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MULTILEVEL PRECONDITIONERS FOR LAGRANGE MULTIPLIERS IN
DOMAIN IMBEDDING∗

JANNE MARTIKAINEN†, TUOMO ROSSI†, AND JARI TOIVANEN†

Abstract. A domain imbedding method where the Dirichlet boundary conditions are treated using boundary
supported Lagrange multipliers is considered. The discretization leads to a saddle-point problem which is solved
iteratively by using either the PMINRES method with a block-diagonal preconditioner or the PCG method in an
Uzawa type approach. In both cases, the preconditioning of the Schur complement related to Lagrange multipliers is
based on a special sparse implementation of BPX/MDS method. The developed preconditioning technique is well-
suited even for three-dimensional problems in domains with complicated shapes. Several numerical experiments for
two-dimensional and three-dimensional problems demonstrate the efficiency and the applicability of the proposed
method.

Key words. domain imbedding method, Lagrange multipliers, multilevel methods, preconditioning

AMS subject classifications. 65F10, 65N22, 65N55

1. Introduction. In this paper, we shall consider the efficient numerical solution of
second-order elliptic Dirichlet boundary value problems by a domain imbedding method also
known as a fictitious domain method. There exist several variants of these methods for such
problems. One possibility is to use standard finite element approximation of the problem, and
by suitably extending the arising coefficient matrix one gets an enlarged matrix for which it
may be easier to construct an efficient solution procedure. We call them algebraic methods
which include among others those considered in [12], [17]. However, they are typically
restricted to quite a narrow class of problems.

More flexibility and better efficiency can be obtained by using mixed formulations with
Lagrange multipliers to handle Dirichlet boundary value constraints. In such a way one can,
for example, incorporate standard implementations of efficient multilevel techniques to the
domain imbedding framework. This leads to an optimal preconditioning technique for prob-
lems posed on domains for which it is difficult to construct hierarchical sequences of meshes
[20]. One possibility is to use volume distributed Lagrange multipliers. In [18], this approach
has been applied to particulate flow problems governed by the Navier-Stokes equation. The
optimal preconditioning of elliptic Dirichlet boundary value problems by the distributed La-
grange multiplier fictitious domain method was introduced in [19]. In [20], the method was
extended to mixed boundary value problems, and its performance was demonstrated by a set
of numerical experiments.

Another way is to use boundary supported Lagrange multipliers [2], [6]. In domain
imbedding framework, they have been used in [14], [26], [32], [35], [38], for example. Typ-
ically, a K1/2-type preconditioner [4], [7], [13], [15], [21], [36] is used for Lagrange multi-
pliers. With this approach one can also obtain optimal computational cost, but the procedures
for K1/2-type preconditioners in the literature are restricted to two-dimensional problems.
An alternative preconditioner for Lagrange multipliers in two-dimensional problems based
on the H(div)-inner product was studied in [25].

Here, we consider a sparse multilevel preconditioner for boundary Lagrange multipliers.
It is based on a multilevel nodal basis (BPX) preconditioner [8] or a multilevel diagonal scal-
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ing (MDS) preconditioner [43]. A sparse version of BPX was proposed as an edge precondi-
tioner for domain decomposition problems in [42]. In an overlapping domain decomposition
method, a preconditioner for Lagrange multipliers based on the sparse BPX was considered
in [33]. A similar approach was used for the Mortar element method in [1]. A closely related
idea to use a sparse version of an algebraic multigrid method was briefly considered in [31].
When a preconditioner is constructed for Lagrange multipliers, the action of the inverse of the
sparse BPX or MDS is required. This can be accomplished by using an iterative procedure,
such as the CG method or Chebyshev method. This approach was also suggested in [32].

There are two distinct advantages on a sparse multilevel preconditioner for Lagrange
multipliers. They can be used for three-dimensional problems while other preconditioners for
Lagrange multipliers seem to be restricted for two-dimensional problems. Secondly, bound-
aries can have quite complicated geometry and such a preconditioner is still easily applicable
and optimal in quite many cases. As our numerical experiments seem to imply, the proposed
domain imbedding method is well-suited for problems with complicated domains, excluding
perhaps only domains with fractal boundaries. Special multigrid methods for such domains
are rather involved and in many cases they are not optimal; see [9], [28], [29], for example.

The rest of this paper is organized as follows: In Section 2, we define the model saddle-
point problem. In Section 2.1, we consider multilevel approximations for the inverse of the
second-order elliptic operator. Some assumptions on Lagrange multipliers are given in Sec-
tion 2.2. We use a block diagonal preconditioner and a Uzawa type algorithm in the solution
of the model saddle-point problem in Section 3 and Section 4, respectively. In Section 5.1, we
consider some of the possible preconditioners for primal variables. We introduce and study
the sparse multilevel preconditioner in Section 5.2. Furthermore, the use of the CG method
and the Chebyshev method in the inner iteration is considered. Finally, we perform numeri-
cal experiments using proposed methods with several two-dimensional and three-dimensional
problems in Section 6. These experiments demonstrate the efficiency and the capabilities of
the considered imbedding method.

2. Discrete problem. Let us consider the numerical solution of the second-order elliptic
partial differential equation

(2.1) −∇ · (E∇u) + eu = v in Ω ⊂ R
d, d = 2, 3,

with a Dirichlet boundary condition on Γ which is ∂Ω or a part of it. We assume that the
domain Ω can be extended to a larger polygonal domain Π over Γ. Furthermore, we assume
that there is a quasiuniform hierarchical mesh for Π such that the mesh is conforming with
∂Ω. Then, the equation (2.1) is extended to Π in such a way that everywhere in Π the matrix
E is symmetric and its eigenvalues are bounded from below and above by positive constants
and e is non-negative and bounded. We require that the extended problem has a Dirichlet
boundary condition on part of the boundary ∂Π.

The extended problem is discretized with Lagrangian finite elements by using the hier-
archical mesh in Π. The resulting N × N matrix A is symmetric and positive definite. In
order to obtain an approximation for the solution of the original problem (2.1), we enforce the
Dirichlet boundary condition on Γ by adding Lagrange multipliers to the discrete problem.
This leads to the saddle-point problem

(2.2) Ax =

(

A BT

B 0

) (

u
p

)

=

(

v
q

)

= b.

The possible values of the entries of the M × N constraint matrix B in (2.2) are zero and
one. In those columns of B corresponding to Γ there is one entry having the value one while
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the other columns contain zeros and, in each row, there is one entry having the value one.
Remark 2.1. When introducing the boundary Lagrange multipliers to a continuous prob-

lem and then discretizing it with finite elements as in [2], [6], the matrix B does not have the
previously defined form. After a simple change of variables the desired form can be obtained.
With suitable permutation the matrix B has the block form B = (0 Bc) and the square ma-
trix Bc is non-singular. Then, by replacing p with r = B−1

c p in (2.2) and by multiplying the
second block row of (2.2) by B−1

c , the problem will have the required form.

2.1. Multilevel approximation for A−1. Under the previous assumptions there exists
a multilevel nodal basis (BPX) preconditioner [8] or a multilevel diagonal scaling (MDS)
preconditioner [43] denoted by C−1 which is spectrally equivalent with A−1. The spectral
equivalence means that there exist positive constants č and ĉ independent of N such that

(2.3) č vT C−1v ≤ vT A−1v ≤ ĉ vT C−1v ∀v ∈ R
N .

2.2. Assumptions on Lagrange multipliers. We assume for two-dimensional prob-
lems that there exists a curve formed by connecting the nodes corresponding to the Lagrange
multipliers on Γ which has bounded length when N tends to infinity. Similarly, for three-
dimensional problems, we assume that there exists a surface formed by connecting the nodes
corresponding to the Lagrange multipliers on Γ which has bounded area when N tends to
infinity. These assumptions exclude fractal boundaries and without them the preconditioner
for Lagrange multipliers, which is introduced in Section 5.2, might be computationally too
expensive.

Let the step size of the mesh which was used to obtain A be denoted by h. Since this mesh
is quasiuniform, we have that h is the order of N−1/d for d-dimensional problems. From this
and the previous assumption it follows that the number of Lagrange multipliers denoted by
M is at most O(N1/2) for two-dimensional problems and O(N 2/3) for three-dimensional
problems.

With distributed Lagrange multipliers the number of multipliers M is O(N), but it is
possible to reduce this to O(N (d−1)/d). This can be done mechanically in the following way:
Let the matrix BT be given by BT = (b1 b2 · · · bM ). Now, the ith Lagrange multiplier can
be eliminated if it holds for i that im(Abi) ⊂ im(BT ). The saddle-point problem (2.2) has
the block form

(2.4)













A11 A1Γ 0 0 0
AΓ1 AΓΓ AΓ2 I 0
0 A2Γ A22 0 I
0 I 0 0 0
0 0 I 0 0

























u1

uΓ

u2

pΓ

p2













=













v1

vΓ

v2

qΓ

q2













,

where the primal variables are split into three groups. The first group corresponds the vari-
ables without constraints. The second and third groups are related to the Lagrange multipliers
which will be kept and eliminated, respectively. A simple manipulation of (2.4) yields an
equivalent saddle-point problem

(2.5)









A11 A1Γ 0 0
AΓ1 AΓΓ AΓ2 I
0 A2Γ A22 0
0 I 0 0

















u1

uΓ

u2

pΓ









=









v1

vΓ

A2ΓqΓ + A22q2

qΓ









and the values of the eliminated Lagrange variables are p2 = v2 − A2ΓqΓ − A22q2.
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3. Iterative solution of saddle-point problem. We use a block diagonal preconditioner
B which has the form

(3.1) B =

(

D 0
0 S

)

in the iterative solution of the saddle-point problem (2.2). The choice of preconditioners D
and S and their application are considered in Section 5. Let us assume for now that the
preconditioners fulfill the conditions

(3.2) ď vT Dv ≤ vT Av ≤ d̂ vT Dv ∀v ∈ R
N

and

(3.3) č qT Sq ≤ qT BA−1BT q ≤ ĉ qT Sq ∀q ∈ R
M

with some positive constants ď, d̂, č and ĉ independent of N . Actually, it is shown in Section
5.2 that the constants č and ĉ in (2.3) can be also used in (3.3). It is easy to see that BA−1BT

and B are symmetric and positive definite.
Now, a result by Yu. A. Kuznetsov, 1990 [30], gives information on the eigenvalues of

B−1A; see [27], [40]. It states that

(3.4) λ(B−1A) ∈
[

(d̂ − â)/2, (ď − ǎ)/2
]

∪
[

ď, d̂
]

∪
[

(ď + ǎ)/2, (d̂ + â)/2
]

,

where the constants ǎ and â are given by ǎ =
√

ď2 + 4ďč and â =
√

d̂2 + 4d̂ĉ. Hence, the
eigenvalues of B−1A belong to intervals which are independent of N , since the constants
defining them are also independent of N . Moreover, zero does not belong to any of the
intervals and, thus, A and B can be said to be spectrally equivalent.

Since the saddle-point matrix A is indefinite, we must use an iterative method suitable
for symmetric indefinite problems. For this purpose, we have chosen the minimal residual
(MINRES) method and, especially, we employ a variant with a preconditioner. In our case
the well-known result for the residual vectors in the MINRES method [23], [37] gives the
error bound

(3.5) ‖rk‖B−1 ≤ 2







√

(d̂2 − ê2)/4 −
√

ď(ď − ě)/2
√

(d̂2 − ê2)/4 +
√

ď(ď − ě)/2







bk/2c

‖r0‖B−1 ,

where rk is the kth residual vector.

4. Uzawa type algorithm for saddle-point problem. When the solution with the ma-
trix A can be obtained cheaply with a good accuracy, it might be more efficient to solve the
saddle-point problem (2.2) using a Uzawa type algorithm [16]. The idea is first to elimi-
nate the primal variable u from (2.2) and get the formula u = A−1(v − BT p). Using that
elimination the system of linear equations

(4.1) BA−1BT p = BA−1v − q

is obtained. A suitable preconditioner for the coefficient matrix BA−1BT is the precondi-
tioner block S, the preconditioner for the Lagrange multipliers, considered in Section 5.2.

The solution of (4.1) can be computed using, for example, the preconditioned CG method.
In each iteration one multiplication by the matrix BA−1BT is performed and, thus, one lin-
ear problem with the matrix A must be solved with a rather good accuracy [16]. The fast
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direct solvers are ideal in this kind of situation if they can be used to solve directly a prob-
lem with A. Furthermore, the right-hand side vectors belong to the subspace im(BT ) and
the solution is only required in the same subspace. For this kind of problems the so-called
partial solution technique [3], [34] which is a special implementation of a direct solver based
on the separation of variables is very well suited. It requires O(N) and O(N log N) floating
point operations in the case of two-dimensional problems and three-dimensional problems,
respectively.

5. Preconditioning. The application of the preconditioner (3.1) to a vector consists of
the following two steps: The vector block corresponding to the primal variables is given to
a multilevel method or to a fast direct solver as a right hand side and then the solution given
by the method is the corresponding preconditioned vector block. Then, the vector block cor-
responding to the Lagrange multipliers is given to an iterative method, such as Conjugate
Gradient or Chebyshev method, as a right hand side and the solution is taken as the precon-
ditioned vector block. The matrix-vector product in the iterative method corresponds to a
sparse implementation of BPX or MDS, considered in Subsection 5.2.

When the problem (4.1) is solved iteratively, only the second step of the preconditioner
is used.

5.1. Preconditioner for primal variables. A natural choice for the preconditioner block
D in (3.1) is to use the BPX or MDS algorithm as a preconditioner. However, in many cases
it is more efficient to use some multiplicative multilevel method. They usually give better ap-
proximations for A−1 and, hence, they lead to a faster convergence of the iterative solution.

When the mesh underlying the discretization is topologically equivalent with an orthog-
onal mesh, fast direct methods such as FFT methods or cyclic reduction algorithms [41] can
be used in the preconditioning. In some cases, these methods give the exact inverse for A.

We assume the preconditioner D for the primal variables to be spectrally equivalent with
A. Thus, there exist positive constants ď and d̂ independent of N such that the condition (3.2)
is fulfilled.

5.2. Preconditioner for Lagrange multipliers. It is well-known that the precondi-
tioner for the Lagrange multipliers, the block S in (3.1), should be close to the inverse
of BA−1BT . Under the assumptions given in earlier sections, key observations are that
BA−1BT is close to BC−1BT and that vectors can be multiplied cheaply by BC−1BT ;
see [32], [33], [42]. Thus, the approximation of the inverse of BC−1BT obtained using an
iterative method leads to a good preconditioner for the Lagrange multipliers, provided that it
is computationally not too expensive when compared to other parts of the solution procedure.
In the following, we study in more detail the ideas laid out here and show that we can obtain
a good preconditioner which is optimal in terms of computational cost. When C−1 corre-
sponds to the BPX preconditioner, the resulting preconditioner will be equivalent to that one
suggested in [32].

Let us first denote

(5.1) S = BC−1BT .

The inequalities (2.3) state the spectral equivalence of the matrices A−1 and C−1. As a direct
consequence of this we obtain the inequalities (3.3). Thus, BA−1BT and S are spectrally
equivalent with the same constants as A−1 and C−1. Actually, the inequalities in (3.3) are
not sharp, since the inequalities (2.3) could be made tighter in the subspace im(BT ) ⊂ R

N .
¿From (3.3) it also follows that

(5.2) cond
(

S−1BA−1BT
)

≤ ĉ/č,
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where cond(·) gives the spectral condition number.
Let us now consider the multiplication of a vector p ∈ R

M by S. Let us remark that it
follows from our assumption that M is at most O(N (d−1)/d) for d-dimensional problems,
d = 2, 3. Due to the structure of B the vector BT p is rather sparse, that is, it contains
only M nonzero components. Thus, the multilevel preconditioner C−1 is applied to a vector
which contains mostly zeros. For the multiplication of the vector C−1BT p by B only the
vector components corresponding to the subspace im(BT ) ⊂ R

N are required. Since the
dimension of im(BT ) is M , only M components are needed. Hence, we have a very special
case in which the multilevel preconditioner is applied to a vector having M nonzero values
and only the same M components of the resulting vector are required. For such a case, a
sparse BPX/MDS operator can be easily created in an initialization phase by storing the grid
transfer operations corresponding to nonzero components to sparse matrices.

Let us further study the computational cost of a special implementation taking advantage
of the sparsity described above. We assume that the multilevel preconditioner is based on
linear, bilinear or trilinear finite elements. By identifying the vectors v and C−1v with the
associated finite element functions, the multilevel preconditioner C−1 is defined by

(5.3) C−1v =

L
∑

l=1

Nl
∑

i=1

(v, φl
i)lφ

l
i,

where φl
i is the ith basis function on the level l and (·, ·)l is a scaled L2-inner product. Fur-

thermore, L is the number of levels in the hierarchical mesh and Nl is the number of basis
functions on the level l. In our case, v is a linear combination of M different basis functions
φL

i and we need to know only the coefficients for the same M basis functions for C−1v.
For two-dimensional problems, the nonzero terms in the sum

∑Nl

i=1(v, φl
i)lφ

l
i correspond

to those basis functions whose support lies within a strip around the curve formed by connect-
ing the nodes corresponding to the Lagrange multipliers. The width of this strip is O(2L−lh)
at the level l. The strip intersects with O(1/(2L−lh)) supports of the basis functions φl

i. Thus,
the number of nonzero terms in the sum is O(N 1/2/2L−l) at the level l. By summing these
up, we obtain that the total number of nonzero terms in (5.3) is O(N1/2) and this is also the
computational cost for the sparse multilevel preconditioner for two-dimensional problems. In
Figure 5.1, an example of sparsity patterns for all levels is shown. Similarly, we can obtain
the computational cost O(N 2/3) for three-dimensional problems. Hence, our sparse multi-
level preconditioner requires O(M) operations. Since in our case M � N , this is a crucial
observation in order to keep the computational cost, of the iterative solution of linear systems
with the coefficient matrix S, affordable.

If the nodes related to the image subspace of BT do not obey any surface-like pattern
one can easily deduce a slightly weaker estimate for the cost of the sparse multilevel precon-
ditioner. It is straightforward to see that the cost at each level is at most O(M). Since there
are O(log N) levels, the total cost is not higher than O(M log N). In Section 6, we present
the numerical results also for such settings of the problem.

5.3. CG for inner iteration. In the solution of linear systems with the symmetric and
positive definite matrix S the CG method can be used. According to the well-known error
bounds for CG, the number of iterations required to reduce the error in the norm induced
by the coefficient matrix by the factor ε is of order

√
κ log 1

ε . Here, κ is the spectral condi-
tion number of S. The condition number for C−1 is O(N) for two-dimensional problems
and O(N2/3) for three-dimensional problems. Due to properties of B we have the obvious
inequality

(5.4) cond (S) ≤ cond
(

C−1
)

,
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FIG. 5.1. An example of sparsity patterns at different levels of BPX/MDS method

which is not sharp, but it is still sufficient for our purposes. Thus, the number of required
iterations is at most O(N1/d log 1

ε ) for d-dimensional problems.

By taking the product of the cost of multiplication of a vector by S and the number of
iterations required, we obtain that the total cost of the Lagrange preconditioner is at most
O(N log 1

ε ) floating point operations for both two-dimensional and three-dimensional prob-
lems. The CG method gives an approximation for the solution of linear problem which
depends nonlinearly on the right-hand side vector. Usually the methods used in the outer
iteration can only cope with linear preconditioners. In order to diminish the nonlinearities
caused by CG to the level which is tolerable for the outer iteration the error reduction factor
ε must be sufficiently small. Due to that fact the required number of iterations might grow to
be unnecessarily large. In the following section we try to alleviate this by considering the use
of the Chebyshev method.

Remark 5.1. Often it holds that the condition number of S is of the same order as the
square root of the condition number of C−1; see [10]. In this case, the total cost of the
Lagrange multiplier preconditioner reduces to O(N (2d−1)/2d log 1

ε ) floating point operations
for d-dimensional problems. Hence, it is possible to place a slightly larger proportion of mesh
nodes than O(N (d−1)/d) onto the boundary in order to improve the accuracy of approxima-
tion and still keep the computational cost below O(N log 1

ε ).

5.4. Chebyshev method for inner iteration. In order to solve linear problems with the
Chebyshev method, we must estimate the eigenvalues of the coefficient matrix. More pre-
cisely, we must compute the bounds λmin and λmax for the eigenvalues of S which satisfy
the inequalities λmin ≤ λ(S) ≤ λmax. For example, this can be accomplished by perform-
ing a few Lanczos iterations and then by using the error bounds for the attained eigenvalue
estimates [22].

The actual solution of the system of linear equations Sp = q is performed in the fol-
lowing way: First, the initial values p0 = 0, δ1 = 2 and p1 = γq are set. Then, the kth
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Chebyshev iterate pk, k = 2, 3, . . ., is given by the recurrence formula

δk = 4/(4− σ2δk−1),

pk = δk(γ(q − Spk−1) + pk−1) + (1 − δk)pk−2.
(5.5)

The bounds λmin and λmax appear in the Chebyshev method via the constants δ and γ which
are given by

(5.6) σ = (λmax − λmin)/(λmax + λmin) and γ = 2/(λmax + λmin).

According to the well-known error bounds for the Chebyshev method, the number of
iterations required to reduce the error in the Euclidean norm by the factor ε is of order√

κ log 1
ε . The upper estimate for the spectral condition number of S denoted by κ is given

by λmax/λmin. Again the same analyses can be performed as in the case of the CG method.
Hence, the cost of the Lagrange preconditioner is at most O(N log 1

ε ) floating point opera-
tions for both two-dimensional and three-dimensional problems. Unlike the CG method the
Chebyshev method with a fixed number of iterations gives a linear operator. Thus, it is not
necessary to compute the solution with a high precision in order to obtain a linear and spec-
trally equivalent preconditioner. With reasonably accurate eigenvalue bounds λmin and λmax

it is often possible considerably reduce the number of inner iterations when the Chebyshev
method is used instead of the CG method. On the other hand the implementation becomes
more complicated, since the bounds for the eigenvalues must be computed.

6. Numerical experiments. In the experiments, we study the solution of a constrained
Poisson problem in the unit square and in the unit cube. Thus, the matrix A is always the
discretized Laplace operator in the unit square or in the unit cube. Discretizations are per-
formed using linear finite elements and fully rectangular meshes with many different mesh
step sizes. Note that we could use as well meshes which are locally fitted to the boundaries
[5]. The sparse BPX is based on bilinear finite elements for two-dimensional problems and
on trilinear finite elements for three-dimensional problems.

For two-dimensional problems, the diagonal block D in the preconditioner B is based
on a multigrid method using bilinear interpolation operations and Gauss-Seidel smoother
[11], [24]. A symmetric version is obtained by performing the smoothing in reverse order
when the multigrid is moving from coarser to finer meshes. For three-dimensional problems,
the diagonal block D in B is exactly A and it is based on a fast direct solver called PSCR
method; see [39]. In the Uzawa type algorithm with the PCG method, the Euclidean norm
of the residual vector is reduced by the factor 10−6. When the saddle-point problem (2.2)
is solved with the PMINRES method, the B−1-norm of the residual vector is reduced by the
same factor.

In the first set of test problems, the domain Ω has two circular holes in two-dimensional
problems and two spherical holes in three-dimensional problems. The diameter of holes is
0.375 and we have varied their distance between zero and 0.125 in the experiments.

In Table 6.1, we have reported results of numerical experiments for two-dimensional
problems with two holes. The number of degrees of freedom is given by N , the number of
Lagrange multipliers is M . The spectral condition number of S−1 defined by the sparse BPX
is given by cond S column. The two last columns give the number of PMINRES iterations
for saddle-point problems and outer PCG iterations for the Uzawa type algorithm. Each row
corresponds to a sequence of problems with the distance between the holes growing from
zero to 0.125; see Figure 6.1. This is also the reason why the number of Lagrange multipliers
and the number of iterations are given as a range instead of single number.
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FIG. 6.1. The holes for two-dimensional problems with the distance zero and 0.125

TABLE 6.1
Results for two-dimensional problems with holes

N M cond S PMINRES Uzawa&PCG
312 58– 64 31.5– 39.4 23–24 9–10
632 146– 160 63.9– 86.6 23–25 9–10

127
2 330– 352 136.9– 193.2 23–26 9–10

255
2 702– 736 276.1– 399.1 24–26 9–10

5112 1454–1504 554.9– 812.1 24–26 9–11
10232 2966–3040 1113.2–1639.2 24–26 9–11

For three-dimensional problems, the same results are given in Table 6.2. In Figure 6.2
and Figure 6.3, condition numbers of preconditioned Schur complement matrices S−1BA−1BT

are shown with respect to different distances between the holes for two-dimensional and
three-dimensional problems.
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FIG. 6.2. The condition number of preconditioned Schur complement matrices for two-dimensional problems

The solution of a two-dimensional problem with the holes and N = 10232 requires less
than two seconds with the PCG method when the multiplications by S−1 are approximated
by 32 Chebyshev iterations and the multiplications by A−1 are based on a special fast direct
partial solution technique [3], [34]. The multiplications by S−1 require about 30% of time.
The computations have been performed on an HP J5600 workstation which has PA-8600
processor at 552 MHz and 1.5MB on-chip cache.

The second set of test problems is defined by randomly choosing the unknowns which
have constraints. The number of constraints M is N 1/2 for two-dimensional problems and
N2/3 for three-dimensional problems. The nodes corresponding to the constrained unknowns
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TABLE 6.2
Results for three-dimensional problems with holes

N M cond S PMINRES Uzawa&PCG
153 19– 20 4.4 17–19 10–11
313 206– 212 12.8–13.8 23 11–12
633 1307–1307 28.3–31.8 23 12–13

co
n
d

S
−

1
B

A
−

1
B

T

distance between holes

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

0.00 0.02 0.04 0.06 0.08 0.10 0.12

15
31
63

3

3

3

FIG. 6.3. The condition number of preconditioned Schur complement matrices for three-dimensional problems

are shown in Figure 6.4 for two-dimensional problems with N = 312 and N = 1272. The
results are reported in Table 6.3 and Table 6.4 in the same way as with the problems with two
holes. The solution of the three-dimensional problem with a random domain and N = 1273

requires about five minutes when the multiplications by S−1 are based on the CG method.
The multiplications by S−1 require about 1% of time.

FIG. 6.4. Randomly fixed unknowns for the two-dimensional problems with the sizes 312 and 1272

7. Conclusions. We have presented a domain imbedding method with Lagrange mul-
tipliers to enforce the Dirichlet boundary conditions. In the iterative solution, the primary
variables are preconditioned with the standard domain imbedding approach using a multilevel
method or a fast direct solver. A special implementation of BPX or MDS multilevel method
is used in preconditioning the Lagrange multipliers. This special implementation takes into
account the sparsity of the right hand side vector and the components of the solution which
are actually needed in preconditioning. It has been shown that the whole preconditioner is
spectrally optimal, the number of iterations needed to solve a problem with a fixed accuracy is
bounded from above. It has also been shown that when using a multilevel method in precon-
ditioning the primary variables, the computational complexity of the method can be optimal
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TABLE 6.3
Results for two-dimensional problems with randomly fixed unknowns

N M cond S PMINRES Uzawa&PCG
312 31 7.8 22 9
632 63 12.9 23 9

1272 127 25.9 22 9
255

2 255 49.1 22 10
511

2 511 93.8 22 10
10232 1023 201.4 24 10

TABLE 6.4
Results for three-dimensional problems with randomly fixed unknowns

N M cond S PMINRES Uzawa&PCG
15

3
15

2 3.2 17 8
313 312 5.4 17 8
633 632 9.9 17 8

1273 1272 18.5 17 8

with respect to the discretization mesh step size. The use of a fast direct solver results in a
slightly weaker estimate. The numerical results show that the method is efficient in practice
and the geometry of the problems can be complex.
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[39] T. ROSSI AND J. TOIVANEN, A parallel fast direct solver for block tridiagonal systems with separable matri-
ces of arbitrary dimension, SIAM J. Sci. Comput., 20 (1999), pp. 1778–1796.

[40] D. SILVESTER AND A. WATHEN, Fast iterative solution of stabilised Stokes systems part II: using general
block preconditioners, SIAM J. Numer. Anal., 31 (1994), pp. 1352–1367.

[41] P. N. SWARZTRAUBER, The methods of cyclic reduction and Fourier analysis and the FACR algorithm for
the discrete solution of Poisson’s equation on a rectangle, SIAM Review, 19 (1977), pp. 490–501.

[42] C. H. TONG, T. F. CHAN, AND C. C. J. KUO, A domain decomposition preconditioner based on a change
to a multilevel nodal basis, SIAM J. Sci. Stat. Comput., 12 (1991), pp. 1486–1495.

[43] X. ZHANG, Multilevel Schwarz methods, Numer. Math., 63 (1992), pp. 521–539.


