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TOWARDS ROBUST 3D Z-PINCH SIMULATIONS: DISCRETIZATION AND FAST
SOLVERS FOR MAGNETIC DIFFUSION IN HETEROGENEOUS CONDUCTORS.∗∗

PAVEL B. BOCHEV1,2 JONATHAN J. HU4,

ALLEN C. ROBINSON3 AND RAYMOND S. TUMINARO4

Abstract. The mathematical model of the Z-pinch is comprised of many interacting components. One of
these components is magnetic diffusion in highly heterogeneous media. In this paper we discuss finite element
approximations and fast solution algorithms for this component, as represented by the eddy current equations. Our
emphasis is on discretizations that match the physics of the magnetic diffusion process in heterogeneous media in
order to enable reliable and robust simulations for even relatively coarse grids. We present an approach based on
the use of exact sequences of finite element spaces defined with respect to unstructured hexahedral grids. This leads
to algorithms that effectively capture the physics of magnetic diffusion. For the efficient solution of the ensuing
linear systems, we consider an algebraic multigrid method that appropriately handles the nullspace structure of the
discretization matrices.
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1. Introduction. The Z-pinch is a technique for generating large material compressions
and energies by generating a cylindrical implosion using focused magnetic field energy. Wire
array implosions, for example, are used to generate extremely large X-ray power pulses [29].
Modeling requires a multiphysics approach which must include several interacting compo-
nents. Components are coupled through interactions of forces, exchange of energy, etc. Our
immediate interest is in developing a technology for Z-pinch modeling which falls within
the constraints of an Arbitrary Lagrangian-Eulerian (ALE) modeling approach inherent in
the framework of the ALEGRA code [21, 19]. In this code various physics components are
modeled and coupled using operator splitting. Managing the complexity of the fully cou-
pled model is made more tractable by examining each component separately and ensuring its
reliability. In this paper we focus on magnetic diffusion represented by a subset of the full
Maxwell’s equations referred to as the eddy current equations.

While finite element analysis of eddy currents is a relatively well-studied subject, placing
this problem in the context of Z-pinch simulations brings up some specific modeling and
computational issues. Most notably, conducting and non-conducting regions are not separated
by a well-defined static interface. As a result, implementation of standard methods based
on the use of different magnetic potentials in conducting/nonconducting regions, see [4, 3],
becomes prohibitively expensive (and complex). This forces consideration of the eddy current
equations on a single, but highly heterogeneous, conductor as the only acceptable modeling
choice.

For the finite element analysis of the ensuing problem with nodal spaces one can still
formally adopt a potential approach based on a vector magnetic potential A. The difficulties
that arise in this context stem from the need to gauge the resulting boundary value problem,
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i.e., augment it by additional equations and boundary conditions. The Coulomb gauge∇·A =
0 is hard to satisfy numerically and must be added implicitly to the formulation. This creates
a cascading effect of adding more and more equations; see [3]. Another choice is the Lorentz
gauge; see [14, 12, 13]. For heterogeneous conductors this gauge leads to nonsymmetric
weak equations and is thus undesirable. Application of standard nodal spaces complicates
imposition of tangential and normal boundary conditions, which are typical for the eddy
current equations.

An alternative to nodal approximations of gauged vector potential equations is to dis-
cretize directly the eddy current equations using exact sequences of finite element spaces. The
rationale behind this approach is that such finite element spaces represent approximations of
a De Rham complex that describes the mathematical structure of Maxwell’s equations; see
[5, 6]. These spaces have the important advantage of providing natural degrees of freedom
for purposes of implementing tangential Dirichlet boundary conditions.

In this paper we pursue two main objectives. The first one is to develop such finite
element spaces on unstructured hexahedral grids and test their use for finite element analysis
of the eddy current model relevant to the Z-pinch. Here, our main focus is on the development
of the discrete model and verifying its fidelity to the physics of magnetic diffusion. The finite
element spaces are considered in section 3 followed by the development of the fully discrete
equations in section 4. The formulation is tested for a model 2D problem in section 6.

The second objective is to develop fast, scalable solvers for the discrete eddy current
equations. These solvers must address the special structure of the linear systems inherent in
the use of the exact finite element sequences. They also must work well for realistic values of
the material modeling parameters. These values may vary over many orders of magnitude in
a highly heterogeneous way. Although a hierarchical grid is available in the ALEGRA frame-
work, restricting application modelers to such grids is considered to be unacceptable. As a
result, the main focus here is on the development and implementation of a precisely designed
algebraic multigrid method which operates directly on the assembled discrete matrix.

Throughout the paper bold face is used to denote vector quantities. The symbols i, j and
k stand for the Cartesian coordinate vectors in RI 3, equipped with the Euclidean norm ‖ · ‖,
while n and t denote an outward unit normal field to a surface and a unit tangent field (to a
curve), respectively. The symbolsL2(Ω) and L2(Ω) denote the spaces of all square integrable
scalar and vector functions on Ω.

2. The model problem. The eddy current equations are obtained by neglecting the dis-
placement current in the full Maxwell equations. This amounts to neglecting high frequency
speed-of-light time scale electromagnetic waves in a conducting media. The model problem
considered in this paper is that of a single conducting region Ω in RI 3 with non-constant con-
ductivity σ and permeability µ. We assume that the boundary Γ of this region consists of two
disjoint parts denoted by Γ∗ and Γ, respectively. Furthermore, it is assumed that the conduc-
tivity σ and the permeability µ are single valued bounded non vanishing functions depending
only on the spatial position x. No particular smoothness of the coefficients can be assumed.
For the most pressing application of interest, however, µ is constant. Furthermore, we assume
that

0 < σmin ≤ σ(x) ≤ σmax ∀x ∈ Ω,(2.1)

0 < µmin ≤ µ(x) ≤ µmax ∀x ∈ Ω.(2.2)

The governing equations for the electromagnetic field in Ω are given by

∇×H = J in Ω,(2.3)
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∇×E = −
∂B

∂t
in Ω,(2.4)

∇ ·B = 0 in Ω,(2.5)

∇ · J = 0 in Ω, .(2.6)

where H is the magnetic field, J is the current density, E is the electric field, and B is the
magnetic flux density. Initial values of the magnetic flux density B are required to satisfy
(2.5). These fields are connected by the constitutive relations

B = µH,(2.7)

J = σE.(2.8)

Eq. (2.3) is Ampere’s theorem and (2.4) is Faraday’s law, while (2.8) is Ohm’s law. System
(2.3)-(2.6) must be closed by choosing appropriate boundary conditions. Here we consider
Type I conditions

n×E = n×Eb and n ·B = n ·Bb on Γ∗(2.9)

and Type II conditions

n×H = n×Hb and n · J = n · Jb on Γ.(2.10)

To deliver robust, 3D fully integrated Z-pinch calculations, finite element simulations of
the eddy current equations (2.3)-(2.6), (2.7)-(2.8) and (2.9)-(2.10) must meet certain require-
ments. ¿From the modeling point of view, the main requirement is to obtain high fidelity
simulation of the magnetic field diffusion in highly heterogeneous media. This fidelity must
be maintained both at the ideal MHD limit σ → ∞, as well as at the highly diffusive limit
σ → 0. Furthermore, it is desirable to advance the magnetic flux density in a manner which
maintains ∇ ·B = 0 at all time steps. From the computational point of view, the demand is
on scalability of the solvers of the discrete linear system for realistic values of the modeling
parameters. Scalability implies approximately linear work in the number of unknowns to find
a high quality solution to the discrete linear eddy current system. Scalability will be discussed
in §5 and §6.2.

3. Approximation of De Rham’s complex on hexahedra. In this section we develop
exact sequences of finite element spaces on unstructured hexahedral and quadrilateral grids.
This choice is dictated by the ALEGRA computing framework, which supports ALE hy-
drodynamics on arbitrary quadrilaterial and hexahedral grids [19]. An intuitive method for
developing edge and face elements on arbitrary hexahedra (isoparametric bricks) was first
given by van Welij [28]. The van Welij elements are defined directly in the computational
domain using the coordinate functions of the inverse mapping between a reference and com-
putational elements. Here we develop a general approach that follows this idea and includes
the edge elements of van Welij as a special case. For parallelepipeds or parallelograms, these
finite elements also include the well-known spaces of Nedelec, Brezzi, Douglas, Fortin and
Marini, among others; see [10], [15], [17] and [18]. However, for general hexahedral grids
the elements used here are quite different because they do not form an affine family of finite
element spaces ([8, p.72]). We also show how to obtain proper restrictions of these spaces in
two dimensions and discuss specifics of the exactness relation in RI 2.

The notions of exactness and the De Rham complex are closely related to the mathemati-
cal structure of Maxwell’s equations. The domains of the differential operators gradient, curl
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and divergence, relative to Γ are

H0(Ω, grad) = {φ ∈ H(Ω, grad)|φ = 0 on Γ},(3.1)

H0(Ω, curl ) = {u ∈ H(Ω, curl )|u× n = 0 on Γ},(3.2)

H0(Ω, div ) = {u ∈ H(Ω, div )|u · n = 0 on Γ},(3.3)

where

H(Ω, grad) = {φ ∈ L2(Ω)|∇φ ∈ L2(Ω)},(3.4)

H(Ω, curl ) = {u ∈ L2(Ω)|∇ × u ∈ L2(Ω)},(3.5)

H(Ω, div ) = {u ∈ L2(Ω)|∇ · u ∈ L2(Ω)}.(3.6)

The four spaces H0(Ω, grad), H0(Ω, curl ), H0(Ω, div ), L2(Ω) and the three operators ∇,
∇× and∇· form a De Rham complex relative to Γ.

The dual complex can be introduced by using the adjoint differential operators ∇∗,
(∇×)∗ and (∇·)∗. A fundamental property of the De Rham complex is the exactness of
the sequence

H(Ω, grad)
∇
7−→ H(Ω, curl )

∇×
7−→ H(Ω, div )

∇·
7−→ L2(Ω).(3.7)

Exactness means that each differential operator maps the space to its left into the kernel of the
next differential operator. The i mportance of this property stems from the fact that Maxwell’s
equations can be described in terms of a Tonti diagram built upon this complex; see [6]:

Ampere Faraday

H0(Ω, grad) ψ 0 L2
0(Ω)

∇ ↓ ⇑ ∇·

H0(Ω, curl ) H ⇒ µH = B ⇒ B H∗
0 (Ω, div )

∇× ⇓ ⇑ ∇×

H0(Ω, div ) J ⇐ J = σE ⇐ E H∗
0 (Ω, curl )

∇· ⇓ ↑ ∇

L2
0(Ω) 0 φ H∗

0 (Ω, grad)

(3.8)

Suppose now thatW i, i = 0, . . . , 3, are finite element subspaces ofH0(Ω, grad),H0(Ω, curl ),
H0(Ω, div ), and L2(Ω) defined with respect to some triangulation Th of Ω into finite ele-
ments. Furthermore, suppose that theW i form an exact sequence, i.e., they approximate not
only the individual spaces but the De Rham complex as a whole. Then, a discretization of
Maxwell’s equations can be obtained by substituting the De Rham complex in (3.8) by the
exact sequenceW i; see [7], [5]. This approach will be pursued in section 4.

3.1. Exact sequence on a generalized hexahedral. Consider RI 3 endowed with a phys-
ical coordinate frame (x1, x2, x3) ≡ x and a parameter (or reference) frame (ξ1, ξ2, ξ3) ≡ ξ.
In what follows the indices α, β and γ take the values±1 and the indices i, j, k form an even
permutation of the numbers 1, 2, 3. Let K̂ denote the open cube (−1, 1)3 in the reference
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space and let K denote its image under a smooth deformation F : R̂I 3 7→ RI 3 of RI 3. We refer
to K as generalized hexahedral. Construction of an exact sequence on K will be carried for
general F assuming only that

• F = (F1, F2, F3) is invertible when restricted to K̂,

• G = (G1, G2, G3) = F−1 is such that G(K) = K̂.
Restriction of F to a particular class of mappings will further specialize the exact sequence
to a desired class of hexahedral grids. Since here we will be ultimately concerned with trilin-
ear mappings F , for simplicity we only consider unisolvency sets consisting of the vertices,
edges, and faces

ξαβγ = {ξi = α, ξj = β, ξk = γ},

ξ
αβ
ij = {ξi = α, ξj = β, −1 ≤ ξk ≤ 1},

ξα
i = {ξi = α, −1 ≤ ξj , ξk ≤ 1}

and the hexahedral K = {x |x = F (ξ); ξ ∈ K̂} itself1. Restriction of F to the sets above
induces “vertices”, “edges”, and “faces” on K according to

xαβγ = F (ξαβγ), x
αβ
ij = F (ξαβ

ij ), and xα
i = F (ξα

i ),

respectively. Note that

xα
i ∩ x

β
j = x

αβ
ij and xα

i ∩ x
β
j ∩ x

γ
k = xαβγ .

Next consider the Jacobians JF = (V1, V2, V3) and JG = (∇G1,∇G2,∇G3)
T , where Vi =

(∂F1/∂ξi, . . . , ∂F3/∂ξi)
T . Clearly, det JF = Vi · (Vj × Vk) and detJG = ∇Gi · (∇Gj ×

∇Gk). ¿From the identity (F ◦G)(x) = x it follows that JFJG = JGJF = I . This relation
means that

Vi · ∇Gj = δij ,(3.9)

i.e., the columns Vi of JF and the rows ∇GT
j of JG are bi-orthogonal. Solving (3.9) for Vi

and∇Gj gives

Vi = (∇Gj ×∇Gk)det JF and ∇Gi = (Vj × Vk)det JG(3.10)

The unit normal to a face xα
i and the unit tangent to an edge x

αβ
ij are given by

n =
∇Gi

‖∇Gi‖
and t =

(∇Gi ×∇Gj)

‖∇Gi ×∇Gj‖
(3.11)

respectively. Changing variables in (3.11) and using (3.10) shows that the corresponding
vector fields on K̂ are

(n ◦ F ) =
Vj × Vk

‖(Vj × Vk)‖
and (t ◦ F ) =

Vk

‖Vk‖
,(3.12)

1A unisolvency set for a given class of functions is a collection of data and data location pairs that defines a
unique function out of the class. For instance, the unisolvency set for linear polynomials in one dimension consists
of two distinct points with two prescribed values. For higher order polynomials and/or higher space dimensions
these sets have to be expanded by including more nodes, edges and surfaces to the unisolvency sets.
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respectively. Let φα
i (x) = 1

2 (1 + αGi(x)). We consider four sets of functions defined on K
as follows:

Wαβγ
ijk = φα

i φ
β
j φ

γ
j ,(3.13)

Wαβ
ij = φα

i φ
β
j∇φ

γ
k ,(3.14)

Wα
i = φα

i (∇φβ
j ×∇φ

γ
k),(3.15)

W = ∇φα
i · (∇φ

β
j ×∇φ

γ
k).(3.16)

These sets span four spaces denoted by W0(K), W1(K), W2(K) and W3(K), respec-
tively. Fundamental properties of (3.13)–(3.16) are associated with the “nodes”, “edges”,
and “faces” of K. The “point” mass of the scalar functions in (3.13) is

∫

K

Wαβγ
ijk (x) · δ(xκµν)dx =

{

1, if xκµν = xαβγ ,

0, at all other nodes,
.

Thus,W0(K) is “nodal” space with basis {W αβγ
ijk }. Circulations of the vector fields in (3.14)

are

∫

x
κµ

st

Wαβ
ij (x) · tdl =







1, if x
κµ
st = x

αβ
ij ,

0, along all other edges,
.

so we callWαβ
ij “edge” basis andW1(K) edge space. The vector fields in (3.15) have similar

property with respect to their fluxes across the faces of K:

∫

x
κ
s

Wα
i (x) · ndS =

{

1, if xκ
s = xα

i ,

0, all other faces.
.

Thus, Wα
i is “face” basis andW2(K) is a face space. Lastly,

∫

K

W (x)dx = 1,

so W is a “volume” basis and W3(K) a volume space. Degrees of freedom (DOF) for
W 0(K) are “point masses”, or simply the nodal values of a scalar function. DOFs forW 1(K)
are circulations of a vector field along the edges of K, DOF’s for W 2(K) are fluxes across
the faces, and the DOF for W 3(K) is the total mass of K for a given scalar density function.

To show thatW i(K) form an exact sequence on K, recall that

∇× (uV) = u∇×V +∇u×V,(3.17)

∇ · (uV) = ∇u ·V + u∇ ·V,(3.18)

∇ · (∇f ×∇g) = 0(3.19)

for smooth vectors fields U, V and scalar function u. Using the chain rule, (3.17)–(3.19) and
the definitions of Wαβγ

ijk , Wαβ
ij , Wα

i and W gives

∇Wαβγ
ijk = σijW

αβ
ij + σjkW

βγ
jk + σkiW

γα
ki ,

∇×Wαβ
ij = σiW

α
i + σjW

β
j ,

∇ ·Wα
i = σW,
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where σij , σi and σ take the values ±1. It follows thatW i(K) is exact sequence, i.e.,

W0(K)
∇
7−→ W1(K)

∇×
7−→ W2(K)

∇·
7−→ W3(K).(3.20)

Using (3.10) in (3.13)-(3.16) yields explicit formulae for the basis functions on K̂:

Ŵαβγ
ijk =

1

8
(1 + αξi)(1 + βξj)(1 + γξk),

Ŵαβ
ij =

1

8detJF
(1 + αξi)(1 + βξj)(Vi × Vj),

Ŵα
i =

1

8detJF
(1 + αξi)Vi,

Ŵ =
1

8detJF
.

3.2. Exact sequence on hexahedral grids. For the magnetic diffusion application, we
are mainly interested in standard isoparametric hexahedral grids. Such grids consist of con-
vex, nondegenerate hexahedralsK with vertices xαβγ , α, β, γ = ±1. In this case

FK(ξ) =
∑

αβγ=±1

xαβγŴαβγ
ijk (ξ)(3.21)

is the unique mapping between K̂ and a given element K. Note that FK is a linear com-
bination of the nodal basis functions Ŵαβγ

ijk (ξ) on the reference element. Therefore, FK is
an incomplete cubic polynomial (a trilinear function), whose restrictions to the faces and the
edges are bilinear and linear polynomials, respectively.

LetN ,
→
E ,

→
F andK denote the sets of all nodes, oriented edges and faces, and hexahedrals

in the grid. Furthermore, for K ∈ K, let W l(K) denote the exact sequence induced by the
mapping (3.21) on this element. To form an exact sequenceW l(Ω) on the hexahedral grid,

we introduce four sets of functions parametrized byN ,
→
E ,

→
F and K, and such that

∫

Ω

WNi
(x) · δ(Nj)dx = δij , WNi |K

∈ W0(K),

∫

→

E j

W→
E i

(x) · tdl = δij , W→
E i |K

∈ W1(K),

∫

→

Fj

W→
F i

(x) · ndS = δij , W→
F i |K

∈ W2(K),

∫

Kj

WKi
(x)dx = δij , WKi |K

∈ W3(K),

The sets {WN }, {W→
E
}, {W→

F
}, and {WK} span the spacesW i(Ω).

The spaceW0(Ω) is H(Ω, grad) conforming because it contains continuous functions.
Definition ofW→

E
and Eq. (3.11) imply thatW1(Ω) contains vector fields that are tangentially

continuous along the edges in
→
E . Therefore, this space is H(Ω, curl ) conforming. Likewise,

W2(Ω) contains fields that are normally continuous across the faces
→
F . This makesW2(Ω)

H(Ω, div ) conforming. Clearly,W3(Ω) ⊂ L2(Ω). Exactness of this sequence follows easily
from the exactness of the element spacesW i(K).
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FIG. 3.1. Virtual (perpendicular) and parallel edges on K̃.

3.3. Exact sequence on quadrilateral grids in 2-D. It suffices to construct an exact
sequence for one generalized quadrilateral. Then, spaces on quadrilateral grids can be formed
as in the three-dimensional case.

We consider the open square K̂ = (−1, 1)2 in the reference frame ξ = (ξ1, ξ2) and a
smooth mapping F : RI 2 7→ RI 2. Next we imbed K into the virtual generalized hexahedral

K̃ = {x | (x1, x2) ∈ K,−1 < x3 < 1}.

Let W̃ i denote an exact sequence defined on K̃. Since the virtual hexahedral is the image of
(−1, 1)3 under the mapping F̃ = (F, ξ3),

V3 = k and ∇G3 = k.

As a result, (3.10) specialize to

∇G1 = (V2 × k)/det JF ,

∇G2 = (k× V1)/detJF .

Inserting these expressions into (3.13)–(3.16) yields after some manipulation four pairs of
basis function sets on K and K̂:

Wαβ∗
ij∗ = φα

i φ
β
j , Ŵαβ∗

ij∗ = 1
4 (1 + αξi)(1 + βξj),

Wα∗
ij = φα

i ∇φ
β
j , Ŵα∗

ij = 1

4det JF

(1 + αξi)(Vj × k),

Wα
i = φα

i (∇φβ
j × k), Ŵα

i = 1

4det JF

(1 + αξi)Vi,

W = ∇φα
i · (∇φ

β
j ×

k

2
), Ŵ = 1

4det JF

,

The two-dimensional complexW i(K) is defined by taking the spans of each basis set in K.
By the chain rule

∇Wαβ∗
ij∗ = φα

i ∇φ
β
j + φβ

j∇φ
α
i ,

which is a sum ofW1(K) basis functions, and

∇ ·Wα
i = φα

i (∇φβ
j × k)

which is a W3(K) function. Therefore ∇W0(K) ⊂ W1(K) and ∇ · W2(K) ⊂ W3(K).
Showing the curl inclusion is somewhat more involved as it splits into two relations. This
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corresponds to the two possibilities of restricting curls2 to a plane. The first way is to apply
the curl to vector fields perpendicular to the plane and set

∇× φ := ∇× (φk) = ∇φ× k = φyi− φxj.(3.22)

The virtual hehaxedral K̃ has four vertical edges; see Fig. 3.1. The 3D edge basis functions
associated with these edges are

Wαβ
ij = φα

i φ
β
j

k

2
=

1

2
Wαβ∗

ij∗ k.

Therefore,∇×Wαβ
ij gives the two-dimensional curl of the two-dimensional nodal function

Wαβ∗
ij . On the other hand,

∇×Wαβ
ij =

1

2
∇×

(

Wαβ∗
ij∗ k

)

=
1

2

(

φα
i

(

∇φβ
j × k

)

+ φβ
j

(

∇φα
i × k

))

=
1

2
(Wα

i −W
β
j ),

which establishes the inclusion∇×W0(K) ⊂ W2(K).
The second way is to restrict the curl to planar vectors. The result is identified with a

scalar field according to

∇× u := ∇× (u1i + u2j) = (u2x − u1y)k.(3.23)

The virtual hexahedral has two pairs of edges parallel to K, see Fig. 3.1. The 3D edge basis
functions for the edges on the top face (where φ+

3 = 1) are

Wα+
i3 = φα

i φ
+
3 ∇φ

β
j = φα

i ∇φ
β
j = Wα∗

ij .

Therefore,∇×Wα+
i3 gives the two-dimensional curl of the two-dimensional edge basis func-

tion Wα∗
ij . Since

∇×
[

Wα+
23

]

φ+

3
=1

= ∇×
(

φα
i ∇φ

β
j

)

= ∇φα
i ×∇φ

β
j .

this establishes the inclusionW1(K) ⊂ W3(K). The two-dimensional exactness structure
is summarized in (3.24)

W1 ∇
←− W0 ∇×

7−→ W2 ∇·
7−→ W3

W1 ∇×
7−→ W3

(3.24)

4. Transient magnetics solution using the exact sequence. For the magnetic diffusion
application considered here, we are interested in divergence free approximations of the mag-
netic induction B. To accomplish this H and J are eliminated from the system by (2.7)-(2.8)

2In the literature the operators engendered by the restriction procedure are sometimes denoted by rot and curl,
respectively. Here we employ the same symbol for both operators in order to emphasize that they are merely restric-
tions of the same three-dimensional operator.
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and the exact sequenceW i is used on the Faraday side of Tonti’s diagram (3.8)

Ampere Faraday

W2 1
µBh . . . Bh W2

∇×
... ⇑ ∇×

W1 σEh . . . Eh W1

(4.1)

The finite element model that corresponds to Diagram 4.1 is

∇×
1

µ
Bh = σEh in Ω,(4.2)

∇×Eh = −
∂Bh

∂t
in Ω,(4.3)

where

Bh =
∑

→

F

Φ→
F

(t)W→
F
, Eh =

∑

→

E

C→
E
(t)W→

E
,

are expansions of Eh and Bh in terms of edge and face basis functions. The proper boundary
conditions for this formulation are

n×Eh = n×Eb on Type I, n×
1

µ
Bh = n×Hb on Type II.(4.4)

System (4.2)-(4.3) and (4.4) requires proper interpretation. The discrete Faraday law (4.3)
holds exactly thanks to the inclusion ∇ × W1 ⊂ W2. Ampere’s theorem (4.2) and the
boundary condition on Type II segments are, in contrast, interpreted as a weak equation

∫

Ω

1

µ
Bh · ∇ × ÊhdΩ +

∫

Γ

(n×Hb) · ÊhdΓ =

∫

Ω

σEh · ÊhdΩ ∀Êh ∈ W
1,(4.5)

in which tangential magnetic field appears as natural boundary condition. The fully discrete
system is then derived by replacing the time derivative by a finite difference. The ensuing
algebraic system for En+1

h and Bn+1
h is

∫

Ω

σEn+1
h · Êh −

1

µ
Bn+1

h · ∇ × ÊhdΩ =

∫

Γ

(n×Hb) · ÊhdΓ ∀Êh ∈ W
1(4.6)

−
Bn+1

h −Bn
h

∆t
= ∇×En+1

h .(4.7)

The fully discrete equations combine a conventional Galerkin formulation for (4.6) with a
finite-volume like form of the discrete Faraday’s law (4.7). However, (4.7) is not a bona-fide
finite volume scheme because it is based on a functional representation of the fields rather
than on a discrete set of values. Methods of this kind for exact sequences on tetrahedral
grids (Whitney elements) were introduced by Bossavit and Verite in [7]. They considered
a formulation in H and J in which discrete Ampere’s theorem is satisfied exactly, while
Faraday’s law holds weakly.
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To solve (4.6)-(4.7) we proceed as follows. Because ∇ × En+1
h is in W2, the second

equation can be solved exactly for Bn+1
h :

Bn+1
h = Bn

h −∆t∇×En+1
h .

This expression is substituted into (4.6) to obtain an equation in terms of En+1
h :

∫

Ω

σEn+1
h · Êh +

∆t

µ

(

∇×En+1
h

)

·
(

∇× Êh

)

dΩ

=

∫

Ω

1

µ
Bn

h ·
(

∇× Êh

)

dΩ +

∫

Γ

(

n×Hb

)

· ÊhdΓ ∀Êh ∈ W
1.(4.8)

This scheme has very attractive computational properties. First, it ensures that the approxi-
mate magnetic flux density is divergenceless provided∇·B0

h = 0. This can be accomplished
by setting B0

h = ∇ × A0
h for some potential A0

h ∈ W
1. Second, it allows imposition of

Type I and Type II boundary conditions in a simple and efficient manner. For the formulation
considered here, tangential E are essential boundary conditions and tangential H are natural
boundary conditions. Because the degrees of freedom for E are the circulations of the elec-
tric field along the edges, the essential boundary condition is trivial to satisfy. For example,
setting n × E = 0 on Type I boundaries amounts to setting all coefficients associated with
Type I edges to zero. This situation sharply contrasts with the use of nodal elements where
tangential and normal boundary conditions pose a difficult problem.

5. Fast iterative solvers. Solution of the discrete linear system (4.8) is complicated by
the nontrivial discrete kernel corresponding to the curl operator (referred to as ker(curl )
throughout the rest of the paper). When σ is large this curl operator is less important and
relaxation alone (i.e. without multigrid) is effective. In regions where σ is small, however, the
curl operator dominates and the ker(curl ) can cause difficulties for iterative methods. Any
efficient preconditioner or solution technique must approximate all scales associated with
the operator and so this discrete kernel must be addressed. In this section, we consider the
application of a multigrid method to (4.8) and the proper treatment of ker(curl ).

Multigrid methods approximate the partial differential equation (PDE) of interest on a
hierarchy of grids and use solution updates from coarse grids to accelerate the convergence
on the finest grid. An example multilevel iteration is given in Figure 5.1 to solve

A1u = b.

In Figure 5.1, the Sk()’s are approximate solvers corresponding to pre and post smoothing.
These are used to reduce high frequency errors. Once smoothed, errors can be approximated
well on a coarser grid and so the linear system of equations is projected onto a coarser space
via the grid transfer operator Pk. The coarse grid equations are approximately solved by
recursively applying the multigrid idea. The resulting coarse grid solution is then interpolated
and used to correct the fine grid solution. The two primary multigrid components are the
smoothers, Sk()’s, and the grid transfers, Pk’s; see [11, 23] for more on multigrid methods.
Standard multigrid methods fall into two categories: geometric and algebraic. Geometric
algorithms use a hierarchy of meshes covering the same physical domain. Usually, the grid
transfers correspond to standard interpolation (e.g. linear) between the meshes and the Âk’s
are built by discretizing the PDE on each mesh. In contrast to geometric methods, algebraic
methods use only A1. Coarse grid meshes are constructed automatically by coarsening the
matrix graph associated with A1 and the Pk’s are determined algebraically. The primary
advantage of algebraic multigrid techniques is that a hierarchy of meshes and coarse grid
discretizations need not be supplied.
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/* Solve Aku = b (k is current grid level) */
procedure multilevel(Ak, b, u, k)

u = Sk(Ak, b, u);
if ( k 6= Nlevel)

r̂ = P T
k (b−Aku) ;

Âk+1 =







P T
k AkPk

or
discretized PDE on coarser mesh

v = 0;
multilevel(Âk+1, r̂, v, k + 1);
u = u+ Pkv;
u = Sk(Ak, b, u);

FIG. 5.1. High level multigrid V cycle consisting of ‘Nlevel’ grids to solve A1u = b.

When solving (4.8), both the smoother and the coarse grid correction must properly treat
ker(curl ). This is because ker(curl ) contains both high and low frequency components.
We want high frequency ker(curl ) error components reduced by the smoother and low fre-
quency ker(curl ) error components to be accurately represented on the next coarser grid
(where they will be reduced). Within most geometric schemes, the coarse grid interpolation
correctly approximates the smooth ker(curl ). Specifically, linear interpolation applied to the
discrete coarse grid kernel of the curl lies within the discrete fine grid kernel of the curl .
Hence the primary multigrid task is the development of a suitable smoother. It is important to
notice that the discrete ker(curl ) exists on all levels and so the smoother on all levels must
appropriately address these components. Smoothing error components that lie in the space
orthogonal to ker(curl ) operator is relatively straight-forward (e.g., standard Gauss-Seidel
methods are suitable). However, high frequency error components lying in the subspace of
ker(curl ) are poorly reduced by standard smoothers when σ is small. This is because the
mass term (

∫

Ω
σEn+1

h · Êh) in (4.8) governs the error within ker(curl ). Most smoothers,
however, do not treat the two terms of Equation (4.8) separately and thus focus only on the
(curl , curl ) term that dominates when σ is small. Geometric multigrid techniques address-
ing the smoothing issue have been proposed by Vassilevski/Wang [27], Hiptmair [16], and
Arnold/Falk/Winter [1]. These methods are discussed in §5.2.

In contrast to geometric multigrid methods, algebraic multigrid techniques must also
determine coarse grid spaces, and these coarse grid spaces must take into account ker(curl ).
For this reason, traditional AMG methods that have been designed for H(Ω, grad) elliptic
systems fail. Reitzinger and Schöberl [20] propose an algebraic method that specifically
addresses equations of the form (4.8). This approach is described in §5.3. Here, the idea
is to preserve the kernel of the discrete curl on coarser spaces. In particular, when the
discrete kernel subspace associated with a coarse grid curl is interpolated to the fine grid,
it lies within the discrete kernel subspace of the fine grid curl . In this paper, we pursue the
Reitzinger/Schöberl approach.

5.1. Discrete Gradient. In order to explain the multigrid method, we need to discuss
the discrete analog of the operator ‘∇×∇×’ (referred to as the (curl , curl ) operator) and
its kernel. In continuous space it is well known that

∇× (∇φ) = 0, φ ∈ H0(Ω, curl ).(5.1)
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1: Perform symmetric Gauss-Seidel on A(e)v(e) = f (e).
2: Calculate residual r(e) = f (e) −A(e)v(e).
3: Transfer edge residual to nodes: f (n) = T T r(e).
4: Perform symmetric Gauss-Seidel on T TA(e)Tv(n) = f (n) with zero initial guess.
5: Update edge-based solution: v(e) = v(e) + Tv(n).

FIG. 5.2. Distributed relaxation algorithm applied to A(e) (Vasselevski/Wang, Hiptmair).

In §3 the De Rham complex was introduced. Recall that the continuous gradient maps
H(Ω, grad) to ker(curl ) ⊂ H(Ω, curl ) and that the continuous gradient of W0 exactly
corresponds to ker(curl ) in W1, where W0 and W1 are the finite element subspaces of
H0(Ω, grad) and H0(Ω, curl ), respectively. This implies that a matrix spanning the dis-
crete ker(curl ) can be constructed one column at a time by taking the gradient of each basis
function inW0. The resulting matrix, T , is a discrete approximation to the continuous gra-
dient operator and T φ̂ (where φ̂ ∈ W0) is a discrete analogue of ∇φ given in (5.1). When
W0 corresponds to linear basis functions and Ω has Neumann boundary conditions, T is
Nedges × Nnodes, where Nedges is the number of mesh edges and Nnodes is the number of
mesh nodes. Column (node) i has ‘+1’ and ‘−1’ entries for each edge (row) that has node i
as an endpoint. The sign depends on the direction imposed on the edge in the edge element
discretization. The null space of the discrete (curl , curl ) operator has dimensionNnodes−1
and is spanned by T 3. It is important to note that T is developed via an algebraic (actually a
matrix graph) process using just nodal connectivity information. Hence the construction can
be repeated on coarser grids (see §5.4).

5.2. Smoothing. In the context of geometric multigrid, several smoothers have been
proposed for problems in H(Ω, div ) and H(Ω, curl ), see [27, 1, 16, 2]. Each of these
smoothers is designed to damp both error components in ker(curl ) and in its orthogonal
complement. One such method is an overlapping Schwarz block smoother by Arnold, Falk,
and Winther [1]. The central idea is to break the grid into overlapping patches of edges with
one patch for each node. Patch i consists of all edges having node i as an endpoint. Arnold et
al. use block Jacobi or Gauss-Seidel smoothers based on this decomposition in conjunction
with a geometric V cycle multigrid method. They prove that the convergence of the resulting
algorithm is independent of the number of mesh points and invariant with respect to the
material properties, such as conductivity and permeability.

Another effective smoother can be viewed as a special case of distributed relaxation
first proposed by Brandt [9]. This form of distributed relaxation was considered for a di-
vergence equation (arising from mixed finite elements) in 2D by Vassilevski and Wang [27]
and extended to 3D and for Maxwell’s equations by Hiptmair [16]. The central idea is to
explicitly smooth on both ker(curl ) and on its orthogonal complement. The smoothing al-
gorithm proposed by Hiptmair is given in Figure 5.2. In the first stage the smoother relaxes
on the entire space. When σ is small, the smoother effectively focuses on error components
that are in ker(curl )⊥. In the second stage the smoother relaxes error components that are in
ker(curl ). This is done by using T and T T to project the system of equations into ker(curl ).
In both stages the distributed relaxation uses one step of symmetric Gauss-Seidel. Using this
smoother in conjunction with a geometric V cycle multigrid algorithm, Hiptmair also proves
convergence independent of the number of mesh points and invariance to material properties.

3When Dirichlet boundary conditions are imposed, the dimension of the discrete null space is smaller and is
related to the number of node groups (where a group consists of nodes that are connected together via Dirichlet
edges). Additionally, Dirichlet edges are omitted when forming T .
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5.3. Algebraic Coarsening. In order to address Z-pinch simulations within the ALE-
GRA framework, a multigrid linear solver must function with highly irregular unstructured
meshes and highly heterogenous material properties. Schemes restricted to either regular
meshes or to meshes that are refinements of coarser grids are not desirable. We pursue al-
gebraic multigrid methods as they free application users from grid hierarchy requirements
and free finite element developers from constructing complex operators as a prerequisite
for applying multigrid. Unfortunately, however, the proper handling of the low frequency
ker(curl ) subspace is quite complicated within algebraic methods. In particular, standard
algebraic multigrid techniques will fail as the coarse grid correction will not adequately damp
low frequency error components in ker(curl ). In contrast to algebraic methods, typical geo-
metric schemes automatically handle the coarse grid ker(curl ) properly.

The key idea to properly capturing ker(curl ) on coarse grids is to work with nodal basis
functions. In particular, the De Rham complex tells us that the ker(curl ) can be obtained
by taking the gradient of nodal basis functions. Thus, if we take nodal basis functions cor-
responding to the fine grid mesh, coarsen them, and then take their discrete gradient we can
properly capture the low frequency ker(curl ) space. An overview of the multigrid hierar-
chy construction follows. A hierarchy of nodal discretization matrices is created by doing
unsmoothed aggregation on a closely related nodal problem. Using meshes defined by the
nodal hierarchy, an edge based multigrid hierarchy is developed, which includes inter-grid
transfer operators, coarse grid discretizations, and coarse grid discrete gradients. The nodal
discretization matrices are then discarded, and the fine grid edge based problem is solved
with CG preconditioned by AMG using Hiptmair’s implementation of Brandt’s distributed
relaxation as the smoother on all levels. The main idea is to capture the null space of the
(curl , curl ) operator on each of the coarser levels. By choosing an appropriate interpola-
tion operator, Reitzinger and Schöberl [20] show that each coarse level gradient prolongates
to a fine level gradient, i.e., into the null space of the (curl , curl ) operator on the fine grid.
We now discuss the individual steps in more detail.

The first step is to build a multigrid hierarchy for a related PDE problem that is dis-
cretized using nodal piecewise linear FE basis functions. Reitzinger and Schöberl advocate
using the related PDE problem

∫

Ω

∆t

µ
∇u · ∇v +

∫

Ω

σu · v.(5.2)

Note that the coefficients of this problem are the same as those in (4.8). Building the multi-
grid hierarchy consists of two primary steps: coarsening the matrix graph and building the
interpolation operator. Specifically, an undirected graph, G, is constructed from the discrete
matrix A(n)

1 associated with (5.2). The number of graph vertices is equal to the number of
matrix equations and an undirected edge between node i and j is added if and only if the
upper triangular matrix entry A(n)

1 (i, j) is nonzero. This matrix graph can then be coarsened
by any one of several aggregation techniques. Typically, these schemes work incrementally
by creating one new aggregate at a time. A new aggregate is defined by taking an unag-
gregated root node and grouping it with its immediate neighbors. To encourage aggregates
to be approximately of the same size, several heuristics are applied to ‘clean up’ aggregates
and to choose unaggregated root nodes wisely [26, 25, 24]. Additional heuristics are used to
ignore ‘weak’ matrix couplings (e.g. |a(i, j)| � max{|a(i, i)|, |a(j, j)|}) during the coars-
ening phase. Thus, the inclusion of the coefficients σ and ∆t

µ in (5.2) gives the aggregation
scheme the opportunity to detect coefficient jumps when coarsening. The aggregates can now
be thought of as coarse mesh points.

Once the aggregates are created, a grid transfer operator P (n)
1 between the coarse and
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W0,h ∇ - ker(curl h)

P
(n)
k

6 6

P
(e)
k

W0,H ∇ - ker(curl H)

FIG. 5.3. Commuting diagram for two levels.

fine mesh points is constructed. P (n)
1 corresponds to piecewise constant interpolation and is

given by

P
(n)
1 (i, j) =

{

1, if j is in aggregate i,
0, otherwise.

(5.3)

A “coarse” discretization matrix is then defined by a Galerkin approach

A
(n)
2 = (P

(n)
1 )TA

(n)
1 P

(n)
1 .(5.4)

The matrix (5.4) can be thought of as an adjacency matrix and so defines a “coarse” mesh.
This process of unsmoothed aggregation can be applied recursively to build a hierarchy of grid
transfer matrices, P (n)

1 , . . . , P
(n)
k , and discretization matrices,A(n)

1 , . . . , A
(n)
k , corresponding

to a non-nested mesh hierarchy.
After the nodal mesh hierarchy has been created, the next step is to define a sequence

of edge based interpolation operators, P (e)
1 , . . . , P

(e)
k , based on this hierarchy. The hierarchy

of edge based matrices is the one that is actually used in the multigrid iterations. If defined
properly, the prolongation operatorP (e)

k should interpolate the discrete gradient of coarse grid
nodal basis functions into ker(curl ) on fine grids. When used with a Galerkin approach, this
guarantees that the discrete gradient of coarse grid nodal functions are in the coarse grid
approximation to ker(curl ). As shown in [20], this is accomplished if

∇h(P
(n)
k φH) = P

(e)
k (∇HφH),(5.5)

where φH is a coarse level nodal basis function and ∇h (∇H ) is the discrete gradient on the
fine (coarse) grid. In effect, proper construction of P (e)

k ensures that the diagram in Figure
5.3 commutes, where h and H are used to denote fine and coarse grid spaces.

To define the interpolation operator, we first consider the mapping agg : nodes →
aggregates by

agg(i) =

{

j, if i belongs to aggregate j,
0, otherwise.

P
(e)
k is a rectangular matrix that maps coarse grid edges, e2 = (i2, j2), to fine grid edges,

e1 = (i1, j1), where P (e)
k (e1, e2) is given by

P
(e)
k (e1, e2) =







1, if (i2, j2) = (agg(i1), agg(j1)),
−1, if (i2, j2) = (agg(j1), agg(i1)),
0, otherwise.

(5.6)

Essentially, the prolongator P (e)
k is piecewise constant. A value is interpolated from a coarse

grid edge (i, j) to each fine grid edge that connects the two aggregates corresponding to coarse
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nodes i and j. No values are interpolated to fine edges whose endpoints are in the same
aggregate. The interpolation process is illustrated in Figure 5.4 for one coarse edge. The fine
grid mesh is given by straight solid lines, and nodal aggregates are denoted by dashed lines.
A coarse grid edge that connects two coarse grid nodes (aggregates) and that has value c is
represented by a curving solid line. Finally, the edge based coarse grid matrix is defined with
a Galerkin approach

A
(e)
k+1 = (P

(e)
k )TA

(e)
k P

(e)
k .

The key idea is to coarsen the nodal graph and then define nodal basis functions that
are piecewise constants. The discrete gradient of a piecewise constant function defined over
aggregate j is a function ψj that is nonzero only at the interface between aggregate j and
neighboring aggregates. The exact interpolation of ψj is then insured by (5.6). Alternatively,
we can view the algorithm as a way of coarsening the fine grid null space. We can coarsen the
null space by summing columns of T associated with nodes in an aggregate. Recall that each
edge in T contains a ‘+1’ and ‘−1’ entry associated with the edge’s endpoints. Thus, the
resulting ‘summed’ null space vector for aggregate j is nonzero only at the interface between
aggregate j and other aggregates. Once coarsened, each null space vector, ψj , is defined as a
sum of local basis functions

ψj =
∑

i=1,...,N

φij ,

where φij has support only at the interface between aggregates i and j, and N is the number

of neighboring aggregates. These local basis functions essentially form the columns of P (e)
k .

This alternative view of the method is closely related to the smoothed aggregation multigrid
method [26, 25]. In this scheme, the operator’s null space4 is partitioned over local basis
functions associated with aggregates and these local basis functions form an initial prolon-
gation operator. A key improvement in smoothed aggregation is that this initial prolongation
is enhanced via a smoothing step. Without this smoothing step it has been shown that the
convergence is not independent of the number of mesh points. Thus, we should not expect
the use of P (e)

k to yield a multigrid method that converges independent of the number of mesh

points. We are currently experimenting with applying a smoothing step to improveP (e)
k . This

modification follows standard smoothed aggregation and uses

P̃
(e)
k = (I − αD−1A

(e)
k )P

(e)
k ,(5.7)

where α = 4
3λmax, D = diag(A

(e)
k ), and λmax is obtained by applying a couple of eigen-

value iterations to D−1/2A
(e)
k D−1/2. This technique has not been fully implemented and the

idea will be pursued in detail in a future paper. More information on smoothed aggregation
can be found in [26, 25].

5.4. Implementation. The edge element algebraic multigrid preconditioner is imple-
mented in the ML package [22], an AMG package intended for distributed memory comput-
ers. This package requires users to furnish vectors and matrices. Matrices are supplied by
providing size information, a matrix-vector product, and a getrow function (used to obtain
nonzeros and column numbers within a single row). The ML package runs on distributed

4Smoothed aggregation is normally applied to problems with a small global null space (e.g. in elasticity the null
space corresponds to six rigid body modes: rotations and translations in three dimensions). Thus, no coarsening of
the null space is needed.
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c

c

c

c

FIG. 5.4. Example of edge based interpolation. Coarse grid edge values are interpolated only to fine edges
passing between aggregates.

memory machines. Parallelism is achieved by assigning a subset of rows for each matrix to
different processors. The ML package already contains the smoothed aggregation multigrid
method [26, 25] and many of the needed kernels: parallel matrix-matrix multiply, a variety
of parallel smoothers (damped Jacobi, symmetric processor-block Gauss-Seidel5, block sym-
metric processor-block Gauss-Seidel, etc.) and a coarse direct solver. Additionally, the ML
package is designed to facilitate the use of other software packages. ML’s existing smoothed
aggregation multigrid method (with smoothing disabled) is used to generate the complete
nodal multigrid hierarchy: P (n)

k ’s and A(n)
k ’s. The fine grid nodal matrix, A(n)

1 , is a discrete

Laplace operator and is constructed by settingA(n)
1 (i, j) to ‘−1’ for each (i, j) corresponding

to a mesh edge. The matrix diagonal is then chosen so that the sum of matrix entries within
a row is zero. In the future, we will replace the discrete Laplacian with an approximation
to (5.2) so that our aggregation scheme can detect coefficient jumps. The coarse grid A(n)

k

matrices are then used to generate the coarse grid Tk matrices. Specifically, on level k > 1

each undirected edgeA(n)
k (i, j) is assigned a unique number: 1 ≤ ẽ ≤ Nedges, whereNedges

is the total number of undirected edges. Then

Tk(ẽ, i) = 1, (or − 1 if j > i)
Tk(ẽ, j) = −1, (or 1 if j > i).

Finally, the edge-element grid transfers, P (e)
k ’s, are obtained by performing a matrix triple

product

P̂
(e)
k = TkP

(n)
k T T

k+1(5.8)

and culling entries

P
(e)
k (i, j) =











1, if P̂ (e)
k (i, j) = 2,

−1, if P̂ (e)
k (i, j) = −2,

0, otherwise.

(5.9)

5Processor-block means that each processor performs Gauss-Seidel locally and uses off-processor information
corresponding to the previous iteration.
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This corresponds exactly to (5.6) and allowed us to implement the P (e)
k construction quickly

via existing ML kernels.
Most of the parallel issues are handled by ML’s existing parallel kernels. Two exceptions

are the formulation of the coarse grid discrete gradients and a matrix free version of Hipt-
mair’s smoother. Both required new parallel code. The distributed relaxation algorithm (5.2)
is implemented in two different ways. In one implementation, the matrix products T T

k A
(e)
k Tk

are calculated in a preprocessing step for each level. This allows the use of ML’s fast parallel
matrix kernels. In the other implementation, the smoother application is matrix free [20]. The
nodal space projection and update to the edge based solution is done node by node, so that
the triple matrix product is never formed.

6. Numerical studies. To deliver usable computations for the Z-pinch simulations, the
fidelity and scalability of the solvers must be tested for realistic test problems. In particular the
conductivity may vary over many orders of magnitude and it is important to understand how
this affects not only the representation of the solution but also the requirements for iterative
solution technology. The linear system (4.8) can be represented in matrix form as

[

σM +
∆t

µ
K

]

x = b.(6.1)

The scaling of the M and K matrices with respect to the element length scale, h, goes as h3

and h respectively. Thus we obtain
[

σh3M̂ +
∆t

µ
hK̂

]

x = b,(6.2)

where M̂ and K̂ contain entries of O(1) size. Let c represent a typical sound speed or
velocity in the problem of interest. We expect in general for the time step to be limited by
the hydrodynamic Courant scales so that ∆t ∼ h/c. Thus we can define the mesh magnetic
Reynolds number

Rm = µσch.(6.3)

IfRm is large, then the linear system is mass matrix dominated and diffusion times are slower
than hydrodynamic propagation times. If Rm is small, then we are in a diffusion domi-
nated region. It is possible to model regions containing no mass using a very small pseudo-
conductivity in order to propagate the field within the magnetoquasistatic approximation of
magnetohydrodynamics, which implies in MKS units that ε � σ∆t, where the permittivity
of free space is ε ≈ 8.85 · 10−12. We have µ ∼ 4π · 10−7 and we estimate roughly that
σ ranges from 1 to 106, c ∼ 104 and for large problems h ∼ 10−4. This gives Rm ∼ 1
for regions with large conductivities. However, σ may drop by several orders of magnitude
in material state transitions from solid through melt before returning to high values for high
temperature plasma states. Void conductivity values should be lower than any material state
values and we estimate values from 1 to 103 may be utilized. Thus the stiffness matrix will
dominate by factors of 103 to 106 respectively in these void regions. Such low Rm states
drive the requirement for an implicit magnetic diffusion solution methodology.

6.1. Physics fidelity studies. To validate the approach described above, we consider a
two-dimensional model problem obtained from the eddy current equations (2.3)-(2.6) by the
ansatz

H = Hzk and E = Exi +Eyj.
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FIG. 6.1. Model problem in two-dimensions

The main objective is to verify correct initial transient phase and the steady state limit. The
region Ω is a rectangle that is 0.003m wide and 0.004m high. The low conductivity region
occupies a slot in the middle of the rectangle that is 0.003m deep and 0.001m wide; see
Fig.6.1. The material permeability is

µ = 4π × 10−7

in the whole region, while conductivity is a discontinuous function given by

σ =

{

1, if 0.001 < x < 0.002 and 0.001 < y < 0.004,
63.3× 106, otherwise.

The fields in the model problem are driven by a combination of Type I and Type II boundary
conditions. Type II boundary are applied at the center slot on the top side, the bottom side
and the left-hand and right-hand sides of Ω. Type I boundary are applied elsewhere, i.e., at
the two segments on the left-hand and right-hand of the center slot on the top side; see Fig.
6.1. Type I conditions prescribe homogeneous tangential E:

n×E = 0 on y = 0.004 and 0 < x < 0.001 or 0.002 < x < 0.003.
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FIG. 6.2. Electric field and magnetic flux density: initial and steady states.

The boundary condition on Type II boundaries is natural for the weak equations. The tangen-
tial magnetic field is set to one at the center slot and zero elsewhere:

n×H =

{

1, on 0.001 < x < 0.002, y = 0.004,
0, all other parts of Type II boundary.

The fully discrete magnetic diffusion problem in two-dimensions is developed according to
§4. The spatial discretization is effected using the 2D complex from §3.3. on uniform grids.
Specifically, we employ grids consisting of 30 × 30 rectangles. Because the goal of the
experiments in this section is to validate the discretization qualitatively, the linear system
(6.1) is fully assembled and solved “exactly” using a banded Cholesky factorization routine.

Numerical simulations were run for ∆t = 5 × 10−6s and ∆t = 2.5 × 10−6s. In both
cases steady state was reached at t ≈ 50× 10−6s. This diffusion time is consistent with the
prescribed material parameters. Figure 6.2 shows the initial electric field E and magnetic flux
density B and their steady states obtained after 20 time steps with ∆t = 2.5× 10−6s.

6.2. Scalability Studies. To demonstrate the performance of the edge-element based
algebraic multigrid method, two test problems are solved within the ALEGRA framework.
In all of our results, the notation V(k, k) (or W(k, k)) indicates a multigrid V cycle (or W
cycle) with k pre and post Hiptmair smoothing steps on each level. It is important to note
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iterations
conductivity V(1,1) V(2,2) V(3,3) W(1,1) W(2,2) W(3,3)

100 15 11 9 13 10 8
10 26 19 16 22 17 14
1 29 22 18 25 19 16

0.0001 39 27 22 32 23 19
TABLE 6.1

Medium cube problem iterations.

Iterations
Conductivity V(1,1) V(2,2) V(3,3) W(1,1) W(2,2) W(3,3)

100 27 19 15 22 16 13
10 48 33 27 38 25 22
1 52 37 30 44 30 25

TABLE 6.2
Large cube problem iterations.

that one multigrid cycle is used as a preconditioner to a conjugate gradient solver. Thus, the
iteration counts correspond to conjugate gradient iterations.

The first test problem corresponds to a three-dimensional box on the unit cube (i.e.
Ω = [0, 1]3) with Neumann boundary conditions on the surface. Different experiments are
performed by varying the conductivity (which is constant throughout the entire region) and
by varying the mesh spacing. The conductivity is a weighting factor on the mass term of
Equation (4.8). Hence, decreasing the conductivity emphasizes the (curl , curl ) term and
makes the problem harder to solve.

Table 6.1 illustrates the results corresponding to the first linear solve for a 32× 32× 32
mesh. The initial guess is identically zero and the right-hand side is random. Convergence is
declared when ||r||2/||b||2 ≤ 10−11. In Table 6.2, a cube problem on a 64× 64× 64 mesh
is solved using the same initial guess and right-hand side. ¿From these two tables, it is seems
that while the number of iterations initially grows as the conductivity decreases, the iteration
count does level off. That is, the convergence of the method can be experimentally bounded
independently of the conductivity. Unfortunately, however, there is growth in the number of
iterations as the grid is refined. Table 6.3 illustrates this behavior. The table compares the
number of iterations to solve a 64× 64× 64 problem versus a 32× 32× 32 problem. Each
table entry is a ratio n64/n32, where n64 (n32) is the number of iterations required to solve
the 64×64×64 (32×32×32) problem. Ratios are given for the conductivity values 100, 10,
and 1. Again, convergence is declared when ||r||2/||b||2 ≤ 10−11. As discussed in §5, this
iteration growth is to be expected. The growth observed in the W cycle iterations is somewhat
less than in the corresponding V cycle, especially for smaller conductivity (stiffer problems).
Note that the stopping tolerance is quite small, which tends to emphasize this growth in iter-
ations. For example, if we had required only ||r||2/||b||2 ≤ 10−6, the iteration counts for a
V(2,2) cycle for the 32× 32× 32 and the 64× 64× 64 meshes would be 9 and 14, respec-
tively, a growth of 1.55. While there is growth, the symmetric Gauss-Seidel preconditioned
method required 614 iterations as compared to no more than 37 for the multigrid runs. We are
currently experimenting with techniques to improve the scalability of the multigrid technique
by smoothing the interpolation operator as discussed in §5. Preliminary, encouraging results
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Iteration ratios
Conductivity V(1,1) V(2,2) V(3,3) W(1,1) W(2,2) W(3,3)

100 1.80 1.72 1.66 1.69 1.60 1.62
10 1.85 1.73 1.68 1.73 1.47 1.57
1 1.79 1.68 1.66 1.76 1.57 1.56

TABLE 6.3
Ratios n64/n32 of iteration counts for 64× 64× 64 and 32× 32× 32 problems.

Grid Size P (e) P̃ (e)

25× 25 24 14
50× 50 42 19

100× 100 76 27
150× 150 93 30

TABLE 6.4
V(1,1) iteration counts using both the standard and ‘smoothed’ interpolation operators.

have been obtained for a model two dimensional problem

∇×∇× u+ σu = f

on the unit square with Dirichlet boundary conditions. This problem is discretized with edge
elements on a regular mesh with σ = 1000 and f taken as a random vector. Table 6.4 shows
the iteration counts required to reduce the initial residual by 1010 using a zero initial guess
and defining the P̃ (e)

k ’s via (5.7). While growth persists, it is much less significant for the
smoothed interpolant, which converges three times faster than the standard interpolant. This
‘smoothing’ technique will be pursued in a future paper.

Our second test problem corresponds to a more realistic model and is run in serial with
two different mesh sizes. Figure 6.3 illustrates the solution after a single time step on a three
dimensional domain consisting of a cylinder of highly conductive material with a cylindrical
slot modeled by a very low conductivity region. The first test problem is meshed with 44, 544
hexahedral elements, resulting in 46, 761 nodes and 130, 008 edges. This mesh is approxi-
mately 8 times larger than the one shown in Figure 6.3. A sharp jump in the conductivity
occurs between the slot and the material regions. Specifically, the conductivity of the outer
region is 6.33 × 107, while the conductivity of the inner “void” region is given the small
value 1.0. Homogeneous electric Dirichlet boundary conditions are applied at the center and
outside top surfaces. Homogeneous Neumann boundary conditions are applied to the outer
and bottom surfaces and an inhomogeneous azimuthal tangential field condition is applied
on the top middle ring surface. For the time step chosen, the field fills the slot immediately.
This problem is intended to be a first approximation to the Z-pinch apparatus described in
§1. In the second run, the mesh contains 116, 473 nodes and 345, 768 edges. Table 6.5 il-
lustrates the results for the first linear solve for each problem size. The initial guess is the
zero vector, and the stopping criteria is ||r||2/||b||2 ≤ 10−8. Both the V(1,1) and W(2,2)
converge in a small number of iterations. Once again, there is modest growth in the num-
ber of iterations. By comparision, a conjugate gradient method with symmetric Gauss-Seidel
preconditioning requires 684 iterations for the smaller problem. Given that this problem is
still relatively small, it is unlikely that Gauss-Seidel preconditioning will lead to convergence
on significantly larger problems.

At this time the parallel code is still being optimized. Given the promising serial results,
we expect that the parallel version should also perform reasonably well. The major change is
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FIG. 6.3. Cutaway of axial slot showing Y component of magnetic flux density after one time step and stream-
lines of current density (thin) and magnetic flux density (thick).

Iterations
Problem Size V(1,1) V(2,2) W(1,1) W(2,2)

130, 008 42 20 35 18
345, 768 54 28 42 22

TABLE 6.5
Slot problem iterations.
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the use of processor-block Gauss-Seidel within the Hiptmair smoother. (See the footnote in
§5.4.)

7. Conclusions. We have described an edge and face finite element discretization for
the eddy current equations on arbitrary quadrilateral and hexahedral meshes in heterogeneous
media and presented a particular implementation of an algebraic multigrid technique appro-
priate to this discretization. Numerical results are given indicating both the fidelity of the
representation and the efficacy of the algebraic multigrid methodology.
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REFERENCES

[1] D. N. ARNOLD, R. S. FALK, AND R. WINTHER, Multigrid in H(div) and H(curl), Numer. Math., 85 (2000),
pp. 197–217.

[2] T. AUSTIN, Advances on a Scaled Least-Squares Method for the Neutron Transport Equation, PhD thesis,
University of Colorado – Boulder, 2001.

[3] O. BIRO AND K. PREIS, On the use of the magnetic vector potential in the finite element analysis of three-
dimensional eddy currents, IEEE Transactions on Magnetics, 25 (1989), pp. 3145–3159.

[4] O. BIRO AND K. PREIS, Finite element analysis of 3-D eddy currents, IEEE Transactions on Magnetics, 26
(1990), pp. 418–423.

[5] A. BOSSAVIT, A rationale for “edge-elements” in 3-D fields computations, IEEE Transactions on Magnetics,
24 (1988), pp. 74–79.

[6] , Computational electromagnetism, Academic Press, 1998.
[7] A. BOSSAVIT AND J. VERITE, A mixed fem-biem method to solve 3-d eddy current problems, IEEE Transac-

tions on Magnetics, MAG-18 (1982), pp. 431–435.
[8] D. BRAESS, Finite elements. Theory, fast solvers, and applications in solid mechanics, Cambridge University

Press, Cambridge, 1997.
[9] A. BRANDT, Multigrid techniques: 1984 guide with applications to fluid dynamics, Tech. Report Nr. 85,

GMD-Studie, Sankt Augustin, West Germany, 1984.
[10] F. BREZZI AND M. FORTIN, Mixed and Hybrid Finite Element Methods, Springer-Verlag, 1991.
[11] W. L. BRIGGS, V. E. HENSON, AND S. MCCORMICK, A Multigrid Tutorial, Second Edition, SIAM,

Philadelphia, 2000.
[12] C. F. BRYANT, C. R. I. EMSON, AND C. W. TROWBRIDGE, A comparison of Lorentz gauge formulations in

eddy current computations, IEEE Transactions on Magnetics, 26 (1990), pp. 430–433.
[13] , A general purpose 3-d formulation for eddy currents using the Lorentz gauge, IEEE Transactions on

Magnetics, 26 (1990), pp. 2373–2375.
[14] C. F. BRYANT, C. R. I. EMSON, C. W. TROWBRIDGE, AND P. FERNANDES, Lorentz gauge formulations

involving piecewise homogeneous conductors, IEEE Transactions on Magnetics, 34 (1998), pp. 2559–
2562.

[15] M. F. F. BREZZI, J. DOUGLAS AND D. MARINI, Efficient rectangular mixed finite elements in two and three
space variables, M2AN Math. Model. Numer. Anal., 21 (1987), pp. 581–604.

[16] R. HIPTMAIR, Multigrid method for Maxwell’s equations, SIAM J. Numer. Anal., 36 (1998), pp. 204–225.
[17] J. NEDELEC, Mixed finite elements in R

3, Numer. Math., 35 (1980), pp. 315–341.
[18] , A new family of finite element methods in R

3, Numerische Mathematik, 50 (1986), pp. 57–81.
[19] J. S. PEERY AND D. E. CARROLL, Multi-material ALE methods in unstructured grids, Computer Methods

in Applied Mechanics and Engineering, 187 (2000), pp. 591–619.
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