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Abstract. For computing Padé approximants, we present presumably stable recursive algorithms
that follow two adjacent rows of the Padé table and generalize the well-known classical Levinson and
Schur recurrences to the case of a nonnormal Padé table. Singular blocks in the table are crossed
by look-ahead steps. Ill-conditioned Padé approximants are skipped also. If the size of these look-
ahead steps is bounded, the recursive computation of an (m,n) Padé approximant with either the
look-ahead Levinson or the look-ahead Schur algorithm requires O(n?) operations. With recursive
doubling and fast polynomial multiplication, the cost of the look-ahead Schur algorithm can be
reduced to O(nlog? n).
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1. Introduction. It is well known that the computation of a Padé approximant!
r = p/q requires essentially the solution of a linear Hankel or Toeplitz system, which
yields the coefficients of the denominator polynomial ¢q. On the other hand, the
recursive solution of such a system is linked to the computation of a finite sequence of
Padé forms and Padé approximants. In particular, the leading principal submatrices
of the Hankel matrix for computing the denominator of the (m,n) Padé approximant
are the Hankel matrices of the linear systems for computing the Padé approximants
that lie in the Padé table farther up on the same diagonal. If we flip around the
coefficient vector and the columns of the Hankel matrix, we obtain a Toeplitz system.
Then the leading principal submatrices correspond to the Padé approximants to the
left of the (m,n) entry in the mth row of the Padé table. Therefore, certain recursive
algorithms for computing Padé approximants follow a particular diagonal or row of
the table. Other algorithms follow a staircase consisting of two adjacent diagonals or
a sawtooth consisting of two adjacent rows. These recursive algorithms for Hankel or
Toeplitz systems require typically O(n?) operations and, hence, are said to be fast.
But some of them can be reformulated as recursive doubling methods and can make
use of fast polynomial multiplication. Then the complexity reduces to O(n log? n)
operations; Bitmead and Anderson [5], Brent, Gustavson, and Yun [6], Morf [28],
Musicus [29], de Hoog [14], Ammar and Gragg [2, 1, 3] were the first to present such
superfast algorithms.

The classical algorithm of Levinson (or Levinson-Durbin) [26, 16] is one that
generates implicitly the denominators g of the Padé approximants on two adjacent
rows, and it does this in a particular symmetric way. The Schur (or Schur-Bareiss)
algorithm [32, 4] constructs the numerators p and the residuals e (defined below) of
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the same Padé approximants. These classical versions of the Levinson and the Schur
algorithm assume that the relevant Toeplitz matrix is Hermitian positive definite,
and then the same holds for all leading principal submatrices. The two algorithms
are easily adapted to the non-Hermitian case, but they still require that all the leading
principal submatrices be nonsingular. Analogous assumptions are made in many other
algorithms and in the papers cited above on superfast versions.

In the last ten years a number of more general algorithms have been derived that
can deal with exactly singular submatrices; see Delsarte, Genin, and Kamp [15] for
the indefinite Hermitian Toeplitz case, and Heinig [24, 25|, Gover and Barnett [18],
Sugiyama [33], Pombra, Lev-Ari, and Kailath [31], Tyrtyshnikov [37], and Pal and
Kailath [30] for the non-Hermitian Toeplitz case. However, the so modified algorithms
remain unstable when near-singular principal submatrices occur, and thus they are
in practice limited to exact arithmetic, where they may still lead to very large inter-
mediate quantities causing high memory needs, however. Only recently, numerically
stable fast algorithms that can treat near-singular principal submatrices have been
designed; for the Toeplitz case, see Sweet [34, 35], Chan and Hansen [11, 10, 12, 23],
Freund and Zha [17], Gutknecht [20], and Gutknecht and Hochbruck [22, 21]. In this
paper we translate the algorithms from [22], which were derived in a linear-algebra
setting, into recurrences for Padé forms. We also give (often simpler) Padé theory
based proofs instead of linear algebra proofs. In contrast to the recurrences introduced
in [20], those presented here reduce in the case where all the relevant submatrices are
well-conditioned exactly to the non-Hermitian versions of the algorithms of Levinson
and Schur. As in the sawtooth algorithms of [20], the basic idea is to follow two
adjacent rows of the Padé table and to jump over singular blocks. However, while the
sawtooth algorithms make use of well-regular Padé forms, the algorithms derived here
make use of well-column-regular Padé forms; see §3 and §6 for definitions. In contrast
to the sawtooth recurrence, it can happen here that one has to jump over several
well-conditioned blocks at once. Hence, in general the step size is larger than in the
sawtooth algorithms. But, in practice, this drawback is hardly ever encountered, since
look-ahead steps are relatively rare.

The paper is organized as follows. In Section 2 we introduce the notation and
review the definition and some basic properties of the one-sided Padé approximation
of a Laurent series. Section 3 is concerned with column-regular Padé forms, which
play a fundamental role in look-ahead Levinson and Schur algorithms. Section 4 deals
with two-point Padé forms. In particular, several equivalent definitions of column-
regular two-point Padé forms are given, and it is shown how to compute them. In
Section 5 we then present recurrences that include generalizations of the algorithms
of Levinson and Schur as special cases. Next, in Section 6, we briefly review some of
the arguments that should allow one to prove the weak stability of these recurrences
when combined with a suitable look-ahead strategy. In Section 7 the close relation of
Padé forms to biorthogonal polynomials is exploited to deduce the inverse block LDU
factorization of a Toeplitz matrix. When look-ahead occurs, this factorization requires
the computation of “inner” polynomials in addition to the well-column-regular ones.
These inner polynomials are seen to correspond to “underdetermined” Padé forms.
Finally, in Section 8 we present a new simplified version of a superfast look-ahead
Schur-type algorithm.

2. Preliminaries. In this paper, we will denote by Z the set of all integers,
by N the set of all nonnegative integers, and by N* the set of all positive integers.
Moreover, || - || will always denote the 2-norm.
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Let £ denote the set of formal Laurent series with complex coefficients,

(2.1) h(¢) = > mch,
k=—o0
and consider the subsets
Lim = {f€Ll; u=0ifk <lork>m},
L, = {hEﬁ;ukZOika<l},
croo= {hel; u=0ifk>m}.

Furthermore, denote by P,,,(= Lo.m) the set of polynomials of degree at most m. Note
that the quotient of h € £; and ¢ € (P,\{0}) can be expanded according to rising
powers of ¢, so that the result is in £; if ¢(0) # 0. The Laurent series of this formal
quotient is written as Ly(h/q). For h € L}, (or h € L;), the largest (or smallest)
index k with px # 0 is denoted by Oh (or 0*h, respectively). Consequently, for a
polynomial ¢, Oq is the exact degree and 0*q, if positive, is the multiplicity of { =0
as a zero of ¢q. In general, we call Oh the degree and 9*h the codegree of h. Hence,
L. is the set of Laurent polynomials of codegree at least | and degree at most m.

We write h(¢) = O, (¢") if h(¢) € L, and h(¢) = O_(¢™) if h(¢) € LF,. If
h € Ly we set h(0) := uo, and likewise, if h € L we define h(co) := pg. The formal
projection of h € L into L;.,, is denoted by

m

(2.2) Wimh(C) = prck.

k=l

The (one-sided) Padé forms and Padé approximants of h € £ can be defined as
follows; see [7, 36, 20].

DEFINITION. Given a formal Laurent series h € £ and integers (m,n) € Z x N,
any pair (p,q) € L%, x (P,\{0}) satisfying

(2.3) h(¢)a(¢) = p(¢) = O+ (") € L

is a (one-sided) (m,n) Padé form of h. The series e € Ly defined implicitly by

(2.4) h(¢)a(¢) = p(¢) = ¢ e(C)

is the residual of (p,q). The formal Laurent series

M)
q(¢)

is called the (one-sided) (m,n) Padé approximant of h.

Clearly Padé forms are never uniquely determined because p and ¢ can be multi-
plied by a common nonzero scalar; for the situation of interest to us we will discuss
normalization later. On the other hand, one can show that r,, , is uniquely deter-
mined. When h is just a formal power series and m > 0, the above definition can
be seen to be equivalent with the classical one, where 7, », := p/q¢ is a rational func-
tion of type (m,n); see, e.g., Gragg [19] for a survey of classical results in Padé
approximation.

(2.5) Tmon(C) == h(z) — L4 (
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It is common to think of the Padé approximants of h as being listed in a table
whose (m,n) entry is 7, . In the present situation this Padé table is defined in the
half-plane n > 0. As in [19] we let the n-axis point to the right, and the m-axis to
the bottom. A fundamental property of the Padé table is that equal entries always
appear in square blocks. In the cases where the Padé approximant is equal to A or
the zero function, these blocks are “infinite squares”. This block structure property
is derived by discussing the general solution of condition (2.3). The following result
is fundamental; see [19, 7, 20].

THEOREM 2.1. Given h € L, m € 7Z, and n € N, the general solution (p,q) €
L5 x (Pn\ {0}) of (2.3) is

(2.6) ((€),a(€)) = (€7Pm.n(Q) w(C), C7 Gm,n (C) w(C)),

where Pm.n € LY, and Gm.n € Prn with §m n(0) = 1 are uniquely determined, and where
(2.7) 0:=0omn :=max{0,m+n+1—0"(hGmn — Pmmn)}

is a fized integer satisfying

(2.8) 0<0<d:=0myn:=min{m—0Ppmn,n— 0dnnt

and w € Ps_, 1is arbitrary.

By comparing in (2.3) the coefficients of ¢™*1 ... (™™™ we readily obtain a
homogeneous linear system with an n x (n + 1) Toeplitz matrix for the coefficients

P05 P15+ -5 Pn qu:

Hm+1 Hm <o Mm—n+1 Z(l) 0
(2.9) : : . : .| =
HFm+n  Hm4n—-1 .- Hm . 0
Pn

As mentioned in the introduction, it is well known that the recursive solution of this
system is linked to the computation of a finite sequence of Padé forms. In particu-
lar, the leading principal submatrices of the Toeplitz matrix correspond to the Padé
approximants that lie in the mth row of the Padé table on the left of the (m,n) en-
try. The classical algorithms of Levinson (or Levinson-Durbin) [26, 16] and Schur (or
Schur-Bareiss) [32, 4] can be understood to follow simultaneously the (m — 1)th and
the mth row of the table.

In the sequel we therefore consider two adjacent row sequences {(Pn, Gn) 52 :=
{(pm—l,n7Qm—1,n)} and {(pn,%z)}%io = {(pm,na Qm,n)} of Padé forms, and the cor-
responding sequences {7n}o2 = {rm—1n}neo and {rp}02y = {rmn oy, of Padé
approximants. The corresponding residuals are denoted by e,, and é,. They satisfy

(2.10) (=1 &) { gz n } i e cen .

The coefficients of the series é,,, €., Pn, Pn, and of the polynomials ¢, and g, are
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chosen as follows:?2

én(g) = Zék,nck_ny en(() = Zﬁfkﬂzck_n)
k=n k=n
(211)  PalQ) = D> Feal™F, Pa(Q) = ) ma(mh,
kio kio
(jn(z) = Zﬁk,ngk; Qn(z) = ZPk,an~
k=0 k=0

If the n x n Toeplitz matrix

Hm cee Mm—n41
(2.12) T = :
Hm4n—-1 .- Hm
is nonsingular, it follows from (2.9) that we can normalize ¢, by pnn, = 1 and
dn by pon = qn(0) := 1; i.e., ¢, can be chosen monic, ¢, comonic. With these

normalizations (2.9) yields the Yule-Walker equations

ﬁO,n Hm—n pl,n [ Hm+1
(2.13) T == v Ton =- :

ﬁnfl,n Mm—1 pn,n L Hm—+n

One can conclude from (2.3) and (2.4) that also the following two linear systems hold:

/30,n 0 Po,n [ To,n
. : Pl,n 0
(2-14) T7n;n+1 o = . ) Tm;n—i—l . = .
Pn—1,n 0 : .
/Sn,n én,n Pn,n 0

Each of them represents just n + 1 rows of a doubly infinite linear Toeplitz systems
whose right-hand side contains the coefficients of p,, (or p,, respectively) in its “upper
half” and those of &, (or e,) in its “lower half”, the two sets being separated by the
n zeros that appear in (2.14).

3. Column-regular Padé forms. The algorithms discussed in this paper make
essential use of column-regular and well-column-regular Padé forms. These notions
have been introduced in [20].

DEFINITION. We call the Padé form (py,gy,) and the approximant ry, := p,/qn
column-regular if

(3'1) Dndn — Pndn #0 € L.

We also say that (pn, ¢n) and (pn,qn) is a column-regular pair (of Padé forms), and
that n is a column-regular index.

From (2.5) it is readily seen that r, is column-regular if and only if r, # #,,
i.e., if in the Padé table, r,, is not in the same block as the entry #, above it, see

2 Note that the notation used in this paper differs partially from the one chosen in [22], where
Endk,n WaS Tk n, M n WaS Entk n, and Pk,n WaS Pn_k n-
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Fia. 3.1. Column-regular entries marked by o in the extended Padé table. In one row they are
marked by e and their upper neighbors by a dot.

Fig. 1. In other words, r, is column-regular if and only if it lies in the first row of its
block. From Theorem 2.1 one can further conclude that column-regular Padé forms
are uniquely determined up to scaling, since, for column-regularity, dy,.n = Opmn =0
and 5m—1,n = Om—1,n-

Further characterizations of column-regularity are summarized in the following
Lemma.

LEMMA 3.1. The following statements are equivalent when n > 0:

(i) (pn,@gn) is column-regular, i.e., (3.1) holds;
i) ry # Tn;

—.

)

(iii) Opp, =m and 0§, = n; i.e., Ton # 0 and ppn # 0;

(iv) é,(0) # 0 and ¢,(0) #0; i.e., £nn # 0 and po n # 0;

(v) the Toeplitz matrices Ty and Ty are nonsingular;

(vi) the Yule-Walker equations (2.13) have a unique pair of solutions, and the
corresponding residual é, and numerator p,, satisfy é,(0) # 0 and Op, = m;

(vil) the Yule-Walker equations (2.13) have a pair of solutions whose corresponding

residual é, and numerator p, satisfy é,(0) # 0 and Op, = m;

(viii) ¢, and G, are relatively prime, and Op, = m if q, s a (nonzero) constant.
(If n =0, the empty matriz T, p is considered to be nonsingular, and the Yule- Walker
equations are considered to have a unique vacuous solution.)

Note that (iii)—(viii) translate immediately into the conditions (iii), (iv), (ii), (i),
(v), and (vii) of Lemma 4.1 in [22]. As mentioned before, the notation chosen there
partially differs from the one used here, however, and m = 0 was assumed.

Proof. The equivalence of (i) and (ii) follows from (2.5): the two series
Ly ((hq—p)/q) and Ly ((h§ —p)/q) are the same if and only if (3.1) holds. The
equivalence of (ii) with (iii), (iv), (v), and (vi) was shown in [20] (under slightly dif-
ferent assumptions, to which the case treated here could be reduced, however). The
main tools were Theorem 2.1 and the block structure theorem mentioned before that

follows from it. Finally, (vi) clearly implies (vii). Hence, it remains to show that
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(vii) implies, say, (ii) and that (viii) is equivalent with, say, (i). The proof of this
equivalence will also furnish, for free, another simple proof of the equivalence of (i),
(iii), and (iv).

Assume that (vii) holds. Then there exists an (m — 1,n) Padé form (p,,, ¢,) with
monic ¢, and &, , # 0. From Theorem 2.1 it follows that this means that 7,, lies both
on or below the diagonal and on or below the antidiagonal of its block. Additionally
there exists an (m,n) Padé form (p,, g,) with ¢,(0) = 1 and Op,, = m. Here one can
conclude from Theorem 2.1 that 7, must lie both on or above the diagonal and on or
above the antidiagonal of its block. Since 7, is the upper neighbor of r,, the only way
to fulfill these conditions is that 7, and r,, lie in different blocks; hence, (ii) holds.

In [20], Lemma 2.5, we pointed out that (2.3) implies readily that

(3.2) $n(Q)an(C) = Pr()dn (C) = Ap¢™ ™

i.e., this Laurent series has at most one nonzero coefficient A,. In addition, from
(3.2) and (2.3), it is easily verified that

(33) An = 770,n/3n,n = én,nPO,n [: én(O)QH(O)]-

Hence, (pn, qn) is column-regular if and only if A, # 0. If ¢, and §,, are not relatively
prime, they have a common polynomial factor, which must also be a factor of the
right-hand side in (3.2), unless the right-hand side is zero. However, A, 2™ has
only monomials as factors. Thus, A,, = 0 or Gn(0) = ¢, (0) = 0. In both cases, ¢, is
not column-regular. [Consequently, §,(0) = ¢,(0) = 0 implies A, = 0.] Moreover, if
g¢n is a nonzero constant and dp,, < m, then (pn, ¢,) is also an (m — 1,n) Padé form,
hence not column-regular.

Conversely, if ¢, is not column-regular, then, by (ii), r, = #,. It h € L, for some L
(as, e.g., in the classical situation where L = 0), then 7, and #,, are rational functions
and must have a common reduced form, whose denominator ¢, , is a common factor
of g, and §,. The general case h € L can be reduced to this one since ¢, and g,
only depend on finitely many coefficients of h. Consequently, ¢, and ¢, cannot be
mutually prime unless G, ,(¢) = 1. In the latter case, it follows that 7, = r,, € L, _1;
hence, ¢,(¢) = 1 implies that dp, < m if ¢, is not column-regular.

Note that (3.2) and (3.3) imply that each of (i), (iii), and (iv) is equivalent to
A, #0.0

In view of statements (iii)-(v) of Lemma 3.1, column-regular pairs of Padé forms
can be normalized by

(3.4) pPnn=1, pon=1,
as was assumed for the Yule-Walker equations (2.13). Then, by (3.3),
(35) To,n = én,n-

Formula (2.10) defines the residuals é,, and e, as functions of the data h and
the pair (Pn,dn), (Pn,qn) of Padé forms. It is an important fact that if this pair is
column-regular, then this pair and its two residuals allow us to retrieve the data. This
shows that all the information on the problem is stored in any column-regular pair
and the corresponding two residuals. In fact, (2.10) has the following converse: if
(Pn, qn) is column-regular, then

(3.6) [ -1 h]ZAln[é" Ce”][—qgn _ﬁin}’
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where A,, is given by (3.3). For the proof one postmultiplies (2.10) by the 2 x 2 matrix
from (3.6) and inserts (3.2).

Clearly, column-regularity cannot guarantee that a corresponding Padé form is
numerically well determined, i.e., depends in a well-conditioned way on the data,
the given coefficientes uy. In fact, the Toeplitz matrix appearing in the Yule-Walker
equations (2.13) for the coefficients of the polynomial ¢ of a column-regular Padé
form (p, q) could be arbitrarily ill conditioned. In this case we will also call the Padé
form (p,q) ill conditioned. Recursive processes that make at an intermediate stage
use of such ill-conditioned Padé forms cannot be stable either. The basic philosophy
of look-ahead algorithms consist in avoiding such ill-conditioned intermediate results.
Here, in particular, we will later require that Padé forms are not only column-regular,
but also well-conditioned functions of the data, and we will call such Padé forms
well-column-regular. We will return to this issue in Section 6.

4. Column-regular two-point Padé forms. As in [20] our look-ahead recur-
rences will make use of certain two-point Padé forms. Therefore, let us recall from
[20] the definition of an [I; k] two-point Padé form (uy,v) € Pr—1 X Py of a quadruple
of formal power series (f~,¢7; f*,g") given by

(4.1) F7Q) =) b ¢h, RO = efc,
k=1 k=0

(4.2) 97() =Y %", gt Q) =D ik
k=0 k=0

We assume that these formal power series fulfill at least one of the following two pairs
of conditions

(4.3) ¢1 #0  and 45 #0,
(4.4) Y #0 and v #0.

DEFINITION. Given a pair [I; k] of integers satisfying |I| < k or |I| = k > 0, a pair
(u,v) € Pg—1 X Py is an [I; k] two-point Padé form of (f~,g7; fT,g") if

(4.5) 9= (Qu(¢) + f(Qu(¢) = O0-(¢"1) € Ly,
' g (Qu(Q) + fH(Qv(¢) = 0+(¢*) € Liy.

The rational function u(¢)/v(¢) is said to be the [I; k] two-point Padé approximant
of (f7,97;f",g"). The residual of (u,v) consists of two series (e";e™) € L x Lo
defined by

(4.6) 9= (Qu(¢) + f~()u(¢) = ¢ te(¢),
' gH(Qu(Q) + fH(Qv(¢) = ¢FFe* ().

Again, it can be shown that the [I; k] two-point Padé approximant is uniquely
determined. These two-point Padé approximants can be thought of being gathered
in a double-entry table, the two-point Padé table, where, however, they only fill the
sector |l| < k of the half-plane k > 0. If |I| = k > 0, either the first or the second
condition of (4.5) is vacuous, and the two-point Padé approximant reduces essentially
to an ordinary Padé approximant. By generalizing the definition, so that it includes
additional suitably chosen Padé approximants, the table can be extended to fill the
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whole half-plane & > 0. It is then called M-table; see [27, 13]. A block structure
theorem analogous to the one for the ordinary Padé table holds; see [13, 20].

In the following ! will be fixed, and k > max{|l|, |l — 1|}, so that —k+1 <1 < k.
We denote the [I; k] two-point Padé form by (u, vg) and the [l — 1; k] two-point Padé
form by (g, o). The corresponding residuals are called (e;,e;) and (é;,é;). In
analogy to (2.10), they satisfy

(4 7) g_ f_ ﬁk uk — CZ_Q 0 é]; Celg
' g+ f+ 'Ok U 0 <k+l71 éz Ce: .
The coefficients of these two-point Padé forms are chosen as follows:3

k

(4.8) an(Q) = ajud, w(Q) =Y Bt

|
—
=

(4.9) ui(¢) =: a; k¢, v (€) =: Bir¢’.
0 0

> .
= o
<
= |l
o

<.
I

Thus we are considering again two adjacent rows of the table. Later we will set [ := 0,
and we will see that in our situation Bkk = Bk =0, i.e., the polynomials 0 and vy
have at most degree k — 1 also.
We first adapt the notion of column regularity to the two-point Padé table.
DEFINITION. We call the two-point Padé form (uy,vr) and the approximant
ug /v column-regular if

ug |, Uy

(4.10) v — uplx 0 € P, e,

Vg (%3
We also say that (g, 0), (ug, vi) are a column-regular pair (of two-point Padé forms).
The following result is an analogue of (3.2) and (3.3).
LEMMA 4.1. Let (ug,vi) be an [I;k] two-point Padé form, and (iy,0r) be an
[l — 1;k] two-point Padé form of a quadruple (f~,97; fT,g7) that fulfills (4.3) or
(4.4). Then,

(4.11) dgvr — urdy = Ay FT
where

A, — ot +_ J ep(o0)dn_rn/or  if ¢1 #0,
(4.12) A = €x (0)ﬁo,k/’70 = { —e;, (00)Be.r /g if v #0.

Proof. From (4.7) we have

(4B)a, + f o =776 =0 (¢"?), gl + fTop =M = 0 (¢,
Ahur+ fTo=C"ley =0-(¢"Y),  gtun+ [T = el = 04 (¢FH).
Multiplying the second equation in (4.13) by vy and the second equation in (4.14) by

¥k, and subtracting the two results yields

gt (v, — updy) = (e o — Ceff o).

3 In [22], o was B, B, was ap_j_1, and B was Br_j_1.
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By assumptions (4.3) and (4.4), we have 75 = g7 (0) # 0, and therefore
v — updy = CFHTE(0)Bo .k /g + O (CFH).
Analogously, from the first equations in (4.13) and (4.14) we obtain
9™ (kor — updy) = ¢ 2 (g vr — Cep tr),  f (Unvr — wnde) = —C 2 (6 ur — Cey, k)
Hence,

UV — UV = { CkHile;(oo)&kfl’k/q&; +O_(¢F72) if ¢1 # 0,
—¢FH e, (00) Brp /v + O—(CFH2)  if yg #0.

This completes the proof. O

Lemma 4.1 leads easily to the following partial analogue of Lemma 3.1.

LEMMA 4.2. Let the assumptions of Lemma 4.1 be satisfied. Then, the following
statements are equivalent when k > 0 and —k+1 <1 <k:

(i) (uk,vk) is column-regular, i.e., (4.10) holds;

(ii) & (0) # 0 and Box # 0.

(ili) ey (00) #0 and dp—1k # 0 if ¢, #0, and e;, (00) # 0 and Br # 0 if 75 # 0.

Proof. (i) is equivalent to Ay, # 0 in (4.11). Hence, the two other equivalences
follow readily from the different expressions for Ay, in (4.12). O

In view of statements (iii) and (iv) of Lemma 3.1, column-regular pairs of two-
point Padé forms can be normalized by

Gp-1p = 1, Bor = 1, if ¢ #0,
Br,k = 1, Bor = 1, if vy #0.

We will make use of this normalization shortly.

In analogy to (3.6) one can express also the data (f~, ¢~ ; f*,g") of the two-point
Padé problem in terms of any column-regular pair and its residuals. Again we just
have to postmultiply (4.7) by the inverse of the second 2 x 2 matrix and to make use
of (4.11):

g -1 _ 1 [¢* o0 ér  Cep Uk —Uk

ARl RO S [

Let us next consider the linear systems which have to be solved for computing
a normalized regular pair of two-point Padé forms. For the look-ahead Levinson
and Schur recurrences, we will need the cases | = 0 and [ = —1 only. Moreover,
the data will be seen to always fulfill v, = 0 and (4.3), which implies that Gy, =
Bk = 0. The conditions (4.13) and (4.14) translate into two homogeneous systems
of 2k — 1 linear equations for the 2k remaining unknown coefficients of (i, 0x) €
Pr—1 X (Pr—1 and (ug,vg) € Pr—1 X (Pr_1, respectively; see Eq. (3.20) in [20]. Due
to the normalization (4.15) we can move one column of the coefficient matrix to
the right-hand side. Moreover, since 7; = 0, each of the two systems contains one
equation that depends on just one unknown and, therefore, can be used to eliminate
that unknown. Making use of By = 1 and v, = 0 in this way, we obtain from (4.14)
with [ = 0, the two equations

(4.15)

(4.17) aok = —¢3 /s Bk =0
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and the 2(k — 1) x 2(k — 1) system

[ ok ] [0 ] [0
Q—1k 0 0
4.18 Sp_p |—k-Lk | _ - ook,
(4.18) bt B,k of " Ok
L Br—1k L oiy L iy
where
B 71_ e ’yk_—l ¢1_ e QS/?—l 7]
" b1
4.19 Sk—1 =
(4.19) o "% b5
_’ch+—2 W’J ¢;—2 ¢g J
From (4.13) with [ = —1 we obtain likewise, taking é&r_1, = 1 and 75, = 0 into
account, the two equations
(4.20) Bok == /67 Brx=0
and the linear system
ok ] e ] [ by ]
A2,k vy o7 | 5
421 Spy |—r—| = — || — |2
(4.21) k-1 Gy 0 0 Bo,k
L qu,k J L 0 ] L 0 ]

with the same coefficient matrix. For k = 1, the linear systems (4.18) and (4.21) are
empty; the coefficients are fully determined by (4.17) and (4.20).

Clearly, every pair of solutions of (4.17)—(4.21) yields a pair of normalized two-
point Padé forms. From Lemma 4.2 (ii) and (iii) we know that such a pair is column-
regular if and only if & (0) # 0 and e; (c0) # 0. We also know that these two
quantities always vanish simultaneously. By definition they are given by

& (0) = Z?:o (’Y;rdk—j—l,k + (bj_ak—j—l,k) ;
- k _ _
e, (00) =250 (%‘Haj,k + ¢j+1ﬁj7k) .

The first formula is the inhomogeneous equation that extends (4.21) at the bottom, the
other is the one that extends (4.18) at the top. Bringing the right-hand sides of (4.18)
and (4.21) back on the left-hand side, one obtains two inhomogeneous systems with
matrix Sy and right-hand sides eie;, (00) and exé (0), respectively. From Cramer’s
rule one can conclude (see [22], Eq. (5.22)) that

(4.22)

(4.23) Op—1,det Sy = ¢ é;l_ (0) det Sy_1, ﬂo’k det Sy = 76" € (OO) det Si,_1.
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By continuity these relations remain true as é; (0) — 0, e, (00) — 0 or det Sy_1 — 0.
Hence, if the pair is normalized (i.e., Gr—1,1 = Box = 1) and det Sy_1 # 0, each of
the two conditions é; (0) # 0 and e, (00) # 0 is equivalent to det Sy # 0. Moreover,

(4.24) 1 € (0) =g e (00).

This relation also follows from (4.12). On the other hand, if detS; # 0, then
det S;,_1 = 0 implies that &x_1 1 = Bo,x = 0.

The Eqs. (4.17)—(4.21) are analogues of the Yule-Walker equations for the two-
point Padé problem. They allow us to formulate analogues of the statements (v)—(vii)
of Lemma 3.1. We also add the analogue of (viii), which follows from Lemma 4.1.

LEMMA 4.3. Let the assumptions of Lemma 4.1 be satisfied, and suppose that
the case vy = 0, 7¢ # 0, ¢ # 0 is in effect. Then, the following statements are
equivalent when k >0 and —k+1 <1 <k:

(i) (uk,vk) is column-regular, i.e., (4.10) holds;
(ii) the matrices Sx—1 and Sy are nonsingular;
(iii) the equations (4.17)—~(4.21) have a unique pair of solutions, and the corre-
sponding residuals (e;, ;i) and (¢ ;&) satisfy e, (00) # 0 and é; (0) # 0;
(iv) the equations (4.17)—(4.21) have a pair of solutions whose corresponding resid-
uals (e ;e)) and (& ;) satisfy ey (00) # 0 and & (0) # 0;
(V) v, and ¥, are relatively prime, and (g~ un~+f~"vn) = 1—1if v, is a (nonzero)
constant.
(If k = 1, the empty matriz Sk_1 is considered to be nonsingular, and equations (4.18)
and (4.21) are considered to have a unique vacuous solution.)

Proof. Assume (i, 0n), (Un,vs) is a normalized column-regular pair. Note that
with (un,v,) any other [I; k] two-point Padé form is also column-regular, since the
quotient u/v is independent of the chosen two-point Padé form. Hence, by Lemma 4.2
(iii), the linear system with matrix S; and right-hand side e;e; (c0) cannot have a
nontrivial solution with e, (c0) = 0 or dx_1x = 0. Consequently, Sy is nonsingular,
and in view of (4.23), Si_1 also is nonsingular; i.e., (ii) holds. From the nonsingularity
of Sy it follows that (4.17)—(4.21) have a unique pair of solutions. By (4.23) it follows
further that det Sy, # 0 implies e, (c0) # 0 and &/ (0) # 0, as we have just seen. This
completes the verification of (ii) = (iii). The implication (iii) = (iv) is trivial;
and by Lemma 4.2, (iv) clearly implies that the corresponding two-point Padé form
(tn,vy) is column-regular; hence, we are back at (i).

The proof of equivalence for (i) and (v) is basically the same as for the equivalence
of statements (i) and (viii) of Lemma 3.1. The only difference is that, now, when v,
is a constant and (uy,v,) is an [[; k] two-point Padé form, then the latter is not an
[l — 1; k] two-point Padé form if and only if e, (co0) # 0, i.e., (g un + fvn) =1—1.
a

5. Look-ahead Levinson- and Schur-type recurrences. After these prelim-
inaries we can formulate a theorem about general recurrence relations for the Padé
table. As a special case it contains recurrences that follow two adjacent rows of the
Padé table, as indicated in Fig. 1. They yield generalizations of both the algorithms
of Levinson and Schur to nonnormal tables. Moreover, unlike some of the older algo-
rithms that can only handle exact breakdowns, these recurrences are general enough
to skip over near-breakdowns. Other algorithms that can handle near-breakdowns,
but use different recurrences, were given in [11, 10, 12, 17, 20, 23].

THEOREM 5.1. Let (pn,qn) be a column-regular (m,n) Padé form of h € L with
residual e, and let (Pn,dn) and é, be an (m — 1,n) Padé form and its residual.



ETNA

Kent State University
etna@mcs.kent.edu

116 Look-ahead Levinson- and Schur-type recurrences

(i) If |l| < k or|l] =k >0, and if (u,(cn),v,(cn)) is an [l; k] two-point Padé form
with residual (e, ,e}) of

(5.1) (Fg T g™) = (™ pn, " P eny én),

then Ovi < k — 1 holds, and the recurrence formula

Pn+k Dn Pn Cu(")
<k+len+k Cilén en U,

yields an (m +1,n + k) Padé form (Pntk,qn+k) of h and its residual ey 4k, which is
equal to 62—, while e;; is equal to ™ Ytk

(i) If, moreover, —k +1 <1 <k and (ﬁ,(cn),@,(cn)) is an [l — 1; k] two-point Padé
orm of (5.1) with residual é(n)_; glm+ , then 5™ < k—1 holds, and the recurrence
J f ( k k k
formula

ﬁnJrk Pn+k Pn Pn ~(n) (n)
~ ~ u u
(53) An+k An+k = qn qn [ CA(]:L) ‘ (l’fl) ‘|
<k+l71én+k Ck+len+k C_lén €n k

yields in addition to the (m +l,n + k) Padé form (Dntk,qn+k) and its residual €4k
also an (m+1—1,n+k) Padé form (Pn+k,dn+r) of h and the corresponding residual
€n+k, which is equal to é,(an, while é,(cn)7 is equal to (:_m_l“ﬁn_,rk. The new Padé
form (Pn+k, @uik) is column-regular if and only if the two-point Padé form (u,(en), v,g"))
is column-regular.

When the two-point Padé form (ufcn), v,gn)) is column-regular, we say that (n;k)
is a column-regular index pair.

Proof. For simplicity we delete the upper index (™ in the proof.

(i) Consider (5.2) as the definition of its left-hand side. First, since (ug,vg) €
Pr—1 X Pr and Gn,qn € Pn, it follows that ¢,i+r € Ppir. Second, we note that
Opn, = m by Lemma 3.1(iii), and é,(0) # 0 by Lemma 3.1(iv). Hence, the data (5.1)
satisfy (4.3). By definition of (ug,vy) as an [I; k] two-point Padé form we have then
according to (4.5).

9wk + ok = C Pk + ¢ o = (el T = 0-(¢Y),
Therefore,
Prtk = Chttg, + paoy, = ¢ el ™ = O (¢,
i.€., Opn+r < m+I, and e,(cn)7 = ("™ pyik. Inview of 9p, < m—1, we have v, =0

and from O((pnpur) < m+k —1 we obtain dvy, < k — 1, i.e., Brr = 0. Moreover,
from

g uk 4+ frok = énuk + envr, = Ck+l€;in)+ =04 (¢M)
it follows that

enpr = CTF e up + equp) = e§€n)+ =04 (1).
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A(n)+

Hence, epqr = € € Ly. From the definitions of p,, ¢n, €n, Pn, Gn, and é, one

easily verifies that

Cm-f—n-f—lgk-f—l

hQn+k — Pn+k = Entk-

This means that (pn4k, ¢ntk) is an (m + I,n + k) Padé form of h, and that e,y is
the corresponding residual.

(i) The first part is proved by simply replacing I by I — 1 and (uk, vx) by (tk, Ok)
n (5.2). The final sentence follows by taking determinants in (5.3):

det [ ootk Proth ] = (det {13” P }det [ Uk ] £ 0.
Gn+k Atk n  4n Uk Uk
a

The analogous recurrences for a two-point Padé table of data satisfying (4.3) are
given in the following theorem.

THEOREM 5.2. Let (m,n) € Z x N satisfy —n+1 < m < n, and let (un,v,)
be a column-regular [m;n] two -point Padé form with residual (e,,;e}) of a quadruple
(f~,97;fT,g") satisfying (4.3). Moreover, let (i, 9,) be an [m — 1;n] two-point
Padé form with residual (¢, ;) of the same data.

(i) If (I, k) € Z x N satisfies |I| <k or |I| = k > 0, and if (u,(en),v,(ﬁn)) is an [I; k]
two-point Padé form with residual (e, (n)= nH) of
(5.4) (Clen ¢ lensel eh)

no n»-m»-nl

then 81),2”) <k —1 holds and the recurrence formula

Un+k Up Un (n)
'UnJrk Un, Un Cu "
5.9 = 1A = k
( ) nik C 1en €n [ ’Ul(:’) 1
Ck+l n+k C_lért e+

yields an [m + l;n + k] two-point Padé form (unik,Vnik) of (f 7,975 fT,9") and its
residual (e, ;e ;r+k) which is equal to (e, (n)= (n)+)
(i) If, moreover, —k +1 <1 <k and (uk ,v,(C )) is an [l — 1; k] two-point Padé

form with residual (&, (m)= nH) of (5.4), then 8vkn) <k —1 and we obtain from

Untk Un+k i u
An+ n+ “n n () n)
(56) lv?Jrf 'll)nirk — 'Uln Un Cuk Cuk
g+l Tngk 1§+elnik Ciléi e,}r A
C enJrk C n+k C €n €

additionally an [m+1—1;n+k] two-point Padé form (tin+k, Ontr) and the correspond-
A(n)— A(n)+
(€, )-

form (Un4k, Vn+k) s column-regular if and only if (un ,vfm )) is column-regular.

Proof. The proof is similar to the one of Theorem 5.1.
(i) From iy, Uy, € Pp_1, and Op, v, € Py, it follows that (wpik, Untk) € Pnyk—1 X
Ptk By assumption, (i, 0y) and (un, v,) are [m — 1;n] and [m; n| two-point Padé

forms of the quadruple (f~,¢7; f*,g"), and (u,in),v,g"))

ing residual (A;HC, A:L'Jrk) which is equal to The new two-point Padé

is an [I; k] two-point Padé
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form of (¢~le ,C_ ¢, eb,ér). Note that the latter data satisfy (4.3) according to

Lemma 4.2 (ii) and (iii). Therefore, we have
g Unik + f_v7z+k = C(g_ﬂn + f_@n)u](gn) + (g_un + f_vn)vl(gn)
= (T eu 4 ¢lepul)
_ Cm—&-l—lel(vn)* _ _(Cm—&-l 1)
and
g+un+k + f+Un+k = C(9+ﬁ + f+77n)uggn) + (9+un + f+Un)U1(gn)

_ <m+n( + (")_|_6+ (”))

_ <7n+n+k+lel(€n)+ — +(<m+n+k+l).

Hence, (un+tk,Untk) is an [m + k,n + ] two-point Padé form with residual
(enairi€mip) = (e,in) ,(C")Jr). Note that as in Theorem 5.1 we always have 8v,(€") <
k —1, due to a(enuk) <k-1.

(i) The first part follows from (i) by replacing I by | — 1 and (un, vy) by (tn, On).
The second part is proved by taking determinants in (5.6):

R (n) (")
det [ ik } = (det [ oo ]det by |20
Vntk  Untk Un Un Uk Yk

=33

a

Recall that the data (5.1) always fulfills 7y = 0 and ¢; # 0. Therefore,
Lemma 4.2 ensures that we can normalize 4y to be monic of degree k — 1 (i.e.,
dg—1,, = 1) and v to be comonic (i.e., fo = 1). Then, if §, is monic and g, is
comonic, the recursion (5.3) leads to a monic polynomial g4+ and a comonic poly-
nomial g,+r. Hence, the recursion derived in Theorem 5.1 is compatible with the
normalization. There is no need to renormalize the resulting Padé form. The same is
true for the two-point Padé form recursion of Theorem 5.2.

6. Look-ahead strategies and numerical stability. For the development of
stable algorithms for computing Padé approximants or solving Toeplitz systems it is
not sufficient to work with column-regular Padé forms. In fact, column-regular Padé
forms are useful only from a theoretical point of view. For finite precision arithmetic
we need numerically stable algorithms and likewise for exact arithmetic we need ver-
sions that keep the memory requirement under control. Numerical stability should
hold at least for well-conditioned problems, in which case forward and backward sta-
bility are equivalent. Hence, we set m := 0 and assume that our aim is to compute
(PN, Gn) and/or (pn,qn) for some N for which, in view of the Yule-Walker equa-
tions (2.13), the matrix Ty := T,y is well conditioned. Such generalizations of
the Schur and Levinson algorithms can be based on well-column-regular Padé forms,
which are defined as follows [22]. We denote the coefficient vectors of the normalized
polynomials ¢, and g, by
(61) (Aln = [ ﬁO,n e ﬁnfl,n 1 ]T) qn = [ 1 ﬁl,n e ﬁn,n ]T

DEFINITION. The normalized column-regular pair (P, Gn), (Pn, gn) of Padé forms
is well-column-regular if ||q,|], ||dn|| < Tol(n) and (|énn] =) |mon| > tol(n). The
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index n is then also called well-column-regular. Here, tol(n) > 0 and Tol(n) > 1
denote given tolerances that are monotone increasing functions of n.
Column-regularity means that || T, || and ||T, ||| are a priori bounded. In [22]
we proved the following lemma.
LEMMA 6.1. If n is well-column-regular, then

1 —1 W
max { || T[], [T, 11|} < 2n tol(n)

Conversely, if ||Tn|| <, ||T| < 7', and || T, 14| < 7', then

max {[|Gn ||, [lan|l} < V1+ (777)?

and

1

R 1 N
|€n,n| = |enn| > g max {||qnl], ||qn|} > s

Since we want to assume that ||Ty|| is a priori bounded as well, which implies
that the same bound holds for the norms of T,, and T,,11, it follows that the latter
two matrices are well conditioned if n is well-column-regular. This yields an equivalent
definition of a well-column-regular index, which was proposed in [20]. A fortiori, any
well-column-regular Padé form is column-regular.

In each step of a Levinson or Schur algorithm based on Theorem 5.1 we need to
check if ¢, 1x and ¢+ are part of a well-column-regular Padé form, and if the answer
is negative, we have to repeat this check for the next k. If the above definition is
applied, ||Gn+txl|, [|An+r]l, and |70 ntk| must be computed for all these values of k. In
the Schur algorithm, these vectors are normally not available, however.

Following an approach first suggested in [20] and detailed in [22], we may instead
use the results of the two-point Padé problems to control the process. The basic idea
is that small coefficient vectors of the polynomials ﬁ,in), @,gn), u,(:b), and v,g") in (5.3)
guarantee that ||qn+x|| and ||qn+x|| do not become very large. This gave rise to the
following definition of well-column-regular index pairs of the two-point Padé problem
used in the recursion [22].

DEFINITION. The column-regular index pair (n; k) is well-column-regular if, for
a suitable tolerance function Tol(n; k) > 1, the corresponding coefficient vectors am,
b, a™ b ¢ C* of the two-point Padé forms (ﬁ,in),@,gn)), (u,(cn),v,(cn)) normalized

by ‘5‘1(21,k =1 and B(()nk) , respectively, satisfy

an) am
o [0 ) < oot [[ 2] < ot
and if
(6.3) (Jentrmsrl =) [Tomsrl > tolln + k)
holds.

The new tolerance function Tol(n;k) in (6.2) should be compatible with Tol(n)
in the sense that (6.2) implies that n + k is a well-column-regular index if n is a
well-column-regular index. Lemma 6.1 in [22] shows that such compatible tolerance
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functions exist. However, it seems difficult to prove the compatibility of practically
useful such functions.

Finally, in view of (4.18) and (4.21), it is plausible that the condition (6.2) can
be satisfied if the corresponding matrix S;_; is sufficiently well conditioned and the
right-hand sides of (4.18) and (4.21) are sufficiently small. Since, in our recurrences,
these right-hand sides contain coefficients of the numerators and residuals, see (5.1),
one can conclude from (2.10) that they are in fact small if the coefficient vectors qy,
q» of ¢, and g, are sufficiently small, which we may assume since n is a well-column-
regular index. (Note that p, and e, are both made up of sections of the Laurent
series hq,, and, likewise, p,, and é,, are extracted from hg,.)

In summary, a look-ahead strategy may be based on checking that n + k is a
well-column-regular index, or on checking that (n; k) is a well-column-regular index
pair, or on a direct estimate (or even the determination) of the condition number
of Si_1. This leads to various versions of the algorithms, with different look-ahead
overhead; see the discussion in §6 and §11 of [22].

7. Formally biorthogonal polynomials and matrix factorizations. It is
well known that the classical Levinson and Schur algorithms yield an inverse LDU
factorization and an ordinary LDU factorization, respectively, of the given Toeplitz
matrix. The factors of the inverse factorization contain the coefficients of the Szegd
polynomials. It is also known that the application of look-ahead leads to corresponding
block factorizations [10, 17, 20, 22]. But so far, our algorithms only produce the first
column of each block of the block triangular factors. Here, we want to show how
to compute the other columns efficiently. We restrict ourselves to the Levinson case,
i.e., the inverse block LDU factorization. Analogous recursions hold in the Schur case.
They are given in [22], where the efficient construction of the block diagonal is also
discussed.

Given h € L, or, equivalently, the doubly infinite sequence {su;}72 _ of coeffi-
cients, we define a sesquilinear functional (-,-) on P x P by its values

(7.1) (') = picj, (i.§) ENXN.

For arbitrary polynomials s and ¢ of degree less than n represented by
(7:2) s(Q) =:> oi¢/, HO) =D 7,
j=0 j=0

we set 0; = 7; = 0 for j > n and introduce the infinite coefficient vectors

(7.3) s:=[o9g -+ on O "']T, t:=[7mn -+ 7 O ]T
Then, it is well known and easily verified that
oo
(74) <S,t> = Z U_iﬂi—jTj- = SHTlt7
i,j=0

where T := [p;—;]55_ is the Toeplitz operator with the symbol A (¢) = S k.
DEFINITION. s € P,\P,_1 is called an nth left formally biorthogonal polynomial
(LOP), and t € P,\Pp_1 is called an nth right formally biorthogonal polynomial
(ROP) if
(
(

) (s,¢) =

5 , 7=0,...,n—1,
-6) (¢t =

7
7 , 1=0,...,n—1,
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respectively. An nth LOP or ROP is said to be regular if it is uniquely determined
up to scaling; otherwise, it is singular.
If we further define the conjugate reflected polynomial s* of an nth LOP s by

(7.7) Q) = ¢S = YTl
1=0

then (7.5) and (7.6) can be written as
(78) len(hs*) =0 and Ho;nfl(ht) = 0,

respectively. Thus, the conjugate reflected polynomial s* of an nth LOP s is equal to
the second member g, of a (0,n) Padé form (py, g,) of h, while an nth ROP ¢ is equal
to a second member ¢, of a (—1,n) Padé form (pn, ¢») [8, 7]. From now on we therefore
denote an nth LOP by ¢ and an nth ROP by ¢,,. Since both the LOP and the ROP
need to have exact degree n, they can be normalized to be monic. Then the conditions
(7.5) and (7.6), when expressed in terms of the polynomial coefficients, become exactly
the Yule-Walker equations (2.13) with m = 0. The required uniqueness of a regular
normalized LOP and ROP is thus seen to be equivalent to the nonsingularity of
T,, := To.,. In particular, it follows that the nth LOP is regular if and only if the
nth ROP is. Moreover, from the block structure of the Padé table it follows that they
are regular if and only if the (0,n) Padé approximant p,, /g, lies in the first column
or the first row of its block. Such a Padé approximant is also characterized by being
different from its upper-left neighbor. In this case, the Padé form (p,,qy) is called
regular also [9, 20].

In the generic case where ¢ and g, are regular for every n, these polynomials are
called Szegd polynomials. When T is Hermitian, ¢}; = ¢,. Szeg6 only considered the
special case where T is additionally positive definite and the polynomials are classical
orthogonal polynomials.

In the context of this paper we have been dealing only with a subset of the
regular LOPs and ROPs. First, our algorithms (if applied with m = 0), only generate
column-regular Padé forms (pn,qn) and their upper neighbors (p,, §n). According
to Lemma 3.1 this means that in addition to T,, also T,;; must be nonsingular.
Moreover, for stability reasons, these matrices should not be close to singular, but
well conditioned, in which case we called the two Padé forms a well-column-regular
pair. The index n was also said to be well-column-regular.

In the following we let {nj}fzo (with J < o0) be such a subsequence of well-
column-regular indices. For the other indices we introduce inner LOPs and ROPs as
follows.

DEFINITION. For nj =n <n+k < njy1, an (n+ k)th inner LOP ¢}, and an
(n + k)th inner ROP §,,41 are any polynomials of exact degree n + k satisfying

(7.9) (@ ihrC') =0, i=0,...,n,
(7.10) (¢, Gnri) =0, i=0,...,n,
respectively.

Note that the column-regular LOP and ROP with index n = n; satisfy the
biorthogonality conditions in (7.9) and (7.10), respectively, except for i = n;. More-
over, if an inner LOP and an inner ROP with exact degree n; + 1 exist (and we will
see soon that they do), then they are still regular, but, in general, not column-regular.
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In fact, in Fig. 1, where the exactly singular blocks are shown, it is evident that each
first inner pair lies in the first column of a singular block; hence, this inner pair is not
column-regular, but both (pn, ¢,) and (pn, §») are regular Padé forms.

Our next aim is to derive formulas for computing inner formally biorthogonal
polynomials from the last pair of well-column-regular ones. First, we present two
technical lemmas:

LEMMA 7.1. Let h € L and the associated sesquilinear functional (.,.) specified
by (7.1) be given, and let k,n > 0. For ¢4k € Pnyr and q;ﬁk(C*l) = (" g 11(0),
the following statements are equivalent:

(i) (qT*L+k,Ci> =0fori=0,...,n;

(11) Hk:n+k(hqn+k) = 0;

(ili) there exists pnyr € Lf_, such that

(7.11) hantk — Pnyk = 0+(Cn+k+1)'

Proof. All three statements translate into Z?i(f Pen+kbntki—i—e =0,0=0,...,n.
a

LEMMA 7.2. Let h € L and the associated sesquilinear functional (.,.) specified
by (7.1) be given, and let k,n > 0. For Gnix € Pnyr the following statements are
equivalent:

(1) <<l7d7z+k> =0 fOT 1= 07 N )

(ii) HO:n(h(jnﬂc) =0;

(iii) there exists ppyr € L* such that

(7.12) hinik — Pk = O (¢"H).

Proof. Here, the three statements are equivalent to Z?iok Wi—epe=0,1=0,...,n.
a

From (7.12) we see that (Pn4k,dn+r) can be thought of as a underdetermined
(—1,n) Padé form when k > 1: instead of O4(¢"™*) we only require O, (¢"*1).
Likewise, (7.11) specifies another type of underdetermined (0,n) Padé form when
k > 1: here, the condition p,r € L£j,_; relaxes the usual requirement p,, 11 € L of a
(0,n) Padé form.

Next we give the desired update formulas for the inner polynomials.

THEOREM 7.3. Let (pn,qn) be a column-regular (0,n) Padé form of h, and let e,
be its residual. Moreover, let (bn,Gn) be a (—1,n) Padé form of h with residual é,.

(1) If, for k >0, u,(:b) € Pr_1 is a solution of
(7.13) el + e, = 04(CY),
and if we define

5 (n)
Pn+k CDn  Pn U

7.14 = R
( ) |:Qn+k:| |:CQ7L Qn:||: 1 ]
then ppik € L5_1, qntk € Prtk, ¢ntr(0) # 0, and the condition (7.11) is satisfied.

(it) If, for k >0, @,gn) € Pr_1 is a solution of

(7.15) P + paty” = 0_(¢7Y),
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and if we define
7 16 ﬁn—i—k L Cﬁn Pn Ck_l
( . ) ~ = CA ~(n) y
qn+k dn dn Uy,

then Pnik € L* 1, Gnik € Pntk, OGntr = n+k, and the condition (7.12) is satisfied.

Proof. (i) By (7.14), clearly gnir € Pn+r. We have ¢,(0) # 0, since (pn,qn)
is a column-regular (0,n) Padé form of h. Thus, from (7.14) we also conclude that
dn+k(0) = ¢n(0) # 0. Due to the column-regularity of (pn, ¢n), we have dp, = 0 and
0pn, < —1, which leads to pp4x € L£f_,. Moreover,

hQnJrk —Pn+k = h(g(jnugl) + Qn) - (Cﬁnu]in) +pn)
C”+1(énu,(€n) +en).

This shows that (7.11) follows from (7.13).

(ii) From (7.16) it follows immediately that Odn+r = n + k, since 0¢,, = n and
0¢n < n. Additionally, we see from (7.15) and (7.16) that p,1r € £*,. Finally, by
the column-regularity of (p,, ¢,), we obtain

hinik —Drsk = h(CFGn + gnd\™) = (CFpn + pntl™)
Cn+1(<k—1én +€n17;(€n))7

which implies (7.12). O

From the Lemmas 7.1 and 7.2 it follows that Theorem 7.3 yields in fact inner
LOPs and ROPs. As mentioned before, the first inner pair consists here of regular
Padé forms; see Fig. 1.

COROLLARY 7.4. Let the assumptions of Theorem 7.3 be satisfied, let ¢y and
Gn+k be given by the update formulas (7.14) and (7.16), respectively, and let gy, ;. (C) :=
C"*qn11(C) as in Lemmas 7.1. Then, for k > 0, the biorthogonality properties (7.9)-
(7.10) hold. Hence, for 0 < k < nji1 —nj, the polynomials q}; ;. and Gnyr are inner
LOPs and ROPs, respectively. Moreover, the first such pair, q;,q and Gni1 even
consists of a regular (n + 1)st LOP and a regular (n + 1)st ROP.

Proof. (7.9) is a consequence of p, 4 € L} _,, (7.11), and Lemma 7.1. Similarly,
(7.10) follows from ppyr € L£*,, (7.12), and Lemma 7.2. O

We would like to stress that the column-regularity of (py, ¢, ) implies that solutions

ugl), f),g") € Pi—1 of (7.13) and (7.15) exist. To be precise, if

k—1 k-1
(7.17) w =y, e =Y A
j=0 §=0
then the coefficients vé"), e ,"/;(!1)1 solve the first k equations of the infinite lower

triangular Toeplitz system

(7.18)
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and the coefficients '?én), e ,’y,(cri)l, which are indexed in reverse order, solve the first

k equations of

~(n)

To,n Yo ﬁl,n
7.19 S : )
( ) Tk—1m *°° TOn ,3/(n) Tk,n

k—1

These linear systems are nonsingular, since for a column-regular (0,n) Padé form,
én(0) =&, # 0 and dp, =0, i.e., Mo, # 0. Note that the coeflicients in (7.17) and

(7.19) do not depend on k. It is just the number of coefficients 71.(”) and ’yi(n) that
accounts for the dependence on k. This is due to the triangular Toeplitz structure of
the two linear systems, which is also responsible for the particularly simple recurrences

(n) 5,

for the polynomials u;, ~ and ¥, ’: for the coefficients we have

’Y(gn) - 5n n/én s

7.20
( ) J<n) <€n+jn+21 0 Entj— zn’Yz )/Enn forj=1,....,k—1,

A = — 2y /R0,

7.21 . .
(7.21) J(n) (W]Jrln"_Zz 0 Mj— ln’Yz )/Won forj=1,....k -1

(n)

Hence, for the polynomials w,,~ and f),g")

, the following recurrences hold:

(7.22) u" =ng", up = a0 fork=2,3,.
. in) ,’y(n) ’\(n) — /y]i’n)l + 4— (n) fo]:' k _ 27 3’ o

Inserting this into the update formulas of Theorem 7.3 yields simple recurrences for
the inner polynomials also:

THEOREM 7.5. Let the assumptions of Theorem 7.3 be satisfied and let, with
n=mn;j,
(7-23) qn+1 = CQH'YO +4qn and @n—i—l = C(jn + Qn'AY(()n)-
Then, g is a regular (n + 1)st LOP and §ny1 is a reqular (n + 1)st ROP. More-
over, for the inner LOPs and ROPs of Theorem 7.3 and Corollary 7.4, the following
recurrences hold:
(7 24) In+k :Ckilfjn%(i)l +Qn+k71 fO’]"k = 27"~;nj+1 —ny; — ]-7

(jn-i-k = Cq7l+k‘—1 + q’n’Ay]S;ri)l fO?” k = 27 ey 7nj+1 — n] —1.

8. A superfast algorithm. As mentioned before, depending on what exactly is
computed, the recurrences (5.3) of Theorem 5.1 give rise to both a look-ahead Schur
and a look-ahead Levinson algorithm for computing an (m, N') Padé form of h. For the
generalization of Levinson’s algorithm only the denomlnatorb of the Padé forms are
used, while the generalization of Schur’s algorithm requires computing residuals and
numerators of the Padé forms. We do not discuss the details of the O(N?) algorithms
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here, since they can be found in [22]. But additionally, the recurrences derived in
§5 also lead to superfast O(N log® N ) algorithms, and such an algorithm is what we
want to discuss here. It differs from the one that has been outlined in [22] in that it
is implemented in just one procedure that calls itself recursively.

A superfast algorithm is a variant of the Schur algorithm; it mainly works with
residuals and numerators of Padé forms. The basic idea is the following. Let us
assume that {n;};_, (with J < oo and n; = N) is a subsequence of well-column-
regular indices, and, as before, let h; :=nj;1 —n;. We only compute Padé forms for
such indices. From (5.3) we have

ﬁnJ an
qA’VLJ dny
Cn‘]_lén,] CnJenJ
(8.1a)
ﬁn,]—1 DPrys Cﬁl;:u—l) Cugbn‘ffl)
- qAnJ,l An;_y ~ nJ:1 ’ﬂJZl
= ’U( J—1) (ny-1)
Cn"717 €ny_1 Cn1716n171 ha—a ho—1
ﬁno DPng J-1 ’[Aj,(nj) Cu(nj)
~ h; hj
(8.1D) =| o ae | ]] l S0 )
(M ey, (Mey, | g=0 hj hj

Hence, we can compute the numerators, denominators, and residuals of a well-column-
regular Padé form by evaluating the product of 2 X 2 matrices whose entries are poly-
nomials of degrees h; — 1. Of course, using the Padé conditions (2.10), we could
instead compute the numerators and residuals from the denominators, but this in-
volves convolutions that we want to avoid here. Note that when ny = 0 (which is
normally the case), and when we replace ug by 0if K <m— N or k > m+ N (because
these coefficients are irrelevant for the denominators of the (m — 1, N) and (m, N)
Padé forms), then the left matrix in (8.1b) is just

Do Po ILy—Nim—1 h ILy—Nm B
<71é0 €0 Cile:m+N h Hm+1:m+N h

Note that all the coeflicients of the Laurent polynomials in this matrix are given
coefficients of h.

To achieve a superfast algorithm, we build up the product in (8.1b) according
to a binary tree, starting on one side, at j = 0. Since the factors of this product,
which contain the low-degree two-point Padé forms, are not known in advance, they
need to be determined during the process. To compute these two-point Padé forms,
the numerators and residuals of the already determined Padé forms are required; see
Theorem 5.1. These numerators and residuals could also be updated from step to
step, namely by making use of the first and third row of (8.1b); see (5.3). However,
to do this for each j would be too costly and would conflict with the evaluation of the
product via the binary tree. However, we can think of these numerators and residuals
as residuals of two-point Padé forms, and then refer to Theorem 5.2 instead. Then
we actually have to solve a binary tree of two-point Padé problems; on those levels of
the tree where there are many of these problems, they are small and depend only on
few data. Here is a summary of this algorithm:
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SUPERFAST LOOK-AHEAD SCHUR ALGORITHM:
Computes the denominators of an (m; N) and an (m — 1; N) Padé form of h.

Al) Set n :=0; increase n until it is a well-column-regular index;
set ng :=n;

A2) solve (2.13) to obtain g, and gp,;

A3) evaluate

ﬁno = HmfN+n0:m71 h(jnoa Png = HmfN+n0:m h(Jnoa
and
s —m—nop o —m—no—1
€ngy = HO:ano C m nOhQno; €ng ‘= HO:anofl C momno hQn[y

A4) [’I’L, U, Uy Uns Uny Mot ﬂa'g]
= COLDACZ(tTUG, nOa Na C_m_lpnoa C_mﬁnm 6"07 énoa n0)7
A5) if Ntot — N

C’&n Cun
,l’) )

n v’ﬂ

Lav av ] o= [ du qno][

else
stop, the problem is ill-conditioned
end

PROCEDURE COLDAC2:

For minimal N € [N, N], and f~,g~, fT,g" satisfying (4.3) or (4.4), a well-column-
regular pair of two-point Padé forms is computed. If dac is true, than a divide and
conquer strategy is applied; otherwise a linear system is solved.

[Na ﬁNa 'lA)Na UN,UN, ntotvﬂa’g] = COLDACQ(dac,ﬂ, Na fia g, f+7 g+7 ntOt);
if dac and N > 2
B1)
[TL, U, On,, Un s Uny ntot;ﬂag]
= COLDACQ(true, Lﬂ/2JaN -1, fivgiv f+ag+7nt0t);
B2) if flag and n =0
[Na ﬂNa 'lA)Na UN,UN, ntotvﬂa’g] = COLDACQ(false,M, Na f+7 g+a f77 g, ntOt);
return
end if;
B3) evaluate

€n 0540 9 On + f0n),
& = Moy, ¢ g an + fTon),
en = I g, .0C0 un+ fun),
ef = Tyx_, ¢ (g un + fTon);

) [k A(" Al(cn) u](:) Ul(c) ntotaﬂag]
COLDAC2(true N —n,N—n, (e, (ley &f el nior);
if flag and k =0
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N = nyot;
return
end if;

B5) N :=n+k, flag := false;

|: Uptk  Untk :| — |: Uy Up :| [ Cﬂ](gn) Cu](gn) ]

@n—i-k Un+k

Un Up Uy, v
return
else
Cl) k:=N;
while (not; k) is not a well-column-regular index pair and k < N
set k:=k+1
end while;
if (ntot; k) is a well-column-regular index pair
flag := false, N := k, niot := nior + k;
solve (4.18) and (4.21) to obtain 4y, On, un, VN
else
N =0, flag := true
end if;
return
end if
To discuss the computational work, let us first assume that n; =7, j =0,...,J,

i.e., every index is well-column-regular, and that N = n is a power of 2. Then a call
to COLDAC2 splits the problem into two problems of half the size. There are log, N
steps of reduction before we finally end up with N system of size one. On level /,
where £ problems of size N/¢ are solved, the work inside the procedure COLDAC2 is of
order O((N/¢)log(N/?¢)) if all polynomial multiplications are done by FFT techniques.
Hence, the total on level £ is O(N log(N/¢)) = O(N log N). Summing over ¢ from 1
to loga N yields a total complexity of O(N log® N).

If look-ahead steps occur, then a call to COLDAC2 may not split the problem
into two tasks of equal size. Instead it will find a splitting into two well-conditioned
problems of approximately half the size. As long as the look-ahead step size remains
bounded independent of N, the order of complexity of the algorithm is not affected
by look-ahead.

It is worth mentioning that in the generic case, i.e., without look-ahead, the
algorithm reduces to de Hoog’s algorithm [14]. Since the look-ahead overhead is
small, not only the order of complexity but the actual number of operations and the
memory requirement of our generalization should be roughly the same as for de Hoog’s
algorithm.

Note also that the superfast algorithm presented in [22] differs in one point.
There, we compute ~ logs N column-regular pairs g, ¢, (namely, in the absence of
look-ahead steps for every n = 2¢, £ = 1,... log, N), while the algorithm proposed
here yields only gy, qn. For the algorithm in [22], we therefore had to cope with
two types of recursive procedures, one for computing the Padé forms, the other for
computing the two-point Padé forms. Thus, the algorithm proposed here reduces the
programming effort. The two versions are mathematically equivalent; numerically,
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they are not identical, but the difference in numerical results will normally be very
small.
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