk}∞k=0 contains an infinite subsequence of matrices which
converges to the paracontracting matrix H.
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