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Abstract.
This paper considers problems of distributed parameter estimation from data measurements on solutions of

partial differential equations (PDEs). A nonlinear least squares functional is minimized to approximately recover the
sought parameter function (i.e., the model). This functional consists of a data fitting term, involving the solution of a
finite volume or finite element discretization of the forward differential equation, and a Tikhonov-type regularization
term, involving the discretization of a mix of model derivatives.

We develop a multigrid method for the resulting constrained optimization problem. The method directly ad-
dresses the discretized PDE system which defines a critical point of the Lagrangian. The discretization is cell-based.
This system is strongly coupled when the regularization parameter is small. Moreover, the compactness of the
discretization scheme does not necessarily follow from compact discretizations of the forward model and of the reg-
ularization term. We therefore employ a Marquardt-type modification on coarser grids. Alternatively, fewer grids are
used and a preconditioned Krylov-space method is utilized on the coarsest grid. A collective point relaxation method
(weighted Jacobi or a Gauss-Seidel variant) is used for smoothing. We demonstrate the efficiency of our method on
a classical model problem from hydrology.
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1. Introduction. This paper proposes an efficient multigrid method for the recovery of
a coefficient function of an elliptic differential equation in 3D. Such problems arise in many
applications, including DC resistivity [37], magnetotelluric inversion [34], diffraction tomog-
raphy [15], impedance tomography [10], oil reservoir simulation [16] and aquifer calibration
[20].

We write the forward problem as

A(m) u = q,(1.1)

where A refers to the differential operator defined on an appropriate domain Ω ⊂ IR3 and
equipped with suitable boundary conditions. This operator depends on a model, m(x), which
is to be approximately recovered based on measurement data b on the solution u(x) of (1.1)
or its gradient ∇u(x). We assume for simplicity that the forward problem for u is linear, as
is often the case in practice.

An instance of (1.1) on which we have conducted our present experiments is given by

∇ · (em∇u) = q, x ∈ Ω(1.2a)

∇u · n = 0, x ∈ ∂Ω.(1.2b)

Such a forward problem arises in particular in DC resistivity, electrical impedance tomogra-
phy (EIT) and hydrology.

The inverse problem is well known to be ill-posed, and we follow the established
Tikhonov-like regularization approach [39, 17]. Thus, we minimize the sum of a least squares
data fitting term and a regularization functional which is a discretization of β‖a1/2∇(m −

∗Received May 29, 2001. Accepted for publication September 12, 2001. Recommended by Piet Wesseling.
†Department of Computer Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada. (as-

cher@cs.ubc.ca). Supported in part under NSERC Research Grant 84306.
‡Department of Mathematics and Computer Science Emory University, Atlanta, GA.

(haber@mathcs.emory.edu). Supported in part under NSERC CRD Grant 80357.

1



ETNA
Kent State University 
etna@mcs.kent.edu

2 A multigrid method for parameter estimation

mref )‖2, where β ≥ 0 is the regularization parameter, and mref (x) and a(x) are given func-
tions representing some a priori information. In this paper we assume that a(x) is a diagonal,
positive definite 3 × 3 matrix function. The norm is assumed by default to be that of L2(Ω)
or a corresponding discretization. (An extension to the Total Variation and Huber norms
[41, 27, 18] will not be discussed here.)

In practice, both the forward problem (1.1) and the regularization functional must be
discretized, and we assume for simplicity that the model m and the field u are discretized on
the same grid, using a stable, accurate finite volume or finite element method, as developed
for (1.2) in §2. This then leads, for a given (finest) grid, to a constrained minimization problem
of the form

minimize φ(u, m) ≡
1

2
‖Qu− b‖2 +

β

2
‖W (m − mref )‖2(1.3)

subject to A(m)u − q = 0,

where u and m are grid functions ordered as vectors, A is the corresponding discretization
of A assumed to be a nonsingular matrix1, and W is likewise the discretization matrix of the
weighted gradient operator a1/2∇. The vector mref corresponds to a discretized mref , and
the matrix Q indicates the projection of u or of its gradient onto the locations in the grid to
which the data b are associated. In the simplest case, which we assume here, Q arises from a
trilinear interpolation from the finest grid to the measurement locations. The matrices A, W
and Q are therefore all very large and sparse in a typical application.

REMARK 1.1. There are two routes which may make the formulation easier to solve
numerically or to understand mathematically, but which we specifically avoid, because the
overall method becomes less practically useful:

• We do not pre-process and interpolate the data to all grid points, as this could intro-
duce correlated (non-random) noise which cannot be subsequently removed. Thus,
we deal with a singular QT Q, in general.

• We do not set β = 0, although using a sufficiently coarse grid for m introduces
a regularizing effect. The essential problem with a grid regularization is that it
may produce arbitrary results, as it ignores a priori information. A model which
permits redundant detail is often better for practical problems [43, 42, 24]. In our
experience, once the grid for m is fine enough to reconstruct a model in reasonable
detail as a piecewise constant function, the regularizing effect achieved by varying
the grid is neither sufficiently significant nor sufficiently smooth to be effectively
controllable [4].

2

Let us concentrate on the efficient solution of the constrained optimization problem (1.3).
Typically in the literature, the constraints are eliminated and the resulting unconstrained for-
mulation is solved by some variant of Newton’s method, usually the Gauss-Newton method.
A preconditioned conjugate gradient algorithm is applied at each iteration for the resulting
reduced Hessian system.

On the other hand, computational approaches in optimal control usually address the con-
strained formulation corresponding to (1.3) directly. The reason for this traditional dichotomy
is simply that in many optimal control problems there are additional inequality constraints,
which makes the “clean” elimination of constraints impossible to carry out. In the latter case
various nonlinear programming methods for constrained optimization have been employed,

1 The solution of (1.2) is actually determined only up to a constant. To ensure that A is indeed nonsingular we
may use some known value of u at a small part of ∂Ω to pin it down.
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especially SQP; see, e.g., [38, 5, 35, 6, 33]. These methods seek a critical point for the
Lagrangian

L = L(u, m, λ) =
1

2
‖Qu− b‖2 +

β

2
‖W (m − mref )‖2 + λT (A(m)u − q),(1.4)

i.e., a solution to the large system of nonlinear equations

Lλ = Au − q = 0,(1.5a)

Lu = QT (Qu − b) + AT λ = 0,(1.5b)

Lm = βW T W (m − mref ) + GT λ = 0,(1.5c)

where

G = G(u, m) =
∂(A(m)u)

∂m
.

In such methods the elimination of u and of corresponding Lagrange multipliers λ, or of their
respective update directions, is possible within each linearizing iteration (see [23]).

The problem (1.3) is nonlinear, hence an iterative method is employed for its solution.
Within each such outer, nonlinear iteration for the optimization problem, iterative methods
are employed whenever an inversion involving A, AT or W T W is to be executed. It seems
wasteful if these inner iterations are to be applied to eliminate variables to a much higher
accuracy (stricter tolerance) than the accuracy of the current iterate within the outer loop.
Likewise, it is wasteful to eliminate some variables in terms of others to a high accuracy at
each outer iteration. Yet, precisely such an imbalance of accuracies is implied by the con-
straint elimination approach (or the reduced Hessian method) [22, 19].2 In [22] we therefore
advocated an all-at-once approach [36, 25]. Specifically, at each Newton-type iteration for
(1.5) a variant of symmetric QMR is employed, and an effective preconditioner is obtained by
solving the reduced Hessian system approximately. In addition, inexact Newton-type meth-
ods are utilized. See also [7, 8].

Indeed, a computational method for the optimization problem (1.3) should not be in-
ferior to a method which simply solves the system (1.5) directly by viewing the latter as a
discretization of a nonlinear PDE system: The additional information available in the op-
timization formulation should help in solving more difficult problems robustly, rather than
slowing down the basic solution process. Thus we are led to consider in this paper a multi-
grid method for solving the discretized PDE system (1.5) in linearized form, without prior
elimination; the outer iteration is handled using optimization techniques [33, 23].

Note that A, AT and W T W are all discretizations of elliptic differential operators which
dominate their respective equations in (1.5) if β is large. In such a case devising a multigrid
method (as well as other methods) is straightforward. But the actual value of β is determined
for best recovery in the presence of noise in the data, and the corresponding values are usually
small (unless the noise level is very high). For realistic values of β the term βW T W does not
dominate (1.5c) and hence the system (1.5) is strongly coupled.

A Newton linearization for solving the nonlinear equations (1.5) leads to the following
permuted KKT system to be solved at each iteration:

H





δu
δλ
δm



 = −





Lλ

Lu

Lm



 , where H =





A 0 G
QT Q AT K
KT GT βW T W + T



 ,(1.6)

2 Note that this issue really arises only for problems in more than 1D, i.e., unlike those considered in [6, 35, 38,
5].
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with

K = K(m, λ) =
∂(AT λ)

∂m
, T = T (u, m, λ) =

∂(GT λ)

∂m
.

We use an outer iteration which constructs damped Newton-like iterates and controls conver-
gence with a merit function which takes into account both progress towards optimality and
reduction of infeasibilities. Furthermore, we construct finite volume discretizations which
retain a good h-ellipticity measure, even for very small values of β.

In §2 we investigate the properties of the linearized, discretized PDE system, and we
derive appropriate discretizations. Whereas the PDE system is elliptic, and even though A
and W T W correspond to discretizations with good h-ellipticity measures [12, 40], in case of
a cell-centered, non-staggered discretization and when β is small the corresponding discrete
h-ellipticity measure deteriorates for the discretized system of (1.6) as the grids get coarse.
Thus, within the multigrid cycle, if the value of β is deemed too small for a given grid then
it is increased in H but not in the right hand side of (1.6). This corresponds to a Levenberg-
Marquardt approach [33].

The components of our multigrid algorithm are described in §3. We use collective point
relaxation. It is natural to embed this algorithm also in a nested iteration (aka FMG) [11, 40].
In the present context there is also an additional question of determining the regularization
parameter. Unlike [2, 9] we have advocated in [4] to (roughly) determine a value for β on
the coarsest grid first, and then keep it fixed when continuing to finer grids (with W in scaled
form). The resulting algorithm typically requires only one or two Newton-type iterations on
the finest grids. However, in the present article we have opted not to use a nested iteration in
order to study the impact of our multigrid algorithm without the camouflaging effect of the
continuation technique.

Numerical results for the problem (1.2) are presented in §4. The modified cell-centered
multigrid method is seen to produce an efficient algorithm. Furthermore, as mentioned earlier,
since there are an inner, multigrid iteration, and an outer, nonlinear optimization iteration, it
is wasteful to solve the inner iteration to excessive accuracy (despite multigrid speed) while
being far away from the solution of (1.5).

Moreover, it is useful following each nonlinear iteration to apply some iterations towards
the solution of the forward problem (1.5a). This idea is reminiscent of post-stabilization
[3, 1] and secondary correction in SQP methods [33], and it has advantages both in hastening
convergence and in making the solution feasible before reaching optimality. Details of this
idea and its performance are given in §4 as well.

In §5 we summarize our findings and then embark upon a discussion of several additional
issues.

2. The discretized PDE system. The present section concentrates on the discretization
of the large, sparse, linear system (1.6). We consider a modified cell-centered discretization
and discuss ellipticity properties in the context of the inverse problem.

2.1. Ellipticity of the PDE system. We now proceed to investigate ellipticity of the
linearized system. Let us assume for notational simplicity that the data are given everywhere,
i.e. Q → I if the measurement is of u and Q → ∇ if the measurement is of ∇u values.
Denote

∇u = α = (α1, α2, α3)
T , ∇λ = γ = (γ1, γ2, γ3)

T .

Furthermore, return to the differential equation (i.e. let the grid width tend to 0) and con-
sider the problem (1.2). It is straightforward to show that the continuous operators which
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correspond to the discrete operators are

A → ∇ · (σ∇(·))(2.1a)

W T W → −∇ · (a∇(·))(2.1b)

K(m, λ) → ∇ · [σγT (·) ](2.1c)

G(m, u) → ∇ · [σαT (·) ](2.1d)

T (m, u, λ) → σ αT γ (·)(2.1e)

KT (m, λ) → −σγT (∇(·))(2.1f)

GT (m, u) → −σαT (∇(·)).(2.1g)

Here σ(x) = em(x) > 0, and (2.1b) is defined with natural boundary conditions.
We consider a solution form involving only one wave number,





δu
δλ
δm



 =





δ̂u

δ̂λ
ˆδm



 eıθT
x,

where δ̂u, δ̂λ and ˆδm are amplitudes, and attention is restricted to high wave numbers θ =
(θ1, θ2, θ3)

T . For the present purpose we also assume that σ, α and γ are constants and
a = I . For the Q → I case, this yields the symbol

C =





−σ‖θ‖2 0 ıσαT θ

1 −σ‖θ‖2 ıσγT θ

−ıσγT θ −ıσαT θ β‖θ‖2 + σαT γ



 .(2.2)

Thus,

det(C) = βσ2‖θ‖6(2.3)

+ σ3αT γ‖θ‖4 + 2σ3[αT θ][γT θ]‖θ‖2

+ σ2[αT θ]2.

Clearly, for any β > 0 fixed, the system is elliptic, because ellipticity is determined by
regularity of C for all “sufficiently large” ‖θ‖. The system is elliptic also in the case that
Q → ∇; indeed, the only change in (2.3) is that the last term gets multiplied by ‖θ‖2.

Furthermore, consider the Gauss-Newton method: We set K = 0 and T = 0 in (1.6) and
call the resulting symbol CGN . In this case we have

det(CGN ) = βσ2‖θ‖6 + σ2[αT θ]2

for Q → I , and

det(CGN ) = βσ2‖θ‖6 + σ2‖θ‖2[αT θ]2

for Q → ∇. Thus, det(CGN ) > 0 for every θ 6= 0.

2.2. Cell-centered discretization. We proceed here as in [4]. Thus, we write (1.2) as

∇ · J = q in Ω,(2.4a)

J− em∇u = 0 in Ω,(2.4b)

J · n
∣

∣

∣

∂Ω
= 0,(2.4c)
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m
u, λ

(i,j)

(i+ 1
2

,j+ 1
2
)

∂Ω

FIG. 2.1. Cross-sections of the primary grid (solid) and dual grid (dashed), and the cell-centered discretization.

where Ω = [−1, 1]3. Again, we set σ = em.
With N a positive integer and h = 2/N , we consider Ω as the union of N 3 cubic cells

of side h each. This is the primary grid. Inside the (i, j, k)th grid cell we approximate m by
a constant mi,j,k, 1 ≤ i, j, k ≤ N . See Figure 2.1.

Next, we integrate (2.4a) over each cell of the primary grid and use the midpoint rule.
This yields

h−1[Jx
i+1/2,j,k − Jx

i−1/2,j,k + Jy
i,j+1/2,k − Jy

i,j−1/2,k +

Jz
i,j,k+1/2 − Jz

i,j,k−1/2] = qi,j,k, 1 ≤ i, j, k ≤ N.(2.5a)

The boundary conditions (2.4c) are naturally used to eliminate values of Jx, Jy, or Jz at
cells which are next to a boundary in (2.5a).

The components of u are placed, like m, at cell centers. The x-component, say, of (2.4b)
is then discretized centered at the x-face of the cell, yielding

h−1(ui+1,j,k − ui,j,k) = σ−1
i+1/2,j,kJx

i+1/2,j,k,(2.5b)

where

σi+1/2,j,k = 1/(e−mi+1,j,k + e−mi,j,k)(2.5c)

is a harmonic average of two neighboring cell properties.
Using expressions similar to (2.5b) also in the y- and z-directions, the components of J

in (2.5a) which are inside Ω can be eliminated. This yields a system of N 3 linear algebraic
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equations for u (for a given m) based on a 7-point discretization stencil. This system of
equations has a constant null-space, but it becomes nonsingular upon setting u at a corner of
the grid to 0.

For m we have a straightforward Poisson-like equation with natural boundary conditions,
and we utilize the standard 7-point formula (in 3D). The resulting discrete system written as
(1.6) is therefore cell-centered and non-staggered. The unknowns are all placed at the nodes
of the dual grid. (See Figure 2.1, where these nodes correspond to the blue dots.)

This discretization appears to provide a natural, centered, compact scheme in (1.3). How-
ever, the resulting system (1.6) involves “long differences” in the terms GT δλ and Gδm. In-
deed, these terms correspond, according to (2.1g), to a discretization of −σ(∇u)T (∇(δλ))
and −∇· [(σ∇u) δm], respectively, and our discretization is non-staggered. By looking at the
last row and the last column of H in (1.6) we would expect the latter fact to become important
when β > 0 is very small.

To investigate the potential effect of this further, let us simplify notation by setting λ ≡ 0
in H of (1.6). This corresponds to either considering a Gauss-Newton iteration or considering
a Newton iteration from such an initial guess (as we utilize in §4). Then γ = 0 as well.
Applying a local Fourier analysis [11, 40] for the case Q → I , we consider the effect of the
discretized, frozen differential operators on a mode





δ̂u

δ̂λ
ˆδm



 eıξT
x/h, ξ = (ξ1, ξ2, ξ3)

T ,−π ≤ ξi ≤ π.

This yields the discrete symbol matrix

Ch =





−σâ(ξ) 0 ıσb̂(ξ)
1 −σâ(ξ) 0

0 −ıσb̂(ξ) βâ(ξ)



 ⇒ det(Ch) = σ2(βâ3 + b̂2),

where

â(ξ) = 2h−2(3 − cos ξ1 − cos ξ2 − cos ξ3) > 0,(2.6a)

b̂(ξ) = h−1(α1 sin ξ1 + α2 sin ξ2 + α3 sin ξ3).(2.6b)

Recall that a good measure of h-ellipticity is necessary for being able to design an ef-
fective relaxation method (e.g. see Chapter 8 of [40] and references therein). To assess this,
we must consider high frequency modes ξ ∈ Thigh. Note that b̂(π, π, π) = 0. For β small
enough, therefore, the h-ellipticity measure of the system is approximately given by

Eh =
min{det(Ch); ξ ∈ Thigh}

max{det(Ch)}
≈

8βh−6

h−2‖α‖2
=

8

‖α‖2
βh−4.(2.7)

In this case, the h-ellipticity measure Eh depends on the grid and, for a coarse enough grid
and a small enough regularization parameter, it is clearly too small for practical purposes.
However, this happens only when β � h4.

For the case Q → ∇, a similar analysis yields

det(Ch) = σ2â(βâ2 + b̂2).

In this case the h-ellipticity measure becomes too small already when β � h2.
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Our remedy is simply to increase β inside H if necessary to ensure that, in the linear
operator, β ≥ ηh4 (or β ≥ ηh2 for Q → ∇) for a sufficiently large constant η. (Thus,
introducing this remedy depends on the values of both β and h.) This corresponds directly to
a Levenberg-Marquardt correction for the reduced Hessian (see [22, 33]).

Alternatively, one can use a cell-nodal discretization, as described next. Designing a
cheap, effective smoother for the resulting system is not simple, hence we end up not using
the cell-nodal discretization. However, we develop it for the sake of completeness.

2.3. Cell-nodal discretization. The reason that Eh may become small in (2.7) as β → 0
is that b̂(ξ) of (2.6b) vanishes if ξi = π, i = 1, 2, 3. This will be avoided if only short
differences are used in discretizing ∇u and ∇λ, essentially because terms involving sin ξi

in (2.6b) will be replaced by terms involving sin ξi

2 . The latter does not vanish for high
frequencies, i.e. when π

2 ≤ |ξi| ≤ π for some i.
A way to avoid long difference discretizations for ∇u and for ∇λ is to place the corre-

sponding unknowns of u and λ at the nodes of the primary grid while keeping m cell-centered.
See Figure 2.2.

m

u, λ

(i+ 1
2

,j+ 1
2
)

(i,j)

∂Ω

FIG. 2.2. Cross-sections of the primary grid (solid) and dual grid (dashed), and the cell-nodal discretization.

In (1.3), and thus also in (1.5) and (1.6), the discretization for m remains unchanged and
centered at cell centers. But the forward model discretization is now centered at the nodes of
the primary grid, which are the cell centers of the dual grid.

Thus, (2.4a) is now integrated over dual grid cells. This yields

h−1[Jx
i+1,j+1/2,k+1/2 − Jx

i,j+1/2,k+1/2 + Jy
i+1/2,j+1,k+1/2 − Jy

i+1/2,j,k+1/2 +

Jz
i+1/2,j+1/2,k+1 − Jz

i+1/2,j+1/2,k ] = qi+1/2,j+1/2,k+1/2, 0 ≤ i, j, k ≤ N.(2.8a)
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Further, the x-component, say, of (2.4b) is now discretized along x-edges of the primary grid,
yielding

σi,j+1/2,k+1/2(ui+1/2,j+1/2,k+1/2 − ui−1/2,j+1/2,k+1/2)/h = Jx
i,j+1/2,k+1/2,(2.8b)

0 ≤ i ≤ N + 1, 1 ≤ j, k ≤ N,

where

σi,j+1/2,k+1/2 =
1

4
(emi,j,k + emi,j+1,k + emi,j,k+1 + emi,j+1,k+1)(2.8c)

is an arithmetic average of the four neighboring cell properties; see [21], where a similar
procedure is developed to handle permeability with possible discontinuities in Maxwell’s
equations. The boundary conditions (2.4c) are then used to eliminate “ghost unknowns”
which are outside Ω, e.g., u

−1/2,j,k = u3/2,j,k, uN+3/2,j,k = uN−1/2,j,k, etc.
Using expressions similar to (2.8b) also in the y- and z-directions, the components of J

in (2.8a) can be eliminated. This yields a system of (N + 1)3 linear algebraic equations for u
(for a given m) based on a 7-point discretization stencil. As before, a constant null-space is
eliminated in a standard way.

These discretizations of the forward model and of the regularization term now form the
discrete optimization problem (1.3). We proceed from here to form the necessary conditions
for an optimum (1.5) and the linearized iteration (1.6). It is not difficult to see that now the
h-ellipticity measure remains bounded away from 0 for all β > 0 (unlike (2.7)).

Note that the formation of all matrices appearing in (1.5) and (1.6) remains straightfor-
ward and cheap to evaluate, and it produces very sparse, structured matrices.

However, the design of a point relaxation scheme for this staggered-grid discretization
becomes difficult precisely when β � h4. Neighboring values of m, u and λ become
strongly coupled then, and a box (or Vanka) relaxation [40] would involve all unknowns in
both one cell of the primary grid and an overlapping cell in the dual grid. This is prohibitively
expensive, so we stay with the cell-centered alternative in the sequel.

3. Elements of the multigrid method. The cell-based, finite volume discretization de-
scribed in §2.2 may suggest at first use of a cell-based coarsening within a multigrid algo-
rithm. However, this is not mandatory. Indeed, once the finest-grid equations are generated
we may treat the resulting system as a non-staggered discretization of some continuous prob-
lem with averaged coefficients, and proceed with a standard vertex-based coarsening [40, 14].
The “vertices” here are the nodes of the dual grid. Thus, a trilinear prolongation and its ad-
joint, full-weight restriction operator are applied for each grid function δu, δm and δλ. Note
that we are treating m here as a nodal representation of a continuous, piecewise linear func-
tion, whereas in the derivation of the discretization m is treated as piecewise constant: This
inconsistency of interpretation, although seldom noticed, is standard and produces an accept-
able approximation method [4].

For the coarse grid operators we employ a standard Galerkin operator.
As mentioned before the PDE system which (1.5) discretizes is strongly coupled when

β is small. In such cases (which are the ones of interest if the recovered image of m is to be
sharp) we employ a collective point-relaxation, where all three unknowns corresponding to
one grid point are relaxed simultaneously. A popular choice is red-black Gauss-Seidel. An-
other possibility is weighted (under-relaxed) collective Jacobi [11, 40]. We use the latter (with
a weight, or damping factor, of 0.8), although Gauss-Seidel variants have better smoothing
properties, because of ease of vectorization. In particular, using MATLAB we can treat block
diagonal matrices very efficiently and generate a rather fast code.
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Rates of smoothing using standard local Fourier analysis (see [11, 40]) are reported in
Table 3.1 for α = (1, 1, 1)T . The rates are seen to be acceptable so long as β ≥ h4. Thus,
assuming h-ellipticity, these point relaxations provide effective smoothers and handle the
PDE coupling on a local level.

TABLE 3.1
Smoothing rates for collective Gauss-Seidel and for collective weighted Jacobi (weight = 0.8) relaxations.

β h Gauss-Seidel weighted Jacobi
.05 .05 .56 .74

.0025 .05 .57 .75
.635e-5 .05 .76 .80

.3125e-6 .05 1.24 1.30
.1 .1 .57 .72
.01 .1 .59 .72

.001 .1 .64 .74
.0001 .1 .76 .88

.00001 .1 1.07 1.65

However, for very small β/h4 the discrete system no longer possesses a good h-ellipticity
measure (cf. (2.7)). To overcome this difficulty we add “artificial regularization” by increas-
ing β inside H (but not at the right hand side) of (1.6). This depends on the grid size at each
level. Specifically, we set according to (2.7)

βh = max(β, βmin),(3.1)

where

βmin =

{

h4η Q → I

h2η Q → ∇

η =
1

8
max

x

[
u2

x

a11
+

u2
y

a22
+

u2
z

a33
], a = diag{a11, a22, a33}.

Note that if we use a fine enough finest grid then βh > β only inside the multigrid cycle
and not on the finest level. In such a case, the outer nonlinear iteration is not affected. If, on
the other hand, we need to increase β on the finest level as well then this may slow down the
convergence of the nonlinear iteration. The effect is similar to increasing the parameter in the
Levenberg-Marquardt method which is commonly used for highly ill-conditioned problems
[33].

These elements are combined into a Newton-multigrid method where a Newton variant,
with a global convergence control, is applied at each iteration (see [23, 33]), and a linear
V(2,2)-cycle of multigrid inner iteration based on the above method commences thereupon.

4. Numerical results. Similar to [22], we synthesize data for our numerical experiment
by assuming that the “true model” m(x) is given by

m(x, y, z) = [3(1 − x)2 exp(−(x2) − (y + 1)2 − 3(z + 1)2)

− 10(x/5− x3 − y5 − z5) exp(−x2 − y2 − 3z2)

− 1/3 exp(−(x + 1)2 − y2 − 3z2) − 2]/4.
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Four sets of data are then calculated for this model. First, we assume that data are available
everywhere on the finest grid3 and calculate either the field u or its gradient ∇u. Then, we
assume that the data (u or ∇u) are limited and given on an 83-grid uniformly spaced in the
cube [−0.6, 0.6]3.

To obtain the data, we use the cell-based discretization for the forward problem (1.2) and
calculate the fields on a 1293-grid. This simulates the continuous process and we can evaluate
the discretization error based on the solution of this very fine grid problem. The finest grid
used for the actual inverse problem calculations is chosen to be uniform and consist of 493

cells, which leads to 352, 947 unknowns. Comparing the very fine scale (1293 cells) solution
of the forward problem to the solution on 493 cells we find that the discretization error for the
latter is roughly 0.2%. We then pollute the data with Gaussian noise with a larger maximum
norm than the discretization error’s and recover the corresponding model. The initial iterate
is described in [22].

4.1. Solving the linear system for different β-values and different grids. In the first
set of experiments we solve the linear system which arises for the first nonlinear iteration. We
set a = I , i.e. W corresponds to the discretization of the gradient operator, and thus obtain an
isotropically smooth solution. The noise level in the data is set to be 5%, 2% and 0.5%. For
each of these noise levels we pick an appropriate value for β as described in [4] and record
the rate of convergence and the number of multigrid levels used. The higher the number of
grids the coarser is the coarsest grid.

As expected from the theory, stabilization of the cell-centered discretization is required
for small values of the regularization parameter, where the h-ellipticity measure is small. This
effect arises sooner (i.e. at finer grids) for ∇u-data than for u-data.

4.2. Solving the linear systems within an inexact Newton-type method. The calcu-
lations in §4.1 were performed with a stringent tolerance for the linear system. But within the
nonlinear iteration framework for (1.3), the linear KKT system (1.6) at each iteration may be
solved only approximately [33, 28, 29, 13, 40]. Thus, our proposed approach becomes even
more advantageous when employing an inexact Newton-type method, as very few (usually
only one) V-cycles are needed per inexact Newton iteration.

Using an inexact strategy in the constrained optimization context raises the prospect of
global convergence. In our code we employ a line search strategy with the l1 merit function as
formulated in [33]. We also use the option of secondary correction [33] to the step after each
inexact outer iteration, which can be considered as an inexact version of the procedure N3
proposed in [23]. We carry out the process by iterating towards the solution of the forward
problem (the constraint) after each inexact step is computed, applying one V(2,2) cycle to
the forward problem (1.5a). If we use this option then feasibility is reached earlier than
optimality. This may be important because in most applications the optimization process
merely helps to obtain a reasonable solution whereas the constraint approximates the physics
of the problem and should as such be taken more seriously.

We therefore conduct the following experiments where we solve (1.6) to a rough accuracy
of 0.5 using the stabilized cell-centered discretization. We also experiment with different
matrix functions a(x) in the regularization operator.
i. As in the first experiment we set a = I (the model is smooth in all directions).
ii. Common to many geophysical scenarios we set the weight in the depth variable lower

than in the other directions: a = diag{3, 3, 1}. Thus we use a priori information
which should lead to a smoother model in the x−y directions than in the z direction.

3This assumption is common in optimal control.
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TABLE 4.1
Rates of convergence for different noise levels (and corresponding values of β) and different discretizations.

CC - cell-centered, SCC - stabilized cell-centered. The notation (·)I implies limited data, with the field interpolated
to 83 measurement locations. No convergence is denote by ’*’.

Measurement β noise Levels CC SCC
∇u 2.5e − 4 5% 5 * 0.21

4 0.48 0.21
1.7e − 5 2% 5 * 0.21

4 0.53 0.21
4.6e − 6 0.5% 5 * 0.21

4 * 0.21

u 3.5e − 2 5% 5 * 0.23
4 0.46 0.23

2.0e − 3 2% 5 * 0.23
4 0.49 0.23

2.7e − 4 0.5% 5 * 0.23
4 0.57 0.23

(∇u)I 1.3e − 4 5% 5 * 0.32
4 0.51 0.32

8.6e − 6 2% 5 * 0.32
4 * 0.32

2.1e − 6 0.5% 5 * 0.32
4 * 0.32

uI 1.5e − 2 5% 5 * 0.33
4 0.53 0.33

1.1e − 3 2% 5 * 0.33
4 0.58 0.33

1.2e − 4 0.5% 5 * 0.33
4 * 0.33

It is important to note that any robust computational technique for this type of problems
should be able to incorporate such simple a priori information as it may vary with the appli-
cation and the scenario [30]. As before, the noise level is set and the regularization parameter
is then chosen correspondingly. Obviously, the correct regularization parameter value is dif-
ferent for different choices of W and Q.

Table 4.2 shows that combining our solver with an inexact Newton-type iteration is very
powerful for all the above scenarios. Indeed, the whole nonlinear problem is solved in a
cost which is not much higher than solving a few forward problems. In Figure 4.1 we plot
the norms of the gradient of L and the residual of the constraint. Note that the secondary
correction does help to obtain a reasonable feasible solution well before optimality is reached.

As with most multigrid variants, our method can fail if a(x) has jump discontinuities (as
in total variation regularization) unless an operator-induced prolongation (and restriction) is
used. We do not report on the latter sort of experiments in this paper.

It is also important to see that adding the a priori information makes a difference in
the recovered models. Figure 4.2 displays an x − z slice through the center of the model,
reconstructed using the different regularization functionals. The models are obviously quite
different. Finally, in Figure 4.3 we plot a slice through the true model and the reconstructed
model using the isotropic regularization a = I .
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TABLE 4.2
Numerical Experiment 3: Number of nonlinear iterations (= number of V(2,2)-cycles) needed to solve the

nonlinear problem when using an inexact Newton-multigrid method.

Data Regularization Noise Inexact Newton iterations
(∇u)I i 5% 16

2% 24
ii 5% 17

2% 25

uI i 5% 15
2% 23

ii 5% 17
2% 24
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FIG. 4.1. Convergence curve for the experiment (ii) with (∇u)I data.

5. Summary and discussion. An efficient multigrid method has been developed and
demonstrated for large, sparse inverse problems arising from distributed parameter estimation
in the context of elliptic PDEs in 3D. Our guiding principle has been to balance the various
iterative processes involved, avoiding a costly premature elimination of some unknowns in
terms of others as well as utilizing inexact Newton-type methods.

Given the discretized constrained optimization problem (1.3), we therefore solve simulta-
neously the discretized PDE system which results from the necessary conditions for a critical
point of the Lagrangian. The relevant underlying PDE system is strongly coupled when the
regularization parameter β attains a very small value. Moreover, the h-ellipticity measure
for a cell-centered discretization deteriorates as βh−4 (or βh−2 when Q → ∇) becomes
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FIG. 4.2. Slices in x − z plane through the true model (bottom) and the reconstructed models using the
isotropic gradient (left) and the non-isotropic gradient (right) in the regularization functional for the a priori infor-
mation.

small. Thus, we use a collective weighted Jacobi relaxation and increase β inside H of (1.6)
if necessary.

For the experiments reported in §4 we always choose the value of β based on the Morozov
discrepancy principle (see, e.g., [4] and references therein). If β is arbitrarily decreased
with the noise level held fixed then the computational method may start fitting the noise in
the data. This in turn may cause the obtained model m to have unphysical high frequency
oscillations. The convergence of the multigrid method could subsequently slow down as well,
then, basically because the solution looks significanly different in different grid resolutions.
Thus, one should avoid using unreasonably small values of β- - for more than one reason.

Furthermore, we advocate use of an inexact Newton-type method for the constrained op-
timization problem (1.3) with a V (2, 2) cycle (or two) as the inexact solver for the linearized
system at each iteration. Combining all these elements results in a very effective method, as
demonstrated in §4.

There seem to be surprisingly few multigrid methods developed in the literature for in-
verse problems; we mention [26, 32, 31, 2, 9], none of which is close to our proposed ap-
proach.

Although multigrid may not be the approach of choice for all inverse problems (e.g., it
may be hard to generate a robust multigrid method for the forward problem) it clearly holds
promise; moreover, there are some interesting observations for general inverse problems that
arise from our multigrid analysis. First, compact dicretizations of the forward problem and
of the regularization term do not necessarily yield a compact discretization for the combined
PDE system arising from the constrained approach for very small values of β. This can af-
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FIG. 4.3. Slices in the true model (top) and the reconstructed model using the isotropic gradient (i).

fect other inversion techniques, too. Note that such a discretization enhances the null space
of the sensitivity matrix ∂Qu

∂m . This arises in other methods, too, for example in the popular
unconstrained Gauss-Newton formulation, for reasons that relate to the discretization rather
than the ill-posedness of the problem. In these cases, regularization may be needed to make
the problem well-posed even for very accurate data. Second, we have explored another dis-
cretization technique for our inverse problem. While this discretization is stable and may
still yield a fast multigrid method for the forward problem, using multigrid for the inverse
problem can be quite expensive because the smoothing cannot be done collectively. Finally,
similar to our work in [22] we note that by using the constrained approach and applying an
inexact Newton version for the optimization problem we can dramatically reduce the cost of
solving the inverse problem.
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