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FAST ITERATIVE METHODS FOR SOLVING
TOEPLITZ-PLUS-HANKEL LEAST SQUARES PROBLEMS∗

MICHAEL K. NG †

Abstract. In this paper, we consider the impulse responses of the linear-phase filter whose
characteristics are determined on the basis of an observed time series, not on a prior specification.
The impulse responses can be found by solving a least squares problem min ‖d− (X1 +X2)w‖2 by
the fast Fourier transform (FFT) based preconditioned conjugate gradient method, for (M+2n−1)-
by-n real Toeplitz-plus-Hankel data matrices X1 + X2 with full column rank. The FFT–based
preconditioners are derived from the spectral properties of the given input stochastic process, and
their eigenvalues are constructed by the Blackman-Tukey spectral estimator with Bartlett window
which is commonly used in signal processing. When the stochastic process is stationary and when its
spectral density function is positive and differentiable, we prove that with probability 1, the spectra
of the preconditioned normal equations matrices are clustered around 1, provided that large data
samples are taken. Hence if the smallest singular value of X1 +X2 is of order O(nα), α > 0, then the
method converges in at mostO((2α+1) logn+1) steps. Since the cost of forming the normal equations
and the FFT–based preconditioner is O(M logn) operations and each iteration requires O(n logn)
operations, the total complexity of our algorithm is of order O(M logn+ (2α+ 1)n log2 n+ n logn)
operations. Finally, numerical results are reported to illustrate the effectiveness of our FFT–based
preconditioned iterations.

Key words. least squares estimations, linear-phase filter, Toeplitz-plus-Hankel matrix, circulant
matrix, preconditioned conjugate gradient method, fast Fourier transform.
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1. Introduction. The conjugate gradient (CG) method is an iterative method
for solving symmetric positive definite systems Aw = d; see for instance Golub and
van Loan [14, pp. 362-374]. When A is a rectangular matrix with full column rank,
one can still use the method to find the solution to the least squares problem

min ‖d−Aw‖2(1.1)

where ‖ · ‖2 denotes the usual Euclidean norm. This can be done by applying the
method to the normal equations

ATAw = ATd.(1.2)

The convergence rate of the method depends on the eigenvalues of the normal equa-
tions matrix ATA; see Axelsson and Barker [1, pp. 24-28]. If the eigenvalues of ATA
cluster around a fixed point, convergence will be rapid. Thus, to make the algorithm
a useful iterative method, one usually preconditions the system. That means, instead
of solving the original system (1.2), we solve the preconditioned system

P−1ATAw = P−1ATd

with preconditioner P . In this paper, we apply the preconditioned conjugate gradient
(PCG) method to solve structured least squares problems arising from signal pro-
cessing applications, where the data matrix A is a rectangular Toeplitz-plus-Hankel
matrix with full column rank. A matrix T = (tjk) is said to be Toeplitz if tjk = tj−k,
i.e., T is constant along its diagonals. A matrix H = (hjk) is said to be Hankel if
hjk = hj+k.

∗ Received March 25, 1994. Accepted for publication November 8, 1994. Communicated by R. J.
Plemmons
† Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong.

154



ETNA
Kent State University 
etna@mcs.kent.edu

Michael K. Ng 155

1.1. Linear-phase Filtering. Least squares estimations have been used exten-
sively in a wide variety of applications in signal processing, as for instance spectrum
analysis [11, 19], system identifications [20], equalizations [13] and speech processing
[15, p. 49]. In these applications, one usually uses filters to estimate the transmitted
signal from a sequence of received signal samples or to model an unknown system.
One important class of filters commonly used in signal processing is the class of finite
impulse response (FIR) linear-phase filters. Such filters are especially important for
applications where frequency dispersion, due to nonlinear phase, is harmful, as for
example in speech processing.

In this paper, we develop an impulse response vector w of the linear-phase filter
whose characteristics are determined on the basis of an observed time series, and not
on a priori specification. It was shown in [16, 21] that given M real data samples
{x(1), x(2), . . . , x(M)} and a desired response vector d, the impulse responses can be
found by solving the Toeplitz-plus-Hankel least squares problem

min ‖d− (X1 +X2)w‖2.(1.3)

Here X1 is an (M + 2n− 1)-by-n rectangular Toeplitz matrix with its first row and
column given by

[x(1), 0, . . . , 0] and [x(1), x(2), . . . , x(M), 0, . . . , 0]T .

respectively. Moreover, X2 is an (M + 2n− 1)-by-n rectangular Hankel matrix with
its last column given by

[0, . . . , 0, x(1), x(2), . . . , x(M), 0, . . . , 0]T

and a zero vector as its first row.

1.2. Outline. The use of conjugate gradient methods with circulant precondi-
tioners for solving n-by-n Toeplitz systems Tnz = v has been studied extensively in
recent years; see [6], [8], [9] and [10]. Since circulant matrix can always be diagonal-
ized by the discrete Fourier matrix, an n-by-n linear system with circulant coefficient
matrix can be solved in O(n logn) operations, using fast Fourier transform (FFT).
Also, matrix-vector multiplications Tnu can be computed by using FFT in O(n log n)
operations, by first decomposing Tn into a sum of circulant and skew-circulant ma-
trices; see Chan and Ng [6]. It follows that the number of operations per iteration of
the preconditioned conjugate method is of order O(n log n) operations.

In the practical applications, one always assumes that the data matrix X1 +X2 is
of full column rank. Therefore, the normal equations matrix (X1 +X2)T (X1 +X2) is
non-singular and positive definite, and the solution w of (1.3) is obtained by solving
the normal equations

(X1 +X2)T (X1 +X2)w = (X1 +X2)Td.(1.4)

Note that the normal equations matrix (X1 +X2)T (X1 +X2) is an n-by-n Toeplitz-
plus-Hankel matrix Tn + Hn. By transforming the Hankel matrix Hn to a Toeplitz
matrix using the reversal matrix Jn, the Hankel matrix-vector products Hnu can be
computed by using FFT in O(n log n) operations.

In this paper, we apply the preconditioned conjugate gradient algorithm with
circulant (FFT–based) preconditioners to solve the normal equations (Tn +Hn)w =
(X1 + X2)Td. The main result of the paper is that, under some practical signal



ETNA
Kent State University 
etna@mcs.kent.edu

156 Toeplitz-plus-Hankel least squares problems

processing assumptions, the spectrum of the Hankel matrix Hn is clustered around
zero with probability 1. The contribution of the term Hn is not significant as far as
the conjugate gradient method is concerned, and we therefore do not approximate
it by a circulant matrix. Thus, the preconditioner c(Tn) is just defined to be the
minimizer of ‖Qn − Tn‖F over all n-by-n circulant matrices Qn. Here ‖ · ‖F denotes
the Frobenius norm. As Tn is a Toeplitz matrix, the circulant preconditioner c(Tn)
can be found in O(n logn) operations. We also show that the eigenvalues of c(Tn) can
be derived from the Blackman-Tukey spectral estimator with the Bartlett window that
is a commonly used non-parametric spectral estimation method in signal processing.

As for the convergence rate of the method, we prove that if the stochastic pro-
cess {x(i)} is stationary and its underlying spectral density function is (` + 1)-
times differentiable function for ` > 0, then the spectra of the preconditioned ma-
trices c(Tn)−1(Tn + Hn) are clustered 1 with probability 1. If the smallest singu-
lar value of X1 + X2 is of order O(nα) with α > 0, the method converges in at
most O((2α + 1) logn + 1) steps with probability 1. Since the data matrices X1

and X2 are Toeplitz and Hankel matrices respectively, the normal equations and
the circulant preconditioner can be formed in O(M logn) operations; see Ng and
Chan [23]. Once they are formed, the cost per iteration of the preconditioned con-
jugate gradient method is of order O(n log n) operations, as only Toeplitz, Hankel
and circulant matrix-vectors multiplications are required in each iteration. There-
fore, the total work of obtaining the impulse responses to a given accuracy is of order
O(M logn+ (2α+ 1)n log2 n+ n logn).

The outline of the paper is as follows. In Section 2, we study some properties
of the normal equations matrices and introduce our FFT–based preconditioners. In
Section 3, we analyze the convergence rate of the method probabilistically. In Section
4, numerical experiments are discribed which illustrate the effectiveness of the method.
Some concluding remarks are given in Section 5.

2. FFT–based Preconditioners. The least squares solutions to (1.3) can be
obtained by solving the scaled (normalized version of) normal equations

1
2M

(XT
1 X1 +XT

2 X2 +XT
2 X1 +XT

1 X2)w =
1

2M
(X1 +X2)Tx.(2.1)

We note that X1 and X2 have special structures. Each row of X1 is a right-shifted
version of the previous row and each row of X2 is a left-shifted version of the previ-
ous row. By utilizing these special rectangular Toeplitz and Hankel structures, the
matrices 1

2M (XT
1 X1 +XT

2 X2) and 1
2M (XT

2 X1 +XT
1 X2) can be written as

1
2M

(XT
1 X1 +XT

2 X2) = Tn and
1

2M
(XT

2 X1 +XT
1 X2) = Hn,(2.2)

respectively. Here Tn is an n-by-n symmetric Toeplitz matrix and Hn is an n-by-n
symmetric Hankel matrix. The first column of Tn is given by

[γ0, γ1, . . . , γn−1]T ,

and the first row and the last column of Hn are given by

[γ2n−1, γ2n−2, . . . , γn] and [γn, γn−1, . . . , γ1]T ,

respectively, where

γk =
1
M

M−k∑
j=1

x(j)x(j + k), k = 0, 1, . . . , 2n− 1.
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In the statistics literature, if the input stochastic process is stationary, the parameters
γk are called estimators of the autocorrelation of the stationary process. The param-
eters γk have a smaller mean square error than other estimators; see for instance
Priestley [24, p. 322].

Our preconditioner is taken to be the circulant approximation of the Toeplitz part
Tn of the normal equations matrix. We remark that our preconditioner is different
from that recently proposed by Ku and Kuo [18] for Toepltiz-plus-Hankel systems.
They basically take the circulant approximations of Toepltiz matrix and Hankel ma-
trix and then combine them together to form a preconditioner. We note that under
the assumptions in [18], the spectrum of the Hankel matrix is not clustered around
zero. The motivation behind our preconditioner is that the Toeplitz matrix Tn is
the sample autocorrelation matrix which intuitively should be a good estimation to
the autocorrelation matrix of the discrete-time stationary process, provided that a
sufficiently large number of data samples are taken. Moreover, we prove in §3 that
under practical signal processing assumptions, the spectrum of the Hankel matrix Hn

is clustered around zero. Hence it suffices to approximate Tn by circulant precondi-
tioner.

In this paper, we only focus on an “optimal” circulant preconditioner c(Tn) for Tn
which is defined to be the minimizer of ‖Qn−Tn‖F over all n-by-n circulant matrices
Qn; see T. Chan [10]. The (j, k) entry of c(Tn) is given by the diagonals cj−k where

ck =

{ (n− k)γk + kγn−k
n

, 0 ≤ k ≤ n,
cn+k, 0 < −k < n.

(2.3)

As Tn is a Toeplitz matrix, the circulant preconditioner c(Tn) is found in O(n) oper-
ations. An interesting spectral property of c(Tn) is that if Tn is symmetric positive
definite, the corresponding “optimal” circulant matrix c(Tn) is also symmetric positive
definite. In fact, we have that

λmin(Tn) ≤ λmin(c(Tn)) ≤ λmax(c(Tn)) ≤ λmax(Tn),(2.4)

where λmin and λmax denote the minimum and maximum eigenvalues respectively;
see Tyrtyshnikov [26].

In addition, the preconditioner is closely related to the Blackman-Tukey spec-
tral estimator with the Bartlett window that is one of the popular method for non-
parametric spectral analysis in signal processing; see [2]. The Bartlett spectral esti-
mator can be expressed as

s(ω) =
M∑

k=−M
W (k)γkeiωk, ∀ω ∈ [0, 2π],

where

W (k) =

{
1− |k|

n
, |k| ≤ n,

0, |k| > n;

see [17, p. 80]. On the other hand, as c(Tn) is a circulant matrix, it can be diagonalized
by the discrete Fourier matrix Fn with entries [Fn]j,k = 1√

n
e2πijk/n, we have that

c(Tn) = F ∗nΛnFn,



ETNA
Kent State University 
etna@mcs.kent.edu

158 Toeplitz-plus-Hankel least squares problems

where Λn is a diagonal matrix whose diagonal entries are the eigenvalues of c(Tn).
Using the relationship between the first column of c(Tn) and its eigenvalues, the
eigenvalues λj(c(Tn)) of c(Tn) can be expressed as

λj(c(Tn)) = γ0 +
n−1∑
k=1

[
n− k
n

γk +
k

n
γn−k

]
ξkj , 0 ≤ j < n,(2.5)

where ξj = e2πij/n; see also Chan and Yeung [9]. After some rearrangement of the
terms in (2.5), we note that the eigenvalues of c(Tn) are equal to the values of s(ω)
sampled at the points {2πj/n}n−1

j=0 on [0, 2π].

3. Spectra of Preconditioned Normal Equations Matrices. As we deal
with data samples from stochastic processes, the convergence rate will be considered
in a probabilistic way which is different from the deterministic case discussed in [1,
pp. 24-28]. We first make the following practical signal processing assumptions (A)
on the input discrete-time real-valued process {x(i)}:

(A1) The process is stationary with non-zero constant mean µ;
(A2) The underlying spectral density function of the process is a (` + 1)-times

differentiable function for ` > 0;
(A3) The spectral density function of the process is positive;
(A4) The variances of 1

M

∑M−k
j=1 x(j) and 1

M

∑M−k
j=1 [x(j) − µ][x(j + k) − µ] are

bounded by

Var

 1
M

M−k∑
j=1

x(j)

 ≤ β1

M
, k = 0, 1, 2, . . . ,M − 1,(3.1)

and

Var

 1
M

M−k∑
j=1

[x(j) − µ][x(j + k)− µ]

 ≤ β2

M
, k = 0, 1, 2, . . . ,M − 1,(3.2)

where β1 and β2 are positive constants depending on the input stochastic
process.

The remarks on the assumptions can be found in [23]. The following lemma, which
gives the spectrum of the covariance matrix, Rn appeared in Haykin [15, p.139].

Lemma 3.1. Let the stochastic process {x(i)} be stationary with zero mean and
let its spectral density function be f(θ) with minimum and maximum values fmin and
fmax, respectively. Then the spectrum σ(Rn) of Rn satisfies

σ(Rn) ⊆ [fmin, fmax], ∀n ≥ 1.(3.3)

In the following, we express x(j)x(j + k) in terms of µ:

x(j)x(j + k) = [x(j) − µ][x(j + k)− µ] + µ[x(j) + x(j + k)]− µ2.

Thus, the matrices Tn and Hn can be written as

Tn = T (1)
n + µT (2)

n − µ2T (3)
n and Hn = H(1)

n + µH(2)
n − µ2H(3)

n ,

respectively. The (j, k)th entries of Toeplitz matrices T (1)
n , T (2)

n and T (3)
n are given by

[T (1)
n ]j,k =

1
M

M−|j−k|∑
p=1

[x(p)− µ][x(p+ |j − k|)− µ], 0 ≤ j, k < n,(3.4)
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[T (2)
n ]j,k =

1
M

M−|j−k|∑
p=1

[x(p) + x(p+ |j − k|)], 0 ≤ j, k < n,(3.5)

and

[T (3)
n ]j,k =

(M − |j − k|)
M

, 0 ≤ j, k < n,(3.6)

respectively. The (j, k)th entries of Hankel matrices H(1)
n , H(2)

n and H(3)
n are given by

[H(1)
n ]j,k =

1
M

M−2n+1+j+k∑
p=1

[x(p)−µ][x(p+ 2n−1− j−k)−µ], 0 ≤ j, k < n,(3.7)

[H(2)
n ]j,k =

1
M

M−2n+1+j+k∑
p=1

[x(p) + x(p+ 2n− 1− j − k)], 0 ≤ j, k < n,(3.8)

and

[H(3)
n ]j,k =

(M − 2n+ 1 + j + k)
M

, 0 ≤ j, k < n,(3.9)

respectively. By the linearity of the “optimal” circulant approximation, c(Tn) is de-
composed into three parts:

c(Tn) = c(T (1)
n ) + µc(T (2)

n )− µ2c(T (3)
n ).(3.10)

In the following discussions, we let E(Z) be the expected value of a random matrix
Z, so that the entries of E(Z) are the expected value of the elements of Z, i.e.,

[E(Z)]j,k = E([Z]j,k), 0 ≤ j, k < n.

The following two lemmas will be useful later in the analysis of the convergence rate
of the method.

Lemma 3.2. ( Ng and Chan [23, Theorem 1] ) Let the stochastic process {x(i)}
satisfy assumptions (A1), (A2) and (A4). Then for any given ε > 0 and 0 < η < 1,
there exist positive integers K and N such that for n > N ,

‖E(T (1)
n )−Rn‖2 ≤ ε,

and Pr { at most K eigenvalues of T (1)
n − c(T (1)

n ) have absolute value greater than ε }
> 1− η, provided that M = Ω(n3+ν) with ν > 0, i.e., number of data samples taken
is at least as large as n3+ν .

We remark that in Lemma 3.2, the parameter ν is theoretically used to let the
probability of the event tend to 1.

Lemma 3.3. Let the stochastic process {x(i)} satisfy assumption (A4). Then,
for any given ε > 0, we have that

Pr


τ2∑
k=τ1

∣∣∣∣∣∣ 1
M

M−k∑
j=1

[x(j) + x(j + k)]− E

 1
M

M−k∑
j=1

[x(j) + x(j + k)]

∣∣∣∣∣∣ ≤ ε


≥ 1− 8|τ2 − τ1 + 1|3β1

ε2M
,
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and that

Pr


τ2∑
k=τ1

∣∣∣∣∣∣ 1
M

M−k∑
j=1

[x(j) − µ][x(j + k)− µ]− E

 1
M

M−k∑
j=1

[x(j) − µ][x(j + k)− µ]

∣∣∣∣∣∣ ≤ ε


≥ 1− |τ2 − τ1 + 1|3β2

ε2M
,

for any integers τ1 and τ2.
Proof. By using a lemma in Fuller [12, p.182] and Chebyshev’s inequality [12,

p.185], we have

Pr


τ2∑
k=τ1

∣∣∣∣∣∣ 1
M

M−k∑
j=1

[x(j) + x(j + k)]− E

 1
M

M−k∑
j=1

[x(j) + x(j + k)]

∣∣∣∣∣∣ ≥ ε


≤
τ2∑
k=τ1

Pr


∣∣∣∣∣∣ 1
M

M−k∑
j=1

[x(j) + x(j + k)]− E

 1
M

M−k∑
j=1

[x(j) + x(j + k)]

∣∣∣∣∣∣ ≥ ε

|τ2 − τ1 + 1|


≤

τ2∑
k=τ1

4|τ2 − τ1 + 1|2
[
Var

(
1
M

∑M−k
j=1 x(j)

)
+ Var

(
1
M

∑M−k
j=1 x(j + k)

)]
ε2

≤ 8|τ2 − τ1 + 1|3β1

ε2M
.

The other part can be derived similarly; it is therefore omited.
Using Lemma 3.3, we prove that the `2 norm of the difference between the random

matrices and their expected values is sufficiently small with probability 1.
Corollary 3.4. Let the stochastic process {x(i)} satisfy assumptions (A1),

(A2) and (A4). Then, for any given ε > 0 and 0 < η < 1, we have that

Pr
{
‖T (1)

n − E(T (1)
n ) + µ[T (2)

n − E(T (2)
n )]‖2 ≤ ε

}
> 1− η(3.11)

and that

Pr
{
‖H(1)

n − E(H(1)
n ) + µ[H(2)

n − E(H(2)
n )]‖2 ≤ ε

}
> 1− η,(3.12)

provided that M = Ω(n3+ν) with ν > 0.
Proof. We note that

‖T (1)
n − E(T (1)

n ) + µ[T (2)
n − E(T (2)

n )]‖2 ≤ ‖T (1)
n − E(T (1)

n )‖2 + µ‖T (2)
n − E(T (2)

n )‖2
≤ ‖T (1)

n − E(T (1)
n )‖1 + µ‖T (2)

n − E(T (2)
n )‖1.

It can be shown that both ‖T (1)
n − E(T (1)

n )‖1 and ‖T (2)
n − E(T (2)

n )‖1 are bounded by
2 times the `1 norm of their corresponding first column vectors; see (3.4) and (3.5).
Then the result follows by setting τ1 = 0 and τ2 = n− 1 in Lemma 3.3. Using similar
arguments, we establish the same bound for ‖H(1)

n − E(H(1)
n ) +H

(1)
n − E(H(1)

n )‖2. In
fact, ‖H(1)

n − E(H(1)
n )‖1 and ‖H(2)

n − E(H(2)
n )‖1 are bounded by 2 times the `1 norm

of their corresponding last column vectors. Hence, (3.12) follows.
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Next we prove the main result of the paper about the clustering property of the
matrices Hn.

Theorem 3.5. Let the stochastic process {x(i)} satisfy assumptions (A1), (A2)
and (A4). Then for any given ε > 0 and 0 < η < 1, there exist positive integers K
and N such that for n > N , Pr { at most K eigenvalues of Hn have absolute value
greater than ε } > 1− η, provided that M = Ω(n3+ν) with ν > 0.

Proof. We write Hn as follows:

Hn = H(1)
n − E(H(1)

n ) + µ[H(2)
n − E(H(2)

n )]− µ2H(3)
n +

µE(H(2)
n )− µ2Ln + µ2Ln + E(H(1)

n ),

where Ln is an n-by-n matrix with all entries being 1. By (3.8) and (A1), we obtain

µE(H(2)
n )− µ2H(3)

n = µ2H(3)
n .

By using (3.12) in Corollary 3.4 and ‖H(3)
n − Ln‖2 ≤ n(n−1)

M , we have that

Pr
{
‖H(1)

n − E(H(1)
n ) + µ[H(2)

n − E(H(2)
n )]− µ2H(3)

n + µE(H(2)
n )− µ2Ln‖2 ≤ ε

}
> 1−η,

provided that M = Ω(n3+ν) with ν > 0. We remark that the rank (Ln) = 1.
Therefore, it suffices to prove that the spectrum of E(H(1)

n ) is clustered around zero
deterministically. By (3.7), the entries of E(H(1)

n ) are given by

[E(H(1)
n )]j,k =

(M − 2n+ 1 + j + k)r2n−1−j−k
M

, 0 ≤ j, k < n,

where rk is the k-lag autocovariance of the stationary process. By (A2), the auto-
covariances of the stationary process are absolutely summable. Hence, for any given
ε > 0, there exists an N > 0 such that

∞∑
j=N+1

|rj | < ε.(3.13)

Let Un be the n-by-n matrix obtained from E(H(1)
n ) by replacing the (n − N)-by-

(n − N) leading principal submatrix of E(H(1)
n ) by the zero matrix. Then, rank

(Un) ≤ 2N . Let Vn ≡ E(H(1)
n )− Un. The leading (n−N)-by-(n−N) block of Vn is

the leading (n−N)-by-(n−N) principal submatrix of E(H(1)
n ). Hence, this block is

a Hankel matrix, and using (3.13) and

|rk| ≤
β3

|k|`+1
,

where β3 is a positive constant, the `1 norm of Vn is attained at the (n − N − 1)th
column. As Vn is a symmetric matrix, the result follows by noting that ‖Vn‖2 ≤
‖Vn‖1 ≤ ε.

Under the assumptions, the smallest eigenvalues of Tn and c(Tn) are uniformly
bounded away from zero with probability 1. Therefore, c(Tn) is uniformly invertible.
As we consider the process with non-zero mean in general, the theorem below extends
the result of Theorem 2 in Ng and Chan [23].
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Theorem 3.6. Let the stochastic process {x(i)} satisfy assumptions (A1) and
(A4). Then for any given ε > 0 and 0 < η < 1, there exist a positive integer N such
that for n > N ,

Pr {λmin(Tn) ≥ fmin − ε} > 1− η

2
and Pr

{
λmax(Tn) ≤ µ2n+ fmax + ε

}
> 1− η

2
,

provided that M = Ω(n3+ν) with ν > 0. In particular, we have that

Pr {λmin(c(Tn)) ≥ fmin − ε} > 1−η
2

and Pr
{
λmax(c(Tn)) ≤ µ2n+ fmax + ε

}
> 1−η

2
.

Proof. We write

Tn = T (1)
n − E(T (1)

n ) + µ[T (2)
n − E(T (2)

n )]− µ2T (3)
n + µE(T (2)

n )− µ2Ln +
E(T (1)

n )− Rn +Rn + µ2Ln.

By (3.5), (3.6) and (A1), we obtain

µE(T (2)
n )− µ2T (3)

n = µ2T (3)
n and ‖T (3)

n − Ln‖2 ≤
n(n− 1)

M
.

Using Lemma 3.1 and the fact that Rn and Ln are symmetric and the eigenvalues
of µ2Ln are 0 and µ2n, it follows by Corollary in [14, p.269] that the smallest and
largest eigenvalues of Rn+µ2Ln are bounded below by fmin and above by fmax +µ2n,
respectively. Then, the result follows by using Lemma 3.2, (3.11) in Corollary 3.4 and
some simple probability arguments, provided that M = Ω(n3+ν) with ν > 0. Using
(2.4), we immediately have the result for the smallest and largest eigenvalues of c(Tn).

Theorem 3.7. Let the stochastic process {x(i)} satisfy assumptions (A1), (A2)
and (A4). Then for any given ε > 0 and 0 < η < 1, there exist positive integers K
and N such that for n > N , Pr { at most K eigenvalues of Tn + Hn − c(Tn) have
absolute value greater than ε } > 1− η

2 , provided that M = Ω(n3+ν) with ν > 0.
Proof. By (3.10),

Tn − c(Tn) = T (1)
n − c(T (1)

n ) + µ[T (2)
n − E(T (2)

n ) + E(T (2)
n )− E(c(T (2)

n )) +
E(c(T (2)

n ))− c(T (2)
n )]− µ2[T (3)

n − c(T (3)
n )].

We note from (3.5), (3.6) and (A1) that

µE(T (n)
2 )− µ2T (3)

n = µ2T (3)
n and − µE(c(T (n)

2 )) + µ2c(T (3)
n ) = −µ2c(T (3)

n ).

Thus, (3.14) becomes

Tn − c(Tn) = T (1)
n − c(T (1)

n ) + µ[T (2)
n − E(T (2)

n ) + c(T (2)
n )− E(c(T (2)

n ))] +
µ2T (3)

n − Ln + Ln − µ2c(T (3)
n ).

Using (2.4), the commutative property of circulant approximation and expectation
operator and the circulant structure of Ln, we obtain

‖c(T (2)
n )− E(c(T (2)

n ))‖2 ≤ ‖T (2)
n − E(T (2)

n )‖2(3.14)
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and

‖c(T (3)
n )− Ln‖2 ≤ ‖T (3)

n − Ln‖2 ≤
(n− 1)n

M
.(3.15)

In view of Lemmas 3.2 and 3.5, (3.11) in Corollary 3.4, (3.14) and (3.15), the theorem
follows.

By combining Theorems (3.6) and (3.7), the main theorem concerning the spectra
of the preconditioned matrices is proved.

Theorem 3.8. Let the stochastic process {x(i)} satisfy assumption (A). Then
for any given ε > 0 and 0 < η < 1, there exist positive integers K and N such that for
n > N , Pr { at most K eigenvalues of c(Tn)−1(Tn +Hn) have absolute value larger
than ε } > 1− η, provided that M = Ω(n3+ν) with ν > 0.

As for the convergence rate of the preconditioned conjugate gradient method
for our circulant preconditioned Toeplitz-plus-Hankel matrix c(Tn)−1(Tn + Hn), the
method converges in at most O((2α + 1) logn + 1) steps when the smallest singular
value of the data matrix X1 +X2 is of order O(nα). We begin by noting the following
error estimate of the conjugate gradient method; see [5].

Lemma 3.9. Let Gn be an n-by-n positive definite matrix and z be the solution to
Gnz = v. Let zj be the jth iterant of the ordinary conjugate gradient method applied
to the equation Gnz = v. If the eigenvalues {λk} of Gn are such that

0 < λ1 ≤ ... ≤ λp ≤ b1 ≤ λp+1 ≤ ... ≤ λn−q ≤ b2 ≤ λn−q+1 ≤ ... ≤ λn,

then

||z− zj ||Gn
||z− z0||Gn

≤ 2
(
b− 1
b+ 1

)j−p−q
· max
λ∈[b1,b2]

{
p∏
k=1

(
λ− λk
λk

)}
.(3.16)

Here b ≡ (b2/b1)
1
2 ≥ 1 and ||v||Gn ≡ v∗Gnv.

For the preconditioned system

c(Tn)−1(Tn +Hn)w = (X1 +X2)Td,(3.17)

the iteration matrix Gn is given by Gn = c(Tn)−1/2(Tn +Hn)c(Tn)−1/2. Theorem 3.8
implies that we can choose b1 = 1− ε and b2 = 1 + ε, with probability 1. Then, p and
q are constants that depend only on ε but not on n. By choosing ε < 1, we have that

b− 1
b+ 1

=
1−
√

1− ε2
ε

< ε.

In order to use (3.16), we need a lower bound for λk, 1 ≤ k ≤ p. We note that with
probability 1

||G−1
n ||2 = ||(Tn +Hn)−1c(Tn)||2 ≤ ‖c(Tn)‖2‖(Tn +Hn)−1‖2 ≤ (n+ fmax + ε)n2α.

We then see that for all n sufficiently large,

||G−1
n ||2 ≤ β4n

2α+1,

for some constant β4 that does not depend on n. Therefore,

λk ≥ min
`
λ` =

1
||G−1

n ||2
≥ β4n

−(2α+1), 1 ≤ k ≤ n.
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Thus, for 1 ≤ k ≤ p and λ ∈ [1− ε, 1 + ε], we have that

0 ≤ λ− λk
λk

≤ β4n
2α+1.

Hence, (3.16) becomes

||w −wj ||Gn
||w−w0||Gn

< βp4n
p(2α+1)εj−p−q.

Given an arbitrary tolerance δ > 0, an upper bound for the number of iterations
required to make

||w −wj ||Gn
||w −w0||Gn

< δ

is therefore given by

j0 ≡ p+ q − p logβ4 + (2α+ 1)p logn− log δ
log ε

= O(2α logn+ 1),

with probability 1.
Since by using FFTs, the Toeplitz, Hankel and circulant matrix-vector products

in the PCG method can be done in O(n logn) operations, the cost per iteration of the
conjugate gradient method is of order O(n log n). Thus, we conclude that the work
of solving (3.17) to a given accuracy δ is of order O((2α + 1)n log2 n+ n logn) when
α > 0. We remark that the order of complexity of our iterative method is less than
that of direct methods (see Merchant and Parks [22] and Yagle [27]) which requires
O(n2) operations.

4. Numerical Experiments. In this section, the results of numerical experi-
ments which test the convergence performance of the algorithm are described. All
the computations are done by Matlab on a Sparc workstation. We used AR(2) and
MA(2) processes given by

x(t)− 1.4x(t− 1) + 0.5x(t− 2) = v(t) and x(t) = v(t) + 0.75v(t− 1) + 0.25v(t− 2),

respectively, to generate the Toeplitz-plus-hankel matrices Tn + Hn. Here {v(t)}
is a Gaussian process with zero mean and variance 1 as input stationary process.
In Figures 1 and 2, we depict the spectra of the normal equations matrix and the
preconditioned normal equations matrix in one of the realizations of the AR(2) and
MA(2) processes, respectively, with n = 128 and M = 1024. We note that the spectra
of the preconditioned matrices indeed are clustered around 1.

In the numerical tests, we uses the zero vector and a random vector as our initial
guess and right hand side vector. The stopping criterion of the preconditioned conju-
gate gradient method was ‖ej‖2/‖e0‖2 < 10−7, where ej is the residual vector after
j iterations. In the tables below, M ′ = M/n is the number of blocks of data samples
with size n and I denotes no preconditioner is used whereas C signifies the “optimal”
circulant preconditioner is used. Tables 1–2 show the average number of iterations
(rounded to the nearest integer) over 100 runs of the algorithms when AR(2) and
MA(2) processes are used. We see that the preconditioned system converges very
fast and the average number of iterations of preconditioned systems is much less than
that of non-preconditioned one when n is large. As for the comparison of times in
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*********** **** ******** ** ** ****** ** *** ********* ** **** **** **** *** ** ** *** ** ** *** *** *** ***** *** **** *** ** ***** **********************

n=128, M=1024

preconditioned matrix

normal equations matrix

Fig. 4.1. Eigenvalues for normal equations matrix and preconditioned matrix when AR(2)
process is used. (autocorrelation windowing method)

n 16 32 64 128
M ′ I C I C I C I C
4 22 16 53 23 113 27 233 30
8 22 15 50 21 102 23 208 24
16 22 15 49 18 96 20 183 19
32 23 14 47 17 94 18 169 16
64 23 14 47 16 90 16 165 14

Table 4.1

Average number of iterations when AR(2) process is used.

conjugate gradient iterations, Tables 3 and 4 show the average number of kilo-flops
(counted by Matlab) used for the cases of the AR(2) and MA(2) processes tested in
Tables 1 and 2. We see from the tables that the number of kilo-flops used for the
preconditioned systems is significantly less than that of non-preconditioned systems
especially when n is large.

In this paper, we employed the autocorrelation windowing method to formulate the
Toeplitz-plus-Hankel least squares problem. Other windowing methods can be used,
for instance, the covariance windowing method, the pre-windowed method and the
post-windowed method; see Haykin [15, p.373]. We remark that the other windowing
methods lead to non-Toeplitz-plus-Hankel normal equations matrices. However, by
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n 16 32 64 128
M ′ I C I C I C I C
4 17 14 34 19 55 22 74 25
8 17 13 32 15 48 14 59 19
16 16 11 29 13 42 14 50 15
32 16 10 28 11 39 12 44 12
64 16 9 28 10 36 10 39 9

Table 4.2

Average number of iterations when MA(2) process is used.
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+++++++++++++++++++ +++++++++++++++++ ++ +++ ++++++ +++ +++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +

************** ********** ** *** *** ** ******* ** *** *** ** **** ** ****** ****** **** ** ** ** ** ***** ***** *** ************ *** *******************

n=128, M=1024

preconditioned matrix

normal equations matrix

Fig. 4.2. Eigenvalues for normal equations matrix and preconditioned matrix when MA(2)
process is used. (autocorrelation windowing method)

n 16 32 64 128
M ′ I C I C I C I C
4 52 54 277 145 1306 451 5925 1106
8 52 51 262 132 1179 384 5290 885
16 52 51 256 114 1109 334 4654 700
32 54 47 246 107 1086 300 4298 590
64 54 47 246 101 1040 267 4196 516

Table 4.3

Average number of kilo-flops (rounded to nearest kilo-flops) when AR(2) process is used.
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n 16 32 64 128
M ′ I C I C I C I C
4 40 47 178 120 636 367 1882 922
8 40 44 167 95 555 234 1500 700
16 38 37 152 82 485 234 1272 553
32 38 34 146 69 451 200 1119 442
64 38 30 146 63 416 167 992 332

Table 4.4

Average number of kilo-flops (rounded to nearest kilo-flops) when MA(2) process is used.

n 16 32 64 128
M ′ I C I C I C I C
4 22 16 53 23 113 27 233 30
8 22 15 50 21 102 23 208 24
16 22 15 49 18 96 20 183 19
32 23 14 47 17 94 18 169 16
64 23 14 47 16 90 16 165 14

Table 4.5

Average number of iterations when AR(2) processes is used.

exploiting the structure of the normal equations matrices, it can still be written as

1
2M

(X1 +X2)T (X1 +X2) = Tn +Hn − S(1)
n − S(2)

n − S(3)
n − S(4)

n ,

where S(i)
n are non-Toeplitz and non-Hankel matrices. By considering similar argu-

ments as in Ng and Chan [23], it can be shown that the `2 norm of these matrices
Si (i = 1, 2, 3, 4) are sufficiently small when M is sufficiently large. Therefore, our
algorithm can handle the Toeplitz-plus-Hankel least squares problems with the use of
different windowing methods. To illustrate the performance of our preconditioner for
these problems, we use the AR(2) process to generate the covariance windowing data
matrices X1 and X2. In Figure 3, we depict the spectra of the normal equations ma-
trix and the preconditioned normal equations matrix in one realization of the AR(2)
process where n = 128 and M = 1024. The figure shows clustering of the eigenvalues
of the FFT–based preconditioned matrices. Also Tables 5 and 6 show the average
number of iterations (rounded to the nearest integer) and the corresponding average
number of kilo-flops required respectively over 100 runs of the algorithms when the
AR(2) process is used. We see that both the average number of iterations and the
average kilo-flops used by the preconditioned systems are much less than those of the
non-preconditioned systems especially when n is large.

5. Concluding Remarks. In this paper, we have proposed a new FFT–based
preconditioned Toeplitz-plus-Hankel least squares iteration. Our preliminary numeri-
cal results show the effectiveness of our algorithm. As a summary, we list the following
remarks concerning our algorithm:

(i) In signal processing applications, the linear-phase filters can also be character-
ized by antisymmetric impulse responses. We solve the Toeplitz-plus-Hankel



ETNA
Kent State University 
etna@mcs.kent.edu

168 Toeplitz-plus-Hankel least squares problems

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

10-2 10-1 100 101 102 103

++++++++++++ +++ ++++++++++++++++ +++++ +++ ++++++++ ++++++ +++++++++++++++++++++++++++ ++++++++ +++++++ ++++++++++ ++++ +++++ + + +++ ++ +++ + + + +
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n=128, M=1024

preconditioned matrix

normal equations matrix

Fig. 4.3. Eigenvalues for normal equations matrix and preconditioned matrix when AR(2)
process is used. (covariance windowing method)

n 16 32 64 128
M ′ I C I C I C I C
4 488 370 2640 1194 12574 3133 57481 7721
8 488 346 2491 1091 11350 2669 51313 6177
16 488 346 2441 935 10682 2321 45146 4890
32 510 323 2341 883 10459 2088 41692 4118
64 510 323 2341 831 10014 1856 40705 3603

Table 4.6

Average number of kilo-flops (rounded to nearest kilo-flops) when AR(2) process is used.

least squares problem

min ‖d− (X1 −X2)w‖2,

and the normal equations become

1
2M

(XT
1 X1 +XT

2 X2 −XT
2 X1 −XT

1 X2)w =
1

2M
(X1 −X2)Tx.

The preconditioned conjugate gradient algorithm can also be applied to solve
normal equations in this case.
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(ii) Recently, other discrete transform matrices Wn have been used to construct
the “optimal” preconditioners to symmetric Toeplitz matrices. These trans-
form matrices include the sine transform [7] and the Hartley transform [3].
These preconditioners are defined to be the minimizer of ‖Qn−Tn‖F over all
n-by-n matrices Qn that can be diagonalized by Wn. We note that they are
defined similarly to c(Tn). In [7] and [3], it was shown that the these precon-
ditioners perform very well when solving symmetric Toeplitz systems. Thus,
we expect these preconditioners to be good alternatives to our FFT–based
ones for solving Toeplitz-plus-Hankel least squares problems.

(iii) In [22], it has been shown that a Toeplitz-plus-Hankel system of equations
can be reformulated as a block-Toeplitz system of equations with 2×2 blocks,
i.e. (

Tn Hn

Hn Tn

)(
w
Jnw

)
=
(

d
Jnd

)
.

In this case, a block-circulant preconditioner(
c(Tn) 0

0 c(Tn)

)
can be used to precondition the block equations. By Theorem 3.5, we note
that the block-circulant matrix is also a good preconditioner. However, the
approach doubles the dimension of the problem being solved, and hence it
doubles the operations per iteration.

(iv) Our algorithm presented in this paper is of the fixed order n and the block-
processing type, i.e. M data samples are collected over a finite time inter-
val; the estimates of the autocorrelations are then computed and an n-by-n
Toeplitz-plus-Hankel system as in (2.1) is formed and solved by the precondi-
tioned conjugate gradient method. The complexity of solving Toeplitz-plus-
Hankel systems is O(n log2 n) operations as compared to O(n2) operations
required by direct solvers. We note that the basic tool of our fast iterative
algorithm is the fast Fourier transform (FFT). Since the FFT algorithm is
highly parallelizable and has been implemented on multiprocessors efficiently
(see for instance Swarztrauber [25]), our algorithm is expected to perform
efficiently in a parallel environment.

6. Acknowledgement. The author thanks the referees for numerous valuable
comments and helpful suggestions.
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