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Abstract. Much of the work of Golub and his collaborators uses techniques of linear algebra to deal with
problems in analysis, or employs tools from analysis to solve problems arising in linear algebra. Instances are
described of such interdisciplinary work, taken from quadrature theory, orthogonal polynomials, and least squares
problems on the one hand, and error analysis for linear algebraic systems, element-wise bounds for the inverse of
matrices, and eigenvalue estimates on the other hand.
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1. Introduction. It has been a privilege for me to have known Gene Golub for so many
years and to have been able to see his very extensive work unfold. What intrigues me most
about his work — at least the part | am familiar with — is the imaginative use made of linear
algebra in problems originating elsewhere. Much of Golub’s work, indeed, can be thought of
as lying on the interface between classical analysis and linear algebra. The interface, to be
sure, is directional: a problem posed in analysis may be solved with the help of linear algebra,
or else, a linear algebra problem solved with tools from analysis. Instances of the former type
occur in quadrature problems, orthogonal polynomials, and least squares problems, while
examples of the latter type arise in error estimates for the solution of linear algebraic systems,
element-wise bounds for the inverse of a matrix, and in eigenvalue estimates of interest in
iterative methods.

It will not be possible here to pursue all the ramifications of this interesting interplay
between different disciplines, but we try to bring across some of the main ideas and will refer
to the literature for variations and extensions.

2. Quadrature. Integration with respect to some given measure dA on the real line R
is certainly a topic that belongs to analysis, and so is the evaluation or approximation of
integrals [, f(¢)dA(t). If one follows Gauss, one is led to orthogonal polynomials relative
to the measure dA, which is another vast area of classical analysis. How does linear algebra
enter in all of this? It was in 1969 when the connection between Gauss quadrature rules and
the algebraic eigenvalue problem was, if not discovered, then certainly exploited in the now
classical and widely cited paper [33]. We begin with giving a brief account of this work, and
then discuss various extensions thereof made subsequently.
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120 The Interplay between Classical Analysis and (Numerical) Linear Algebra

2.1. Gauss quadrature. Assume d\ is a positive measure on R, all (or sufficiently
many) of whose moments

(2.1) W = / t"dA(t), r=0,1,2,...,
R

exist with pg > 0. The n-point Gauss quadrature rule for dX is
(22) [ 1000 = Y0 10) + Ra(h),
v=1

where A\, = A, Ty = s depend onn andd, and R,,(f) = 0 whenever f is a polynomial
of degree < 2n — 1,

(2.3) Rn(f) =0, fe€Py.

This is the maximum degree possible. If f(>») is continuous on the support of d\ and has
constant sign, then

(2.4) R.(f) >0 if sgnf®™ =1,

with the inequality reversed if sgn f(27) = —1.

The connection between Gauss quadrature and orthogonal polynomials is well known. If
me(+) = m(-;dN), k= 0,1,2,..., denotes the system of (monic) polynomials orthogonal
with respect to the measure d,

=0 ifk#/¢,
(2.5) /R']rk(t)ﬂ'l(t)d)‘(t) { >0 ifk=2¢,
then 7, 7o,..., 7, are the zeros of m,(-;d\), and the A\, can be expressed in terms of the

orthogonal polynomials as well. The former are all distinct and contained in the interior of
the support interval of dJ, the latter all positive. What is important here is the well-known
fact that the orthogonal polynomials satisfy a three-term recurrence relation,

et (t) = (t — ag)mr(t) — Brmp—1(t), k=0,1,2,...,
ﬂ——l(t) = 07 7T0(t) = 17

(2.6)

with well-determined real coefficients a;, = ag(d)\) and 8r = Br(dA) > 0. In terms of
these, one defines the Jacobi matrix

a0 VB 0
\/5_1 ay \/,3_2
2.7) J(d)) = VB ez VB3 ,
0

in general an infinite symmetric tridiagonal matrix. Its leading principal minor matrix of
order n will be denoted by
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Here, then, is the connection between the Gauss quadrature formula (2.2) and the algebraic
eigenvalue problem: the Gauss nodes 7, are the eigenvalues of J,,(d\), whereas the Gauss
weights A\, are

(2.9 A= ,uo'u;z,,l,

where v, 1 is the first component of the normalized eigenvector v, corresponding to the
eigenvalue 7,,. The eigenvalue charaterization of the nodes 7, is an easy consequence of
the recurrence relation (2.6) and has been known for some time prior to the 1960s. The
characterization (2.9) of the weights A, is more intricate and seems to have first been observed
in 1962 by Wilf [45, Ch.2, Exercise 9], or even previously, around 1954, by Goertzel [46]; it
has also been used by the physicist Gordon in [34, p. 658]. The merit of Golub’s work in [33]
is to have clearly realized the great computational potential of this result and in fact to have
developed a stable and efficient computational procedure based on the QL algorithm.

It is useful to note that the quadrature sum in (2.2) for smooth functions f can be written
interms of J,, = J,(d)) as

n

(2.10) S ANf(m) = poel f(Tn)er, el =[1,0,...,0] € R".

v=1

This follows readily from the spectral decomposition of J ,, and (2.9). Also, for the remainder
R, (f) in(2.2) one has (cf. [21, p. 291, (vii)])

(2n) (2n)
e Irnl< Yo [maae = s,

provided f(>™ is continuous on the support supp(dA) of dX. The co-norm of f(7) is the
maximum of | £(3™)| on supp(d\), and (2.11) holds regardless of whether or not f(>® has
constant sign.

The Jacobi matrix J,(d)), and with it the Gauss quadrature rule, is uniquely de-
termined by the first 2n moments po, pt1, .. ., pon—1 Of the measure dA. The Cheby-
shev algorithm (cf. [21, §2.3]) is a vehicle for passing directly from these 2n mo-
ments to the 2n recursion coefficients ag, Bx, ¥ = 0,1,...,n — 1. Although nu-
merically unstable, the procedure can be carried out in symbolic computation to arbi-
trary precision. (A Maple 5 script named cheb. mas can be found on the internet at
http://ww. cs. purdue. edu/ ar chi ves/ 2001/ wxg/ codes.)

2.2. Gauss-Radau and Gauss-Lobatto quadrature. If the support of dA is a finite
interval [a, b], the Gauss quadrature formula can be modified by requiring that one or both
of the endpoints of [a, b] be quadrature nodes. This gives rise to Gauss-Radau resp. Gauss-
Lobatto formulae. Interestingly, both these formulae allow again a characterization in terms
of eigenvalue problems; this was shown by Golub in [23].

2.2.1. Gauss-Radau quadrature. If 7o = a is the prescribed node, the (n + 1)-point
Gauss-Radau formula is

b n
(2.12) / FHANE) = Mf(a) + S ALF(r2) + R2(F),

where the remainder now vanishes for polynomials of degree < 2n,

(2.13) RA(f)=0, fE€ P
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Define a modified Jacobi matrix of order n + 1 by

(2.14) Jha
n+1 5ne£ aﬁ

) - [.fn<dx) VPren ]’

where J,(d)\) is the same matrix as in (2.8), 8, = B,r(dA) as in (2.6),

215) of = a -, 1),
n(a)
with 7, (+) = 7 (-3dN), and eI = [0,0, ..., 1] the nth canonical basis vector of R”. Then,

the nodes in (2.12) (including 79 = a) are the elgenvalues of Jn+1( A), and the weights A2,
v =0,1,...,n, are again given by (2.9) in terms of the respective normalized eigenvectors.
An analogous result holds for the Gauss-Radau formula with prescribed node 7,41 = b,

(2.16) /f )dA(t Z/\” D)+ Ab 1 £(b) + REL(f).

The only change is replacing a in (2.15) by b, giving rise to a modified Jacobi matrix
JR b 1 (dX). Both quadrature sums in (2.12) and (2.16) allow a matrix representation anal-

ogous to (2.10), with J,, replaced by JnJrl resp. JnJrl and the dimension of e; increased by
1.
The remainders R2, R?. of the two Gauss-Radau formulae have the useful property

(2.17) R3(f) >0, RU(f) <0 if sgnfC™) =1o0n][a,b],

with the inequalities reversed if sgn f(2»+1) = —1. This means that one of the two Gauss-
Radau approximations is a lower bound, and the other an upper bound for the exact value of
the integral.

It now takes 2n + 1 MOMeNtS 4o, i1, - . . , k2 10 Obtain JH2 (dX), JHY, (d)) and the
(n + 1)-point Gauss-Radau formulae. Chebyshev’s algorithm will provide the recursion co-
efficients needed to generate J,,(d)) in (2.14), 3,, and the ratio of orthogonal polynomials
in (2.15).

The case of a discrete measure d )\ supported on IV points 5 witha < t; <ty < --- <
tn < b, and having positive jumps w? at ¢,

(2.18) / F@)dAn (¢ Zwk f(tr),

is of some interest in applications. For one thing, the Gauss-Radau formulae (2.12), (2.16)
(and, for that matter, the Gauss formula (2.2) as well), provide “compressions” of the sum
S = fo:l w3 f(tr), i.e., approximations of S by a sum with fewer terms if n < N — 1.
When f is a polynomial of degree < 2n, the compressed sums in fact have the same value
as the original sum. More importantly, the formula (2.12) with n < N together with the
companion formula (2.16) furnish upper and lower bounds of S if f*+Y < 0 on [a, b].
Applications of this will be made in §§5.2-5.4. Chebyshev’s algorithm can again be used
to generate (2.12) and (2.16) from the moments of dAx. There is also a numerically stable
alternative to Lanczos’s algorithm (cf. §5.1), due to Gragg and Harrod [35], generating the
Jacobi matrix J,,(dAx) directly from the quantities wy, and ¢, in (2.18).
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2.2.2. Gauss-Lobatto quadrature. Written as an (n + 2)-point formula, the Gauss-
Lobatto quadrature rule is

(2.19) /f t)dA(t) = Ao f(a +Z)\fﬂ, ) + A1 f(0) + RO (),

v=1

and has the exactness property
(220) R(rlz’b(f) = 07 f € IFI:2n—i-17

and the sign property

(2.21) R (f) <0 if sgn f@™2 =1on [a,b],
with the inequality reversed if sgn f(27*+2) = —1. The appropriate modification of the Jacobi
matrix is

Jn+1 (d)\) ,871,:4_1 €n+1
(2.22) TE(dN) = V ,
\/ 5ﬁ+1e£+1 aﬁ+1

with notations similar as in (2.14). Here, a% ., 8L, are defined as the solution of the 2x2
linear system

(223) Tnt+1 (a) Tn (a) a£+1 _ ATp+41 (a) ‘

Tnt1(b) 7 (b) TII:-i-l ()
Then the nodes of (2.19) (including 7 = a and 7,,+1 = b) are the eigenvalues of Jn+2(d)\)
and the weights A,, v = 0,1,...,n,n + 1, once again are given by (2.9) in terms of the

respective normalized elgenvectors Hence, (2.10) again holds, with J,, replaced by Jn+2
and e; having dimensionn + 2.

2.3. Gauss quadrature with multiple nodes. The Gauss-Radau and Gauss-Lobatto
formulae may be generalized by allowing an arbitrary number of prescribed nodes, even of
arbitrary multiplicities, outside, or on the boundary, of the support interval of dA. (Those of
even multiplicities may also be inside the support interval.) The remaining “free” nodes are
either simple or of odd multiplicity. The quadrature rule in question, therefore, has the form

n 2s, m Tp—1
(2.24) /f t)dA(t ;;W)ﬂ”) +MZIPZOK<P FP(u,) + Rom(f),

where T, are the free nodes and w,, the prescribed ones, and the formula is required to have
maximum degree of exactness 2 (n + ), s,) + ZM r, — 1. This has a long history, going
back to Christoffel (all s, = 0 and r, = 1) and including among its contributors Turan
(m =0, s, = s forall v), Chakalov, Popoviciu, and Stancu (cf. [19, §2.2]).

The prescribed nodes u,, give rise to the polynomial

m
—o [,
pu=1
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where w = +£1 is chosen such that u(¢) > 0 for ¢ on the support of d\. For the formula (2.24)
to have maximum algebraic degree of exactness, the free nodes 7, (“Gauss nodes”) must be
chosen to satisfy

/ H(t — 7)) 2 Ry (t)dA(t) =0, k=0,1,...,n—1.
Rv—l

By far the simplest scenario is the one in which s, = 0 for all v. In this case, 7, are
the zeros of the polynomial 7, ( - ; udX) of degree n orthogonal with respect to the (positive)
measure ud\. This gives rise to the problem of modification: given the Jacobi matrix of the
measure dA, find the Jacobi matrix of the modified measure udX. An elegant solution of
this problem involves genuine techniques from linear algebra; this will be described in §3.
The weights A, = A9 are computable similarly as in (2.9) for ordinary Gauss quadrature,
namely [27, §6]

A = uovi,l/u(ﬂ,), v=12,...,n,
where 1o = [ u(t)dA(t) and v, is the first component of the normalized eigenvector of
J 1 (udX) corresponding to the eigenvalue 7,,. For the computation of the remaining weights
K in (2.24), see [37].

The case of multiple Gauss nodes (s,, > 0) is a good deal more complicated, requiring
the iterative solution of a system of nonlinear equations for the 7, and the solution of linear
algebraic systems for the weights )\,(,"), n,(f); see, e.g., [27, §5] and [22].

2.4. Gauss-Kronrod quadrature. The quadrature rules discussed so far are products

of the 19th century (except for the multiple-node Gauss rules). Let us turn now to a truly
20th-century product — the Gauss-Kronrod formula

n+1

(2.25) /R FOANE) = SOAKF(E) + 3 XK F(rK) + RE(f),
v=1 p=1

where 7& are the nodes of the n-point Gauss formula for d\, and the n + 1 remaining nodes,
called Kronrod nodes, as well as all 2n + 1 weights A%, )\;K are determined by requiring
maximum degree of exactness 3n + 1, i.e.,

(226) erf(f) = 03 f € ]P3n+1-

This was proposed by Kronrod [39] in the 1960s in the special case dA(¢) = dt on [—1,1]
as an economical way of estimating the error of the n-point Gauss-Legendre quadrature rule.
The formula (2.25) nowadays is widely used in automatic and adaptive quadrature routines
([43], [17]).

Remarkably enough, there is an eigenvalue/vector characterization similar to those in
§82.1, 2.2 also for Gauss-Kronrod quadrature rules. This was discovered in 1997 by Laurie
[40]. He assumes that there exists a positive Gauss-Kronrod formula (i.e., AX > 0, )\;K > 0,
and 7K € R), which need not be the case in general. (Indeed, the Kronrod nodes and all
weights may well be complex.) The modified Jacobi matrix is now a symmetric tridiagonal
matrix of order 2n + 1 and has the form

Jn(d/\) V Bnen 0
(2.27) I3 = | /BreT  an  /Bonel
0 \/ ,Bn—i-l (5] J:L
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with notation similar as before and J;, a symmetric tridiagonal matrix. The structure of J
differs according as n is even or odd. For definiteness, suppose that n is even. Then

Jintran/2(dN)  V/Bhen
(2.28) Jr = rtisn/2) & (n even),

n

5565/2 J[I((3n+2)/2:2n]

where J,,.(d)) denotes the principal minor matrix of J(dA) that has diagonal elements
Qp, Opy1, - - -, 0q, and similarly for J[I;:q]. Thus, the upper left square block of .J, (of order
n/2) may be assumed known, and the rest, including the constant 37, is to be determined.
Laurie devised an algorithm that determines the unknown elements of J* in such a way
that the Gauss nodes 7& and Kronrod nodes rf are the eigenvalues of J5,, , ; (dA) and the
weights are given by

K _ K 12 — .
(2 29) )‘u _uo[uu,l] , v=1...,n;
' K _ K 2 -
)‘Z _/I’O[un—i-u,l] ) /'L_la"'7n7n+17
where uf, wf, ... uf | are the normalized eigenvectors of JX . (dX) corresponding to
the eigenvalues 77, ..., 75 7, ..., 7, and wf) uf,, ..., ul , , their first compo-

nents. Moreover, J, in (2.27) has the same eigenvalues as J,,(d)), i.e., the Gauss nodes
)

If the Gauss nodes 7¢ are already known, as is often the case, there is some redundancy in
Laurie’s algorithm, inasmuch as it regenerates them all. In a joint paper with Calvetti, Gragg,
and Reichel [8], Golub removes this redundancy by focusing directly on the Kronrod nodes.
The basic idea is to observe that the trailing matrix J, in (2.27) as well as the leading matrix
J[nt1:3n/21(dA) in (2.28) (again with n assumed even) have their own sets of orthogonal
polynomials and respective Gauss quadrature rules, the measures of which, however, are
unknown. Since the eigenvalues of .J;. are the same as those of J,(d)), the former Gauss
rule has nodes 7&, v = 1,2,...,n, and positive weights A%, say, while the latter has certain
nodes 7, and weights \., k = 1,2, ..., n/2. Let the matrices of normalized eigenvectors of
Jn(dN) and J;, be v = [v1,v2,...,v,] and v* = [v],v3,...,v}], respectively. The new
algorithm will make use of the last components v1 ,,v2.n, . - ., ¥n,, Of the eigenvectors in
v (assumed known) and the first components vy |, v3 4,..., v}, ; of those in v*. The latter,
according to (2.9), are related to the Gauss weights A} through

2 _ —
[vpi° =X, v=12,...,n,
where the underlying measure is assumed normalized to have total mass 1, and one computes

n/2
A=) b(F)Ae, v=1,2,...,n,
k=1

in terms of the second Gauss rule (for J,1:3,/2)(dA)) and the elementary Lagrange inter-

polation polynomials ¢, associated with the nodes 7, 757, ..., 7. Therefore,
(2.30) v = VAL, v=12,...,n
Now let

(2.31) J: =v*Dv*T, D =diag(r%,7¢,...,15)

n
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be the spectral decomposition of .J;,, and define

v 0 O
(2.32) v=|0" 1 o |,
0 O *
a matrix of order 2n + 1. From (2.27), one gets
D - I VBrvTe, 0
VI(J5 1 (dX) = AV = Brnelv ap — A VBnrrelfv* |5

0 \/ﬂn+1’v*T61 D — \I

where the matrix on the right is a diagonal matrix plus a Swiss cross containing the known
elements elv and the elements efv* that were computed in (2.30). A further (cosmetic)
orthogonal similarity transformation involving a permutation and a sequence of Givens rota-
tions can be applied to yield

~ T ~
(2.33) V' (Jpa(dX) =AYV = 0 |D-X ¢ :

o” cT ap — A

where V is the transformed matrix V' and ¢ a vector containing the entries in positions n + 1
to 2n of the transformed vector [v/Bnelv,/Bniielv*, ay]. Eq. (2.33) now reveals that
one set of eigenvalues of J% (d\) is {77, 75, ..., 7¢}, while the remaining eigenvalues
are those of the trailing block in (2.33). From

D-) ¢ I 0 D-X ¢
¢’ an— c'(D- D' 1 o —f)
where
n 2
(2.34) f()\):)\—an-i-‘;l chi_A ¢ =[er, ... cn],

it follows that the remaining eigenvalues, i.e., the Kronrod nodes, are the zeros of f(A). It is
evident from (2.34) that they interlace with the Gauss nodes 7. The normalized eigenvectors
uf,us’, ..., ug, , required to compute the weights A, A*K via (2.29) can be computed
from the columns of V' by keeping track of the orthogonal transformations.

3. Orthogonal polynomials. The connection between orthogonal polynomials and Ja-
cobi matrices (cf. §2.1) gives rise to several interesting problems:
(a) Given the Jacobi matrix for the measure d\, find the Jacobi matrix for the modified
measure dAmoq = rdA, where r is either a polynomial or a rational function.
(b) Given the Jacobi matrices for two measures d\; and d), find the Jacobi matrix for
dX = dAr + d)e.
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(c) Let [c;,d;] be a finite set of intervals, disjoint or not, and dA; a positive measure on
[cj, dj]. LetdA(t) = 325 X(ej,a1 (£)dA;(t), where x(c; q,1 is the characteristic func-
tion of the interval [c;, d;],

[ T1ifte e, dy],
X[e;.d)(t) = { 0 otherwise.

Knowing the Jacobi matrices J¥) for d);, find the Jacobi matrix for d.

The problem in (b) is discussed in [13], where three algorithms are developed for its solu-
tion. We do not attempt to describe them here, since they are rather technical and not easily
summarized. Suffice it to say that linear algebra figures prominently in all three of these algo-
rithms. A special case of Problem (a) — maodification of the measure by a polynomial factor
— aproblem discussed in [27] and [38], is considered in §§3.2, 3.3. Itis related to a classical
theorem of Christoffel (cf., e.g., [19, p. 85]), which expresses the orthogonal polynomials for
the modified measure in determinantal form in terms of the orthogonal polynomials of the
original measure. For algorithmic and computational purposes, however, the use of Jacobi
matrices is vastly superior. The case of rational r, in particular r(t) = (t — z)~! with real
x outside the support of d\, and r(t) = [(t — x)? +%%]~1, y > 0, is treated in [15], where
algorithms are developed that are similar to those in [20] but are derived in a different manner.
Problem (c) is dealt with in §3.4. Note that Problem (b) is a special case of Problem (c).

We begin with an integral representation of Jacobi matrices and then in turn describe
modification of the measure by a linear, quadratic, and higher-degree polynomial, and solu-
tion procedures for Problem (c).

3.1. Integral representation of the Jacobi matrix. Let7#g, 71,72, ... be the system of
orthonormal polynomials with respect to to the measure dA, that is,

(6D Ault) = T, el = [ wbodn
R
with 7, as in (2.5), (2.6). They satisfy the recurrence relation

VBt (t) = (t — ag) g (t) — VBrfk-1(t), k=0,1,2,...,
71(t) =0, 7o(t) =1/vBo,

(3.2)

with recursion coefficients a, 8 as in (2.6) and Bo = [, dA(t) (= po). From (3.2) and the
orthonormality of the polynomials 7 one easily checks that

0 iflk—¢>1,
(3.3) /Rtﬁ'k(t)ﬁ'l(t)d)‘(t) = { VB if[k =] =1,

(677 ifk ="~

This allows us to represent the Jacobi matrix J = J,(d)) of order n (cf. (2.8)) in integral
form as

(3.4) J:/wwfwﬂm,
R
where

(3.5) pL(t) = [7o(t), 71 (t),. .., Tn 1(t)].
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Orthogonality, on the other hand, is expressible as

(3.6) /R Pt (H)AN(E) = T,

where I = I, is the unit matrix of order n, and the first n recurrence relations in (3.2) can
be given the form

3.7) tp(t) = Ip(t) + v/ Bufin(t)en,

where e,, = [0,0,...,1]T € R,

3.2. Modification by a linear factor. The problem to be studied is the effect on the
Jacobi matrix J of modifying the (positive) measure d\ into a measure dAnmoq defined by

(3.8) AAmod (t) = w(t — )AA(®),

where ¢ is a real constant outside, or on the boundary, of the support interval of dA and
w = =1 chosen such that the measure d\moq iS again positive. A solution of this problem
has been given already by Galant [16] and was taken up again, and simplified, in [27].

The symmetric matrix w(J — ¢I) is positive definite since by the assumtions made re-
garding (3.8) all its eigenvalues are positive. It thus admits a Cholesky decomposition

(3.9) w(J —cl) = LL7,
where L is lower triangular and bidiagonal. By (3.4), (3.6), and (3.8) one has

w(J—cI):w/

(t — )p(H)P” (H)AA(H) = / PP (1) dAmoa ().
R

R

This may be written as

wd —el) = L /R L' p(O)pT () LT dAmoa (VLT

which, since L™ *w(J — cI)L~T = I by (3.9), implies

(3.10) | Proa(®Phoat1dhmaalt) = 1.
R

where

(3.11) Pmoa(t) = L 'p(t).

This means that p,,,,4 are the orthonormal polynomials with respect to the measure dAmod-
What is the corresponding Jacobi matriX J 047
First observe that from (3.7) one has

(3.12) (t —o)p(t) = (J — cD)p(t) + V/ Bniin(t)en-

Using the analogues of (3.4), (3.6), one has, by (3.11) and (3.8),

Tnoa = eI = [ (¢ = OPrnoa(O1Pha(OdAmoa (0
R

(3.13)
= wL! /R (t — &)2p(H)pT (H)ANH) L.
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Multiplying (3.12) with its transpose, one gets
(t—o)’p(H)p" (t) = [(J — cD)p(t) + /Buin(t)en]p” (t)(T — cI) + \/Brfin(t)en],
and observing that by (3.6)
/R (J = eD)p(O)p™ (O = cD)AA(E) = (J — cI)’

and by orthonormality

[ @ = enpmetans o, [ wmare =1,
R R
one finds
/ (t = &)2p®)pT (DAA(E) = (J — cI)? + Brenel.
R
Thus, by (3.13),
Jmod —cI =wL ™' ((J —cI)? + Breqel) L.

Substituting from (3.9) yields for the desired Jacobi matrix
Jmod = é LTL +cl +wp, L e, el L77
and noting that L™ 'e,, = e,,/(eX Le,,) finally
(3.14) Jmod = % LTL + eI +venel, v =wpn/(elLe,)?

Equations (3.9) and (3.14) allow the following interpretation: The matrix J; := Jyod —
venel is the result of one step of the symmetric LR algorithm with shift c,

1 1
(3.15) J—ceI==LLY, J,==-L"L+cl.
w w

Note that .J differs from J,,q4 Only by one element in the lower right-hand corner. We
could get rid of it by deleting the last row and last column of J ;. This would yield the desired
Jacobi matrix of order n — 1. If we are interested in the Jacobi matrix J 5, meq Of Order n, we
can apply the symmetric LR algorithm (with shift ¢) to J .41 (dA) and then obtain J,,moq by
discarding the last row and last column in the resulting matrix.

3.3. Modification by a quadratic and higher-degree factor. Modification by a
quadratic factor (¢t — ¢1)(t — c2) essentially amounts to two applications of (3.15),

1 1
(3.16) J-cI=—LL], Jj=—LTL +¢I
w1 w1

followed by

1 1
(3.17) Ji—col = —L,LY, Jy= = LILy+col.
Wa W2
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From the second and third of these equations one gets
1
LyL] = w) (— L{L; + (c1 — 02)I> .
w1

In particular, if ¢; = ¢o = cand wy/w; = 1, then

(3.18) L,LY =LTL,.
Let
(3.19) Q=rL;"L,, R=LILT.

Then, using (3.18), one computes

Q"Q =Ly L' Ly Ly = Ly (L{ L)™' Ly
= LY(LyL3) 'Ly = LIL; 7L Ly = 1,

so that @ is orthogonal. As a product of two upper triangular matrices, R is upper triangular.
Since, again by (3.18), QR = LT T Lo LI LT = LT"LT L, LT = L, LY, the first equation
of (3.16) can be written as

(3.20) J—cI=QR
and the second of (3.17) similarly as
(3.21) J2 = RQ +cI.

Thus, J is obtained by one step of the QR algorithm with shift c¢. It is now clear how the
modification

(3.22) dAmoa(t) = (t — ¢)?dA(t)

is to be handled: apply one step of the QR algorithm with shift ¢ to the Jacobi matrix
J nt+2(dX) of order n 4+ 2 and discard the last two rows and columns of the resulting ma-
trix to obtain J,, mod-

More generally, a modification dApea () = (t — ¢)?™dA(t) with an even power can be
handled by m steps of the @ R algorithm with shift ¢, discarding the appropriate number of
rows and columns, and a modification d\0q(t) = (t — ¢)>™T1dA(t) by an odd power by
means of m shifted QR steps followed by one step of the symmetric LR algorithm as in
§3.2. In this way it is possible to accomplish the modification dA\moa (t) = 7(¢)dA(t) for any
polynomial r with real roots and r(t) > 0 for ¢ on the support of dA. Alternative methods,
not necessarily requiring knowledge of the roots, are developed in [38].

3.4. Polynomials orthogonal on several intervals. Here we describe two solution pro-
cedures for Problem (c) based respectively on Stieltjes’s procedure (cf. [21, §2.1]) and mod-
ified moments.

3.4.1. Solution by Stieltjes’s procedure. Suppose we are interested in generating
the Jacobi matrix J = J,(d)) of order n for the measure dA(t) = 37, Xic;,4;1(t)
dA;(t). It is well known that the recursion coefficients ar = ar(dA), Sr = Br(dX) sat-
isfy
(tTk, Tk )ax

(3.23) ay = :
(7Tka 71'k:)d)\

k=0,1,...,n—1,
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(3.24) Bo= —MRTR)A g
(Th—1, Th—1)dA
where
(3.25) (w.0)ar = [ u(®u)dr)
R

is the inner product associated with dA. We also recall the basic recurrence relation (cf. (2.6))

7Tk+1(t) = (t - Otk)ﬂ'k(t) - ,Bkﬂk_l(t), k=0,1,...,n—1,
7"-71(75) = 07 Wo(t) = 17

(3.26)

satisfied by the (monic) orthogonal polynomials 7x(-) = 7 (-;dX). For convenience, we
let, as before,

(3.27) Bo = /R dA(?)

Stieltjes’s procedure consists in the following: Compute aq from (3.23) with £ = 0 and 39
from (3.27). Then use (3.26) with & = 0 to generate 7. Go back to Egs. (3.23), (3.24) and
use them for &k = 1 to obtain a1, 81. Then (3.26) is reapplied with £ = 1 to get o, etc. This
procedure, alternating between (3.23), (3.24) and (3.26), is continued until a,,—1, 8,—1 are
obtained.

The principal issue in this procedure is the computation of the inner products in (3.23),
(3.24). Since they require integrating polynomials of degrees at most 2n — 1, one can use
n-point Gauss quadrature

d;
(3.28) / ZA(J) (7)), p € Pan,

J
for the measure d; on each constituent interval [c;, d;] of dA. It has been observed in [14]
that the explicit calculation of the Gauss nodes and weights is not required, but only matrix

manipulations involving the Jacobi matrices J (of order n) for dA; (cf. (2.10)).
We illustrate this for the inner product

d;
(3.29) (tmman = [ exiaxe =3 [ mioan 0

Denote 8 = fc‘jj dX;(t) and let
(3.30) ¢ = (T ey, ef =[1,0,...,0] € R™.
Then, using (3.29), (3.28), and (2.10), one has

(t7k, Tk )d Z/\(J) 72 (rG))

_ Zﬂ(]) TJ(J [ ( J(J) 2e; = ZIB(J)e 7 ( J(j))J(j)ﬂ'k(J(j))el

J
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that is,
(3:31) (tme mi)ar = D A5 ¢TIV

J

Similarly (in fact a bit simpler), one finds

(3.32) (ks Th)d Z B T ),

The updating of the (g) required in Stieltjes’s procedure follows immediately from
(3.26),

(3.33) ¢ =TV — 1) ¢ — e

where I is the unit matrix of order n and C(ji =0.

3.4.2. Solution by the modified Chebyshev algorithm. The desired recursion coeffi-
cients ag(dA), Bx(dA), k =0,1,...,n — 1, can also be produced from the first 2r» modified
moments

(3.34) my = / pe(t)dA(t), k=0,1,...,2n—1,
R
where {py.} is a system of polynomials satisfying a three-term recurrence relation

pk-‘,—l(t) = (t - ak)pk(t) - bkpk—l(t), k=0,1,...,n—1,
p-1(t) =0, po(t) =1

with known coefficients ay, b. A procedure accomplishing this is the modified Chebyshev
algorithm (cf. [21, §2.4]); this works also if the polynomials {py, } satisfy an extended recur-
rence relation pr11(t) = tpr(t) — E?:o ck;p;(t), and even if the measure dX is indefinite
(see, e.g., [26]). The computation of the modified moments (3.34) by Gauss quadrature is
entirely analogous to the computation of inner products in §3.4.1. Letting now

(3.35)

(3.36) Zl(cj) - pk(J(j))el
one finds
(3.37) Z /3 ©)) (])T

Updating the vectors z(]) can again be done via the recurrence relation (3.35),
(3.38) z,(fll = (JU) — akI)sz) bkzk L, 29 =0

There is yet a third algorithm proposed in [14], which is based on a fast Cholesky de-
composition. For this, we refer to the original source.

We remark that the modified Chebyshev algorithm provides an alternative way of solving
Problem (a) for polynomial modifications dA\moa(t) = r(¢)dA(t) (cf. [19, p. 123], [15]).
Indeed, if r € P,,, then r can be expressed in terms of the polynomials p; as

(3.39) r(t) =Y ¢ip;(t)
=0
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If one assumes that {p;} are orthogonal relative to the measure dA, then the modified mo-
ments my, = [ P (t)dAmoa (t) are simply

cr [o PR()AA(t) if k < m,
0ifk > m.

(3.40) me =

The modified Chebyshev algorithm, if m < k, in fact simplifies, owing to the k —m + 1 zero
modified moments in (3.40).

4. The least squares problem. The polynomial least squares problem Py is as follows:
Given N data points (tx,yx), k = 1,2,..., N, where t;,to,...,tx are mutually distinct
points on the real line, and N positive weights w2, find a polynomial ¢° € P,_;, n < N,
such that

N

N

2

Pv: Y wi (ye—a"(t)” <) wi (e — q(ts))” forallge Py, g
k=1 k=1

With Problem Py one associates the discrete inner product

N
@.1) - /R Oy =3 whulti)o(t),

k=1

and the norm ||ul|3, . = (u,u)axy, in terms of which Py can be written as

lly — ®llxy < lly —allds, forallg € P,_;.

It is well known that the problem allows an elegant solution by means of the orthonor-
mal polynomials 75 (-) = 7k (-;dAnx). Recall that there are exactly N such polynomials,
70,71, --,Tny_1; we define

N
“ v = R

7

where 71 is the monic orthogonal polynomial.

4.1. Matrix formulation of the least squares problem and its solution. Let J =
Jn(dAy) be the Jacobi matrix of order N for the measure dAy (cf. (2.8)) and p?7 =

[0, 71,...,7%n_1] the vector of the IV discrete orthonormal polynomials. Then, similarly
asin (3.7),
(4.3) tp(t) = Jp(t) + n(t)en,

where 7 (t) is defined as in (4.2). Note by (4.3) and (4.2) that the eigenvalues of .J are the
knots t1,ta,...,tn. Thus, if P = [p(t1),p(t2),-..,p(tn)], then

(4.9) JP =PA, A =diag(ty,ts,--.,tn)-
As a consequence of dual orthogonality (cf. [41, §2.4.6]), one has

p’(te)p(ty) =w;?, k=1,2,...,N,
so that wp(tx,) are the normalized eigenvectors of J. Thus, if

(4.5) D = diag(wy, w2, ..., wN),
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the matrix P D is orthogonal, and one has

(4.6) P'pP=D"2% PD’PT=1I
Finally,
(4.7) el PD = [wy,ws,...,wN]7o.

Now let ¢ = [ty,ta,...,tn]T, ¥ = [y1,y2,---,yn]T, and let q(t) = pT(t)c be any
polynomial of degree N — 1 with coefficients ¢ = [co,ci,-.-,cn—1]T in the basis of the
orthonormal polynomials. One checks that ¢(t) = P”¢. In terms of the Euclidean vector
norm || - || = || - ||r~, the squared error in Problem Py for the polynomial ¢, in view of

(4.5), can be written as

lly — qllin, = 1D (v —q(t)) |]?
(4.8) =||D(y — P"¢)|? = |PD - D(y — P"c)|]?
=||PD*y —c|?,

where the orthogonality of P D and the second relation in (4.6) have been used in the last
two equations. Choosing ¢ = P D?y drives the error to zero and yields the interpolation
polynomial of degree N — 1. The solution of the least squares problem Py, on the other

Cn

hand, requires ¢ = [ 0

] , where ¢, = [co,c1,---,cn_1]T, and by (4.8) is equal to

@9) FO=p'0 |G | en=PunD.

Here, P|y.,, is the matrix formed with the first n rows of P.

4.2. Updating and downdating the least squares solution. Suppose we adjoin to the
N data points considered in §4.1 an additional point (¢x41,yn+1) and give it the weight
w%\,ﬂ. How can the solution of the least squares problem Py for the original NV data points
be used to obtain the solution of the least squares problem for the augmented set of N + 1
data points? This is the problem of updating the least squares solution. There is an analogous
problem of downdating whereby a single data point is deleted. An interesting treatment of
these problems by matrix methods is given in [12].

We discuss here updating techniques only and refer to the cited reference for similar
downdating techniques. In essence, the problem of updating can be considered as solved
once we have constructed the Jacobi matrix Jyp = J ny1(dAny1) Of order N + 1 for the
augmented measure dAn41 from the Jacobi matrix J = J n(dAy) for the original measure
dA v, the inner product for dA 1 being

N+1
(4.10) (u0)arwas = [ uOpODN0) = 3 whulti)olen).
R k=1
Let (cf. (3.27))
(4.11) Bo = /R AN (), Boup = /R Drna (2),

so that

(412) o = 1/\/%7 7~r0,up = 1/\/ BO,up-
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There is a unique orthogonal matrix @ 41 of order N 4 1 whose first row is prescribed to be

1

vV IBO,up

(4.13) 61TQN+1 =

and which accomplishes a similarity transformation of the matrix [

onal form,

J 0

4.14
( ) OT tN+1

Qni1 [

(cf. [42, p. 113, (7-2-2)]). We claim that
(4.15)

Jup = TN+1-

(V/Boel +wny1€x11)

to tridiag-
oT tN+1] 9

] Q%H =TnNy1, Tn4o tridiagonal

To see this, recall that, with Q@ = PD (orthogonal), Eq. (4.4) implies J = PAP™! =

QD 'ADQ™!, hence
(4.16)

J = QAQ".

By (4.7), in view of the first relation in (4.12), there holds

(4.17)

\/B_oelTQ:[wl,wz,...

,'UJN].

The analogous relations for the augmented problem are

Jup = QupAupQqua Aup =

and
(4.18)

where e; now has dimension N + 1. Define

T
Q* =Qup |: ?T

VBo,upel Qup = [wi,w2,. ..

A 0
oT tN+1

awNawN—i-l]:

= o
[ S

Then
* J 0 *T QT 0 J 0 Q 0 -
Q [ OT tN+1 :|Q _Qup|: OT 1 :| |: OT tN+1 :| [ OT 1 :|Qup
_ RTIQ o r
= [ 0" tnp Qups
hence, by (4.16),
* J 0 T «T _ A 0 T r
N [ 07 tnir | @ = [ 07 tnya ] Qup = QupAupQup = Jup-

Furthermore, using (4.18),

Q
3

T T
€1 Q* =€ Qup

0 ] _ 1
1 a \//BO,up

[wl, - ,’IUN,’UJN+1] [

T
p

0
1 2
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which by (4.7) and the first of (4.12) becomes

1 T
el *Zm[ Boel Q wN+1]|:%2T (1)]

1 1

Ve [VBoel wni1] = N [VBoel +wniref -
,up ,up

Thus, Q™ satisfies exactly the properties defining Q y ;, showing that indeed J ., = T'n41.
The analogue of (4.3),

tpup (t) = Juppup(t) + 7~1—N+1,up(t)eN+17

in combination with the second relation of (4.12) can now be used to generate the new discrete
orthonormal polynomials, and with them the updated least squares solution by the analogue
of (4.9).

Algorithmically, the transformation (4.14) can be implemented by a sequence of appro-
priate Givens rotations (cf. [12, Eq. (4.7)]). The updating technique described here is not the
only possible one; for others, see [ibid., §§4.3-4.7].

Since the solution for the one-point least squares problem P is trivially 7g = 1/|w1],
J = [t1], ¢ = [|wi|y1], one can use the updating technique to build up the least squares
solutions of Py successively for N = 2,3, ... without necessarily having to store the entire
data set.

5. Linear algebraic systems. Many linear algebra problems that involve a symmetric
positive definite matrix A € RV X" can be related to discrete orthogonal polynomials sup-
ported on the spectrum of A. This provides the link between linear algebra and analysis.
It may be appropriate, at this point, to recall that the use of discrete (and other) orthogonal
polynomials in the context of linear algebra has been pioneered by Stiefel [44]; see also [36,
§14].

For simplicity assume that A has distinct eigenvalues \,,,

(5.1) 0</\N<)\N71<"'<)\17
and denote the respective (orthonormal) eigenvectors by v,,,
(5.2) Av, = M\, v v, =06pm, n,m=1,2,...,N.

(There should be no danger of confusing these A’s with the weights of the Gauss quadrature
rule in (2.2).) Thus, with V' = [v1,v2,...,vN], A = diag(\1, A2, ..., An), there holds

(5.3) AV =VA, A=VTAV.

Now consider a discrete measure dpx defined by

N
(5.4) F@&)dpn(t) ==Y pif(\),
Ry k=1
where p? are positive weights, and assume, temporarily, that the measure dpx is normalized,
Ry

10therwise, some terms in (5.4) below consolidate, so that NV becomes smaller.
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It is possible to generate the orthonormal polynomials 7 (-;dpn), K = 0,1,...,N — 1,
resp. the associated Jacobi matrix J y = J n(dpn ), entirely by matrix-vector multiplications
involving the matrix A and by an initial vector

N
(56) hO = Zpk'vk; ”h’OH = 17
k=1

whose components in the basis of the normalized eigenvectors are the (positive or negative)
square roots of the weights p2. (Here and in the following, || - || denotes the Euclidean vector
norm.) A method accomplishing this is the Lanczos algorithm, which is briefly described
in §5.1. The subsequent sections give applications of this algorithm when combined with
quadrature methods.

5.1. The Lanczos algorithm. Let hq be given as in (5.6), and define h_; = 0. The
Lanczos algorithm is defined as follows:

for j=0,1,...,N—1 do
aj =h] Ah;
G hjs1 = (A~ a;D)h; — ki
Vi1 = |
hjr1 = hjpi /v

Note that vo can be arbitrary, but is often defined, in accordance with (5.5), by 79 = 1, or, in
accordance with (5.10) below, by vo = Bo.

The vectors h; so generated are orthonormal, as one checks by induction, and it is evident
from (5.7) that {h;}7_, n < N, forms an orthonormal basis for the Krylov space

Kn(A, ho) = span(hg, Ahg, ..., A"hyg).
One also verifies by induction that
(5.8) h; =p;(A)hy,
where p; is a polynomial of degree j satisfying the three-term recurrence relation
VirrPit1(A) = (A = ;)p;(A) —vipj-1(A),
(5.9) j=0,1,...,N—1,
p-1(A) =0, po(A) =1.
We claim that pi(-) = 7 (- ;dpn). Indeed, from the second relation in (5.3) one has
pn(A) = Vip,(A)V,
hence, by (5.8),
hn =Vp,(A)VThg.
Orthonormality hfhm = 0pm Of the Lanczos vectors h; then yields

ha Vp,(MVIVp,(A)VTho = hi V(M) pm(A) VT he = 6,m,
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which, since VT hg = ST, prex. by (5.6), implies

N
D" pref diag (pn(A1)pm(A1); - -, Pa(AN)Pm(AN)) pee

k=1
N

N
Z prpeed Pu(A)pm(N)er = Y prpa(Me)Pm (k) = Snm,
=1 k=1

as claimed.
The recurrence relation (5.9), therefore, must be identical with the one in (3.2), i.e.,

= /B

If the measure dpyy is not normalized and, as in (3.27), one puts

(5.10) Bo = A dpn (1),

then the recurrence relation still holds, except that one must define po(A) = 1/+/Bo.

5.2. Bounds for matrix functionals. Given A € RV>¥ positive definite and f a func-
tion analytic on an interval containing the spectrum of A, the problem to be considered is
finding lower and upper bounds for the bilinear form

(5.11) ul f(A)v,

where u,v € RV are given vectors. The solution of this problem has many applications;
some will be discussed in subsequent sections. For applications to constrained least squares
problems for matrices, see [29], and [7] for applications to the evaluation of suitable regu-
larization parameters in Tikhonov regularization. The case f(t) = (A —t)~! with X outside
the spectrum of A is important in physical chemistry and solid state physics applications; for
references, see [32, §1].

Letfirstu = v. With V = [vy,v4,...,vy] and A as defined in (5.2), (5.3), we let

N
(5.12) u = Zpkvk

and for simplicity assume p;, # 0 forall k. Thenu = Vp, p = [p1,p2,...,p~]*, and
f(A) = VF(A)VT. Therefore,

N
uw'f(Au=p " VIV AV Vp=p"f(M)p = piif(\),
that is,
(5.13) u' f(A)u = s f(t)dpn (1),

where dpx is the discrete measure defined in (5.4). The desired bounds can be obtained by
applying Gauss, Gauss-Radau, or Gauss-Lobatto quadrature to the integral in (5.13), pro-
vided the appropriate derivative of f has constant sign (cf. §§2.1,2.2). The Lanczos algorithm
(cf. §5.1) applied with hg = u/||ul|| furnishes the necessary (discrete) orthogonal polynomi-
als, resp. their recursion coefficients. For Gauss formulae, the quality of the bounds, even
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when no specific information is known about the sign of derivatives of f, can be estimated in
terms of the absolute values of these derivatives and the quantities ’yf = f; generated during
the Lanczos process (cf. [6]). One simply makes use of (2.11).

The case u # v can be handled by using the polarization identity u” f(A)v =
10T f(A)p — q" f(A)g) wherep = u + v, ¢ = u — v (cf. [2, §3.1.2], [3, p. 426], or,
for a similar identity, [32, Eq. (3)]) and applying appropriate bounds to the first and sec-
ond term of the identity. Alternatively, a “nonsymmetric” Lanczos process can be applied in
conjunction with Gauss-Radau quadrature [30].

For the important function f(¢) = ¢! (see, e.g., (5.19) or (5.22) below), the case of an
arbitrary nonsingular matrix A can be reduced to the case of a symmetric positive definite
matrix by noting that

(5.14) wl'A o =uf(ATA)w, w=A"v

(cf. [2, §3.2], [3, p. 427]).

5.3. Error bounds. We consider now the system of linear algebraic equations
(5.15) Ax =D

with A € RY*N symmetric and positive definite. Given any approximation z* to the exact
solution & = A~'b, the object is to estimate the error & — 2* in some norm. We begin with
using the Euclidean vector norm || - ||.

Let 7 be the residual of *,

(5.16) r=>b— Ax*.
Since z — z* = A~ 'r, we have
(5.17) |z —z*|)? = rT A %,

which is (5.11) with w = v = r and f(t) = t~2. Here the derivatives are f(>™)(t) =
(2n 4 1)1¢=Cnt2) | fCntD) (1) = —(2n + 2)1¢~@7+3) 50 that

(5.18) ey >0, FeI@) <0 fort e R, .

The n-point Gauss formula (with n < N) applied to the integral in (5.13) (with f(t) =
t=2) thus produces a lower bound for the squared error (5.17). If the spectrum of A can
be enclosed in an interval [a,b], 0 < a < b, then the “left-sided” (n + 1)-point Gauss-
Radau formula yields an upper bound, and the “right-sided” formula a lower bound for (5.17).
The Lanczos algorithm applied with hq = »/||r|| yields the recursion coefficients for the
orthogonal polynomials required for generating these quadrature rules.

If instead of the Euclidean norm one takes the A-norm [|u||% = u” Aw (cf. [31]), then

(5.19) |l — 2|3 =rTA 'y,

which is (5.11) with w = v = r and f(t) = t~!. Since this function satisfies the same
inequalities as in (5.18), the Gauss and Gauss-Radau formulae applied to the integral in
(5.13) (with f(t) = t~1) produce the same kind of bounds as in the case of the Euclidean
norm. The difference between the N-point and n-point Gauss quadrature approximation
equals ||z — x,||% /||7||?, where z,, is the nth iterate of the conjugate gradient method started
with » (cf. [32, Eq. (50)]). The conjugate gradient method, in fact, can be used not only as an
alternative to the Lanczos algorithm to generate the recursion coefficients of the orthogonal
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polynomials, but also to improve the approximation z*. The A-norm of the improved ap-
proximation can then be estimated from below and above (see [11, §5]). For analogous error
estimates in the Euclidean norm, see [9].

The idea of using Gauss-Radau quadratures in combination with (5.18) to get error
bounds for linear systems goes back to Dahlquist, Eisenstat, and Golub [10]. They also
suggest a procedure based on linear programming when all eigenvalues are known (cf. [10,
§2]). This requires knowledge of the moments p.,, of dpn, which by (5.13) are given by

tm = / t"™dpn(t) = rT A™r.
R4

Thus, computing the first 2n 4+ 1 moments po, p1, - - - , 2, @mounts to generating the Krylov
sequence r, Ar, ..., A" and computing the inner products of its members with . In view
of

N
le—a'lP = [ t2dpw(0) = Y tN,
Ry k=1

an upper bound can be found by solving the linear programming problem

N
(5.20) max! > A’
k=1

subject to the constraints
(5.21) =

Here, n can be any integer < N. A lower bound can similarly be obtained by replacing
“max” in (5.20) by “min”. The same procedure, with )\,;2 in (5.20) replaced by X, 1, works
for the A-norm.

The ideas outlined above, and still other ideas from the theory of moments, are applied
in [10] to obtain upper and lower bounds for the errors in the Jacobi iterative method. Bounds
for matrix moments p,, = rT A™r are similarly obtained in [24].

5.4. The diagonal elements of A™!. Given A € RV*N positive definite, the problem
is to find bounds for the diagonal elements (A™");; of A™%,i =1,2,..., N. Here,

(5.22) (A Nii=el Ale,

where e; is the ith canonical basis vector. This is (5.11) withu = v = e; and f(t) = t~L.
As before, f satisfies the inequalities (5.18).

5.4.1. Lower bound from Gauss quadrature. By virtue of (2.4) and the first of (5.18),
the n-point Gauss quadrature sum (cf. (2.10), where uo = 1) yields a lower bound for the
integral, i.e.,

(5.23) (A7 :/ t Ldpn(t) > ef T e;, el =[1,0,...,0] € R",
Ry
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where J,, = J,(dpn). Consider n = 2; we apply two steps of the Lanczos algorithm with
ho = e; to generate

JZZ[aO ’}’1]‘

71 oo

According to (5.7) we have

Qg = a4,
hi = (A—aol)e; = [a1;,---,0i-1,:,0, Qi 1,5, - - ani] T
2
"= Ay, =: Si,
(5.24) \/ gé‘: t
h; = ih/sia
1.7 - 1
o= h; Ah; = =z Z zakeakiaei-
i i kti 0£i
Since
1 _
J2_1 = D) |: o m :| )
oo —77;7 L M @o
one has
_ (651
5.25 eIl = — 2+
( ) 1 2 1 Qo — 712

and therefore, by (5.23) and (5.24),

E E AeQriQei

_ k#i LF£i
(5.26) (A Y > 71 .
i Y Y arearian — | > aj,;
ki 0 ki

It should be noted that this bound, in contrast to those given below in §§5.4.2-5.4.3, does not
require any information about the spectrum of A.

5.4.2. Upper and lower bounds from Gauss-Radau quadrature. If the spectrum of
A can be enclosed in the interval [a, b], 0 < a < b, then by the second of (5.18) and the first
of (2.17) (with the inequality reversed) the “left-sided” (n+ 1)-point Gauss-Radau quadrature
sum in (2.12) yields an upper bound, and similarly the “right-sided” quadrature sum in (2.16)
a lower bound for the integral. Takingn = 1 in (2.14), (2.15), one gets

2
TRy _|aa m , of=at Vi ’
o) = | 90 ] afmas

where ag = aj;, 71 = s; from (5.24). Replacing here a by b yields J£* (dpx). From (5.25),
where a4 is replaced by o, a simple computation then gives

ai; —b+s2/b _ aii —a+s?/a
g 2/2 <A< 57— '/2 :
a;; — ayb+ s; aj; — a6+ S;

(A3

(5.27)
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5.4.3. Upper bound from Gauss-Lobatto quadrature. The (n + 2)-point Gauss-
Lobatto quadrature sum in (2.19), on account of (2.21) and the first of (5.18) (with n replaced
by n + 1), yields an upper bound for the integral. Taking n = 0 in (2.22), one gets

a L
)= | 2 0],

where by (2.23) the quantities o and y{ solve the 2 x 2 system
a—ap 1 af | ala— ao) o = an
b—ap 1 (Y2 | T | bb—ag) |7 "0 T
Carrying out the solution and using (5.25) with a1, 71 replaced by of, ¥, yields
a+b—ag

ab

The results in §§5.4.1-5.4.3 are from [30, Thm. 5.1]. When n > 2, the quadrature sum
el J'e; can be computed for all three quadrature rules in terms of quantities generated
during the course of the Lanczos algorithm; see [30, Thm. 5.3]. For an application to Vi€sek
fractal Hamiltonian matrices, see [25].

(5.29) (A1 <

5.4.4. The trace of A~ and the determinant of A. In principle, each method de-
scribed in §§5.4.1-5.4.3 can be used to estimate the trace

(5.29) tr(A7") = Z(A_l)ii

i=1

of A~ by applying the method to each term in the sum of (5.29), hence N times. For large
sparse matrices there are, however, more efficient estimation procedures based on sampling
and a Monte Carlo approach (cf. [2, §4]).

Alternatively, we may note that (cf. [1])

N
(5.30) tr(A™1) = ZA;l = / tLdpn(2),
k=1

Ry

where dpy is the discrete measure (5.4) with pp, =1,k =1,2,...,N. Asin §5.4.2, we may
then apply Gauss-Radau quadratures on an interval [a, b] containing all eigenvalues Ay, to get
lower and upper bounds. The only difference is that now dp is no longer normalized, in fact

(5.31) po= [ dpn(t) =N,
R4
and the Lanczos algorithm, in accordance with (5.6), is to be started with
1 N
hy = — V.

Observing that

N N
M1 =/ tde(t) :Z)\k ZZCL“’ =tr (A),
R+ k=1 i=1

N N
iz = /R Pdon () =3 X = 3 a2 = | All3,
+ k=1

ij=1

(5.32)
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from (5.7) one gets

1 N N 1 N
ag = hg Aho = = > vi Y Ave =+ > A,

k=1 =1 k=1
that is,
1
Furthermore,
1 al 1 &
hi=(A—aoDhy= ——=(A—aol)Y vp=—= > (A& —o)vs,
VN kz::l N ;
and
T 1 N N
% =hih = N D (A —ao)vi Y (A — ao)vy
k=1 =1
An elementary calculation yields
1 1
(5.34) 7= 5 (2 = 5 ).

The rest of the calculation is the same as in §5.4.2, except that, by (5.31), one has to include
the factor g = N in (5.25). The result is

1,2 2 1,2 2
(5.35) 1(1_M)<ltr(Al)<l<1_M)7
b 2 — b N a 2 — apy
with u1, pe given by (5.32). The same inequalities, in a different form, are derived in [1,
Eqg. (9)] by means of difference equations.
As far as the determinant det A is concerned, we note that the trace is invariant to simi-
larity transformations, so that by (5.3)

N N
tr(lnA) =tr (VInAVT) =tr(lnA) = > InX, =1In [ M-
k=1 k=1

Since det A = [], Ax, this yields
(5.36) det A = exp(tr (In A)).

Here, the trace of In A can be estimated as described for A™*, with the function f(t) = ¢!
replaced by f(¢t) = In¢. This latter function has derivatives whose signs are opposite to
those in (5.18), which gives rise to bounds whose types are opposite to those obtained in
§85.4.1-5.4.3.

Note that in place of J, " in the quadrature sum (5.25), we now require In Jo. This
can be defined by linear interpolation at the eigenvalues 0 < k2 < k1 of J2 (see, e.g., [18,
Ch. 5)),

1

1
111.]2: [(J2—@I)lnm—}—(mI—Jg)lnﬁg].
K1 — K2
In particular, therefore,
1
(5.37) elT InJse; = [(ap — K2)Inky + (K1 — ap) In ks],
K1 — K2

where ay is given by the first of (5.24) resp. by (5.33).
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5.5. Iterative methods. Consider again the system (5.15) with A € RV*N symmetric
and positive definite. Based on the splitting A = M — N, where M and IN are symmetric
and M positive definite, a large class of iterative methods for solving (5.15) is given by

(5.38) @1 =xp 1+ wk+1(6zk + T — :ck,l), k=0,1,2,..., = 1=0,
where
(5.39) Mz, =b— Axy,.

In practice, M is chosen such that linear systems with this matrix as coefficient matrix can be
easily solved. Depending on the choice of parameters, the iteration (5.38) includes such meth-
ods as the conjugate gradient, the Richardson second-order, and the Chebyshev semi-iterative
method. For optimizing the speed of convergence of the two latter methods, it is important to
have good estimates of the smallest and largest eigenvalues of M ~' N. Such estimates can
be found via certain discrete orthogonal polynomials and the modified Chebyshev algorithm
(cf. §3.4.2) generating them; see [28].

To analyze the speed of convergence of the iteration, there is no loss of generality in
assuming, as we do, that b = 0, and thus considering convergence of &, resp. zy, to the zero
vector.

Substituting , = —A ™' M 2, obtained from (5.39) into (5.38) yields

(5.40) Zpt+1 = W1 Bz + (1 — wk+1)zk,1, z_1=0,
where
(5.41) B=I-/M"A.

Since B=1I-6M '"(M - N) = (1-681+3§M "N, the eigenvalues v,, of M ' N
are related to the eigenvalues A,, of B by

(5.42) un=1+%(xn_1), n=1,2 . N

We may therefore focus attention on the eigenvalues of B. Note that the eigenvalue problem
Bwv = M for B is equivalent to the generalized eigenvalue problem

1_
(5.43) Av = kMv, k= T/\ .

Since M is positive definite, the Cholesky decomposition M = LL™ will transform (5.43)
into an ordinary eigenvalue problem for the symmetric matrix L=* AL~T. 1t follows that
(5.43), and therefore B, has real eigenvalues and a complete set of M-orthogonal eigenvectors
U’ny

(5.44) Bv, = \vn, vIMv, =6pm, n,m=12,...,N.
From (5.40), one obtains by induction that

(5.45) zr =pr(B)zo, k=0,1,2,...,

where p,, are polynomials of degree & satisfying

Pr+1(A) = wWrp1 APe(A) + (1 — wrg1)pe—1(N),
p—1(A) =0, po(N) =1

(5.46)
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With V' = [vy,v2,...,vn] denoting the set of eigenvectors of B, one has BY = VA,
where A = diag(A1, Ag, ..., An), hence VI BV = A, VIp,(B)V = pi(A), and thus

(5.47) pe(B) = Vp (A)VT.

The speed of convergence z;, — 0 in (5.45), therefore, is determined by the absolutely largest
of the quantities px(A,), n =1,2,..., N.
If we expand z¢ in the eigenvectors of B,

N
(548) z0 = Z a;0;,
=1
then from (5.45) we get
N
zr =) aipr(Ni)vi.
i=1

By the M-orthonormality (5.44) of the eigenvectors, the M-inner products of the iterates z,
become

N N
(Zn, Zm)vr =2 M 2z, = Zaipn()\i)v;erZaij()‘j)”j
i—1 i—1
N J
= Y aiapa(\)pm(A)v] Mo,
ij=1
N
= aipn(N)pm (M),
=1
that is,
(5.49) (zns 2t = [ Pupm Ny (1),
R

Here, day is a discrete measure supported on the eigenvalues A; of B and having jumps a?
at ;.
Along with the measure da there come discrete orthogonal polynomials {},

=0 ifn#m, _
(5.50) /an(/\)wm()\)daN(/\) { oM am=01,., N -1
and Jacobi matrices J = Jg(dan), k = 1,2,..., N. The extreme eigenvalues of J, i.e.,

the extreme zeros of mg, with increasing &, in general provide good approximations to the
extreme eigenvalues of B, hence by (5.42), to those of M ' N.

In order to generate the matrices J, one can use the modified Chebyshev algorithm
(cf. §3.4.2), defining modified moments in terms of the polynomials p;, by

(551) myg = <Zk7Z0)M = /pk(/\)daN(/\), k= 0, 1,2, e .
R

The polynomials py, indeed satisfy a three-term recurrence relation with known coefficients
(cf. (5.46)). The first relation in (5.51) is used to compute the modified moments.
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While the procedure described requires 2m modified moments to obtain J ,,, that is, 2m

iterations of (5.38), there are special iterative methods, such as the Chebyshev semi-iterative
method, where the same can be accomplished already after m iteration (cf. [28, §3]).

A similar method is developed in [4] to determine a few of the largest singular values of

a large sparse matrix and the corresponding left and right singular vectors, and is extended
in [5] to estimate complex eigenvalues of a large sparse nonsymmetric matrix in connection
with an adaptive Chebyshev iterative method.
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