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PERTURBATION OF PARALLEL ASYNCHRONOUS LINEAR ITERATIONS BY
FLOATING POINT ERRORS ∗

PIERRE SPITERI †, JEAN-CLAUDE MIELLOU ‡, AND DIDIER EL BAZ §

Abstract. This paper deals with parallel asynchronous linear iterations perturbed by errors in floating point
arithmetic. An original result is presented which permits one to localize the limits of perturbed parallel asynchronous
linear iterations. The result is established by using the approximate contraction concept. Simple examples are
studied.
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1. Introduction. Major contributions on the accuracy and stability of numerical compu-
tations have been developped in numerous works (see [3] , [9], [10] and [18]). Computations
carried out on machines imply approximate representation of real numbers. When approx-
imate computations are performed, one obtains an exact solution of a perturbed problem.
Generally speaking, many iterative algorithms lead to the solution of fixed point problems for
which the previous observation is still valid.

From a mathematical point of view, the concept of approximate contraction is a very
classical tool; the reader is refered to the books of N.J. Higham [9] (see also its references),
M.A. Krasnosel’skii et al. [11] and J. Ortega and W.C. Rheinboldt [15] for the analysis of
the effect of perturbations by using the approximate contraction concept. This concept was
extended in an abstract context by J.C. Miellou et al. (see [13]) in order to study the behaviour
of various perturbed fixed point algorithms. In the above mentionned reference, the authors
are rather interested in the localization of the limits of iterate vector subsequences in the
sequential and parallel asynchronous context than in convergence properties; the latter issue is
nevertheless considered in references [1], [5] and [12]. Indeed, under a general approximate
contraction assumption, it can be shown that the limits of subsequences of iterate vectors
belong to a ball of center u?, solution of the exact problem, and finite radius. In the case of
iterative methods with linear convergence, the radius of the ball is a function of the contraction
constant associated with the fixed point mapping on the one hand and the perturbations on
the other hand.

The case of linear iterations is very important in practice for the solution of algebraic
systems. For example, when one uses Newton-like methods, each step finally consists in the
solution of a linear problem.

The objective of the present study is to analyze the effect of roundoff errors on the preci-
sion of computations in the context of parallel asynchronous iterations for linear fixed point
systems. Using technical results, we can show that the approximate contraction assumption
is satisfied for the linear fixed point problem u? = Bu? + c, where B is an (m, m) square
matrix and c is a vector in the m-dimensional space. In particular, it is shown that the norm of
matrix B, subordinate to the vector p-norm, where p is any given integer, is less than or equal
to a number λ which bounds the spectral radius of matrix B. If the matrix B is irreducible,
then λ is equal to the spectral radius of matrix B. The previous result is a generalization of the
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classical convexity theorem of Riesz (see [16]). Furthermore we note that a linear iteration is
carried out on a machine, as a dot product of m vectors on the one hand and a sum of two real
numbers on the other hand. Thus, these arithmetic operations can be viewed as a particular
situation of the context studied in the books of N.J. Higham (see [9]) and G.H. Golub and C.F.
Van Loan (see [10]). This allows us to verify the approximate contraction assumption. As a
consequence, the effect of roundoff errors can be studied in the case of parallel asynchronous
iterations for linear fixed point problems by using the concept of approximate contraction.

Section 2 deals with the perturbation of general fixed point iterative methods in connec-
tion with the notion of approximate contraction. Section 3 presents localization results of
subsequences of perturbed parallel asynchronous linear iterations. Section 4 proposes origi-
nal and technical results which allow us to obtain an upper bound of the p-norm of the matrix
B for p ∈ [1,∞], generalizing the algebraic matricial formulation of the little theorem of
Riesz (see [16]); note that this result can be used only for successive approximation methods
in the sequential context. In the case of parallel asynchronous iterations only the weighted
maximum norm permits one to analyze the behaviour of the algorithm (see [6]). Thus, only
the case where p = ∞ must be considered in the parallel asynchronous context. The previous
characterization allows us to obtain, in section 5, the property of approximate contraction for
affine mappings. The link with errors arising in floating point arithmetic is developped in sec-
tion 6 in the case of rounding and chopping and in the context of parallel asynchronous linear
iterations. In the last section, various examples for which the matrices B have nonnormality
property are studied (see also [4]).

2. Perturbation of fixed point iterative methods in the classical context.

2.1. Approximate contraction with respect to an element. We consider a formalism
similar to the nested sets pattern described by D.P. Bertsekas (see [2]) and adapted to per-
turbed fixed point problems in J.C. Miellou et al. (see [13]). Let E be a normed vector space.
Let us denote by v → ‖v‖E the norm defined on E and let N be the set of natural numbers.
Consider a sequence {En}n∈N of nested closed subsets of E, such that

(2.1) En+1 ⊂ En, ∀n ∈ N.

We denote by H the intersection of the subsets En; we note that H is also closed.
Let {un} be a sequence of E; we denote by a({un}) the set, which is possibly empty, of

all accumulation points of {un}. Let T : D(T ) ⊂ E → E be a mapping such that

(2.2) E0 ⊂ D(T ) and T (En) ⊂ En+1, ∀n ∈ N.

Let also R(T ) be the range of T and assume the relative compactness of E0 ∩ R(T ).

(2.3) If un ∈ E0 ∩ R(T ), ∀n then we can extract a convergent subsequence in E,

where E0 ∩ R(T ) is the closure of the set E0 ∩ R(T ). We will denote by u? the limit of the
subsequence. Moreover, assume that

(2.4)
◦

D(T ) 6= ∅,

where
◦

D(T ) denotes the interior of D(T ). Assume that

(2.5) u? ∈
◦

D(T ) and ∃ δ > 0 such that the closed ball BE(u?; δ) ⊂
◦

D(T ).

We recall the important concept of an approximately contracting mapping (see [11]).
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DEFINITION 2.1. The mapping T is approximately contracting (in brief a-contracting)
with respect to u? on BE(u?; δ), if there exists a nonnegative real number θ and a real
constant l ∈ [0, 1[ such that

(2.6) ‖u? − Tv‖E ≤ l‖u? − v‖E + θ, ∀v ∈ BE(u?; δ),

where θ, l and δ satisfy

(2.7) θ ≤ (1 − l)δ.

REMARK 1. The number θ is the approximation constant related to the perturbation of
the fixed point mapping and l is the contraction constant.

We now recall the following important result (see [11], [13] and [15]).
THEOREM 2.2. Let assumptions (2.1) to (2.5) hold and consider the successive approx-

imation method

(2.8) un+1 = T (un), n = 0, 1, ..., u0 ∈ E0.

Assume that the mapping T is a-contracting with respect to u? on BE(u?; δ). Then the
iteration (2.8) with u0 ∈ E0 = BE(u?; δ) generates a sequence {un} such that the set
a({un}) satisfies

(2.9) a({un}) 6= ∅ , a({un}) ⊂ BE(u?; δ?),

where

δ? =
θ

1 − l
.

COROLLARY 2.3. Assume that the assumptions of Theorem 2.2 hold and consider the
particular case where H = ∩n∈NEn = {u?}. Then a({un}) = {u?} is the unique fixed
point of the iteration (2.8).

REMARK 2. The result of Theorem 2.2 measures the maximum distance between the
limit of the iterate vector subsequence and the exact solution. The measure depends on the
constant (1 − l). In particular if (1 − l) is small, then θ

1−l
may not necessarily be small.

REMARK 3. In the case where T is a classical contracting fixed point mapping defined
on E, i.e. θ = 0, the set En can be naturally chosen as the closed ball of center u? and radius
ln‖u?−u0‖E , where ‖u?−u0‖E denotes the distance between u? and u0 in the space E. Let
us note that in this case we have limn→∞(diam(En)) = 0, where diam(En) is the diameter
of En and the assumption (2.3) is not necessary in the statement of Corollary 2.3.

Let us consider the product space E = R
m and denote by v → ‖v‖E, the norm defined

on E. Assume that the approximate contraction assumption (2.6) holds for the mapping
T . Suppose that in (2.6) v = un, where {un} is the sequence produced by the successive
approximation method (2.8). Then we easily obtain the following estimation

‖u? − un‖E ≤ ln ‖u? − u0‖E + (ln−1 + ... + l + 1) θ,

which can be written as follows

(2.10) ‖u? − un‖E ≤ ln ‖u? − u0‖E +

(

1 − ln

1 − l

)

θ.

Thus, we can define a sequence {En}n∈N of nested closed subsets

En = BE

(

u?; ln ‖u? − u0‖E +

(

1 − ln

1 − l

)

θ

)

.
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2.2. Perturbation of a fixed point mapping. From a numerical point of view, the above
mentioned mapping T generally results from a perturbation or an approximation, of a map-
ping T̄ : D(T̄ ) ⊂ E → E, with fixed point u?. Assume that the exact mapping T̄ is
contracting with respect to u? in E, i.e.,

(2.11) ‖T̄ v − u?‖E ≤ l‖u? − v‖E , ∀v ∈ E.

If we make the additional assumption that the error of approximation ‖Tv− T̄ v‖E is propor-
tional to ‖T̄ v‖E, i.e.,

(2.12) ‖Tv − T̄ v‖E ≤ τ‖T̄ v‖E , τ > 0 , ∀v ∈ E,

then by the triangle inequality we have

‖Tv − T̄ v‖E ≤ τ‖T̄ v − u?‖E + τ‖u?‖E , ∀v ∈ E,

and it follows from (2.11) that

(2.13) ‖Tv − T̄ v‖E ≤ τl‖u? − v‖E + θ? , ∀v ∈ E,

where θ? = τ‖u?‖E . Thus, by the triangle inequality, we obtain

‖Tv − u?‖E ≤ ‖Tv − T̄ v‖E + ‖T̄ v − u?‖E, ∀v ∈ E,

and it follows from (2.11) and (2.13) that we have

(2.14) ‖Tv − u?‖E ≤ (1 + τ)l‖u? − v‖E + θ? , ∀v ∈ E,

and if (1 + τ)l < 1, then the mapping T is a-contracting with respect to u? in E.
REMARK 4. It follows that the constant τ must satisfy

(2.15) τ <
1− l

l
.

REMARK 5. In some contexts such as the study of roundoff errors, the inequality (2.12)
is not easy to use. In the sequel, we will introduce an analogous assumption well adapted to
our context of study by using a vectorial norm concept (see Remark 7).

2.3. The case where R(T ) is finite. Let us consider the situation where the range of T ,
R(T ) is finite. Such a situation can occur, for example, when one uses computers since the
set of floating point numbers is then finite. In this case, Theorem 2.2 leads to the following
result (see [13]).

THEOREM 2.4. Let assumptions (2.1) to (2.5) hold, assume that the range of T is finite
and consider the successive approximation method (2.8). Then, there exists an index n0 such
that for n ≥ n0, un ∈ H . Moreover if H = {u?}, then for n ≥ n0, un = u?.

More generally we obtain the following result.
THEOREM 2.5. Let assumptions (2.1) to (2.5) hold. If R(T ) is finite, then there exists an

integer n0 such that ∀n ≥ n0, un ∈ H = BE(u?; θ
1−l

).
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3. Perturbation of parallel asynchronous iterations. For simplicity, let us consider a
positive integer α and α normed vector spaces Ei, i = 1, .., α. Let | . |i be the norm defined
on Ei and let us consider also the product space E such that

E =

α
∏

i=1

Ei.

E is also a normed vector space. In the sequel we will consider the weighted maximum norm
(see [1], [6], [8] and [12]):

‖u‖e,∞ = max
1≤i≤α

( |ui|i
ei

)

,

where e is a positive vector, with ei > 0, i = 1, 2, ..., α and u ∈ E is decomposed as follows

u = (u1, ..., uα), with ui ∈ Ei, i = 1, 2, ..., α.

Then T being a mapping from D(T ) ⊂ E into E, we decompose this mapping accordingly

T (u) = (T1(u), ..., Tα(u)), with Ti(u) ∈ Ei, i = 1, 2, ..., α.

Let us consider an initial guess u0 ∈ D(T ) and the asynchronous iterative sequence
{un} defined by

(3.1) un+1
i =

{

Ti(...., u
sj(n)
j , ...), ∀i ∈ J(n),

un
i , ∀i 6∈ J(n),

where J = {J(n)}n∈N is a sequence of non empty subsets of {1, 2, ..., α} denoting the
subsets of indices of the components updated at the n-th iteration,

S = {s1(n), s2(n), ..., sα(n)}n∈N,

is a sequence of elements of N
α, and J , S satisfy

(3.2) ∀i ∈ {1, 2, ..., α}, the set {n ∈ N | i ∈ J(n)} is infinite,

(3.3) ∀i ∈ {1, 2, ..., α}, ∀n ∈ N, si(n) ≤ n,

(3.4) ∀i ∈ {1, 2, ..., α}, lim
n→∞

si(n) = +∞.

According to a result of J.C. Miellou, P. Cortey-Dumont, and M. Boulbrachêne (see [13]), we
can deduce the following result

THEOREM 3.1. The assumptions and notations being the same as in Theorem 2.2, let
E be normed by ‖.‖e,∞. Let assumption (2.6) hold with respect to the previous norm. If
assumptions (3.2) to (3.4) are satisfied, then
1- for all u0 ∈ BE(u?; δ), the asynchronous iterations (3.1) are well defined,
2- with a({un}) being the set of the limits of the subsequences of {un}, one has a({un}) 6=
∅ and a({un}) ⊂ H = BE(u?; δ?), defined by

(3.5) BE(u?; δ?) = BE

(

u?;
θ

1 − l

)

=

α
∏

i=1

BEi

(

u?
i ; ei

θ

1 − l

)

,
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where l is the contraction constant and θ is the approximation constant.
3- If morever R(T ) is finite, then there exists an integer n0, such that for any n ≥ n0,
un ∈ BE(u?; δ?).

The case of perturbation of iterative methods with linear convergence is one of the most
important cases. This situation occurs, particularly, in the case of linear asynchronous itera-
tions where T̄ (u) = Bu+ c. With respect to linear convergence, we can deduce the following
result.

COROLLARY 3.2. The assumptions and notations being the same as in Theorem 3.1,
with T̄ (u) = Bu + c and the perturbation T of T̄ being a-contractant with respect to an
element, in the sense of Definition 2.1. Then assertions 1 to 3 of Theorem 3.1 are true.

4. Preliminary mathematical results.

4.1. A finite dimensional weighted norm form of Riesz’s convexity theorem. Let B

be a nonnegative (m, m) real matrix. Assume that there exist a nonnegative constant λ and
two vectors denoted by e and e?, both of which have all their components strictly positive and
such that

(4.1) Be ≤ λe and Bte? ≤ λe?.

Assume that the space R
m is normed by

(4.2) ‖x‖ee?,p =

[

m
∑

i=1

eie
?
i

|xi|p
e

p
i

]
1

p

.

REMARK 6. Consider also the weighted maximum norm defined by

(4.3) ‖x‖e,∞ = max
1≤i≤m

( |xi|
ei

)

.

Let j be the index such that

|xj |
ej

= ‖x‖e,∞.

Then, it can be noted that

(eje
?
j )

1

p ‖x‖e,∞ ≤ ‖x‖ee?,p ≤
(

m
∑

i=1

eie
?
i

)
1

p

‖x‖e,∞ , ∀x ∈ R
m.

Thus

lim
p→∞

‖x‖ee?,p = ‖x‖e,∞ , ∀x ∈ R
m.

Consequently, in the sequel, the use of norms (4.3) and (4.2) for every p ∈ [1,∞[ leads us to
consider the set [1,∞] for simplicity of presentation.

LEMMA 4.1. Assume that the space R
m is normed by the weighted maximum norm (4.3)

and that assumption (4.1) holds. Then the subordinate matrix norm associated with the scalar
norm (4.3) satisfies:

]|B|[e,∞≤ λ.



ETNA
Kent State University 
etna@mcs.kent.edu

44 P. Spiteri, J. C. Miellou and D. El Baz

Proof. See [7], Lemma 2.1 and Proposition 1 of [12] in a general context of vectorial
norms.

LEMMA 4.2. Under assumption (4.1), the subordinate matrix norm associated with the
scalar norm (4.2) satisfies

]|B|[ee?,p ≤ λ, ∀p ∈ [1,∞].

Proof. Let us note first that the assumption (4.1) implies

(4.4) Be ≤ (λ + ε)e and Bte? ≤ (λ + ε)e?, ∀ε > 0.

Then, whatever ε > 0, there exists β(ε) > 0, such that

(4.5) Bβe = (B + βA)e ≤ (λ + ε)e, Bt
βe? = (Bt + βA)e? ≤ (λ + ε)e?, ∀β ∈]0, β(ε)],

where the entries of the matrix A are all equal to one; indeed by (4.1) and (4.4), we can take
β(ε) = ε

m
. Let us denote by b̃ij = bij + β, the entries of the matrix Bβ , ∀β ∈]0, β(ε)]. Note

that b̃ij > 0. Let µi be defined by

µi =

∑m

j=1 b̃ijej

ei

.

For all i and j, the real numbers b̃ij being strictly positive, then µi is also strictly positive.
Then (4.5) implies 0 < µi < λ + ε. Let tij be defined by

tij =
b̃ijej

µiei

.

Then

m
∑

j=1

tij = 1 and 0 < tij .

We have

ei

∣

∣

∣

∣

∣

∑m

j=1 b̃ijxj

µiei

∣

∣

∣

∣

∣

p

≤ ei

∣

∣

∣

∣

∣

∣

m
∑

j=1

tij
|xj |
ej

∣

∣

∣

∣

∣

∣

p

, ∀x ∈ R
n.

|xj | being ≥ 0, by the convexity of the mapping y → yp, (y ≥ 0) we finally obtain

ei

∣

∣

∣

∣

∣

∑m
j=1 b̃ijxj

µiei

∣

∣

∣

∣

∣

p

≤ ei

∣

∣

∣

∣

∣

∣

m
∑

j=1

tij
|xj |
ej

∣

∣

∣

∣

∣

∣

p

≤ ei

m
∑

j=1

tij
|xj |p
e

p
j

=
1

µi

m
∑

j=1

b̃ijej

|xj |p
e

p
j

.

The previous inequality implies

(4.6) ei

|∑m
j=1 b̃ijxj |p

e
p
i

≤ µ
p−1
i

m
∑

j=1

b̃ijej

|xj |p
e

p
j

.
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It follows from (4.5) that

m
∑

i=1

b̃ije
?
i ≤ (λ + ε)e?

j .

Thus, by multiplying the first term of inequality (4.6) by e?
i , and adding for all i and also by

taking into account that µ
p−1
i ≤ (λ + ε)p−1 we finally obtain for all β, such that 0 < β ≤

β(ε) < ε,

m
∑

i=1

e?
i ei

|∑m
j=1 b̃ijxj |p

e
p
i

=

m
∑

i=1

e?
i ei

|∑m
j=1(bij + β)xj |p

e
p
i

≤ (λ + ε)p

m
∑

j=1

e?
jej

|xj |p
e

p
j

.

If now the real number ε → 0, then limε→0 β(ε) = 0. Thus, by the continuity with respect to
ε of β(ε), we can pass to the limit and finally get

m
∑

i=1

e?
i ei

|∑m

j=1 bijxj |p
e

p
i

≤ λp

m
∑

j=1

e?
jej

|xj |p
e

p
j

,

and the lemma is true.

4.2. Some results related to Perron-Frobenius theory. The matrix B being reducible
or irreducible, for all real number β let us associate the irreducible matrix Bβ = B + βA.
Let us also consider the respective strictly positive eigenvectors eβ and e?

β, respectively, of
the irreducible matrices Bβ and Bt

β , respectively, associated with the eigenvalue equal to
the spectral radius ρ(Bβ) of Bβ. The matrix Bβ being an irreducible positive matrix, then
according to the Perron-Frobenius Theorem

(4.7) ∀ε > 0, ∃β(ε) > 0, such that ∀β ∈]0, β(ε)], ρ(B) ≤ ρ(Bβ) ≤ ρ(B) + ε.

We have the following result
PROPOSITION 4.3. For all ε > 0 there exists β(ε) such that for all β ∈]0, β(ε)], if we

consider the weighted norms ‖ . ‖eβe?
β

,p, defined in (4.2) in which we substitute the vectors e

and e?, respectively by eβ and e?
β; then for all p ∈ [1,∞], the nonnegative matrix B satisfies

]|B|[eβe?
β

,p≤ ρ(B) + ε, ∀p ∈ [1,∞].

Proof. As previously said, for any real number β > 0, the matrix Bβ is positive and
irreducible; thus, whatever the real number β > 0,

(4.8) Bβeβ = Beβ + βAeβ = ρ(Bβ)eβ, with for example ||eβ||2 = 1,

where ||eβ ||2 denotes the Euclidean norm. According to the Perron-Frobenius Theorem

(4.9) eβ > 0 and moreover 0 < β1 < β2 involves 0 ≤ ρ(B) < ρ(Bβ1
) < ρ(Bβ2

).

By (4.8) and the compactness of the unit sphere of R
m, let us extract a convergent sequence

eβi
→ e0 when βi ↘ 0, where βi ↘ 0 denotes a decreasing sequence of scalars which

converges to zero; by the closedness of the cone of vectors of R
m with nonnegative com-

ponents and also by the closedness of the unit sphere of R
m, e0 > 0, ||e0||2 = 1 and

Bβi
eβi

= Beβi
+ βiAeβi

→ Be0. Moreover (4.9) implies that

(4.10) ρ(Bβi
) ↘ ρ? ≥ ρ(B) if i → ∞,
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and also ρ(Bβ) ↘ ρ? ≥ ρ(B) when β ↘ 0. Thus, the corresponding right hand side of (4.8)
satisfies the convergence property ρ(Bβi

)eβi
→ ρ?e0, when βi ↘ 0. Therefore, passing to

the limit in (4.8) is possible in order to obtain Be0 = ρ?e0, which means that e0 6= 0 is an
eigenvector of the matrix B, which implies that ρ? ≤ ρ(B). Thus, according to (4.10) we
obtain

(4.11) ρ? = ρ(B).

Moreover from (4.8) we get

(4.12) Beβ ≤ ρ(Bβ)eβ .

Let us consider now the transpose Bt
β of the matrix Bβ . The matrix Bt

β is also positive and
irreducible. By a similar way, a strictly positive eigenvector e?

β is associated with Bt
β, such

that Bt
βe?

β = (Bt + βA)e?
β = ρ(Bβ)e?

β . Therefore Bte?
β ≤ ρ(Bβ)e?

β , which together with
(4.12), allows us to use the result of Lemma 4.2 with λ = ρ(Bβ). Since by (4.10), (4.11) and
(4.12), assumption (4.1) is satisfied, the proof is complete.

The following result follows from the Perron-Frobenius Theorem.
COROLLARY 4.4. Assume that the matrix B is non-negative and irreducible; then

]|B|[ee?,p= ρ(B), ∀p ∈ [1,∞],

where ρ(B) is the spectral radius of matrix B.

5. Approximate contraction for linear parallel asynchronous iterations. We con-
sider now the case where B ∈ L(Rm) is not necessarily nonnegative and c ∈ R

m. Consider
the affine mapping

(5.1) T̄ v = Bv + c.

Let T be the perturbation of the mapping T̄ ; in practice T is the floating point realisation of
the mapping T̄ on a computer.

LEMMA 5.1. Let |B| = (|bij |) and assume that

(5.2) ρ(|B|) < 1,

and

(5.3) q(Tv − T̄ v) ≤ τ(|B|q(v) + q(c)), ∀v ∈ R
m,

where q(.) is the vectorial norm defined by

(5.4) q(v) = (|v1|, .., |vi|, .., |vm|),

and τ is a positive real number. Then the following inequality holds

(5.5) q(Tv − u?) ≤ (1 + τ) |B|q(v − u?) + τ

(

∞
∑

k=0

|B|k
)

q(c), ∀v ∈ R
m.

Proof. First of all,

q(T̄ v − u?) = q(B(v − u?)), ∀v ∈ R
m.
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Since the components of the vectorial norm are the absolute values of the components of the
vector B(v − u?), the previous equation leads to

(5.6) q(T̄ v − u?) ≤ |B|q(v − u?), ∀v ∈ R
m.

Furthermore, from the triangle inequality we obtain

(5.7) q(Tv − u?) ≤ q(Tv − T̄ v) + q(T̄ v − u?),∀v ∈ R
m.

It follows from (5.3), (5.6) and (5.7) that we have

(5.8) q(Tv − u?) ≤ τ(|B|q(v) + q(c)) + |B|q(v − u?), ∀v ∈ R
m,

and we obtain

(5.9) q(Tv − u?) ≤ τ(|B|q(v − u?) + |B|q(u?) + q(c)) + |B|q(v − u?), ∀v ∈ R
m.

Thus, we have

(5.10) q(Tv − u?) ≤ (1 + τ)|B|q(v − u?) + τ(|B|q(u?) + q(c)), ∀v ∈ R
m.

Since u? = T̄ u? = Bu? + c, we have

q(u?) ≤ |B|q(u?) + q(c).

Thus,

(I − |B|)q(u?) ≤ q(c).

By assumption (5.2), (I − |B|) is an M-matrix (see [15] and [17]) and we obtain

q(u?) ≤ (I − |B|)−1q(c).

Thus, inequality (5.10) becomes

(5.11) q(Tv − u?) ≤ (1 + τ)|B|q(v − u?) + τ(|B|(I − |B|)−1 + I)q(c), ∀v ∈ R
m.

From assumption (5.2) and the fact that (I − |B|)−1 is nonnegative, it follows that

|B|(I − |B|)−1 =

∞
∑

k=1

|B|k.

Thus, inequality (5.11) can be written as

(5.12) q(Tv − u?) ≤ (1 + τ) |B| q(v − u?) + τ

(

∞
∑

k=0

|B|k
)

q(c), ∀v ∈ R
m,

and the lemma is true.
REMARK 7. If we consider the vectorial norm of T̄ v, then we obtain

q(T̄ v) = q(Bv + c) ≤ q(Bv) + q(c), ∀v ∈ R
m.

It follows from the particular choice of the vectorial norm (5.4) that we obtain the following
inequality

q(Bv + c) ≤ |B|q(v) + q(c), ∀v ∈ R
m.
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So (5.3) is the vectorial analogue of assumption (2.12). In the sequel, we will show that
assumption (5.3) is satisfied and is sufficient in order to study roundoff errors in the case of
parallel asynchronous linear iterations.

Let us assume that the matrix B satisfies assumption (5.2). Then there exists

(5.13) λ ∈ [ρ(|B|), ρ(|B|) + ε] ⊂ [0, 1[,

and similar to (4.1) there also exists a strictly positive vector e, such that

(5.14) |B|e ≤ λe,

thus,

(5.15) ]|B|[e,∞=]| |B| |[e,∞≤ λ,

where R
m is endowed with the weighted maximum norm (4.3), and (5.13) to (5.15) follow

from Proposition 4.3 in which we take p = ∞ and B is replaced by |B|. We can deduce from
Lemma 5.1 the following result.

PROPOSITION 5.2. Assume that the space R
m is normed by the weighted maximum

norm (4.3). Let B be a matrix such that assumption (5.2) is satisfied. Assume also that (5.3)
is satisfied. Moreover suppose that

(5.16) τ <
1 − λ

λ
.

Then, the associated fixed point mapping T is a-contracting, with respect to the weighted
maximum norm (4.3) with contraction constant l = (1 + τ)λ and approximation constant

θ? =

(

τ

1 − λ

)

‖c‖e,∞.

Proof. Let y, x and z be three strictly positive vectors of dimension m, and d a real
positive number such that

y ≤ d|B|x + z.

Then, for a given monotone scalar norm || . ||, we can obtain

‖y‖ ≤ ‖d|B|x + z‖ ≤ d]|B|[‖x‖ + ‖z‖,

where ]|B|[ is the subordinate matrix norm of B associated with the scalar norm || . ||. In
particular, we have

‖y‖e,∞ ≤ ‖d|B|x + z‖e,∞ ≤ d]|B|[e,∞‖x‖e,∞ + ‖z‖e,∞.

Applying the previous inequalities to (5.5) we obtain

‖Tv − u?‖e,∞ ≤ (1 + τ) ]|B|[e,∞‖v − u?‖e,∞ + τ

(

∞
∑

k=0

]|B|[ke,∞

)

‖c‖e,∞, ∀v ∈ R
m,

and it follows from the considered assumptions that

‖Tv − u?‖e,∞ ≤ (1 + τ) λ ‖v − u?‖e,∞ + τ

(

∞
∑

k=0

λk

)

‖c‖e,∞, ∀v ∈ R
m,
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and we obtain the following inequality

‖Tv − u?‖e,∞ ≤ (1 + τ) λ ‖v − u?‖e,∞ +
τ

1 − λ
‖c‖e,∞, ∀v ∈ R

m,

and the linear fixed point mapping is a-contracting. Thus, the proof is complete.
According to the results recalled in section 3, we can easily derive the following result
COROLLARY 5.3. If assumptions (5.2) and (5.13) to (5.15) hold, the parallel asyn-

chronous iteration (3.1) associated with T , produces a sequence of iterates {un} such that

a({un}) ⊂ BE

(

u?; θ?

1−λ

)

.

Proof. We use the result of Theorem 3.1 and Corollary 3.2, where according to (5.16),
assumption (2.15) is satisfied.

COROLLARY 5.4. Consider the parallel asynchronous linear fixed point method (3.1).
Under the assumptions of Theorem 3.1 and Corollary 3.2, the limit of subsequences of {un}
produced by the parallel asynchronous iteration belongs to the ball BE

(

u?; θ?

1−λ

)

, where,

according to (2.15), (1 + τ)λ < 1 and θ? =
(

τ
1−λ

)

‖c‖e,∞.

REMARK 8. Inequality (5.5) clearly shows an approximate contraction property with
respect to the vectorial norm q(.) defined by (5.4). The result of Proposition 5.2 shows that
if (5.5) is satisfied, then the property of approximate contraction is satisfied for the weighted
maximum norm, which extends a result of J.C. Miellou valid only in the case of classical
contraction (see [12]).

REMARK 9. According to the results of section 4 (see in particular Corollary 4.4),
the number λ will be chosen in the sequel as follows: if |B| is an irreducible matrix, then
λ ≡ l = ρ(|B|) and if |B| is a reducible matrix then λ = ρ(|B|) + ε.

REMARK 10. We consider now the successive approximation method. If the assumptions
of Proposition 5.2 hold, then according to the result of Lemma 4.2, we can obtain in a similar
way the analogue of the previous a-contraction property for the linear fixed point mapping,
in the space R

m normed by the p-norm (4.2) for all p ∈ [1,∞[,

‖Tv − u?‖ee?,p ≤ (1 + τ) λ ‖v − u?‖ee?,p +
τ

1 − λ
‖c‖ee?,p.

For all p ∈ [1,∞[, the approximation constant related to the perturbation of the fixed point
mapping is given by

θ? =

(

τ

1 − λ

)

‖c‖ee?,p, ∀p ∈ [1,∞[.

If we consider now the successive approximation method (2.8) described in section 2, then
under the assumptions of Theorem 2.5, the limit of subsequences of {un} produced by the

iteration (2.8) belongs to the ball BE

(

u?; θ?

1−l

)

.

REMARK 11. According to the result of Proposition 5.2 and Remarks 6 and 10, we
have obtained for the affine mapping T , the property of a-contraction in R

m normed by
‖ . ‖ee?,p,∀p ∈ [1,∞].

6. Application to roundoff errors in the case of parallel asynchronous linear it-
erations. It is well known that arithmetic operations are affected by roundoff errors when
calculations are performed on a computer. According to the books of N.J. Higham (see [9])
and G.H. Golub and C.F. Van Loan (see [10]), it is possible to define the fl operator which
satisfy fl(x) = x(1 + ε), |ε| ≤ χ, where χ is defined by χ = 1

2 b̂1−s, in the case of rounding

and χ = b̂1−s, in the case of chopping, where b̂ denotes the base and s the precision. Let g
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and h be any two floating point numbers and let op denote any of the four basic arithmetic
operations. Then in the model of floating point arithmetic defined by N.J. Higham (see [9])
and G.H. Golub and C.F. Van Loan (see [10]), it is assumed that the computed version of
g op h is given by fl(g op h). It follows that

fl(g op h) = (g op h)(1 + ε), |ε| ≤ χ.

Thus

|fl(g op h) − (g op h)|
|g op h| ≤ χ, if g op h 6= 0,

which shows that the relative error associated with individual arithmetic operations is small.
Consider now the parallel asynchronous linear iteration (3.1) associated with the exact

mapping T̄ defined by (5.1). Note that the components of vector un are obtained by making m

dot products of vectors from R
m+1. Let y and x be two vectors of R

m+1; it was established
by G.H. Golub and C.F. Van Loan (see [10]) and also by N.J. Higham (see [9]) that there
exists a positive number µ = 1.0101 such that

|fl(xty) − xty| ≤ µ (m + 1) χ q(x)tq(y),

where q(.) is the vectorial norm defined by (5.4).
By applying the previous result to the case considered in this paper, we finally obtain the

following inequality

|(T̄ u)i−(Tu)i| =

∣

∣

∣

∣

∣

∣

m
∑

j=1

bijuj + ci − fl





m
∑

j=1

bijuj + ci





∣

∣

∣

∣

∣

∣

≤ µ(m+1)χ





m
∑

j=1

|bij ||uj | + |ci|





which leads to

(6.1) q(T̄ u − Tu) ≤ µ (m + 1) χ (|B| q(u) + q(c)),

and assumption (5.3) is well verified, with τ = µ(m+1)χ; thus, if the approximation constant
l = (1 + µ(m + 1)χ)λ is strictly less than one, the result of Corollary 5.3 holds.

REMARK 12. The previous estimate depends on m, the dimension of the system to
be solved. If the system is a large scale system, then the number τ = µ(m + 1)χ can
be considerably large. In the case of a sparse matrix, it is possible to improve the above
estimation by replacing the term (m + 1) by the maximum number of nonzero elements in a
row of the matrix B, denoted by t, and we obtain

q(T̄ u − Tu) ≤ µ (t + 1) χ (|B| q(u) + q(c)).

We refer to [14] for a study of some stopping criteria, forward and backward errors with
respect to roundoff errors of fixed point methods including
- the specific case of the successive approximation method considered in the topological con-
text of a large familly of p-norms (4.2),
- the general situation of asynchronous iterations by using weighted maximum norm (4.3).

7. Examples. We present in this section two simple examples which illustrate the
present study.
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7.1. Example 1. Consider a strictly positive vector e ∈ R
m with components ei >

0, ∀i = 1, .., m. Note that with the convention em+1 = e1, we have

(7.1)
m
∏

i=1

ei

ei+1
= 1;

consider also two matrices B1 and B2 defined by

B1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 b1
1,2 0 0 . . . 0

0 0 b1
2,3 0 . . . 0

... 0
. . .

. . .
. . .

...

0 0
. . .

. . .
. . . 0

0 0
. . . 0 0 b1

m−1,m

b1
m,1 0 . . . 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

B2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 0 . . . b2
1,m

b2
2,1 0 0 0 . . . 0

0 b2
3,2

. . .
. . .

. . . 0
... 0

. . .
. . .

. . .
...

0 0
. . .

. . . 0 0
0 0 . . . 0 b2

m,m−1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

the entries of which are defined by

b1
i,i+1 =

ei

ei+1
, b1

m,1 =
em

e1
, b2

i,i−1 =
ei

ei−1
and b2

1,m =
e1

em

.

Note that it can be easily verified that

(7.2) B1e = e and B2e = e.

Thus, according to (7.1), the eigenvalues of the matrices B1 and B2 satisfy

(λi)
m − 1 = 0 , ∀ i = 1, 2.

Then, according to (7.2), their spectral radii are equal to one.
Consider now the matrix B, which is a linear combination of the matrices B1 and B2,

such that

B = ρ1B1 + ρ2B2, ρ1 > 0 and ρ2 > 0,

then the matrix B is a non-negative irreducible matrix. Assume also that 1 > ρ1 >> ρ2; thus
ρ1B1, ρ2B2, respectively, correspond to the strong and weak weights, respectively, arising in
the matrix B; assume also that

(7.3) ρ = ρ1 + ρ2 < 1.

Thus, according to (7.2), we obtain easily

Be = (ρ1 + ρ2)e.
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Consider now the solution of the following fixed point problem

(7.4) u∗ = Bu∗ + c,

where c is a vector of R
m.

REMARK 13. Note that, if we consider the numerical solution of a 1-dimensional
convection-diffusion problem with periodic boundary conditions, which are defined by

{ −ε d
dx

(a(x)du
dx

) + b(x)du
dx

+ q(x)u = f , everywhere in Ω =]0, 1[ ,
u(0) = u(1), du(0)

dx
= du(1)

dx
,

with q(x) > q̄ > 0, ε > 0, then we can obtain a discretization matrix with the same shape as
the matrix B. If furthermore the convection is dominant, then we can obtain a situation where
strong and weak weights occur in the solution of a fixed point problem of the kind (7.4).

In order to solve the equation (7.4) consider a sequential chaotic algorithm (see [12])
where the strong and the weak weights are taken into account alternatively; more precisely,
starting from u0, ν iterations are carried out in order to solve the fixed point equation

(7.5) un+1 = ρ1B1u
n + c̄,

where ν is a given integer and c̄ = ρ2B2u
0 + c. So after ν chaotic iterations of algorithm

(7.5), we obtain easily the following estimation

||uν − u∗||e,∞ ≤
(

ρν
1 + ρ2

1 − ρν
1

1 − ρ1

)

||u0 − u∗||e,∞.

Note that the previous inequality, corresponds to an approximate contraction property. Then,
starting from uν , only one classical successive approximation iteration is then performed for
the global fixed point iteration, and we obtain for this chaotic algorithm

(7.6) ||uν+1 − u∗||e,∞ ≤ (ρ1 + ρ2)

(

ρν
1 + ρ2

1 − ρν
1

1 − ρ1

)

||u0 − u∗||e,∞.

Then, starting from uν+1, we repeat the chaotic algorithm (7.5) ν times followed by only one
global iteration.

If we compare now, the previous iteration scheme to the classical successive approxima-
tion scheme for a similar computational cost (i.e. for ( ν

2 + 1) complete successive approxi-
mation iterations) the estimation (7.6) must be compared to

(7.7) ||u ν
2 − u∗||e,∞ ≤ (ρ1 + ρ2)

ν
2
+1||u0 − u∗||e,∞.

Then, the chaotic algorithm will perform better, if the following inequality is satisfied

(7.8)

(

ρν
1 + ρ2

1 − ρν
1

1 − ρ1

)

< (ρ1 + ρ2)
ν
2 .

For convenient values of ν, it can be verified that the previous inequality is satisfied. Moreover
it can be noted that

(7.9) lim
ν→∞

(ρ1 + ρ2)
ν
2 = 0 and lim

ν→∞

(

ρν
1 + ρ2

1 − ρν
1

1 − ρ1

)

=
ρ2

1 − ρ1
.

So the curves ν → v1(ν) =
(

ρν
1 + ρ2

1−ρν
1

1−ρ1

)

and ν → v2(ν) = (ρ1 + ρ2)
ν
2 meet for only

one value of ν. Indeed it can be verified that the curve ν → v2(ν) is strictly decreasing
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TABLE 7.1
νmax as a function of ρ1

ρ1 νmax ρ1 νmax

0.9 47 0.4 9
0.8 28 0.3 7
0.7 19 0.2 5
0.6 14 0.1 4
0.5 11 0.05 3

and the curve ν → v1(ν) is not increasing; moreover for very small values of ν we have
v1(ν) < v2(ν) and (7.9) is valid (for more details the reader is referred to figures 1 and 2 of
Appendix). More precisely, Table 7.1 shows the maximum value of ν, denoted by νmax, for
which the inequality (7.8) is satisfied as a function of ρ1, ρ2 being fixed to ρ2 = 0.01. The
previous experimentation shows that the greater the value of ρ1, the larger the maximal value
of νmax.

Then, according to the results of Proposition 5.2 and (6.1), when the above chaotic con-
text is satisfied, the iterate vector is localized in a ball of center u∗ and of radius δ∗, where

δ∗ =
µ(m + 1)χ

(1 − ρ1 − ρ2)(1 − (1 + µ(m + 1)χ)(ρ1 + ρ2))
||c||e,∞,

and

un ∈ BE

(

u∗;
τ

(1 − ρ1 − ρ2)(1 − (1 + τ)(ρ1 + ρ2))
||c||e,∞

)

,

where τ = µ(m + 1)χ, and µ = 1.0101 according to [9].

7.2. Example 2. Consider the 3x3 nonnegative matrix defined by

B =

∣

∣

∣

∣

∣

∣

0 0 b

c 0 0
0 d 0

∣

∣

∣

∣

∣

∣

,

where b , c , d are three positive numbers. Note that this case corresponds to a particular
case of the matrix B2 considered in the previous example. After simple calculations, we can
compute the spectral radius of the matrix B to be

ρ(B) = 3
√

bcd.

Note that the above matrix is nonnormal, because

(7.10) BBt − BtB = Diag(b2 − c2, c2 − d2, d2 − b2);

so, in this case such a matrix can display a signifiant amount of spectral instability in finite
precision computation even if ρ(B) < 1 (see [4]).

By choosing, for example, b = 1, d = ε and c = 1
2ε

, we obtain

ρ(B) =
1
3
√

2
< 1;

furthermore

e1 = 3
√

2 e3, e2 =
e3

ε
3
√

2
,
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and

e?
1 = 3

√
2 e?

3, e?
2 =

ε e?
3

3
√

2
.

Thus, ‖x‖e,∞ and ‖x‖ee?,p can be easily computed for every x and for every p ∈ [1,∞[.
Consequently, according to the previous results, the mapping Tu = Bu + c is approximately
contracting, and the sequence {un}, n ∈ N is such that

un ∈ BE

(

u?;
τ

(1 − λ)(1 − (1 + τ)λ)
‖c‖ee?,p

)

, ∀p ∈ [1,∞], ∀n ∈ N,

where τ and µ are previously defined.
According to (7.10), for small values of ε, this case corresponds to a property of high

nonnormality of the matrix B, for which all our results apply in the topological framework
of the weighted norms used, provided that we stay outside of underflow or overflow situations.
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